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A STATIC CONDENSATION REDUCED BASIS ELEMENT
METHOD: APPROXIMATION AND A POSTERIORI ERROR ESTIMATION
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Abstract. We propose a new reduced basis element-cum-component mode synthesis approach for
parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library
of interoperable parametrized reference components relevant to some family of problems; in the Online
stage we instantiate and connect reference components (at ports) to rapidly form and query parametric
systems. The method is based on static condensation at the interdomain level, a conforming eigen-
function “port” representation at the interface level, and finally Reduced Basis (RB) approximation
of Finite Element (FE) bubble functions at the intradomain level. We show under suitable hypotheses
that the RB Schur complement is close to the FE Schur complement: we can thus demonstrate the
stability of the discrete equations; furthermore, we can develop inexpensive and rigorous (system-level)
a posteriori error bounds. We present numerical results for model many-parameter heat transfer and
elasticity problems with particular emphasis on the Online stage; we discuss flexibility, accuracy, com-
putational performance, and also the effectivity of the a posteriori error bounds.
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1. Introduction

The Reduced Basis Element (RBE) method is a computational approach for the approximation of partial
differential equations which combines domain decomposition with parametric model order reduction. In partic-
ular, the “classical” RBE method typically appeals to nonconforming approaches – mortar [24] or Discontinuous
Galerkin [9] – at the interdomain level and then Reduced Basis (RB) approximation [28] at the intradomain level.
The RBE method enjoys several advantages relative to the standard “mono-domain” RB method: we are never
required to solve the truth Finite Element (FE) problem over the full domain – we may thus address very large
problems; we pursue many RB approximations over low dimensional parameter spaces rather than a single RB
approximation over a very high dimensional parameter space – we may thus consider many parameters, as well
as more general geometries and topologies. Also, related ideas for viscous fluid flows have been developed in the
RB hybrid element approach of [19]. The RBE method is particularly efficient for problems which might contain
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many repeated subdomains as in this case a single intradomain RB preparation can be shared by all similar
subdomains. Reduced basis element approximations can also be integrated with finite element approximations
over regions of the domain not readily amenable to model reduction [1, 2].

In this paper we develop a static condensation RBE approach: we consider standard static condensation at
the interdomain level and then RB approximation of the requisite “bubble” functions (and associated Schur
complement entries) at the intradomain level. This approach extends the reach of the classical RBE in several
important ways. First, in the classical RBE approach the RB spaces for a particular subdomain – which we may
view as a “component” – must be aware of neighboring subdomains: components are not generally interchange-
able or interoperable and hence the analysis process is “top-down” from system to components. In contrast,
in our static condensation RBE approach, the RB space for a particular component is designed to reflect all
possible function variations on the component interfaces (which we shall denote “ports”): components are thus
completely interchangeable and interoperable and the analysis is “bottom-up” from a library of components
to many possible systems. (A similar component interchangeability is achieved in [12], based on an integral
equation formulation of the RB, for electromagnetic scattering problems). Second, in the classical mortar RBE
approach, the computation of a posteriori error bounds necessitates appeal to the intradomain truth FE approx-
imation in order to correct for jump terms. In contrast, in our (conforming) static condensation RBE approach,
the a posteriori error bounds may be computed solely in terms of interface degrees of freedom and intradomain
RB quantities – in essence, at very little additional cost relative to the field and output prediction.

It follows from these advantages that the static condensation RBE provides for a more favorable Offline-
Online decomposition than either the standard RB method or the classical RBE approach. The Offline stage
is performed once: we prepare, for each component in a library, the RB bubble spaces and collateral RB data
required to populate the approximate Schur complement. The Online stage is then performed many times: we
may assemble any system – we require only compatibility of ports – from multiple instantiations of components
from the library; we then compute the system field and outputs, and associated a posteriori error bounds,
for different values of the parameter in a prescribed parameter domain. The operation count and storage
requirement for the Online stage depends only on the number of interface degrees of freedom and the dimension
of the intradomain RB spaces. In summary, the Online stage of the static condensation RBE is much more
flexible than the Online stage for the standard RB method, in which the system is already assembled and
only parametric variations are permitted, as well as the Online stage of the classical RBE method, in which
the RB intradomain spaces already reflect anticipated connectivity. The “bottom up” approach and associated
Online flexibility is particularly attractive in interactive design environments, in real-time parameter estimation
contexts, and more generally in discovery and optimization processes.

These advantages do of course come at some cost: increased degrees of freedom on ports (which we recall
are the interfaces between the components). The RB spaces associated with the classical RBE approach reflect
connectivity and thus relatively few port (Lagrange multiplier) degrees of freedom are required to ensure con-
tinuity; in contrast, in the static condensation RBE method, we must (in effect) reflect in our RB spaces any
behavior of the solution over the ports. In order to minimize this parasitic effect we choose a particular inter-
face representation (and associated lifting into the interior of the components) which (i) respects the relevant
trace theorems and FE Schur complement theory [7] to ensure a stable discretization, (ii) leads to relatively
economical RB spaces for the intradomain bubbles, and finally, (iii) permits, through a hierarchical approach,
subsequent (adaptive) Online economization of port degrees of freedom, as pursued in [11]. In some cases we
may pursue in (iii) a more Draconian economization in the spirit of the classical RBE approach; indeed, in the
quasi-one-dimensional limit we may even consider a single degree of freedom on each port [4].

Our approach is also closely related to the multiscale Reduced Basis Method (MsRBM) proposed in [26]
(see also a more recent MsRBM proposal [21]). The macroscale discretization of the MsRBM corresponds to
the “system” in our static condensation RBE approach, and the microscale or cell of the MsRBM corresponds
to the “component” in the static condensation RBE approach. In the MsRBM the emphasis is thus on many
and more homogeneous macroscale elements with a very simple treatment of the macroscale-microscale inter-
face; in contrast, in the static condensation RBE aproach, we will typically address relatively fewer but more
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heterogeneous components for which we must include a general interface representation. Nevertheless, there are
many similarities between the MsRBM and the static condensation RBE method, and indeed the MsRBM can
perhaps take advantage of the system-level a posteriori error bounds developed in the current paper to bound
the error between the MsRBM and associated truth MsFEM [16].

In the above we discuss the provenance of the static condensation RBE from the reduced basis perspective.
However, our approach is also quite similar to the Component Mode Synthesis (CMS) approaches which are
in widespread and very effective use in industry for many years. These CMS approaches are first proposed in
the seminal papers [10, 17], but there is much subsequent development, refinement, and applications. As in the
static condensation RBE method, the CMS approach combines static condensation at the interdomain level
with model order reduction at the intradomain level. In the earlier work [10,17] the CMS model order reduction
is typically of the intradomain eigenfunction modal truncation variety, however more recently Krylov spaces are
also considered [14] as well as spaces relevant to MsFEM approaches [15].

In our approach we directly adopt the CMS anatomy, vocabulary – components and ports – and even strat-
egy, however we replace the intradomain modal model order reduction with RB model order reduction. This
substitution can offer several advantages within the parametric context: from an approximation perspective,
our approach will provide rapid convergence [5, 8, 25] over an entire parametric solution manifold compared
to typically algebraic convergence of the CMS modal expansion [6, 15]; from a computational perspective, we
amortize the expensive construction of the reduced order model over many system analyses (corresponding
to different parameter values from the prescribed parameter domain). In short, our approach provides greater
flexibility in the inexpensive Online stage: interchangeability of components is extended to include parametric
variations which arise in geometry, constitutive laws, and sources and loads. Furthermore, in the static conden-
sation RBE approach, a posteriori error bounds for the RB approximations at the component level permit us
to develop a posteriori error bounds at the system level without recourse to the truth FE residual over the full
domain [14,20]. We should note that in this paper we consider only elliptic coercive partial differential equations
and not the more difficult eigenproblems or dynamic problems to which CMS approaches are typically applied.

In Section 2 we pose the symmetric coercive second-order partial differential equation for which we shall
develop our approach. In Section 3 we introduce the truth approximation which we wish to accelerate: a fine FE
discretization defined (but, in our approach, never invoked) over the full domain. Finally, we develop the static
condensation formulation of the truth FE discretization; we focus on the treatment of the interface degrees of
freedom. In Section 4 we develop the static condensation RBE and we prove the well-posedness of the static
condensation RBE approximation based on stability estimates developed in Brenner [7]. In Section 5 we develop
the static condensation RBE system level a posteriori error estimates: we combine standard RB error estimates
at the component level with matrix perturbation analysis [13] of the approximate Schur complement at the
system level. We demonstrate that our error estimates are strict upper bounds for the actual error between the
static condensation RBE approximation and the underlying truth FE discretization. In Section 6 we discuss the
Offline and Online computational procedures and provide detailed operation counts and storage requirements
for the Online stage in particular. Finally, in Section 7 we present numerical results for a scalar field problem
(heat transfer) and a vector field problem (linear elasticity); we report the accuracy and computational cost for
different representative systems and we discuss the quality of the a posteriori error bounds.

2. Continuous problem: components and systems

2.1. Physical domain formulation

We first introduce a set or library of regions, which we shall denote “archetype component” domains,
Ω̂o

m(μ̂geo
m ), 1 ≤ m ≤ M , for geometry parameters μ̂geo

m . The mth archetype component has P̂ geo
m geometric

parameters, which reside in an associated geometry parameter domain D̂geo
m ⊂ RP̂ geo

m . For each archetype com-
ponent domain Ω̂o

m(μ̂geo
m ) we further identify elements of the boundary, γ̂o

m,j(μ̂
geo
m ), 1 ≤ j ≤ nγ

m (where nγ
m ≥ 1),

which we shall denote “archetype component port” domains. We require for simplicity that the intersection
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of any two ports in any given archetype component is empty; this “mutually disjoint port” condition may be
relaxed, as we discuss further below. Here theˆ indicates archetype and the o refers to a quantity defined over
the physical domain (we will later introduce reference domains).

We associate to each of these archetype component domains bilinear and linear forms: for w, v ∈
H1(Ω̂o

m(μ̂geo
m )), we define âo

m(w, v; μ̂coeff
m ; μ̂geo

m ), f̂o
m(v; μ̂coeff

m ; μ̂geo
m ), �̂om(v; μ̂coeff

m ; μ̂geo
m ), 1 ≤ m ≤ M , for

coefficient parameters μ̂coeff
m in associated coefficient parameter domains D̂coeff

m ∈ RP̂ coeff
m . Note that the forms

âo
m(w, v; μ̂coeff

m ; μ̂geo
m ) and f̂o

m(v; μ̂coeff
m ; μ̂geo

m ) will define the PDE weak form, and �̂om(v; μ̂coeff
m ; μ̂geo

m ) will define
the output functional. (These bilinear and linear forms may include trace terms over ∂Ω̂o

m(μ̂geo
m )). We also

define for future reference D̂m ≡ D̂geo
m × D̂coeff

m , 1 ≤ m ≤M ; D̂m is the parameter domain (both geometry and
coefficient) for the mth archetype component. Also, we let μ̂m ≡ (μ̂geo

m , μ̂coeff
m ) ∈ D̂m denote the parameters for

the mth archetype component. Recall also that for any domainO in Rd, H1(O) ≡ {v ∈ L2(O) : ∇v ∈ (L2(O))d},
where L2(O) ≡ {v measurable over O :

∫
O v

2 finite }.
We next introduce “instantiated component” domains, Ωo

i (μgeo
i ) = Ω̂o

M(i)(μ
geo
i ), 1 ≤ i ≤ I, where M is a

mapping from {1, . . . , I} (component instantiations) to {1, . . . ,M} (component archetypes). The correspond-
ing instantiated component port domains, also denoted more succinctly as “local ports,” are thus given by
γo

i,j(μ
geo
i ) = γ̂o

M(i),j(μ
geo
i ), 1 ≤ j ≤ nγ

M(i). Here μgeo ≡ (μgeo
1 , . . . , μgeo

I ) ∈ Dgeo, where Dgeo is a subset of∏I
i=1 D̂geo

M(i) which ensures that a geometric compatibility requirement (defined below) is satisfied (as well as
any problem-specific constraints on parameters). Note these instantiated components no longer bear theˆof the
archetype components but retain the o associated with the physical domain. For future reference we also define
Dcoeff ≡∏I

i=1 D̂coeff
M(i). Also, we set μ ≡ (μgeo, μcoeff) ∈ D ≡ Dgeo ×Dcoeff .

We now consider a “system domain” Ωo(μgeo) which is the union of instantiated component domains,

Ω
o
(μgeo) =

I⋃
i=1

Ω
o

i (μ
geo
i ).

Our geometric compatibility requirement states that,

(i) the instantiated component domains must not intersect;
(ii) Ω

o

i (μ
geo
i )∩Ωo

i′(μ
geo
i′ ) must either be empty or an entire local port in each of the two (distinct) instantiated

component domains i and i′;3 and
(iii) the system connectivity as reflected in the local port connections must remain fixed for all μ ∈ Dgeo.

