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PHASE FIELD METHOD FOR MEAN CURVATURE FLOW WITH BOUNDARY
CONSTRAINTS

Elie Bretin1 and Valerie Perrier2

Abstract. This paper is concerned with the numerical approximation of mean curvature flow t → Ω(t)
satisfying an additional inclusion-exclusion constraint Ω1 ⊂ Ω(t) ⊂ Ω2. Classical phase field model
to approximate these evolving interfaces consists in solving the Allen-Cahn equation with Dirichlet
boundary conditions. In this work, we introduce a new phase field model, which can be viewed as
an Allen Cahn equation with a penalized double well potential. We first justify this method by a
Γ -convergence result and then show some numerical comparisons of these two different models.
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1. Introduction

In the last decades, a lot of work has been devoted to the motion of interfaces, and particularly to motion
by mean curvature. Applications concern image processing (denoising, segmentation), material sciences (motion
of grain boundaries in alloys, crystal growth), biology (modeling of vesicles and blood cells), image denoising,
image segmentation and motion of grain boundaries.

Let us introduce the general setting of mean curvature flows. Let Ω(t) ⊂ R
d, 0 ≤ t ≤ T , denote the evolution

by mean curvature of a smooth bounded domain Ω0 = Ω(0): the outward normal velocity Vn at a point
x ∈ ∂Ω(t) is given by

Vn = κ, (1.1)

where κ denotes the mean curvature at x, with the convention that κ is negative if the set is convex. We will
consider only smooth motions, which are well-defined if T is sufficiently small [4]. Since singularities may develop
in finite time, one may need to consider the evolution in the sense of viscosity solutions [5, 25].

The evolution of Ω(t) is closely related to the minimization of the following energy:

J(Ω) =
∫

∂Ω

1 dσ.

Indeed, (1.1) can be viewed as a L2-gradient flow of this energy.
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There is an important literature on numerical methods for the mean curvature flows. These can be roughly
classified into three categories: parametric methods [6, 7, 22, 23], Level set formulations [19, 24, 32–34] or Phase
field approaches [11,17,31,36]. See for instance [23] for a complete review and comparison beetween these three
differents strategies.

In this work, we focus on phase field method. Following [30, 31], the functional J can be approximated by a
Ginzburg-Landau functional:

Jε(u) =
∫

Rd

(
ε

2
|∇u|2 +

1
ε
W (u)

)
dx,

where ε > 0 is a small parameter, and W is a double well potential with wells located at 0 and 1 (for example
W (s) = 1

2s2(1 − s)2).
Modica and Mortola [30, 31] have shown the Γ -convergence of Jε to cW J in L1(Rd) (see also [9]), where

cW =
∫ 1

0

√
2W (s)ds. (1.2)

The corresponding Allen-Cahn equation [2], obtained as the L2-gradient flow of Jε, reads

∂u

∂t
= Δu − 1

ε2
W ′(u). (1.3)

Existence, uniqueness, and a comparison principle have been established for this equation (see for example
Chaps. 14 and 15 in [4]). To this equation, one usually associates the profile

q = argmin
{∫

R

(
1
2
γ′2 + W (γ)

)
; γ ∈ H1

loc(R), γ(−∞) = 1, γ(+∞) = 0, γ(0) =
1
2

}
· (1.4)

Remark 1.1. The profile q (when W is continuous) can also be obtained [1] as the global decreasing solution
of the following Cauchy problem {

q′(s) = −
√

W (s), s ∈ R

q(0) = 1
2 ,

and satisfies ∫
R

(
1
2
q′(s)2 + W (q(s))

)
=
∫ 1

0

√
2W (s)ds.

Then, the motion Ω(t) can be approximated by

Ωε(t) =
{

x ∈ R
d ; uε(x, t) ≥ 1

2

}
,

where uε is the solution of the Allen Cahn equation (1.3) with the initial condition

uε(x, 0) = q

(
d(x, Ω(0))

ε

)
·

Here d(x, Ω) denotes the signed distance of a point x to the set Ω.
The convergence of ∂Ωε(t) to ∂Ω(t) has been proved for smooth motions [10, 17] and in the general case

without fattening [5, 25]. The convergence rate has been proved to behave as O(ε2|log ε|2).
Various numericals method has been used to solve Allen Cahn equation, for instance, finite difference

method [8, 20, 29], the finite element method [27, 28, 42]. From the practical point of view, we usually solve
this equation is in a box Q, with periodic boundary conditions, which allow solutions to be computed via a
semi-implicit Fourier-spectral method as in the paper [18].
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Figure 1. Constrained Mean curvature flow.