It is important to note that geometric parameters define either “internal” geometric transformations of a
component (such as dilation or shear), or “rigid body” transformations (translations, rotations). Both types
of geometric parameters affect the geometric compability of our system domain. For future reference, we refer
to the “rigid body” transformation parameters as “docking parameters.”

We may now also define a set of global ports Γ o
p (μgeo), 1 ≤ p ≤ nΓ : each global port is either the intersection

(in fact, coincidence) of two local ports or a local port on ∂Ωo(μgeo). We illustrate in Figure 1 two archetype
components with associated local port domains as well as a system of three instantiated component domains
with associated global port domains. We can summarize the port connections with index sets πp, 1 ≤ p ≤ nΓ ,
which for the case of a global port corresponding to (coincidence of) two local ports γo

i′,j′ , γ
o
i′′,j′′ takes the form

πp = {(i′, j′), (i′′, j′′)} and for the case of a global port corresponding to a single local port γi′,j′ takes the form
πp = {(i′, j′)}. We can also define a local to global port index mapping G such that πp = {(i′, j′), (i′′, j′′)}
is equivalent to p = Gi′(j′) = Gi′′(j′′); this mapping is invertible for a given instantiated component such
that j′ = G−1

i′ (p) and j′′ = G−1
i′′ (p). We observe from the geometric compatibility condition (iii) that the sets

πp, 1 ≤ p ≤ nΓ , and the mapping G do not depend on μ ∈ Dgeo.

3Note that in the case of an arbitrarily thin crack between two instantiated components we must interpret the respective
instantiated component domains to be separated by an arbitrarily small gap such that the closures do not in fact intersect.
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ˆ̂γo
1,1(μ̂

geogeo
1 )

γ̂o
1,2(μ̂

geogeo
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Figure 1. (a) An archetype component, Ω̂o
1(μ̂geo

1 ), with two local ports indicated in red. (b)
An archetype component, Ω̂o

2(μ̂geo
2 ), with two local ports. (c) A system of three instantiated

component domains with associated global port domains.

We may now introduce a global function space Xo(μgeo) ≡ {vo ∈ H1(Ωo(μgeo)) : vo|∂Ωo
D(μgeo) = 0} where

∂Ωo
D(μgeo) represents the part of the system domain boundary over which we impose homogeneous Dirichlet

conditions (note inhomogeneous Dirichlet conditions are readily treated by appropriate lifting functions). We
shall assume for simplicity that ∂Ωo

D(μgeo) is the union of (at least one) entire instantiated component port
domains. We endow Xo(μgeo) with an inner product (·, ·)Xo(μgeo) and induced norm ‖ · ‖Xo(μgeo).

It is then natural to form the system bilinear and linear forms, defined with respect to Xo(μgeo), in terms
of the corresponding archetype component forms introduced earlier. In particular, for all wo, vo ∈ Xo(μgeo), we
introduce

ao(wo, vo;μ) =
I∑

i=1

âo
M(i)(w

o|Ωo
i (μgeo

i ), v
o|Ωo

i (μgeo
i );μ

coeff
i ;μgeo

i ), (2.1)

fo(vo;μ) =
I∑

i=1

f̂o
M(i)(v

o|Ωo
i (μgeo

i );μ
coeff
i ;μgeo

i ), (2.2)

�o(vo;μ) =
I∑

i=1

�̂oM(i)(v
o|Ωo

i (μgeo
i );μ

coeff
i ;μgeo

i ). (2.3)

We may then introduce coercivity and continuity constants for μ ∈ D,

αo(μ) ≡ inf
vo∈Xo(μgeo)

ao(vo, vo;μ)
‖vo‖2Xo(μgeo)

, (2.4)

γo,cont(μ) ≡ sup
vo∈Xo(μgeo)

sup
wo∈Xo(μgeo)

ao(vo, wo;μ)
‖vo‖Xo(μgeo)‖wo‖Xo(μgeo)

· (2.5)

We shall assume that there exists α0 > 0 and finite γcont
0 such that αo(μ) ≥ α0 and γo,cont(μ) ≤ γcont

0 for all
μ ∈ D. We also assume that our linear functionals are bounded over Xo(μgeo).

We may now state the system problem. Given μ ∈ D: find the field uo(μ) ∈ Xo(μgeo) such that

ao(uo(μ), vo;μ) = fo(vo;μ), ∀vo ∈ Xo(μgeo); (2.6)
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evaluate the system output of interest s(μ) = �o(uo(μ);μ). Under the assumptions on coercivity and continuity
this problem is well posed by the Lax–Milgram theorem.

2.2. Reference domain formulation

For our subsequent reduced basis treatment we shall require a fixed reference domain for each archetype
component (and hence associated instantiated components). We take this reference domain to be Ωm ≡
Ω̂o

m(μ̂geo,ref
m ) for some μ̂geo,ref

m ∈ D̂geo
m ; we denote the corresponding archetype component reference port do-

mains as γm,j , 1 ≤ j ≤ nγ
m. Note that these reference archetype domains and reference archetype port domains

implicitly bear aˆand a superscript ref ; for simplicity, in particular since we will almost exclusively work with
the reference quantities in what follows, we instead use the absence of the superscript o to indicate an archetype
and reference (rather than physical) domain.

We then suppose [28] that there exists a piecewise affine (invertible) mapping Am(·; μ̂geo
m ) such that

Ω̂o
m(μ̂geo

m ) = Am(Ωm; μ̂geo
m ) for all μ̂geo

m ∈ D̂geo
m . Also, we introduce the constants ρA(μgeo) and ρALB > 0, where

ρA(μgeo) ≡ min
1≤i≤I

1≤j≤nγ
M(i)

ρ(γo
i,j(μ

geo
i ))

ρ(γM(i),j)
≥ ρALB, ∀μgeo ∈ Dgeo. (2.7)

Here, for a domain γ ⊂ Rd−1, ρ(γ) denotes the diameter of the largest (d − 1)-dimensional ball that can be
contained within γ. Hence (2.7) simply implies that our geometric map is not “degenerate” on any of the ports.

Note that our geometric compatibility condition (ii) implies that for any two instantiated components i′ and
i′′ which share a port, Γ o

p (μgeo) = γo
i′,j′ (μ

geo
i′ ) = γo

i′′,j′′(μ
geo
i′′ ),

AM(i′)(γM(i′),j′ ;μ
geo
i′ ) = AM(i′′)(γM(i′′),j′′ ;μ

geo
i′′ ).

This condition provides a practical means to verify that the geometric compatibility condition (ii) is satisfied.
We may now express our space Xo(μgeo) as

Xo(μgeo) = {vo ∈ L2(Ωo(μgeo)) : vo|Ωo
i (μgeo

i ) = [v]i ◦ (AM(i)(·;μgeo
i ))−1, 1 ≤ i ≤ I, ∀v ∈ X},

where v ≡ [v1, . . . , vI ] and

X ≡ {[v1 . . . , vI ]: for i = 1, . . . , I, [v]i ∈ H1(ΩM(i));
[v]i′ |γM(i′),j′ = [v]i′′ |γM(i′′),j′′ for γo

i′,j′(μ
geo
i′ ) = γo

i′′,j′′ (μ
geo
i′′ );

[v]i|γM(i),j = 0 for γo
i,j ∈ ∂Ωo

D(μgeo)},

is a parameter-independent space. (We can express the spaceX without reference to any parameters but to avoid
complicated notation we prefer the choice above in which parameter-dependent quantities serve to implicitly
define parameter-independent indicial relations). Note it is the continuity condition on the ports in X which
ensures that Xo(μgeo) ⊂ H1(Ωo(μgeo)). In what follows we shall let W(μgeo) : X → Xo(μgeo) denote the one-
to-one transformation between a function vo ∈ Xo(μgeo) and its pre-image v ∈ X – hence vo =W(μgeo)v. Note
we define [v]i to be the ith component of v ∈ X . We also let {ei, 1 ≤ i ≤ I} denote the canonical basis of RI ,
such that say [v]3e3 = [0, 0, [v]3, 0, . . .].

For each archetype reference component m, 1 ≤ m ≤M , we introduce an inner product, (·, ·)Xm , on H1(Ωm)
and we let ‖ · ‖Xm denote the corresponding induced norm. In fact – to anticipate subsequent developments
with regard to bubble spaces – we shall only require that ‖ · ‖Xm is a semi-norm on H1(Ωm), but that it is a full
norm on {v ∈ H1(Ω) : v|γm,j = 0, 1 ≤ j ≤ nγ

m}. We then define the inner product and norm for v, w ∈ X as

(w, v)X ≡
I∑

i=1

([w]i, [v]i)XM(i) , ‖v‖X ≡
√

(v, v)X . (2.8)
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Due to the one-to-one correspondence between X and Xo(μgeo), (2.8) also provides an inner product and norm
on Xo(μgeo), and we shall henceforth suppose that

(wo, vo)Xo(μgeo) = (W(μgeo)−1wo,W(μgeo)−1vo)X , ∀vo, wo ∈ Xo(μgeo), (2.9)

‖vo‖Xo(μgeo) = ‖W(μgeo)−1vo‖X , ∀vo ∈ Xo(μgeo), (2.10)

define the inner products and norms over Xo(μgeo) introduced formally earlier.
We may now introduce archetype component bilinear and linear forms defined over the reference domains as

μ̂m ≡ (μ̂geo
m , μ̂coeff

m ) ∈ D̂m → am(w, v; μ̂m), fm(v; μ̂m), �m(w, v; μ̂m), 1 ≤ m ≤M , where for all w, v ∈ H1(Ωm),

am(w, v; μ̂m) = âo
m(w ◦ (Am(·; μ̂geo

m ))−1, v ◦ (Am(·; μ̂geo
m ))−1; μ̂coeff

m ; μ̂geo
m ),

fm(v; μ̂m) = f̂o
m(v ◦ (Am(·; μ̂geo

m ))−1; μ̂coeff
m ; μ̂geo

m ),
�m(v; μ̂m) = �̂om(v ◦ (Am(·; μ̂geo

m ))−1; μ̂coeff
m ; μ̂geo

m ).

We reiterate here that the absence of any o or ˆsymbols in the forms introduced above means that these are
archetype reference quantities. Note that these reference-domain bilinear and linear forms now depend on both
the geometric and coefficient parameters and in fact the former will now also appear as “coefficients” which
reflect the change of variables.

It is important to note that, under modest assumptions [28] on âo
m(·, ·; μ̂coeff

m ; μ̂geo
m ), f̂o

m(·; μ̂coeff
m ; μ̂geo

m ),
and �̂om(·; μ̂coeff

m ; μ̂geo
m ), it follows from our piecewise-affine hypothesis on the mappings Am that the

am(·, ·; μ̂m), fm(·; μ̂m), and �m(·; μ̂m) are affine in functions of parameter in the sense that

am(w, v; μ̂m) =
Qam∑
q=1

Θq
am

(μ̂m)aq
m(w, v) (2.11)

with similar representations for fm and �m. We shall denote by Qmax the maximum of Qam , Qfm , and Q�m over
all m = 1, . . . ,M .

We may then further define, for w = [w1, . . . , wI ] ∈ X, v = [v1, . . . , vI ] ∈ X , and μ ∈ D,

a(w, v;μ) =
I∑

i=1

aM(i)([w]i, [v]i;μi),

f(v;μ) =
I∑

i=1

fM(i)([v]i;μi),

�(v;μ) =
I∑

i=1

�M(i)([v]i;μi),

where μi ≡ (μgeo
i , μcoeff

i ) for (μgeo
1 , μgeo

2 , . . . , μgeo
I ;μcoeff

1 , μcoeff
2 , . . . μcoeff

I ) ∈ D.
We may now rewrite our system equations in terms of reference-domain quantities. For given μ ∈ D: find

u(μ) ∈ X such that
a(u(μ), v;μ) = f(v;μ), ∀v ∈ X ; (2.12)

evaluate the system output of interest as
s(μ) = �(u(μ);μ). (2.13)

It is readily demonstrated that uo(μ) = W(μgeo)u(μ). These reference-domain equations will be our point of
departure for subsequent discretization. (As required for visualization of numerical results we shall invoke uo

over Ωo(μgeo)).
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Also, from the definitions above, it follows that the coercivity and continuity constants associated with (2.12)
are given by

α(μ) ≡ inf
v∈X

a(v, v;μ)
‖v‖2X

= inf
vo∈Xo(μgeo)

ao(vo, vo;μ)
‖vo‖2Xo(μgeo)

= αo(μ),

γcont(μ) ≡ sup
v∈X

sup
w∈X

a(v, w;μ)
‖v‖X‖w‖X = sup

vo∈Xo(μgeo)

sup
wo∈Xo(μgeo)

ao(vo, wo;μ)
‖vo‖Xo(μgeo)‖wo‖Xo(μgeo)

= γo,cont(μ),

and hence (2.12) inherits the well-posedness of (2.6).