In this article, we investigate the approximation of interfaces evolving in a restricted area, which usually
occurs in several physical applications. More precisely, we will consider mean curvature flow t → Ω(t) evolving
as the L2 gradient flow of the following energy:

JΩ1,Ω2(Ω) =

{∫
∂Ω 1 dσ if Ω1 ⊂ Ω ⊂ Ω2,

+∞ otherwise.

Here Ω1 and Ω2 are two given smooth subsets of R
d such that dist(∂Ω1, ∂Ω2) > 0. These evolving interfaces

will clearly satisfy the following constraint Ω1 ⊂ Ω(t) ⊂ Ω2.
To our knowledge, the only phase field model known to approximate these evolving interfaces considers the

Allen Cahn equation in Ω2 \Ω1 with Dirichlet boundary condition on ∂Ω1 and ∂Ω2 [35]. Yet, some limitations
appear in this model:

• The Dirichlet boundary conditions prevent interfaces to reach boundaries ∂Ω1 and ∂Ω2. This can be seen
as a consequence of thickness of the interface layer which is about O(ε ln(ε)). This highlights the fact that
the convergence rate of this model can not be better than O(ε ln(ε)).

• From a numerical point of view, the resolution of the Allen Cahn equation with Dirichlet boundary conditions
can be performed using a finite element method [26]. This choice appears more flexible to describe complex
geometries, despite the computational cost associated with the construction of appropriate solution grid,
especially in dimension 3. More recently, Fourier spectral discretizations have been introduced to overcome
the limit choice of finite element methods in irregular domain [16, 41] and to produce hight-order accuracy
schemes. These techniques are based on smooth immersed interfaces and penalization approach which can
incorporate a large variety of boundary conditions. Note that these constructions used penalized differential
operators which are ill-conditioned and should raise some instability issues in their numerical integration.

To overcome these limitations, we introduce in this paper a new phase field model. The main idea will be to
consider the Allen-Cahn equation in the whole domain with a penalization technique on the double well potential
W to take into account the boundary constraints. Note that our approach is quite different from [16,41]. Indeed,
we are not looking for some penalization technique to solve Dirichlet Allen Cahn equation but for the interface
sharp-limit of a variational problem when ε goes to zero.

We then expect to obtain a better convergence order than O(ε ln(ε)) for our phase field approximation.
Moreover, this phase field model will be numerically solved by spectral method [18] as in [16, 41]. However,
our penalization terms act on the double well potential W , wich can be explicitely integrated without adding
numerical instabililities.



1512 E. BRETIN AND V. PERRIER

The paper is organized as follows:
In Section 2, we present in detail the two phase field model. In Section 3, we justify our penalized approach

by a Γ -convergence result. In Section 4, we compare our method to the classical Finite Element model of [35],
through numerical illustrations. These simulations will investigate the numerical convergence rate of each model.

2. Phase field model with boundary constraints

In this section, we will introduce our Allen Cahn model for the approximation of mean curvature flow t → Ω(t)
evolving as the L2 gradient flow of the following energy

JΩ1,Ω2(Ω) =

{∫
∂Ω 1 dσ if Ω1 ⊂ Ω ⊂ Ω2

+∞ otherwise

where Ω1 and Ω2 are two given smooth subsets of R
d satisfying dist(∂Ω1, ∂Ω2) > 0. We begin with the

description of the classical approach.

2.1. Classical model with Dirichlet boundary conditions

The classical strategy, see for instance [12, 35], consists in introducing the function space

XΩ1,Ω2 =
{
u ∈ H1(Ω2 \ Ω1) ; u|∂Ω1 = 1 , u|∂Ω2 = 0

}
,

and a penalized Ginzburg-Landau energy of the form

J̃ε,Ω1,Ω2(u) =

{∫
Ω2\Ω1

(
ε
2 |∇u|2 + 1

ε W (u)
)

dx if u ∈ XΩ1,Ω2

+∞ otherwise.

In such framework, Chambolle and Bourdin [12] have shown the Γ -convergence of J̃ε,Ω1,Ω2 to cW JΩ1,Ω2 in
L1(Rd) (cW has been introduced in (1.2)). This approximation conduces to the following Allen-Cahn equation⎧⎪⎨

⎪⎩
ut = 	u − 1

ε2 W ′(u), on Ω2 \ Ω1

u|∂Ω1 = 1, u|∂Ω2 = 0
u(0, x) = u0 ∈ XΩ1,Ω2 .

A more general Γ -convergence result for the Allen-Cahn equation with Dirichlet boundary conditions can be
found in [35].