3. Finite element truth formulation

3.1. Discrete spaces

We now introduce finite element approximation spaces Xh
m over the archetype component reference domains

Ωm, 1 ≤ m ≤ M . For each m, the spaces Xh
m are endowed with the inner-product and induced norm, (·, ·)Xm

and ‖ · ‖Xm , from Section 2. We may also define port spaces P h
m,j: for any w ∈ Xh

m there exists a v ∈ P h
m,j such

that v = w|γm,j . We set N γ
m,j ≡ dim(P h

m,j).
We require our spaces to collectively satisfy a port discretization compatibility (conforming) condition: for

any doubleton port connection set, πp = {(i′, j′), (i′′, j′′)}, and for any v ∈ P h
M(i′),j′ , there exists w ∈ P h

M(i′′),j′′

such that v ◦ A−1
M(i′)(γM(i′),j′ ;μ

geo
i′ ) = w ◦ A−1

M(i′′)(γM(i′′),j′′ ;μ
geo
i′′ ), ∀μgeo ∈ Dgeo. We also require an analogous

condition when the roles of v and w are exchanged, and hence there is a one-to-one correspondence between
P h
M(i′),j′ and P h

M(i′′),j′′ . It might appear that this condition would impose system-specific constraints on the
archetype components which are intended to form many different systems. In fact, it is possible to satisfy
the port discretization compatibility condition for all possible connections of various appropriate subsets of
archetype components. For example, consider the case of two-dimensional archetype components with ports
which are straight segments: a uniform mesh with the same number of degrees of freedom on each port will
ensure that the port discretization compatibility condition will be satisfied for all possible connection sets.

In subsequent developments we shall extensively employ finite element bubble spaces. The bubble spaces on
the archetype reference domains are given by

Bh
m;0 ≡ {v ∈ Xh

m : v|γm,j = 0, 1 ≤ j ≤ nγ
m}, 1 ≤ m ≤M, (3.1)

and we have associated coercivity and continuity constants

αh
m;0(μ̂m) ≡ inf

v∈Bh
m;0

am(v, v; μ̂m)
‖v‖2Xm

, (3.2)

γh,cont
m;0 (μ̂m) ≡ sup

v∈Bh
m;0

sup
w∈Bh

m;0

am(v, w; μ̂m)
‖v‖Xm‖w‖Xm

· (3.3)

These constants are positive for all μ̂m ∈ D̂m for each archetype component – positivity of αh
m;0(μ̂m) follows

from our assumption that ‖ · ‖Xm is a semi-norm on Xh
m, and that Bh

m;0 has a non-empty Dirichlet boundary
(since nγ

m ≥ 1 for 1 ≤ m ≤M).
The system truth finite element space is then given by Xh = (⊕I

i=1X
h
M(i)) ∩X . (Here the intersection with

X imposes our continuity conditions on the component ports). Note that for bhi ∈ Bh
M(i);0, the I-tuple bhi ei is

in Xh due to the condition that bubble functions vanish on ports. The associated system truth coercivity and
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continuity constants are given by

αh(μ) ≡ inf
v∈Xh

a(v, v;μ)
‖v‖2X

, (3.4)

γh,cont(μ) ≡ sup
v∈Xh

sup
w∈Xh

a(v, w;μ)
‖v‖X‖w‖X · (3.5)

We note that since Xh ⊂ X , we have α(μ) ≤ αh(μ) and γh,cont(μ) ≤ γcont(μ).
The truth discretization may now be stated. Given μ ∈ D: find uh(μ) ∈ Xh such that

a(uh(μ), v;μ) = f(v;μ), ∀v ∈ Xh; (3.6)

evaluate the system output of interest,
sh(μ) = �(uh(μ);μ). (3.7)

The formulation (3.6), (3.7) is well-posed due to our conditions on αh(μ) and γh,cont(μ). We shall build our
reduced basis element approximation upon this truth discretization, and we shall measure the error in our
reduced basis element approximation relative to this truth discretization.

3.2. Static condensation

To prepare for static condensation we must construct a basis for our truth approximation (which in fact will
be inherited by our reduced basis element method).

First, we introduce an eigenfunction basis for each port space, P h
m,j , 1 ≤ j ≤ nγ

m, 1 ≤ m ≤M . In particular,
for a given port (i.e. m, j fixed), we introduce the eigenfunction basis {χm,j,k ∈ P h

m,j : 1 ≤ k ≤ N γ
m,j}. These

eigenfunctions are associated with the discrete generalized eigenvalue problem∫
γm,j

∇χm,j,k · ∇v = λm,j,k

∫
γm,j

χm,j,k v, ∀ v ∈ P h
m,j , (3.8)

‖χm,j,k‖L2(γm,j) = 1; (3.9)

here the λm,j,k ∈ R denote real positive eigenvalues ordered such that (λmin ≡)λm,j,1 < λm,j,2 < . . . <
λm,j,Nγ

m,j
. Note that rather than the simple Laplacian inner product we might consider an energy inner product

or even more beneficially a singular Sturm–Liouville problem [11] to ensure more rapid decay [3,6] of the modal
amplitudes (for purposes of truncation). It follows from (3.8), (3.9) that the χm,j,k satisfy the orthonormality
property

(χm,j,k′ , χm,j,k′′)L2(γm,j) = δk′k′′ , 1 ≤ k′, k′′ ≤ N γ
m,j , (3.10)

where δij denotes the Kronecker delta function. For treatment of more general port topologies which do not
honor the mutually disjoint port assumption we would need to introduce “wire-basket” representations such as
developed in [15].

The port eigenmodes are then elliptically lifted to the interior of the archetype reference domain to yield
ψm,j,k ∈ Xh

m, 1 ≤ j ≤ nγ
m, 1 ≤ m ≤ M , 1 ≤ k ≤ N γ

m,j . We construct ψm,j,k such that it satisfies the Laplace
equation on the component interior, coincides with χm,j,k on γm,j,k, and vanishes on the remaining ports,∫

Ωm

∇ψm,j,k · ∇v = 0, ∀ v ∈ Bh
m;0, (3.11)

ψm,j,k = χm,j,k, on γm,j , (3.12)

ψm,j,k = 0, on γm,j′ , ∀j′ ∈ {1, . . . , j − 1, j + 1, . . . , nγ
m}. (3.13)

We have employed the Laplacian in (3.11), but of course other elliptic operators are also possible. Also, we
emphasize that in (3.8) and (3.11) we are referring to the Laplacian operator in Rd−1 and Rd, respectively.
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χm,1,1 χm,1,2

χm,1,3 χm,1,4

Figure 2. The first four modes of the eigenproblem (3.8), (3.9) for port γm,1 of a archetype
reference component Ωm. Here γm,1 is a square port (0, 0.4)2 with a uniform 4× 4 Q1 (d = 2)
mesh.

For purposes of illustration we consider an archetype reference component Ωm ≡ (0, 0.4) × (0, 0.4) × (0, 3),
with truth space Xh

m meshed with 4 × 4 × 30 Q1 (d = 3) elements; the component has two square ports,
γm,1 ≡ (0, 0.4)× (0, 0.4)×{0} and γm,2 ≡ (0, 0.4)× (0, 0.4)×{3}, perforce each meshed with uniform 4× 4 Q1
(d = 2) elements. Figure 2 presents the first four eigenmodes for γm,1; Figure 3 shows the result of lifting these
four port eigenmodes to the interior of the parallelepiped component.

We comment on the choice of eigenexpansion: orthonormality will ensure stability in appropriate norms [7];
hierarchy will permit possible modal truncation [3, 11, 20]; modal structure will ensure rapid decay of lifting
functions into the component interior (as demonstrated in Fig. 3) and ultimately more rapid RB convergence.
We will return to this latter point subsequently in the context of our numerical examples.

We have defined interface functions local to archetype reference domains; we shall also require interface
functions lifted over instantiated components connected to a global port. We denote the latter by Ψp,k ∈
Xh, 1 ≤ k ≤ NΓ

p , 1 ≤ p ≤ nΓ ; the Ψp,k are indexed by the global port number, p, and the port mode number,
k. Also, NΓ

p denotes the number of port modes on global port Γ o
p (μgeo), where πp = {(i′, j′), (i′′, j′′)}, and

hence NΓ
p ≡ N γ

M(i′),j′ = N γ
M(i′′),j′′ . We prefer to define the Ψp,k with respect to our reference domains, and

thus we construct the Ψp,k as I-tuples: for an interior port πp = {(i′, j′), (i′′, j′′)}, and for port mode k (where
1 ≤ k ≤ NΓ

p ), Ψp,k = ψM(i′),j′,kei′ +ψM(i′′),j′′,kei′′ ∈ Xh. Similarly, for a boundary port πp = {(i′, j′)}, and for
port mode k, Ψp,k = ψM(i′),j′,kei′ . As in Section 2, we can map Ψp,k ∈ Xh to the system domain via W(μgeo).

We now discuss the static condensation procedure which we employ to eliminate the degrees of freedom
internal to each component. First, it is clear that we can express uh(μ) ∈ Xh in terms of bubble and interface



STATIC CONDENSATION REDUCED BASIS METHOD 223

ψm,1,1 ψm,1,2

ψm,1,3 ψm,1,4

Figure 3. The elliptically lifted interface functions (3.11)–(3.13) corresponding to the modes
in Figure 2 on a “stem” archetype reference component (0, 0.4)2× (0, 3) with two square ports.

contributions as

uh(μ) =
I∑

i=1

bhi (μ)ei +
nΓ∑
p=1

NΓ
p∑

k=1

Up,k(μ) Ψp,k, (3.14)

where bhi (μ) ∈ Bh
M(i);0. Here, Up,k(μ), 1 ≤ p ≤ nΓ , 1 ≤ k ≤ NΓ

p , are interface function coefficients.
Now, since bhi (μ)ei ∈ Xh, we can eliminate bubble functions from (3.6) in favor of global port degrees of

freedom. To wit, we substitute (3.14) into (3.6) and test on vei, for v ∈ Bh
M(i);0, to obtain,

aM(i)

⎛⎝bhi (μ) +

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

UGi(j),k(μ) ψM(i),j,k, v;μi

⎞⎠ = fM(i)(v;μi), ∀ v ∈ Bh
M(i);0. (3.15)

Recall that G is a local to global port index mapping such that πp = {(i′, j′), (i′′, j′′)} is equivalent to p =
Gi′ (j′) = Gi′′ (j′′). It follows that bhi (μ) ∈ Bh

M(i);0 satisfies,

aM(i)

(
bhi (μ), v;μi

)
= fM(i)(v;μi)−

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

UGi(j),k(μ) aM(i)(ψM(i),j,k, v;μi), ∀ v ∈ Bh
M(i);0, (3.16)

for each 1 ≤ i ≤ I. The existence and uniqueness of bhi (μ) from (3.16) is guaranteed due to coercivity (and
continuity) of aM(i)( · , · ;μi) on Bh

M(i);0.
From (3.16) and linearity, we can reconstruct bhi (μ) as

bhi (μ) = bf ;h
i (μi) +

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

UGi(j),k(μ) bhi,j,k(μi), (3.17)
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where bf ;h
i (μi) ∈ Bh

M(i);0 satisfies

aM(i)(b
f ;h
i (μi), v;μi) = fM(i)(v;μi), ∀ v ∈ Bh

M(i);0, (3.18)

and the bhi,j,k(μi) ∈ Bh
M(i);0 are defined by the set of N ports

M(i) subproblems

aM(i)(bhi,j,k(μi), v;μi) = −aM(i)(ψM(i),j,k, v;μi), ∀ v ∈ Bh
M(i);0, (3.19)

where N ports
m ≡ ∑nγ

m

j=1N γ
m,j , m = 1, . . . ,M . Both (3.18) and (3.19) are well-posed again thanks to coercivity

and continuity of aM(i)(·, ·;μi) over Bh
M(i);0.

For 1 ≤ p ≤ nΓ and 1 ≤ k ≤ NΓ
p , let

Φp,k(μ) ≡ Ψp,k +
∑

(i′,j′)∈πp

bhi′,j′,k(μi′ )ei′ =
∑

(i′,j′)∈πp

(ψi′,j′,k + bhi′,j′,k(μi′))ei′ . (3.20)

Also, we define the “skeleton space”

Xh
S(μ) ≡ span{Φp,k(μ) : 1 ≤ p ≤ nΓ , 1 ≤ k ≤ NΓ

p } ∩Xh, (3.21)

where we intersect with X in order to impose Dirichlet boundary conditions. The skeleton space Xh
S(μ) is

endowed with the inner product and norm,

(v, w)So ≡
nΓ∑
p=1

(W(μgeo)v,W(μgeo)w)L2(Γ o
p (μgeo)) and ‖v‖So ≡

√
(v, v)So , (3.22)

for any v, w ∈ Xh
S(μ). Note that we include a superscript o to emphasize that the inner product and norm are

defined with respect to the physical domain.
It follows from (3.14) that on component i, 1 ≤ i ≤ I, uh(μ) is given by

[uh(μ)]i = bhi (μ) +

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

UGi(j),k(μ) ψi,j,k. (3.23)

Hence, from (3.17) and (3.23), we have

[uh(μ)]i = bf ;h
i (μi) +

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

UGi(j),k(μ)
(
ψi,j,k + bhi,j,k(μi)

)
. (3.24)

It then follows from (3.24) and (3.20) that the global solution can be expressed as

uh(μ) =
I∑

i=1

bf ;h
i (μi)ei +

nΓ∑
p=1

NΓ
p∑

k=1

Up,k(μ) Φp,k(μ). (3.25)

We now insert (3.25) into (3.6) and restrict the test space to Xh
S(μ) to arrive at

nΓ∑
p=1

NΓ
p∑

k=1

Up,k(μ) a
(
Φp,k(μ), v;μ

)
= f(v;μ)−

I∑
i=1

a
(
bhf,i(μi)ei, v;μ

)
, ∀ v ∈ Xh

S(μ), (3.26)

which completes the static condensation.
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We now proceed to identify the linear algebraic statement associated with (3.26). In particular, we test
in (3.26) on Φp′,k′(μ) for 1 ≤ p′ ≤ nΓ , 1 ≤ k′ ≤ NΓ

p′ , to obtain the static condensation system of dimension

nsc ≡
∑nΓ

p=1NΓ
p ,

A(μ) U(μ) = F(μ), (3.27)

for the vector U(μ) ∈ Rnsc of coefficients Up,k(μ). We may also express our system output (3.7) as

sh(μ) ≡ (L1(μ) + L
2(μ)

)T
U(μ) +

I∑
i=1

�
(
bf ;h
i (μi)ei;μi

)
.

We now define these static condensation quantities more explicitly.
The matrix A(μ) ∈ Rnsc×nsc and vector F(μ) ∈ Rnsc are defined as

A(p′,k′),(p,k)(μ) ≡ a(Φp,k(μ), Φp′,k′(μ);μ
)
, (3.28)

and

Fp′,k′(μ) ≡ f(Φp′,k′(μ);μ
)− I∑

i=1

a
(
bf ;h
i (μi), Φp′,k′(μ);μ

)
, (3.29)

respectively, for 1 ≤ p ≤ nΓ , 1 ≤ k ≤ NΓ
p , and 1 ≤ p′ ≤ nΓ , 1 ≤ k′ ≤ NΓ

p′ ; from (3.28) it is clear that A(μ) is
symmetric. The output vectors L1(μ) ∈ Rnsc and L2(μ) ∈ Rnsc are given by

L
1
p,k(μ) ≡ �(Ψp,k(μ);μ), L

2
p,k(μ) ≡

∑
(i′,j′)∈πp

�
(
bhi′,j′,k(μi′ )ei′

)
, (3.30)

for 1 ≤ p ≤ nΓ , 1 ≤ k ≤ NΓ
p . To better understand the matrices and vectors A(μ) and F(μ) (a similar procedure

applies to L1,L2) we consider the assembly of the static condensation system; this assembly process, similar to
finite element assembly or “stamping,” is crucial to the general implementation of our approach.

Let Ai(μ) ∈ R
Nports

M(i)×Nports
M(i) and Fi(μ) ∈ R

Nports
M(i) denote the “local stiffness matrix” and “local load vector”

on instantiated component i, respectively, which from (3.20) has entries

A
i
(j′,k′),(j,k)(μi) ≡ aM(i)(ψM(i),j,k + bhi,j,k(μi), ψM(i),j′,k′ + bhi,j′,k′(μi);μi), (3.31)

F
i
j′,k′(μi) ≡ fM(i)(ψM(i),j′,k′ + bhi,j′,k′(μi);μi)− aM(i)(b

f ;h
i (μi), ψM(i),j′,k′ + bhi,j′,k′(μi);μi), (3.32)

for 1 ≤ j ≤ nγ
M(i), 1 ≤ k ≤ N γ

M(i),j , and 1 ≤ j′ ≤ nγ
M(i), 1 ≤ k′ ≤ N γ

M(i),j′ . Algorithm 1 then defines
the assembly procedure by which we construct (in practice) (3.28), (3.29) from (3.31), (3.32); we employ the
notation “A += B” to represent an increment “A ← A + B.” Note that in the case in which we require
a Dirichlet condition on a port, Algorithm 1 needs a slight modification: once the assembly is complete, we
eliminate the Dirichlet port degrees of freedom from the system. This post-processing step is analogous to the
standard procedure for elimination of Dirichlet rows and columns from a finite element stiffness matrix.

We close this section with a result which confirms well-posedness of the (square) system (3.27) and which
will later serve to demonstrate well-posedness of our RB approximation.

Lemma 3.1. There exists a constant C > 0 such that the minimum eigenvalue of A(μ), λmin(μ), satisfies
λmin(μ) ≥ C, ∀ μ ∈ D.

Proof. From Lemma 3.1 in [7] we obtain,

ao(W(μgeo)v,W(μgeo)v;μcoeff) ≥ C1(Ωo(μ))
nΓ∑
p=1

(W(μgeo)v,W(μgeo)v)L2(Γ o
p (μgeo)), ∀ v ∈ Xh

S(μ), (3.33)
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Algorithm 1. Assembly of truth Schur complement system
1: F(µ) = 0, A(µ) = 0
2: for i = 1, . . . , I do
3: for j′ = 1, . . . , nγ

M(i) do

4: for k′ = 1, . . . ,N γ
M(i),j′ do

5: FGi(j
′),k′ += F

i
j′,k′(µi)

6: for j = 1, . . . , nγ
M(i) do

7: for k = 1, . . . ,N γ
M(i),j do

8: A(Gi(j
′),k′)),(Gi(j),k) += A

i
(j′,k′),(j,k)(µi)

9: end for
10: end for
11: end for
12: end for
13: end for

for C1(Ωo(μ)) > 0; since D is compact, we can further conclude that there exists C2 > 0 such that

ao(W(μgeo)v,W(μgeo)v;μcoeff) ≥ C2

nΓ∑
p=1

(W(μgeo)v,W(μgeo)v)L2(Γ o
p (μgeo)), ∀ v ∈ Xh

S(μ), ∀ μ ∈ D. (3.34)

We can rewrite (3.34) in terms of simpler notation as follows

a(v, v;μ) ≥ C2(v, v)So , ∀ v ∈ Xh
S(μ), ∀ μ ∈ D, (3.35)

recalling (3.22).
Next, for any v, w ∈ Xh

S(μ) expressed in terms of the basis {Φp,k : 1 ≤ p ≤ nΓ , 1 ≤ k ≤ NΓ
p } with coefficient

vectors V,W ∈ Rnsc , we obtain from (3.10)

(v, w)So = W
T

D(μgeo)V, (3.36)

where D(μgeo) ∈ Rnsc×nsc accounts for the effect of W(μgeo). Note that we assume that W(μgeo) maps each
reference port affinely, and hence D(μgeo) is diagonal since the orthogonality of our port modes from (3.10) is
retained even though orthonormality is, in general, not preserved. Also, the diagonal entries of D(μgeo) are given
by the determinant of the Jacobian of the port mappings, which from (2.7) are positive and bounded below by
(ρA

LB)d−1. Also, from (3.28)
a(v, w;μ) = W

T
A(μ)V. (3.37)

Hence, from (3.34), (3.36) and (3.37) we obtain the Rayleigh quotient lower bound,

λo
min(μ) ≡ min

V∈Rnsc

VTA(μ)V
VTD(μgeo)V

= min
v∈Xh

S(μ)

a(v, v;μ)
(v, v)So

≥ C2. (3.38)

Finally, the result follows by noting that

λmin(μ) ≡ min
V∈Rnsc

VTA(μ)V
VTV

≥ (ρA
LB)d−1 min

V∈Rnsc

VTA(μ)V
VTD(μgeo)V

≥ C,

for C ≡ (ρA
LB)d−1C2. �
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4. Static condensation reduced basis element method

The static condensation procedure described above is of course very computationally expensive due to the
many “bubble solves” required on each component. However, we now introduce a Reduced Basis (RB) approx-
imation: in particular, we follow exactly the same procedure as in Section 3.2, except now we introduce RB
approximations for the bubble functions bf ;h

i (μi), bhi,j,k(μi). As we shall demonstrate, the resulting numerical
approach will offer considerable computational savings.

To begin, from (3.18), for each instantiated component we define the RB approximation b̃fi (μi) ∈ B̃f
M(i);0,

aM(i)(b̃
f
i (μi), v;μi) = fM(i)(v;μi), ∀ v ∈ B̃f

M(i);0, (4.1)

where the RB spaces B̃m;0 are constructed for each i = 1, . . . ,M from the standard Greedy algorithm [27].
Note that there is one RB bubble approximation b̃fi (μi) for each instantiated component. Next, from (3.19), we
define the RB approximations b̃i,j,k(μi) ∈ B̃M(i),j,k;0,

aM(i)(b̃i,j,k(μi), v;μi) = −aM(i)(ψM(i),j,k, v;μi), ∀ v ∈ B̃M(i),j,k;0, (4.2)

for 1 ≤ i ≤ I, 1 ≤ j ≤ nγ
M(i), 1 ≤ k ≤ N γ

M(i),j . Here B̃m,j,k;0 is an RB approximation space – a different RB
approximation space for each {m, j, k} – obtained by a standard Greedy [27] procedure.

The problems (4.1), (4.2) are well-posed due to our coercivity assumption. Note that thanks to our eigen-
function port representation the higher-mode (larger k) bubble functions will typically vanish rapidly into the
interior of the component – as seen in Figure 3 for example – and thus in many cases these higher modes will
depend relatively weakly on the parameter. Therefore we expect that for most of the bubble degrees of freedom
a small RB space will suffice.

Next, in analogy to (3.20), for 1 ≤ p ≤ nΓ and 1 ≤ k ≤ NΓ
p , we define

Φ̃p,k(μ) ≡ Ψp,k +
∑

(i′,j′)∈πp

b̃i′,j′,k(μi′ )ei′ =
∑

(i′,j′)∈πp

(ψi′,j′,k + b̃i′,j′,k(μi′ ))ei′ , (4.3)

and then
X̃S(μ) ≡ span{Φ̃p,k(μ) : 1 ≤ p ≤ nΓ , 1 ≤ k ≤ NΓ

p } ∩Xh. (4.4)

We endow X̃S(μ) with the same inner product and norm as Xh
S(μ). From (3.25), (3.26) it is then natural to

define ũ(μ) ∈ X̃S(μ) as

ũ(μ) ≡
I∑

i=1

b̃fi (μi)ei +
nΓ∑
p=1

NΓ
p∑

k=1

Ũp,k(μ) Φ̃p,k(μ), (4.5)

where the coefficients Ũp,k(μ) satisfy

nΓ∑
p=1

NΓ
p∑

k=1

Ũp,k(μ) a(Φ̃p,k(μ), v;μ) = f(v;μ)−
I∑

i=1

a(b̃fi (μi)ei, v;μ), ∀ v ∈ X̃S(μ). (4.6)

We now identify the linear algebraic structure associated with (4.6).
In particular, we test in (4.6) on Φ̃p′,k′(μ) for 1 ≤ p′ ≤ nΓ , 1 ≤ k′ ≤ NΓ

p′ , to obtain our “RB static
condensation” system of dimension nsc,

Ã(μ) Ũ(μ) = F̃(μ), (4.7)
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for the vector Ũ(μ) ∈ Rnsc of coefficients Ũp,k(μ). Note that the RB system (4.7) is the same size as the truth
system (3.27): a priori , there is no reduction of the truth port degrees of freedom. Furthermore, our RBE system
output can be expressed as

s̃(μ) ≡ (L1(μ) + L̃
2(μ)

)T
Ũ(μ) +

I∑
i=1

�
(
b̃fi (μi)ei;μ

)
. (4.8)

We now define these RBE static condensation quantities more explicitly.
The matrix Ã(μ) ∈ Rnsc×nsc and vector F̃(μ) ∈ Rnsc are defined as

Ã(p′,k′),(p,k)(μ) ≡ a(Φ̃p,k(μ), Φ̃p′,k′(μ);μ
)
, (4.9)

and

F̃p′,k′(μ) ≡ f(Φ̃p′,k′(μ);μ
)− I∑

i=1

a
(
b̃fi (μi), Φ̃p′,k′(μ);μ

)
, (4.10)

respectively, for 1 ≤ p ≤ nΓ , 1 ≤ k ≤ NΓ
p , and 1 ≤ p′ ≤ nΓ , 1 ≤ k′ ≤ NΓ

p′ ; from (4.9) it is clear that Ã(μ) is
symmetric. The output vector L1 is defined in (3.30) and the output vector L̃2(μ) ∈ Rnsc is given by

L̃
2
p,k(μ) ≡

∑
(i′,j′)∈πp

�
(
b̃i′,j′,k(μi′) ei′

)
, (4.11)

for 1 ≤ p ≤ nΓ , 1 ≤ k ≤ NΓ
p .