2.2. Novel approach with a penalized double well potential

Now, we describe an alternative approach to force the boundary constraints, based on a penalized double
well potential. From W considered in section 1.1, we define two continuous and positive potentials W1 and W2

satisfying the following assumption:

(H1)

{
W1(s) = W (s) for s ≥ 1/2
W1(s) ≥ max(W (s), λ) for s ≤ 1/2

and

{
W2(s) = W (s) for s ≤ 1/2
W2(s) ≥ max(W (s), λ) for s ≥ 1/2

for a given constant λ > 0.
For α > 1, ε > 0, and x ∈ R

d, we introduce also a penalized double well potential Wε,Ω1,Ω2,α defined by

Wε,Ω1,Ω2,α(s, x) = W1(s) q

(
dist(x, Ω1)

εα

)
+ W2(s) q

(
dist(x, Ωc

2)
εα

)

+ W (s)
(

1 − q

(
dist(x, Ω1)

εα

)
− q

(
dist(x, Ωc

2)
εα

))
, (2.1)
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where dist(x, Ω1) and dist(x, Ωc
2) are respectively the signed distance functions to the sets Ω1 and Ωc

2, and q is
the profile function associated to W defined in (1.4).

Our modified Ginzburg-Landau energy Jε,Ω1,Ω2,α reads

Jε,Ω1,Ω2,α(u) =
∫

Rd

[
ε

2
|∇u|2 +

1
ε
Wε,Ω1,Ω2,α(u, x)

]
dx. (2.2)

We will prove in the next section that this energy Γ -converges to cW JΩ1,Ω2 . The associated Allen-Cahn
equation reads in this context:

∂tu = 	u − 1
ε2

∂sWε,Ω1,Ω2,α(u, x). (2.3)

3. Approximation result of the penalized Ginzburg-Landau energy

In this section, we prove the convergence of the Ginzburg-Landau energy Jε,Ω1,Ω2,α introduced in (2.2), to
the following penalized perimeter

JΩ1,Ω2(u) =

{
|Du|(Rd) if u = 1lΩ and Ω1 ⊂ Ω ⊂ Ω2

+∞ otherwise.

Remark 3.1. Given u ∈ L1(Rd), |Du|(Rd) is defined by

|Du|(Rd) = sup
{∫

Rd

u div(g)dx ; g ∈ C1
c (Rd, Rd)

}
,

where C1
c (Rd; Rd) is the set of C1 vector functions from R

d to R
d with compact support in R

d. If u ∈ W 1,1(Rd),
|Du| coincides with the L1-norm of ∇u and if u = 1lΩ where Ω has a smooth boundary, |Du| coincides with the
perimeter of Ω. Moreover, u → |Du|(Rd) is lower semi-continuous in L1(Rd) topology.

We assume in this section that Ω1 and Ω2 are two given smooth subsets of R
d satisfying dist(∂Ω1, ∂Ω2) > 0,

and that ε is sufficiently small such that

1 − q

(
dist(x, Ω1)

εα

)
− q

(
dist(x, Ωc

2)
εα

)
> 1/2, (3.1)

for all x in Ω2 \ Ω1.
We now state the main result for the modified Ginzburg-Landau energy Jε,Ω1,Ω2,α:

Theorem 3.2. Assume that W is a positive double-well potential with wells located at 0 and 1, continuous on
R and such that W (s) = 0 if and only if s ∈ {0, 1}. Assume also that W1 and W2 are two continuous potentials
satisfying assumption (H1). Then, for any α > 1, it holds

Γ − lim
ε→0

Jε,Ω1,Ω2,α = cW JΩ1,Ω2 in L1(Rd).

Proof. We first prove the liminf inequality.
(i) Liminf inequality:
Let (uε) converge to u in L1(Rd). As Jε,Ω1,Ω2,α ≥ 0, it is not restrictive to assume that the lim inf of Jε,Ω1,Ω2(uε)
is finite. So we can extract a subsequence un = uεn such that

lim
n→+∞

Jεh,Ω1,Ω2,α(un) = lim inf
ε→0

Jε,Ω1,Ω2,α(uε) ∈ R
+.
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Note that from Remark (1.1) and assumption (3.1), it holds⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

q
(

dist(x,Ω1)
εα

)
≥ 1/2 for x ∈ Ω1,

q
(

dist(x,Ωc
2)

εα

)
≥ 1/2 for x ∈ Ωc

2,

1 − q
(

dist(x,Ω1)
εα

)
− q

(
dist(x,Ωc

2)
εα

)
≥ 1/2 for x ∈ Ω2 \ Ω1,

1 − q
(

dist(x,Ω1)
εα

)
− q

(
dist(x,Ωc

2)
εα

)
≥ 0 for x ∈ R

d,

for ε sufficiently small.
This implies that ∫

Ω1

W1(un)dx ≤
∫

Ω1

2q

(
dist(x, Ω1)

εα
n

)
W1(un)dx

≤ 2
∫

Rd

Wεn,Ω1,Ω2,α(un, x)dx

≤ 2εhJεn,Ω1,Ω2,α(un).

In the same way:∫
Rd\Ω2

W2(un)dx ≤ 2εnJεn,Ω1,Ω2,α(un) and
∫

Ω2\Ω1

W (un)dx ≤ 2εnJεn,Ω1,Ω2,α(un).

At the limit n → ∞, the Fatou’s Lemma and the continuity of W , W1 and W2 imply that
∫

Ω1
W1(u)dx = 0,∫

Rd\Ω2
W2(u)dx = 0 and

∫
Ω2\Ω1

W (u)dx = 0. Recall also that W , W1 and W2, vanish respectively at s = {0, 1},
s = {1} and s = {0}. This means that

u(x) ∈

⎧⎪⎨
⎪⎩
{1} a.e in Ω1

{0} a.e in R
d \ Ω2

{0, 1} a.e in Ω2 \ Ω1,

almost everywhere. Hence, we can represent u by 1lΩ for some Borel set Ω ∈ R
d satisfying Ω1 ⊂ Ω ⊂ Ω2. Using

the Cauchy inequality, we can estimate

Jεn,Ω1,Ω2,α(un) ≥
∫

Rd

[
εn|∇uh|2

2
+

1
εn

W (un)
]

dx ( because W1 ≥ W and W2 ≥ W )

≥
∫

Rd

[
εn|∇un|2

2
+

1
εn

W̃ (un)
]

dx

(
where W̃ (s) = min

{
W (s) ; sup

s∈[0,1]

W (s)

})

≥
∫

Rd

√
2W̃ (un)|∇un|dx =

∫
Rd

|∇[φ(un)]|dx = |D[φ(un)]|(Rd),

where φ(s) =
∫ s

0

√
2W̃ (t)dt. Since φ is a Lipschitz function (because W̃ is bounded), φ(uε) converges in L1(Rd)

to φ(u). Using the lower semicontinuity of v → |Dv|(Rd), we obtain

lim
n→+∞

Jεn,Ω1,Ω2(un) ≥ lim inf
n→+∞

|Dφ(un)|(Rd) ≥ |Dφ(u)|(Rd).

The lim inf inequality is finally obtained remarking that φ(u) = φ(1lΩ) = cW 1lΩ = cW u.
Let us now prove the limsup inequality.
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(ii) Limsup inequality:
We first assume that u = 1lΩ for some bounded open set Ω satisfying Ω1 ⊂ Ω ⊂ Ω2 with smooth boundaries.
We introduce the sequence

uε(x) = q

(
dist(x, Ω)

ε

)
·

and two constants c1 and c2 defined by

c1 = sup
s∈[0,1]

{W1(s) − W (s)} , and c2 = sup
s∈[0,1]

{W2(s) − W (s)} .

Note that

Jε,Ω1,Ω2,α(uε) =
∫

Rd

[
ε|∇uε|2

2
+

1
ε
W (uε)

]
dx +

∫
Rd

1
ε
q

(
dist(x, Ω1)

εα

)
(W1(uε) − W (uε)) dx

+
∫

Rd

1
ε
q

(
dist(x, Ωc

2)
εα

)
(W2(uε) − W (uε)) dx.

Each of these 3 terms above is now analyzed.
(1) Estimation of the first term:

I1
ε =

∫
Rd

[
ε|∇uε|2

2
+

1
ε
W (uε)

]
dx.

By co-area formula, we estimate

I1
ε =

1
ε

∫
Rd

[
q′(d(x, Ω)/ε)2

2
+ W (q(d(x, Ω)/ε))

]
dx

=
1
ε

∫
R

g(s)
[
q′(s/ε)2

2
+ W (q(s/ε))

]
ds

=
∫

R

g(εt)
[
q′(t)2

2
+ W (q(t))

]
dt

where g(s) = |D1l{d≤s}|(Rd).
By the smoothness of ∂Ω, g(εt) converges to |D1l{dist(x,Ω)≤0}|(Rd) as ε → 0; moreover, by definition of the

profile q, uε converges to 1lΩ and

lim sup
ε→0

I1
ε ≤ |D1lΩ|(Rd)

∫ +∞

−∞

[
1
2
|q′(s)|2 + W (q(s))ds

]
.

According to Remark (1.1), it follows that∫ +∞

−∞

[
1
2
|q′(s)|2 + W (q(s))

]
ds =

∫ 1

0

√
2W (s)ds = cW ,

which implies that

lim sup
ε→0

I1
ε ≤ cW |D1lΩ|(Rd).