We now introduce the reduced basis versions of the “local stiffness matrix” and “local load vector”: for each
instantiated component, from (4.3)

Ã
i
(j′,k′),(j,k)(μi) ≡ aM(i)(ψM(i),j,k + b̃i,j,k(μi), ψM(i),j′,k′ + b̃i,j′,k′(μi);μ), (4.12)

F̃
i
j′,k′(μi) ≡ fM(i)(ψM(i),j′,k′ + b̃i,j′,k′(μi);μi)− aM(i)(b̃

f
i (μi), ψM(i),j′,k′ + b̃i,j′,k′(μi);μi), (4.13)

for 1 ≤ j ≤ nγ
M(i), 1 ≤ k ≤ N γ

M(i),j , and 1 ≤ j′ ≤ nγ
M(i), 1 ≤ k′ ≤ N γ

M(i),j′ . Algorithm 2 then defines the
assembly procedure by which we construct (4.9), (4.10) from (4.12), (4.13). As in the truth case, Algorithm 2
requires minor post-processing in the case of Dirichlet boundary conditions.

Algorithm 2. Assembly of RB Schur complement system
1: F̃(µ) = 0, Ã(µ) = 0
2: for i = 1, . . . , I do
3: for j′ = 1, . . . , nγ

M(i) do

4: for k′ = 1, . . . ,N γ
M(i),j′ do

5: F̃Gi(j
′),k′ += F̃

i
j′,k′(µi)

6: for j = 1, . . . , nγ
M(i) do

7: for k = 1, . . . ,N γ
M(i),j do

8: Ã(Gi(j
′),k′)),(Gi(j),k) += Ã

i
(j′,k′),(j,k)(µi)

9: end for
10: end for
11: end for
12: end for
13: end for
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We prove well-posedness of the discrete problem in:

Proposition 4.1. If ‖A(μ) − Ã(μ)‖2 < λmin(μ), then λ̃min(μ) > 0, where λ̃min(μ) is the minimum eigenvalue
of Ã(μ). Also, we have

‖Ũ(μ)‖2 ≤
√
γh,cont(μ)

αh(μ)
√
λmin(μ)− ‖A(μ)− Ã(μ)‖2

‖f̂(·;μ)‖(Xh)′ , (4.14)

where f̂(v;μ) ≡ f(v;μ)−∑I
i=1 a(b̃

f
i (μi) ei, v;μ), and

‖f̂(·;μ)‖(Xh)′ ≡ sup
v∈Xh

f̂(v;μ)
‖v‖X ·

Here for v ∈ Rn (respectively, A ∈ Rn×n), ‖ · ‖2 refers to the Euclidean norm ‖v‖2 ≡ (vTv)1/2 (respectively,
induced norm ‖A‖2 ≡ supv∈Rn ‖Av‖2/‖v‖2).

Proof. First we consider the bound for λ̃min(μ). We have

λ̃min(μ) = min
V∈Rnsc

V
T

Ã(μ)V
VTV

= min
V∈Rnsc

VT(A(μ) + (Ã(μ)− A(μ)))V
VTV

≤ min
V∈Rnsc

(
VTA(μ)V

VTV
+ max

W∈Rnsc

∣∣∣∣∣WT(Ã(μ)− A(μ))W
WTW

∣∣∣∣∣
)

= min
V∈Rnsc

VTA(μ)V
VTV

+ max
V∈Rnsc

∣∣∣∣∣VT(Ã(μ)− A(μ))V
VTV

∣∣∣∣∣
and thus

λ̃min(μ) − λmin(μ) ≤ max
V∈Rnsc

∣∣∣∣∣VT(Ã(μ)− A(μ))V
VTV

∣∣∣∣∣ ·
Exchanging the roles of λmin(μ) and λ̃min(μ) permits us to conclude that

|λmin(μ) − λ̃min(μ)| ≤ max
V∈Rnsc

∣∣∣∣∣VT(Ã(μ)− A(μ))V
VTV

∣∣∣∣∣ ·
We may then bound the right-hand side as

max
V∈Rnsc

∣∣∣∣∣VT(A(μ)− Ã(μ))V
VTV

∣∣∣∣∣ ≤ max
V∈Rnsc

‖V‖2‖(A(μ)− Ã(μ))V‖2
‖V‖22

= max
V∈Rnsc

‖(A(μ)− Ã(μ))V‖2
‖V‖2

= ‖A(μ)− Ã(μ)‖2·
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Positivity of λ̃min(μ) then follows from our hypothesis on ‖A(μ) − Ã(μ)‖2 and the lower bound for λmin(μ) in
Lemma 3.1.

Next, we consider the bound for ‖Ũ(μ)‖2. Let

ũS(μ) ≡
nΓ∑
p=1

NΓ
p∑

k=1

Ũp,k(μ) Φ̃p,k(μ) ∈ X̃S(μ)·

Then from (4.6) we have
a(ũS(μ), v;μ) = f̂(v;μ), ∀ v ∈ X̃S(μ)· (4.15)

Since X̃S(μ) ⊂ Xh, it follows from coercivity that

αh(μ)‖ũS(μ)‖2X ≤ a
(
ũS(μ), ũS(μ);μ

)
= f̂

(
ũS(μ);μ

) ≤ ‖f̂(·;μ)‖(Xh)′ ‖ũS(μ)‖X . (4.16)

Hence, from (4.16) and continuity of a( · , · ;μ), we have

(
a(ũS(μ), ũS(μ);μ)

)1/2 ≤
√
γh,cont(μ) ‖ũS(μ)‖X ≤

√
γh,cont(μ)
αh(μ)

‖f̂(·;μ)‖(Xh)′ . (4.17)

Next, we invoke the eigenvalue bound λ̃min(μ) ≥ λmin(μ)− ‖A(μ)− Ã(μ)‖2 from above to obtain

a(ũS(μ), ũS(μ);μ) = Ũ(μ)T
Ã(μ)Ũ(μ) ≥

(
λmin(μ)− ‖A(μ)− Ã(μ)‖2

)
‖Ũ(μ)‖22. (4.18)

Finally, substitution of (4.18) into (4.17) yields the desired result. Note that ‖f̂( · ;μ)‖(Xh)′ is finite thanks to
boundedness of f , continuity of a, and well-posedness of (4.1). �

Proposition 4.1 implies that the static condensation RBE approximation is guaranteed to be well-posed in
the limit that the errors in the RB bubble approximations tend to zero; the proposition furthermore establishes
stability of the approximation. Further a priori results in particular related to convergence are difficult [5, 8]
and we instead pass to computable a posteriori bounds. Note that the dual norm over (Xh)′ is a global quantity
that we will in fact eschew in our actual computational procedures (e.g., for error bounds).

5. A POSTERIORI error analysis

We now develop a bound for the error in the system level approximation. Our approach exploits standard RB
a posteriori error estimators [28] at the component level to develop a bound for ‖A(μ)− Ã(μ)‖2; we then apply
matrix perturbation analysis [13] at the system level to arrive at an a posteriori bound for ‖U(μ)− Ũ(μ)‖2 and
|sh(μ)− s̃(μ)|.

5.1. Reduced basis preliminaries

For each 1 ≤ i ≤ I, 1 ≤ j ≤ nγ
M(i), 1 ≤ k ≤ N γ

M(i),j , the residual rf ;h
i ( · ;μi) : Bh

M(i);0 → R for (4.1) is given
by

rf ;h
i (v;μi) ≡ fM(i)(v;μi)− aM(i)

(
b̃fi (μi), v;μi)

)
, ∀ v ∈ Bh

M(i);0; (5.1)

similarly, the residual rh
i,j,k(·;μ) : Bh

M(i);0 → R for (4.2) is given by

rh
i,j,k(v;μi) ≡ −aM(i)

(
ψM(i),j,k + b̃i,j,k(μi), v;μi

)
, ∀ v ∈ Bh

M(i);0. (5.2)
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Let Rf
i (μi) (respectively, Ri.j,k(μi)) denote the dual norm of the residual (5.1) (respectively, (5.2)),

Rf
i (μi) ≡ sup

v∈Bh
M(i);0

rf ;h
i (v;μi)
‖v‖XM(i)

, (5.3)

Ri,j,k(μi) ≡ sup
v∈Bh

M(i);0

rh
i,j,k(v;μi)
‖v‖XM(i)

· (5.4)

Note the dual norms are defined with respect to the truth bubble spaces, as our static condensation RBE error
is defined relative to the truth FE.

The a posteriori error bounds for the bubble approximations may then be expressed in terms of these residuals,
as demonstrated in

Lemma 5.1. For instantiated component i (where 1 ≤ i ≤ I), and μi ∈ D̂M(i), we have

‖bf ;h
i (μi)− b̃fi (μi)‖XM(i) ≤

Rf
i (μi)

αh,LB
M(i);0(μi)

, (5.5)

‖bhi,j,k(μi)− b̃i,j,k(μi)‖XM(i) ≤
Ri,j,k(μi)

αh,LB
M(i);0(μi)

, (5.6)

for 1 ≤ j ≤ nγ
M(i), 1 ≤ k ≤ N γ

M(i),j. Here αh,LB
m;0 (μ̂m) satisfies

0 < αh,LB
m;0 (μ̂m) ≤ αh

m;0(μ̂m), ∀ μ̂m ∈ D̂m, (5.7)

and αh
m;0(μ̂m) is the coercivity constant from (3.2).

Proof. We refer to the RB literature for the proof of this standard result (e.g. [27, 28]). �

Note that, in actual practice, we evaluate αh,LB
m;0 (μ̂m) via the “min-Θ” approach [28], or by the successive

constraint method [18,28].

5.2. System level bounds

We first derive bounds for the perturbation error in the statically condensed system matrix and load vector
in

Lemma 5.2. For any μ ∈ D, ‖F(μ) − F̃(μ)‖2 ≤ σ1(μ) and ‖A(μ) − Ã(μ)‖F ≤ σ2(μ). Here ‖ · ‖F denotes the
matrix Frobenius norm and

σ1(μ) ≡
⎧⎨⎩2

I∑
i=1

(
Δf

i (μi)
)2

⎛⎝nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

(Δi,j,k(μi))2

⎞⎠⎫⎬⎭
1/2

, (5.8)

σ2(μ) ≡
⎧⎨⎩2

I∑
i=1

( nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

(Δi,j,k(μi))2
)2
⎫⎬⎭

1/2

, (5.9)
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where

Δf
i (μi) ≡ Rf

i (μi)
/√

αh,LB
M(i);0(μi), (5.10)

Δi,j,k(μi) ≡ Ri,j,k(μi)
/√

αh,LB
M(i);0(μi), (5.11)

for αh,LB
m;0 (·) satisfying (5.7).

Proof. The proofs for (5.8) and (5.9) are similar and we thus restrict attention to the more involved case, (5.9).
To derive a bound for ‖A(μ)− Ã(μ)‖F , we start with a component-level bound for ‖Ai(μ) − Ãi(μ)‖F . For the
error in a single entry on instantiated component i, we have

|Ai
(j′,k′),(j,k)(μi)− Ã

i
(j′,k′),(j,k)(μi)|

=
∣∣aM(i)(ψM(i),j,k(μi) + bhi,j,k(μi), ψM(i),j′,k′(μi);μi) + bhi,j′,k′(μi);μi)

− aM(i)(ψM(i),j,k(μi) + b̃i,j,k(μi), ψM(i),j′,k′(μi);μi) + b̃i,j′k′(μi);μi)
∣∣

=
∣∣aM(i)

(
bhi,j,k(μi), ψM(i),j′,k′(μi);μi

)
+ aM(i)

(
ψM(i),j,k(μi) + bhi,j,k(μi), bhi,j′,k′(μi);μi

)
− aM(i)

(
b̃i,j,k(μi), ψM(i),j′,k′(μi);μi

)− aM(i)

(
ψM(i),j,k(μi) + b̃i,j,k(μi), b̃i,j′,k′(μi);μi

)∣∣. (5.12)

Since bhi,j′,k′(μi) ∈ Bh
M(i);0, it follows from (3.19) that

aM(i)

(
ψM(i),j,k(μi) + bhi,j,k(μi), bhi,j′,k′(μi);μi

)
= 0. (5.13)

Also, from (3.19) and symmetry of a, we have

aM(i)

(
bhi,j,k(μi), ψM(i),j′,k′(μi);μi

)
= −aM(i)

(
bhi,j,k(μi), bhi,j′,k′(μi);μi

)
= aM(i)

(
ψM(i),j,k(μi), bhi,j′,k′(μi);μi

)
, (5.14)

and

aM(i)

(
b̃i,j,k(μi), ψM(i),j′,k′(μi);μi

)
= −aM(i)

(
b̃i,j,k(μi), bhi,j′,k′(μi);μi

)
. (5.15)

Hence, (5.12) with (5.2), (5.13)–(5.15) implies

∣∣Ai
(j′,k′),(j,k)(μi)− Ã

i
(j′,k′),(j,k)(μi)

∣∣
=
∣∣aM(i)

(
ψM(i),j,k(μi) + b̃i,j,k(μi), bhi,j′,k′(μi);μi

)
− aM(i)

(
ψM(i),j,k(μi) + b̃i,j,k(μi), b̃i,j′,k′(μi);μi

)∣∣
=
∣∣aM(i)