(2) Estimation of the second term:

I2
ε =

∫
Rd

1
ε
q

(
dist(x, Ω1)

εα

)
(W1(uε) − W (uε)) dx.

The function dist(x, Ω) is negative on Ω1, thus uε(x) ≥ 1
2 on Ω1 and W1(uε(x)) = W (uε(x)) for all x ∈ Ω1.
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This means that

I2
ε =

∫
Rd\Ω1

1
ε
q

(
dist(x, Ω1)

εα

)
(W1(uε) − W (uε)) dx ≤ c1

∫
Rd\Ω1

1
ε
q

(
dist(x, Ω1)

εα

)
dx,

where c1 = sups∈[0,1] {W1(s) − W (s)}.
Using co-area formula, we estimate∫

Rd\Ω1

1
ε
q

(
dist(x, Ω1)

εα

)
dx =

∫ ∞

0

1
ε
g1(s)q

( s

εα

)
ds = εα−1

∫ ∞

0

g1(εαs)q(s)ds,

where g1(s) = |D1l{dist(x,Ω1)≤s}|(Rd).
By the smoothness of Ω1, g(εαt) converges to |D1ldist(x,Ω1)≤0|(Rd) as ε → 0. We then deduce that

lim sup
ε→0

I2
ε = 0,

as α > 1 and
∫∞
0 q(s)ds is bounded.

(3) Estimation of the last term:

I3
ε =

∫
Rd

1
ε
q

(
dist(x, Ωc

2)
εα

)
(W2(uε) − W (uε)) dx.

This estimation is similar to the second one. The function dist(x, Ω) is positive on R
d\Ω2, this means uε(x) ≤ 1

2

on R
d \ Ω2 and W2(uε(x)) = W (uε(x)) for all x ∈ R

d \ Ω2. Then, we have

I3
ε =

∫
Ω2

1
ε
q

(
dist(x, Ωc

2)
εα

)
(W2(uε) − W (uε)) dx ≤ c2

∫
Ω2

1
ε
q

(
dist(x, Ωc

2)
εα

)
dx,

and using co-area formula, it holds∫
Ω2

1
ε
q

(
dist(x, Ωc

2)
εα

)
dx =

∫ ∞

0

1
ε
g2(s)q

( s

εα

)
ds = εα−1

∫ ∞

0

g2(εαs)q(s)ds,

where g2(s) = |D1l{dist(x,Ω2)≤−s}|(Rd). We deduce as before that

lim sup
ε→0

I3
ε = 0.

Finally, we conclude that
lim sup

ε→0
Jε,Ω1,Ω2,α(uε) ≤ cW |D1lΩ|(Rd). �

Remark 3.3. This theorem is still true in the limit case α → ∞, where Jε,Ω1,Ω2,α=∞(u) reads

Jε,Ω1,Ω2,∞(u) =
∫

Ω1

[
ε|∇u|2

2
+

1
ε
W1(u)

]
dx +

∫
Ω2\Ω1

[
ε|∇u|2

2
+

1
ε
W (u)

]
dx +

∫
Rd\Ω2

[
ε|∇u|2

2
+

1
ε
W2(u)

]
.

3.1. Some remarks about sharp interface limit of the gradient flow

We have just etablished a connection between the penalized perimeter JΩ1,Ω2 and its smooth approximation
Jε,Ω1,Ω2,α. In Section 4, we will introduce a numerical scheme associated to the penalized Allen Cahn (2.3) to
approximate the mean curvature flow with obstacle defined as the gradient flow of JΩ1,Ω2 .
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A first remark concerns the geometric evolution of a mean curvature flow with obstacle Ω(t) ⊂ R
d, 0 ≤ t ≤ T ,

from a smooth domain Ω1 ⊂ Ω0 ⊂ Ω2. The outward normal velocity at point x ∈ ∂Ω(t) satisfies for regular
interfaces

Vn(x) =

⎧⎪⎨
⎪⎩

κ(x) if x ∈ Ω2 \ Ω1

max{κ(x), 0} if x ∈ ∂Ω1

min{κ(x), 0} if x ∈ ∂Ω2,

where κ denotes the mean curbature at the interface. Some recent results about existence, unicity and C1,1

regularity of such flow have been established in [3] for smooth obstacles. Notice also that in this case, Vn is
discontinous on ∂Ω, then the classical viscosity theory [21] does no apply. The existence of motion in general
sense (when singularies appear) is still an open issue to our knowledge.

A second remark concerns the gradient flow of Jε,Ω1,Ω2,α defined by

ut = 	u − 1
ε2

∂sWε,Ω1,Ω2,α(u, x).

Since the the potential (s, x) → Wε,Ω1,Ω2,α(s, x) is smooth, the proof of existence, unicity and comparison
principle can be easily derived from the original Allen Cahn equation properties.

Finally, the global result of convergence of the gradient flow of Jε,Ω1,Ω2,α to JΩ1,Ω2 is a difficult problem for
which classical approaches can not apply directly.

A first way would be to used the recent theory of Serfaty [40] which insures the Γ -convergence of the gradient
flow associated to a family of energy. In the case of Allen Cahn equation, the assumptions needed in this theory
are relied to the De Giorgi conjecture about the gamma-convergence of

Fε(u) = ε

∫
Rd

(
Δu − 1

ε2
W ′(u)

)2

dx,

to Willmore energy
F (Ω) =

∫
∂Ω

κ2dσ(x).

This conjecture has been recently established [37–39], but only in the case of C2 interfaces, which does not
correspond to the regularity of mean curvature flow with obstacles.

Other approachs [10,17] should be more suitable but need a deeper analysis. Indeed, the proofs are based on
a comparison principle which is still satisfied by our modified Allen Cahn equation, and an explicit construction
of a subsolution and supsolution. Unfortunately, such constructions also need a C2 regularity of the interface.

4. Algorithms and numerical simulations

We now compare numerically the two phase field models described in Section 2. The first and classical model
is integrated by a semi-implicit finite element method whereas our penalized Allen Cahn equation is solved by
the semi-implicit Fourier spectral algorithm. In particular, we will observe that both approaches give similar
solutions but, the convergence rate of the phase field approximation appears to behave as about O(ε ln(ε)) for
the Dirichlet model and as O(ε2 ln(ε)2) (when α is sufficiently large) for our penalized version of Allen Cahn
equation.

4.1. A semi-implicit finite element method for the Allen Cahn equation with Dirichlet
boundary conditions

Let us give more precision about the classic semi-implicit finite element method used for the equation

ut(x, t) = Δu(x, t) − 1
ε2

W ′(u)(x, t), on Ω2 \ Ω1 × [0, T ], (4.1)

where u|∂Ω1 = 1, u|∂Ω2 = 0 and W (s) = 1
2s2(1 − s)2.
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Note that when the initial condition u0 is chosen of the form u0 = q (dist(Ω0, x)/ε) with Ω0 satisfying the
constraint Ω1 ⊂ Ω0 ⊂ Ω2, then we expect that the set Ωε(t) defined by

Ωε(t) = Ω1 ∪ {x ∈ Ω2 \ Ω1 ; u(x, t) ≥ 1/2} ,

should be a good approximation to the constrained mean curvature flow t → Ω(t).
Let us introduce a triangulation mesh Th on the set Ω2 \ Ω1 and the discretization time step δt. Then, we

consider the approximation spaces Xh,0 and Xh defined by{
Xh =

{
v ∈ H1(Ω2 \ Ω1) ∪ C0(Ω2 \ Ω1) ; v|K∈Th

∈ Pk(K), v|Ω1 = 1 and v|Ω2 = 0
}

Xh,0 =
{
v ∈ H1

0 (Ω2 \ Ω1) ∪ C1(Ω2 \ Ω1) ; v|K∈Th
∈ P2(K)

}
where Pk denotes the polynomial space of degree k. We take k = 2 in the future numerical illustrations. Then,
the solution u(x, tn) at time tn = nδt is approximated by Uh,n, defined for n > 1 as the solution on Xh of∫

Ω2\Ω1

Uh,nϕ dx + δt

∫
Ω2\Ω1

∇Uh,n∇ϕ dx =
∫

Ω2\Ω1

(
Uh,n−1 − δt

ε2
W ′(Uh,n−1)

)
ϕ dx, ∀ϕ ∈ Xh,0,

and for n = 0 by
Uh,0 = argmin

v∈Xh

‖v − u0‖L2(Ω2\Ω1).

This algorithm is known to be stable under the condition

δt ≤ cW ε2,

where cW =
[
supt∈[0,1] {W ′′(s)}

]−1

. More results about stability and convergence of finite element method for
the resolution of Allen Cahn equation can be found in [13, 26–28,42].