(
ψM(i),j,k(μi) + b̃i,j,k(μi), bhi,j′,k′(μi)− b̃i,j′,k′(μi);μi

)∣∣
=
∣∣rh

i,j,k

(
bhi,j′,k′(μi)− b̃i,j′,k′(μi);μi

)∣∣.
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It thus follows from (5.4) and Lemma 5.1 that∣∣Ai
(j′,k′),(j,k)(μi)− Ã

i
(j′,k′),(j,k)(μi)

∣∣
=

∣∣rh
i,j,k

(
bhi,j′,k′(μi)− b̃i,j′,k′(μi);μi

)∣∣∥∥bhi,j′,k′(μi)− b̃i,j′,k′ (μi)
∥∥

XM(i)

∥∥bhi,j′,k′(μi)− b̃i,j′,k′(μi)
∥∥

XM(i)

≤ Ri,j,k(μi)
∥∥bhi,j′,k′(μi)− b̃i,j′,k′(μi)

∥∥
XM(i)

≤ Ri,j,k(μi)Ri,j′,k′(μi)
/
αh,LB
M(i);0(μi)

= Δi,j,k(μi)Δi,j′,k′(μi). (5.16)

Then, a Frobenius norm bound for the error in the “local stiffness matrix” for instantiated component i is
given by

‖Ai(μi)− Ã
i(μi)‖2F ≤

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

nγ
M(i)∑

j′=1

Nγ

M(i),j′∑
k′=1

(
Δi,j,k(μi)Δi,j′,k′(μi)

)2

=

⎛⎝nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

Δi,j,k(μi)2

⎞⎠
⎛⎜⎝nγ

M(i)∑
j′=1

Nγ

M(i),j′∑
k′=1

Δi,j′,k′(μi)2

⎞⎟⎠
=

⎛⎝nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

Δi,j,k(μi)2

⎞⎠2

. (5.17)

Finally, we recall that we suppose that each entry of A(μ) and Ã(μ) is assembled from a sum of terms from at most
two different local stiffness matrices; thus (5.9) follows from (5.17) and the inequality (a+ b)2 ≤ 2(a2 + b2). �

We note that the proof of Lemma 5.2 relies on the symmetry of the a( · , · ;μ); the proof can be generalized
to the non-symmetric case with a primal-dual RB formulation [28].

We now bound the solution error in

Proposition 5.3. If λ̃min(μ) > σ2(μ), then

‖U(μ)− Ũ(μ)‖2 ≤ ΔU(μ), (5.18)

where

ΔU(μ) ≡ σ1(μ) + σ2(μ)‖Ũ(μ)‖2 + ‖F̃(μ)− Ã(μ)Ũ(μ)‖2
λ̃min(μ)− σ2(μ)

· (5.19)

Recall that ‖ · ‖2 refers to the Euclidean norm.

Proof. Let δA(μ) ≡ A(μ)− Ã(μ), δF(μ) ≡ F(μ)− F̃(μ), and δU(μ) = U(μ)− Ũ(μ). Then, from (3.27), we have
the identity

[Ã(μ) + δA(μ)] δU(μ) = δF(μ)− δA(μ) Ũ(μ) + (F̃(μ)− Ã(μ)Ũ(μ)). (5.20)

(Note if (4.7) is solved exactly then the last term on the right-hand side of (5.20) vanishes; however, we
retain the term to accommodate (for example) iterative solution error). We pre-multiply (5.20) by δU(μ)T
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and divide by δU(μ)T δU(μ) to obtain

λ̃min(μ) ≤ δU(μ)TÃ(μ)δU(μ)
δU(μ)TδU(μ)

≤
∣∣∣∣ δU(μ)TδF(μ)
δU(μ)TδU(μ)

∣∣∣∣+ ∣∣∣∣δU(μ)TδA(μ)Ũ(μ)
δU(μ)TδU(μ)

∣∣∣∣
+
∣∣∣∣δU(μ)TδA(μ)δU(μ)

δU(μ)TδU(μ)

∣∣∣∣+ ∣∣∣∣δU(μ)T(F̃(μ)− Ã(μ)Ũ(μ))
δU(μ)TδU(μ)

∣∣∣∣
≤ ‖δF(μ)‖2 + ‖δA(μ) Ũ(μ)‖2 + ‖F̃(μ)− Ã(μ)Ũ(μ)‖2

‖δU(μ)‖2 + ‖δA(μ)‖2 (5.21)

≤ ‖δF(μ)‖2 + ‖δA(μ)‖2 ‖Ũ(μ)‖2 + ‖F̃(μ)− Ã(μ)Ũ(μ)‖2
‖δU(μ)‖2 + ‖δA(μ)‖2

≤ σ1(μ) + σ2(μ) ‖Ũ(μ)‖2 + ‖F̃(μ)− Ã(μ)Ũ(μ)‖2
‖δU(μ)‖2 + σ2(μ), (5.22)

where we have employed the bound ‖δA(μ)‖2 ≤ ‖δA(μ)‖F ≤ σ2(μ) (recall that ‖ ·‖2 ≤ ‖ ·‖F is a consequence of
the Cauchy–Schwarz inequality). The desired result (5.18), (5.19) then follows straightforwardly from (5.22). �

It is a consequence of Proposition 5.3 that as our RB bubble approximations converge then the system level
RBE approximation also converges:

Corollary 5.4. If Ũ(μ) = Ã(μ)−1F̃(μ) (i.e. the RB Schur complement system is solved exactly) and σ1(μ)→ 0,
σ2(μ)→ 0, then ΔU(μ)→ 0.

Proof. The result directly follows from Proposition 4.1. �

Note we do not yet have bounds for the effectivity of our system level error estimator ΔU(μ).
In this paper we shall primarily invoke the error bound of Proposition 5.3 in particular since the different

contributions to the error bound (5.19) are readily identified. However, it is possible to develop a sharper bound
as demonstrated in

Corollary 5.5. If λ̃min(μ) > σ2(μ),
‖U(μ)− Ũ(μ)‖2 ≤ ΔU

∗ (μ), (5.23)

where

ΔU

∗ (μ) ≡ σ1(μ) + σ3(μ) + ‖F̃(μ)− Ã(μ)Ũ(μ)‖2
λ̃min(μ)− σ2(μ)

, (5.24)

and

σ3(μ) ≡
{

2
I∑

i=1

⎛⎝nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

(
Δi,j,k(μi)

)2⎞⎠⎛⎝nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

Δi,j,k(μi)
∣∣Ũ i

j,k(μ)
∣∣⎞⎠2}1/2

. (5.25)

Note for instantiated component i, Ũ
i ∈ R

Nports
M(i) is the subvector of Ũ ∈ R

nsc with entries Ũ i
j,k = ŨGi(j),k,

1 ≤ j ≤ nγ
M(i), 1 ≤ k ≤ N γ

M(i),j.

Proof. We first develop a (sharper) bound for∣∣∣∣∣δU(μ)T δA(μ) Ũ(μ)
δU(μ)T δU(μ)

∣∣∣∣∣ · (5.26)
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To begin we invoke (5.16) to develop a bound for a single entry of the contribution from instantiated component i,
(Ai − Ãi) Ũi, to the vector δA(μ) Ũ(μ)∣∣∣∣∣∣

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

(
A

i
(j′,k′),(j,k)(μi)− Ã

i
(j′,k′),(j,k)(μi)

)
Ũ i

j,k(μ)

∣∣∣∣∣∣ ≤ Δi,j′,k′(μi)

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

Δi,j,k(μi)
∣∣Ũ i

j,k(μ)
∣∣. (5.27)

It thus follows from (5.27) that

∥∥(Ai(μi)− Ã
i(μi))Ũi(μ)

∥∥2

2
≤

nγ
M(i)∑

j′=1

Nγ
M(i),j∑
k′=1

⎛⎝Δ(i,j′,k′)(μi)

nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

Δi,j,k(μi)
∣∣Ũ i

j,k(μ)
∣∣⎞⎠2

=

⎛⎝nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

Δi,j,k(μi)2

⎞⎠⎛⎝nγ
M(i)∑
j=1

Nγ
M(i),j∑
k=1

Δi,j,k(μi)
∣∣Ũ i

j,k(μ)
∣∣⎞⎠2

. (5.28)

We now recall the assumption that a component has at most one neighbor per port; hence, with the inequality
(a+ b)2 ≤ 2(a2 + b2), we can accumulate (5.28) over all i = 1, . . . , I to obtain

‖δA(μ) Ũ(μ)‖2 ≤ σ3(μ). (5.29)

The result then follows from (5.21) and (5.29). �
We anticipate that |Ũ i

j,k| will decrease (potentially quite rapidly) with k, and thus we can expect ΔU
∗ (μ) �

ΔU(μ). As ΔU
∗ (μ) and ΔU(μ) can be calculated at roughly the same cost, clearly ΔU

∗ (μ) is preferred in actual
computational practice.

We close this section with error analysis for the system output. An a posteriori error bound for the system
output s̃(μ) is given in
Proposition 5.6. Suppose that for all μ ∈ D, �(·, μ) : Xh → R satisfies

�(v;μ) = 0, ∀ v ∈
I⊕

i=1

Bh
M(i);0. (5.30)

Then
|sh(μ)− s̃(μ)| ≤ Δs(μ), (5.31)

for
Δs(μ) ≡ ΔU(μ)‖L1(μ)‖2 (5.32)

(and similarly, |sh(μ)− s̃(μ)| ≤ ΔU∗ (μ) ‖L1(μ)‖2 ≡ Δs∗(μ)).

Proof. From (3.14), (4.3), (4.5), (5.30), and the Cauchy–Schwarz inequality, we have

∣∣sh(μ)− s̃(μ)| = |�(uh(μ)− ũ(μ);μ)
∣∣ =

∣∣∣∣∣∣
nΓ∑
p=1

NΓ
p∑

k=1

(
Up,k(μ)− Ũp,k(μ)

)
�(Ψp,k;μ)

∣∣∣∣∣∣
≤
⎛⎝ nΓ∑

p=1

NΓ
p∑

k=1

(
Up,k(μ)− Ũp,k(μ)

)2⎞⎠1/2⎛⎝ nΓ∑
p=1

NΓ
p∑

k=1

�(Ψp,k;μ)2

⎞⎠1/2

≤ ΔU(μ)

⎛⎝ nΓ∑
p=1

NΓ
p∑

k=1

�(Ψp,k;μ)2

⎞⎠1/2

.

The result then follows from the definition of L1(μ) in (3.30). �



236 D.B.P. HUYNH ET AL.

We note that outputs that satisfy (5.30) are common in applications and in particular many outputs are
defined only over component ports. In fact, arguably the most common outputs of interest are defined by

average quantities over ports, in which case all but a few terms in the sum
∑nΓ

p=1

∑NΓ
p

k=1 �(Ψp,k;μ)2 will vanish.
It is straightforward (but somewhat cumbersome) to extend Proposition 5.6 to the general case in which � does
not vanish over the bubble spaces and hence (5.30) is not satisfied. We omit this extension here since all of the
outputs we consider in Section 7 do indeed satisfy (5.30).

A system level error bound is derived for the classical RBE method of Maday and Rønquist in [24]. A key
difference between the result in [24] and Proposition 5.3 is that in our static condensation formulation we do
not require component level truth calculations to estimate interface correction terms since our approximation
is globally conforming.

6. Computational procedures

6.1. Overview

The computations proceed in two stages: Offline and Online. These two stages are connected through an
Online Dataset which is constructed in the Offline stage and then invoked in the Online stage. The Offline stage
is performed once for any given library of archetype components; the Online stage is then performed many times
for each new system (composed of instantiated elements from the library) or each new set of parameter values.
The Offline stage is very expensive, whereas the Online stage is very inexpensive. Thus, as is always the case in
the model order reduction paradigm, we focus on the real-time/interactive and many-query contexts in which
the Offline stage investment is either irrelevant (e.g., given a real-time imperative, as in parameter estimation)
or amortized over many Online evaluations (e.g., given a many-query requirement, as in design).

In the Offline stage we construct the bubble spaces B̃f
m;0 and B̃m,j,k;0 from (4.1) and (4.2), respectively,

associated with the archetype components which comprise our library. We then generate the affine decomposition
for the reduced basis archetype component stiffness matrices and the affine decomposition for the reduced basis
error bound inner products to form the Online Dataset; note that the affine decomposition follows “standard”
reduced basis practice [28]. In the Online stage we compute the reduced basis bubble approximations, evaluate
the reduced basis Schur complement entries, solve the (reduced basis approximate) Schur system, compute the
stability eigenvalue λ̃min, and finally evaluate the reduced basis and system error bounds. We shall address each
of these steps in further detail below.

In contrast to the standard reduced basis method, RBE methods (our static condensation approach, as well as
the classical RBE methods) consider many small reduced basis models each with only relatively few parameters
rather than one reduced basis model with many parameters; we thus mitigate the curse of dimensionality
as regards the number of parameters which may be feasibly treated. Furthermore, in RBE approaches we may
consider many different systems and indeed different topologies and hence we may amortize or justify the Offline
cost over many more Online appeals. Our static condensation RBE method offers further advantages relative
to the classical RBE method: we can treat components as completely interoperable without reference to any
generation configuration, and we may thus consider for any given Offline library a much wider class of Online
systems. However, the increased flexibility afforded by the “configuration agnostic” static condensation RBE
library does come at some computational cost in particular related to the many bubble functions associated
with each component.