4.2. A time-splitting Fourier spectral method for the penalized Allen-Cahn equation

We now consider the second model

ut(x, t) = 	u(x, t) − 1
ε2

∂sWε,Ω1,Ω2,α(u(x, t), x), on Q × [0, T ], (4.2)

with periodic boundary conditions on a given box Q, chosen sufficiently large to contain Ω2. In future numerical
tests, we use α = 2, W (s) = 1

2s2(1 − s)2 and the potentials W1, W2 are defined by

W1(s) =

{
1
2s2(1 − s)2 if s ≥ 1

2

10(s − 0.5)4 + 1/32 otherwise
and W2(s) =

{
1
2s2(1 − s)2 if s ≤ 1

2

10(s − 0.5)4 + 1/32 otherwise,

which clearly satisfy the assumption (H1) (see Fig. 2).
The initial condition u0 satisfies u0 = q (dist(Ω0, x)/ε) and we will show that the set

Ωε(t) = {x ∈ Q ; u(x, t) ≥ 1/2} ,

will be a good approximation of Ω(t) as ε tends to zero.
Our numerical scheme for solving equation (4.2) is based on a splitting method between the diffusion and

reaction terms. We take advantage of the periodicity of u by integrating exactly the diffusion term in the Fourier
space. More precisely, the solution u(x, tn) at time tn = t0 +nδt is approximated by its truncated Fourier series:

un
P (x) =

∑
|p|∞=P

cn
pe2iπp·x.

Here |p|∞ = max1≤i≤d |pi| and P represents the number of Fourier modes in each direction.
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Figure 2. Example of potentials W , W1 and W2.

The step n of our algorithm writes:

• u
n+1/2
P (x) =

∑
c
n+1/2
p e2iπp·x, with c

n+1/2
p = cn

p e−4π2δt |p|2 ;

• un+1
P = u

n+1/2
P − δt

ε2 ∂sWε,Ω2,Ω1,α(un+1/2
P , x).

In practice, the first step is performed via a Fast Fourier Transform, with a computational cost O(P d ln(P )).
In the simplest case of traditional Allen Cahn equation, the corresponding numerical scheme turns out to be
stable under the condition

δt ≤ cW ε2,

and the convergence of this splitting approach has been established in [15]. In practice, the parameter ε has to
be chosen great than the spatial discretisation step δx = 1/P .

4.3. Simulations and numerical convergence

We compare in this part numerical solutions obtained with these two algorithms. For each test, we took
ε = 2−8 and δt = ε2. The P2 finite element algorithm was implemented in Freefem++. The mesh Th used in
these simulations are plotted in Figure 3. The penalization method was implemented in MATLAB where we
have taken P = 28.

We first plot two situations in Figures 4 and 5. The functions uε are plotted only on the admissible set Ω2 \Ω1

for the FE Dirichlet method and on all the set Q for the pseudo-spectral penalization version with α = 2. We
note that the solutions obtained by both methods are very similar.

In order to estimate the convergence rate of both models, we consider the case where Ω1 and Ω2 are two
circles of radii equal to R1 = 0.3 and R2 = 0.4. The situation is thus very simple when the initial set Ω0 is also
a circle with radius R0 satisfying R1 < R0 < R2. Indeed, the penalized mean curvature motion Ω(t) evolves as
a circle, with radius satisfying

R(t) = max
(√

R2
0 − 2t, R1

)
,

that decreases until R(t) = R1.
The solutions of the two different models are computed for different values of ε with P = 28, δt = 1/P 2 and

R0 = 0.35. In both cases, the set Ωε(t) appears as a circle of radius Rε(t). We then estimate the numerical
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Figure 3. Mesh Th generated by Freefem++, and used in simulations plotted in Figures 4
and 5. In both cases, ∂Ω1 and ∂Ω2 are respectively identified as the green and the yellow
boundaries.
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Figure 4. Numerical solutions obtained at different times t0 = 0, t1 = 0.022, t2 = 0.033 and
t = 0.055. The first line corresponds to the FE Dirichlet method and the second line to the
penalization pseudo-spectral approach.

error between Rε(t) and R(t). The results obtained for the first method are plotted in Figure 6: the first figure
corresponds to the evolution t → R

ε(t) for 4 different values of ε and the second figure shows the error

ε → sup
t∈[0,T ]

{|R(t) − Rε(t)|},

in logarithmic scale. It clearly appears an error of O(ε ln(ε)).
The same test is done for the penalization algorithm with α = 2: the results are plotted in Figure 7 and we

now clearly observed a convergence rate of O(ε2 ln(ε2)).