We discuss in this section the operation counts associated with the Offline and Online stages, respectively. We
also propose some metrics for comparison of the computational cost of the static condensation RBE approach
relative to the computational cost of more standard finite element approaches. In Section 7 we apply our frame-
work for computational cost analysis to several numerical examples; in particular, we provide computational
timings which justify our claims. Note we report all timings for an effective platform (an AMD Opteron 2382)
though in some cases actual timings are performed on different machines and then translated to our common
reference.
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Before embarking we recall some notation and introduce some additional notation that will figure prominently
in what follows. We recall that M denotes the number of archetype components in our library, and that I refers
to the number of instantiated components in a particular system. In our formulation we obtain considerable
savings in the case that we have “component repetition”. With this in mind, we introduce the concept of
component clones: two instantiated components are clones if they share the same archetype component parent
and the same parameter values. In fact, as regards the latter condition, for two components to be clones they
need share only the same non-docking parameter values; recall that docking parameters are parameters which
may affect the geometric configuration of the instantiated component but do not affect the bilinear form (e.g.,
translation or rotation for a homogeneous and isotropic bilinear form). We let I ′cs denote the number of “clone
sets”, where each clone set is the equivalence class of instantiated component clones.

Also, we note that the static condensation RBE formulation fits naturally within an iterative design process
in which a sequence of simulations are performed with parameters or component connectivity varied from one
iteration to the next. Within this context, the relevant “component repetition” concept is not the number
of clone sets, but rather the number of clone sets in which the parameter values are varied relative to an
immediately preceding Online evaluation – we define I ′var to be the number of “varied clone sets.” (Note that
of course a given instantiated component need not remain in the same clone set from one design iteration to
the next). We also highlight an important special case in which all component parameters remain the same but
the component connectivity is modified in some way – we refer to this as a rearrangement of the system. In the
case of a rearrangement we obtain I ′var = 0.

We recall that Qmax refers to the maximum number of terms in the affine sums over all affine decompositions
over all archetype components in our library. We further define Nmax to be the largest reduced basis bubble
space dimension over all bubbles over all archetype components in our library. We recall that nsc is the size
of our Schur complement system, which in turn is bounded by the product of nΓ and NΓ

max; here nΓ is the
number of global ports in a system, and NΓ

max is the maximum number of (truth) degrees of freedom on a global
port over all global ports. Finally, it shall be convenient to introduce N ports

max as the maximum number of port
degrees of freedom in a component over all components; note that the number of port degrees of freedom in a
component is the sum over the local ports of the number of (truth) degrees of freedom over each port.

6.2. Offline stage and online dataset

The Offline operation count has two main contributions. The first contribution combines the Greedy
development of the bubble spaces (4.1), (4.2) with the associated formation of the reduced basis approximation
and error bound affine decompositions [28]. It can be shown that this operation count scales roughly as

MN ports
max ntrain(QmaxN

3
max +Q2

maxN
3
max +N4

max) +MNmaxFFE(N com
max ) (6.1)

where N com
max denotes the maximum number of truth FE degrees of freedom in a component over all components

in a system, FFE(N ) denotes the operation count to solve a sparse finite element discrete system of size N , and
ntrain is the number of parameter points in the Greedy training set. The second contribution reflects the affine
decomposition of the reduced basis Schur complement entries, which we may view as (multiple) outputs. It can
be shown that this operation count scales roughly as

M(N ports
max )2QmaxN

2
max. (6.2)

Note that in general in all of our operation counts (and memory estimates) we will neglect the cost associated
with the bubbles associated with the inhomogeneity f – one per component – compared to the cost associated
with the (many more) bubble functions associated with the port degrees of freedom.

The storage (memory) for the Online Dataset comprises two similar components. The storage associated with
the affine decomposition of the reduced basis bubble approximations and associated error bounds is given roughly
by MN ports

max (QmaxN
2
max+Q2

maxN
2
max); note that the Greedy training set is only required in the Offline stage, not

the Online stage, and hence the Online Dataset memory does not scale with (or indeed, depend on) ntrain. The
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storage associated with the reduced basis Schur complement entries is given roughly by M(N ports
max )2QmaxN

2
max.

We should emphasize that the Online Dataset scales with the number of archetype components, M , and not
the number of instantiated components in any (future) system, I, and with N ports

max , and not N com
max .

The Offline stage is expensive, and the Online Dataset extensive, for two reasons. First, we might have several
or even many components in our library, and hence M may not be small. Second, we will typically have many
port degrees of freedom: N ports

max appears both in the formation/storage of the bubble affine decomposition,
linearly, but also in the formation/storage of the Schur entry affine decomposition, quadratically. The first
proliferation, in M , is shared by all RBE approaches; the second proliferation, in N ports

max , is peculiar to the
static condensation RBE approach – and a direct result of the “configuration agnostic” training of the library
archetype components.

We close with a small technical remark. Our reduced basis error bounds require a coercivity lower bound,
which, in the most general case, must be computed by the Successive Constraint Method (SCM) [18]. For
some problems, in particular linear elasticity with high aspect ratio members, the Offline operation count can
be considerable. However, in all cases, the contribution to both the Online Dataset memory and the Online
operation count is negligible. (Indeed, only one Online SCM evaluation is required for each component in the
Online stage). For this reason, and since the coercivity lower bound is entirely component local, we do not dwell
further on this topic in the current paper.

6.3. Online stage

It shall be instructive to decompose the Online stage, and associated operation counts, into two parts. The
first part entails (i) computation of all the reduced basis Schur complement entries (4.12), (4.13), and (ii)
evaluation of all the reduced basis error bounds (5.10), (5.11). We shall denote the operation count associated
with this part of the Offline stage by τRB

sc . (Note in the next section we shall use this same τRB
sc to denote

computational timings associated with this part of the Online stage). The second part entails the solution of
the reduced basis approximate Schur complement system of equations, (4.7), and evaluation of the minimum
eigenvalue of the reduced basis approximate Schur complement, λ̃min, required in (5.19). We shall denote the
operation count (and in Section 7, the computational timings) associated with this part of the Offline stage by
τRB
S . Note the total operation count/timing is simply the sum of τRB

sc , the reduced basis contribution, and τRB
S ,

the Schur complement contribution.
It is important to emphasize that both these operation counts/timings are defined as marginal operation

counts/timings: the additional computational effort required to evaluate the reduced basis output and output
error bound at the next step in a design sequence. Of course we include within this definition the important case
in which we form and analyze for the first time – for a first parameter value – a new system constructed from
our library. For our purposes below, we define Ieff to the the effective number of instantiated components in our
computation, hence Ieff = min(I ′cs, I

′
var). Note that for a new system with no replicated components Ieff = I,

whereas for either a new system with replicated components, or a parameter variation for an existing system, or
a rearrangement of an existing system, Ieff “counts” only the number of instantiated components for which the
component stiffness matrix must be (re)constructed. There are many important cases in which we can expect
replicated components and perhaps even more cases – in particular within the interactive design or parameter
estimation contexts – in which we would expect to vary only a few parameters in any given analysis step.

We now turn to τRB
sc (interpreted here as an operation count, and in Section 7 as a timing):

τRB
sc = Ieff(N ports

max (QmaxN
2
max +Q2

maxN
2
max +N3

max) + (N ports
max )2QmaxN

2
max). (6.3)

Note the first term, which scales linearly with N ports
max , reflects the computation of the reduced basis bubble

coefficients, (4.2), and associated error bounds whereas the second term, which scales as (N ports
max )2, reflects the

evaluation of the reduced basis approximate Schur complement entries, (4.12). This strong dependence of τRB
sc on

the number of port degrees of freedom is a first and perhaps the most important motivation for a port reduction
strategy [11]. We also note the beneficial effect of replication or incremental parameter variation through the
prefactor Ieff .
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We next turn to τRB
S (interpreted here as an operation count, and in Section 7 as a timing). Here we do

not provide an explicit operation count, but rather note that τRB
S will of course depend at least linearly and in

practice superlinearly with nsc, the rank of the (reduced basis approximate) Schur complement. We recall that
nsc is the total number of degrees of freedom summed over all the global ports; the dependence of nsc on NΓ

max is
a second motivation for port reduction. We do note that the (reduced basis approximate) Schur complement has
many nice features: the Schur complement will be sparse as dictated by the relatively few component neighbors
with which any component is connected (through a shared global port); the Schur complement will be relatively
well conditioned, with condition number O(1/h) [7]. We may thus consider solution (and eigensolution) by either
sparse direct techniques or sparse preconditioned iterative techniques.

6.4. Comparison framework

We shall compare our approach to two alternatives. Alternative I, characterized by operation count/timing
τ I, is the static condensation truth Finite Element (FE) formulation described in Section 3. Alternative II,
characterized by operation count/timing τ II, is a standard “global” truth finite formulation over Xh, (3.6). We
make two remarks. First, we shall presume that we are in the real-time or many-query context such that we
may plausibly consider in our comparison only the Online operation count, and Online Dataset requirements, of
the static condensation RBE approach. (Of course, the Offline cost even in such situations can not be ludicrous,
and in Section 7 we shall provide representative timings for the Offline stage as well). Second, we compare only
operation counts/timing and not accuracy, as our rigorous error bounds in some sense ensure “equivalence”
between the static condensation RBE and truth FE results.

We first consider Alternative I. We note that τ I = τFE
sc + τFE

S . The first term is given by

τFE
sc = Ieff(N ports

max FFE(N com
max ) + (N ports

max )2CspN com
max ), (6.4)

where recall N com
max denotes the maximum number of truth FE degrees of freedom in a component over all

components in a system, and FFE(N ) denotes the operation count to solve a sparse finite element discrete
system of size N (note for our purposes here we may ignore the particular structure of the equations); also Csp

is a rough indication of the sparsity of the finite element discrete system in terms of the nonzero entries per row
(for example, in three space dimensions we might expect Csp ≈ 20 for a low-order finite element approximation).
The second term, τFE

S , is simpler: τFE
S = τRB

S .
We may thus conclude that if τRB

sc � τFE
sc then the static condensation RBE approach should be advantageous

relative to the truth static condensation approach. (We implicitly assume here that τFE
sc is at least of the

same order as, and more likely much greater than, τFE
S ; this “volume predominance” will typically be realized

unless the components are mostly surfaces and hence ports). We directly observe from (6.3) and (6.4) that the
operation counts for formation of the Schur complement for the reduced basis approximation and the truth
finite element discretization include similar terms – a first term which scales as N ports

max , and a second term which
scales as (N ports

max )2. Thus, the comparison τRB
sc versus τFE

sc reduces to the standard “reduced basis calculus”: if
Nmax � N com

max we anticipate that τRB
sc � τFE

sc . In fact, we expect the static condensation formulation to further
tip the balance in favor of reduced basis treatment: our port functions are designed to decay rapidly into the
interior of the component and should thus arguably depend relatively weakly on the parameters; the latter, in
turn, suggests relatively small Nmax. In Section 7 we will provide numerical evidence which supports this claim
(at least for our particular examples).

We next consider Alternative II. It is in general difficult to make a direct comparison between the static
condensation RBE approach and a standard global finite element discretization. First, from a theoretical per-
spective, the comparison can be very problem dependent (as regards degrees of freedom, sparsity, and condition
number) and also “solver-dependent”; second, from an empirical perspective, the comparison may be very cum-
bersome – by construction, the static condensation reduced basis element approach avoids global quantities and
instead considers solely I-tuples. For these two reasons, both in this section and Section 7, we consider a simple
sufficient condition, rather than a more complicated necessary condition, under which the static condensation
RBE approach will be much more efficient than a standard global finite element approach.
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stem component plate component “T”-junction component

Figure 4. Three archetype components for the thermal fin library: a stem, a plate, and a
“T”-junction. Ports are shaded in red.

In particular, we claim that if τRB
sc is of the same order of magnitude as (or at least not much larger than) τRB

S ,
then – again presuming “volume predominance” – the static condensation RBE approach will be considerably
faster than a standard global truth finite element formulation. The argument: τRB

sc + τRB
S ≈ τRB

S = τFE
S will

be much smaller than τ II = FFE(N tot) given that nsc will be much smaller than N tot ≡ dim(Xh). Inspection
of the τRB

sc of (6.3) suggests that in cases in which Ieff is small compared to I, and hence in which IeffN ports
max

is small compared to nsc, τRB
sc should indeed be small compared τRB

S . In Section 7 we shall provide numerical
evidence which supports this claim (at least for our particular examples).

7. Numerical results

In this section we present numerical results to demonstrate the capabilities of the static condensation RBE
method. We present results for model problems from heat transfer and solid mechanics. The results presented
here are obtained with rbOOmit [23], libMesh [22], and Matlab.