Remark 4.1 (about violation of the constraint Ω1 ⊂ Ω ⊂ Ω2). We remark that with our penalized Allen
Cahn approach, the constraint Ω1 ⊂ Ω ⊂ Ω2 is always violated. Indeed, Figure 7 left shows that for a given ε,
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Figure 5. Numerical solutions obtained at different times t0 = 0, t1 = 0.0055, t2 = 0.0083 and
t3 = 0.016. The first line corresponds to the FE Dirichlet method and the second line to the
penalization pseudo-spectral approach.
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Figure 6. Dirichlet algorithm: numerical error |Rε(t)−R(t)|; left: t → Rε(t) for different values
of ε; right: ε → supt∈[0,T ] {|R(t) − Rε(t)|} in logarithmic scale compare to curve slope

√
ε (red),

ε (green) and ε ln(ε) (blue).

the radii of the circle Ω(t) converge in time to a value lower than the radius of Ω1. In fact, this error on the
constraint appears only with an order of O(ε2 ln(ε2)) as ε tends to zero. Moreover, the approximation of mean
curvature flow by Allen Cahn equation is also of order O(ε2 ln(ε2)) [10, 17]. This means that the precision on
the constraint Ω1 ⊂ Ω ⊂ Ω2 do not affect the initial precision of the approximation of phase field method.
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Figure 7. Penalization algorithm with α = 2: numerical error |Rε(t) − R(t)|; left: t → Rε(t)
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Figure 8. Penalization algorithm with α = 1: numerical error |Rε(t) − R(t)|; left: t → Rε(t)
for different values of ε; right: ε → supt∈[0,T ] {|R(t) − Rε(t)|} in logarithmic scale

In the following last test, we analyse numerically the impact of the coefficient α on our penalized Allen
equation. As above, we consider the case where Ω1 and Ω2 are two circles of radii equal to R1 = 0.3 and
R2 = 0.4. We consider as initial set Ω0 = Ω1. The exact penalized mean curvature motion Ω(t) is then equal
to Ω1 for all t > 0.

Figure 8 shows experiment results obtained with α = 1. We clearly observe an error on the localization which
does not decrease as ε tends to zero. This is consistant with our theorical analysis for which α is assumed to
be strictly greater than 1. Figure 9 presents the numerical errors for different values of alpha. We observe that
the convergence rate is not affected by the value of α, when α is chosen sufficiently far than 1. In practice, we
can also choose α = +∞, but this corresponds to use a discontinous potential (s, x) → Wε,Ω1,Ω2,+∞(s, x) in
variable x.
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Figure 9. Penalization algorithm, numerical error |Rε(t) − R(t)| for different values of α;
ε → supt∈[0,T ] {|R(t) − Rε(t)|} in logarithmic scale.

Figure 10. Minimal surface estimation: solution of the Allen Cahn equation at different times
t. The domain Ω1 is the union of the two red tori and Ω2 is the box Q with N = 27, ε = 1/N
and δt = ε2

Moreover, our approach allows us to simulate very easily and efficiently three dimensional experiments,
whatever the geometry of the sets Ω1 and Ω2. See for instance Figure 10 where the numerical solution of the
Allen Cahn equation is plotted for different times t.

4.4. Possible extension of the method

Another advantage of our penalization approach is that it can be easily extended for more general situations
of evolving interfaces. For example, we have recently considered a mean curvature flow with an additional
forcing term g and a conservation of the volume in [14]. Then, the model of [14] can be modified to take into
account additional inclusion-exclusion constraints by simply using potential WΩ1,Ω2 instead of W in phase field
equation. In this case, this leads to the following perturbed Allen-Cahn equation

ut = Δu − 1
ε2

F (u),

with

F (u) = W ′
Ω1,Ω2

(u) − εg
√

2WΩ1,Ω2(u) −
∫

Q
W ′

Ω1,Ω2
(u) − εg

√
2WΩ1,Ω2(u)dx∫

Q

√
2WΩ1,Ω2(u)dx

√
2WΩ1,Ω2(u).
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Figure 11. Two numerical experiments with a forcing term (gravity force), a volume conser-
vation and an exclusion constraint: the domain Ω1 is empty and Ω2 is plotted in red in each
picture. We used N = 27, ε = 1/N and δt = ε2.

Two simulations obtained from this model are plotted in Figure 11. We can observe that both constraints
(conservation of the volume and inclusion-exclusion set) are well respected.

5. Conclusion

This paper has presented a new phase field model for the approximation of mean curvature flow with inclusion-
exclusion constraints. The classical method in such a situation is to solve the Allen-Cahn equation with Dirichlet
boundary conditions. Since this method appears to be not optimal while its convergence is observed with a
rate about O(ε ln(ε)) only, we have introduced a new approach based on a penalized double well potential.
This method was firstly motivated by a Γ -convergence result and secondly numerical tests suggesting that its
convergence rate is about O(ε2 ln(ε)2). The proof of the numerical precision of the scheme is still an open problem
and will be the subject of a forthcoming paper. Another advantage of our method lies in its simplicity to be
implemented, since it is only based on Fourier Transforms. This simplicity allows one to consider 3D Geometries,
and to elaborate new strategies in more general situations, such as mean curvature flow with forcing term and
conservation of volume.
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