7.1. Heat transfer: thermal fin library

We consider here a library with which we can subsequently build a variety of “thermal fin” systems. Note the
ultimate application, here thermal fins, dictates both the underyling physics and hence bilinear/linear form, but
also typically the kinds of geometries, geometric variations, and port connectivities which must be anticipated.
These components are shown schematically in Figure 4. We shall discuss the stem archetype in detail, and then
we consider the plate and “T”-junction more briefly.

The dimensional physical domain for the stem archetype component, m = 1, is of width 0.4W and height
3H̃W , where W is a dimensional length scale. We then non-dimensionalize to obtain the physical domain
Ω̂o

1(μ̂geo
1 ) = (0, 0.4)×(0, 0.4)×(0, 3H̃) ⊂ R3. We then set μ̂geo

1 = H̃ with D̂geo
1 = [2/3, 4/3]. As shown in Figure 4,

this component has two ports, γ̂o
1,1(μ̂

geo
1 ) ≡ (0, 0.4)× (0, 0.4)× {0} and γ̂o

1,1(μ̂
geo
1 ) ≡ (0, 0.4)× (0, 0.4)× {3H̃}.

Note that there are also docking parameters (translation, rotation) that are implicitly associated with the stem
component but which we do not explicitly list. We also introduce the associated reference domain Ωm=1 ≡
Ω̂o

1(μ̂geo,ref
1 = 1) = (0, 0.4)× (0, 0.4)× (0, 3); this domain is meshed with 4× 4× 30 Q1 (d = 3) elements.

We consider equilibrium heat conduction for this archetype component with heat transfer from the component
surface to the ambient and subject to uniform volumetric heat generation q̇. Hence we introduce the thermal
conductivity kth, nondimensional conductivity ratio κ = kth/k

0
th (where k0

th denotes a nominal conductivity),
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heat transfer coefficient hth, and Biot number Bi = hthW/kth. The coefficient parameters are then given by
μ̂coeff

1 = (Bi, κ), and we set D̂coeff
1 = [0.001, 0.01]× [0.5, 2].

We define nondimensional x as x/W , and we introduce the nondimensional temperature u ≡ k0
th(T −

Tambient)/(q̇W 2). Then on the physical domain we have the nondimensionalized PDE

− κΔu = 1 over Ω̂o
1(μ̂geo

1 ), (7.1)

κ
∂u

∂n
= −κBi u on ∂Ω̂o

1(μ̂geo
1 ), (7.2)

where ∂Ω̂o
1(μ̂geo

1 ) denotes the boundary of Ω̂o
1(μ̂geo

1 ). We now consider the corresponding forms reformulated for
the archetype reference domain.

We have

a1(v, w; μ̂1) ≡
5∑

q=1

Θq
a1

(μ̂1)a
q
1(v, w), (7.3)

where (note that we avoid μ̂geo
1 and μ̂coeff

1 in favor of H̃ , Bi and κ for the sake of clarity in the functions presented
below)

Θ1
a1

(μ̂1) ≡ κH̃, Θ2
a1

(μ̂1) ≡ κ/H̃, Θ3
a1

(μ̂1) ≡ BiκH̃, Θ4
a1

(μ̂1) ≡ P1Biκ, Θ5
a1

(μ̂1) ≡ P2Biκ, (7.4)

and

a1
1(v, w) ≡

∫
Ω1

(vxwx + vywy), (7.5)

a2
1(v, w) ≡

∫
Ω1

vzwz, (7.6)

a3
1(v, w) ≡

∫
∂Ω1\(γ1,1∪γ1,2)

vw, (7.7)

a4
1(v, w) ≡

∫
γ1,1

vw, (7.8)

a5
1(v, w) ≡

∫
γ1,2

vw; (7.9)

also, we define a volumetric source term on Ω1,

f1(v;μ) ≡ H̃
∫

Ω1

v. (7.10)

Recall that all these forms are defined over the archetype reference domain, and hence the appearance of the
geometric parameter H̃ .

We employ for the Ω1 inner product

(v, w)X1 ≡
∫

Ω1

(vxwx + vywy)κminH̃min + (vzwz)κmin/H̃max, (7.11)

where H̃min = 2/3, H̃max = 4/3, and κmin = 0.5. With this choice we may set αh,LB
1;0 ≡ 1 for the coercivity

constant lower bound; note the coercivity constant is defined with respect to the bubble space Bh
1;0 and hence

the semi-norm in (7.11) suffices.
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We observe that the operators a4
1 and a5

1 vanish for all v, w ∈ Bh
1;0; these terms are included in the formulation

to permit us to impose general natural boundary conditions on the ports via the interface functions. To wit, we
include the scalars P1, P2 ∈ {0, 1} in order to turn the port Biot terms “on” or “off” as desired. For example,
we would set P1 = 0 if a stem component has a connection on port γ1,1; similarly, we would set P1 = 0 if
there is no connection on γ1,1 and we wish to impose a homogeneous Neumann condition on γ1,1. On the other
hand, we would set P1 = 1 if we wish to impose a Robin condition on γ1,1. In essence, we take advantage of the
general port treatment to impose general boundary conditions. We note that P1 and P2 are similar to docking
parameters in the sense that they do not affect the component-level RB approximations.

The other two components of the heat transfer Library represent similar physics but in different geometries;
we shall define the geometric domains and parameters for these components, but omit the component operator
equations for the sake of brevity. Let m = 2 denote the plate archetype component, with the non-dimensional
physical domain Ω̂o

m=2(μ̂
geo
m=2) ≡ (0, 2W̃+0.4)×(0, 2W̃+0.4)×(0, H̃/2). The plate has two ports at γ̂o

2,1(μ̂
geo
2 ) ≡

(W̃ , W̃ +0.4)×(W̃ , W̃ +0.4)×{0} and γ̂o
2,2(μ̂

geo
2 ) ≡ (W̃ , W̃ +0.4)×(W̃ , W̃ +0.4)×{H̃/2}. In this case we define

μ̂geo
2 = (H̃, W̃ ) and D̂geo

2 ≡ [2/3, 4/3]× [0.5, 2]. The plate reference geometry is given by Ωm=2 = Ω̂o
2(μ̂geo

2 =
(1, 1)) = (0, 2.4) × (0, 2.4) × (0, 0.5), and this domain is meshed with 24 × 24 × 5 Q1 (d = 3) elements. The
coefficient parameters for the plate are μ̂coeff

2 = (Bi, κ), with domain D̂coeff
2 ≡ [0.001, 0.01]× [0.5, 2]. Also, we set

f2 ≡ 0. Similarly, let m = 3 denote the “T”-junction archetype component. In this case there is no geometric
variation so that Ωm=3 = Ω̂o

3 ≡ (0, 0.4)× (0, 0.4)× (0, 0.8). The geometry is meshed with 4× 4× 8 Q1 (d = 3)
elements. The “T” component has three ports: γ3,1 ≡ (0, 0.4)× (0, 0.4)× {0}, γ3,2 ≡ (0, 0.4)× {0} × (0.4, 0.8),
and γ3,3 ≡ (0, 0.4)×{0.4}×(0.4, 0.8). This component has coefficient parameters μ̂coeff

3 = (Bi, κ) with associated
parameter domain D̂coeff

3 ≡ [0.001, 0.01]× [0.5, 2]. We set f3 to be a uniform volumetric source term analogous
to f1.

We note that for m = 1, 2, 3, the thermal conductivity parameter scales out of (4.2). This can be seen (in
the m = 1 case) from the presence of the κ factor in each Θq

a1
in (7.4): thus a1 scales linearly with κ, and hence

from (4.2) the bubble is independent of κ. (Note to achieve this independence we scale the Biot number by the
kth rather than k0

th to get a κ factor on both sides of (7.2)). Therefore, the thermal conductivity is a “free”
parameter with regards to the reduced basis approximation for the bubble functions of (4.2). In fact, it is not
only free as regards the cost of the RB approximation, but also free in the sense that μ3 can take on any positive
value quite independent of the definition of D̂1. Note that the docking parameters and additionally P1, P2 are
also “free” – in the sense that these free parameters are handled by the Schur complement rather than the RB
approximation.

We now perform the Offline stage for this library of three thermal fin components. We have 25 nodes on each
port, hence N ports

1 = N ports
2 = 50, and N ports

3 = 75. For each component, we set the (absolute) tolerance for
termination of the Greedy algorithm to 10−5, and we also set the limit for the dimension of each RB space to
Nlim = 15. We present in Figure 5 a plot of dim(B̃1,1,k;0) for 1 ≤ k ≤ 25. We do observe that in general the
dimensions of the RB spaces are relatively low and furthermore that the dimensions of the RB spaces appear to
slightly decrease with k – as suggested by the decay of the ψi,j,k + b̃i,j,k(μi) into component interiors. Note that
the m = 2 component has one more parameter and more complicated geometric variations; as a result, in this
case all RB spaces saturate at the Nlim = 15 limit. Also, we note the total offline times for each component:
157 s for m = 1; 5750 s for m = 2; 6 s for m = 3.

We now consider the Online stage. In all cases we use the maximum RB space dimension (i.e., at most
Nlim = 15). To demonstrate the flexibility of the static condensation RBE method we shall assemble and solve
several different systems from the three references components introduced above. We first consider System1

which has 6 stem components and 5 plates – I = 11 with six instantiations of archetype component 1 and five
instantiations of archetype component 2. We “stack” the components vertically in the order (starting at the base)
stem1 → plate1 → stem2 → plate2 → . . .→ stem6, where M(1) = · · · =M(6) = 1, M(7) = · · · =M(11) = 2.
We also introduce two system outputs: s1(μ) is the average temperature over the base port of stem1, and s2(μ)
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Figure 5. The dimension of the RB bubble spaces on port γ1,1: dim(B̃1,1,k;0), for 1 ≤ k ≤ 25.

is the average temperature on the top port of stem3. System1 has 38 parameters in total, and there are no
geometric constraints so Dgeo is simply the tensor product of the D̂geo

M(i).
For our first analysis, the stem parameters are

μstem1 = μ1 = (0.67; 0.01, 1.2), μstem2 = μ2 = (1; 0.0075, 1), μstem3 = μ3 = (1.33; 0.002, 0.5),
μstem4 = μ4 = (1.33; 0.002, 0.5), μstem5 = μ5 = (1; 0.0075, 1), μstem6 = μ6 = (0.67; 0.01, 1.2); (7.12)

and the plate parameters are

μplate1 = μ7 = (1.33, 0.75; 0.01, 1), μplate2 = μ8 = (1, 1; 0.01, 1), μplate3 = μ9 = (0.67, 0.5; 0.005, 1),

μplate4 = μ10 = (1, 1; 0.01, 1), μplate5 = μ11 = (1.33, 0.75; 0.01, 1). (7.13)

We set P1 = 1 and P2 = 1 in order to impose a heat transfer (Robin) boundary condition on the bottom port
of stem1 and the top port of stem6.

The system temperature profile is shown in Figure 6A; the associated RB system outputs are s̃1(μ) = 4.10,
s̃2(μ) = 7.85. We obtain the field output bound ΔU(μ) = 0.14, and the system output error bound Δs(μ) = 0.34
for both s̃1(μ) and s̃2(μ). The true field error is ‖U(μ)− Ũ(μ)‖2 = 4.06×10−5. The effectivity of the error bound
ΔU(μ)/‖U(μ) − Ũ(μ)‖2 = 3.40 × 103 is quite poor; however, when we employ the sharper error bound ΔU

∗ (μ)
we obtain an effectivity ΔU

∗ (μ)/‖U(μ) − Ũ(μ)‖2 = 1.37 × 102, which is certainly improved and commensurate
with standard RB error bound effectivities reported in the literature. We anticipate that the effectivity will
increase as the size of the system, nsc, increases – which in turn could necessitate compensating increases in the
dimension of the RB spaces. However, the improved bound should mitigate the effect by exploiting the decay
of the port degree of freedom coefficients.

The Online computation time in this case is 0.72 s, with τRB
sc = 0.67 and τRB

S = 0.05. The truth static
condensation approach (Alternative I) requires τFE

sc = 191 s in this case, and hence the RB approach yields a
speedup factor of roughly 265. Also, since τRB

S is only a factor of roughly 13 smaller than τRB
sc , we plausibly

satisfy our sufficient condition from Section 6 for the static condensation RBE approach to be much more efficient
than a standard global finite element approach (Alternative II). Indeed, the static condensation system is of
dimension nsc = 300 – compared to dim(Xh) = 38 900; we enjoy here the benefits of the “quasi-one-dimensional”
limit with relatively few port degrees of freedom compared to interior degrees of freedom.
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(a) Solution ũo(µ) over Ωo(µgeo) for pa-
rameters defined in (117), (118); mini-
mum is 3.0 (blue), maximum is 9.7 (red).

(b) Solution ũo(µ) over Ωo(µgeo) for the
parameters defined in (117), (118), except

that W̃ = 2 (rather than 0.5) for plate 3;
minimum is 1.36 (blue), maximum is 6.42
(red).

Figure 6. Temperature profiles for our system with 6 stems and 5 plates for two different
values of the parameters.

(a) Detail of plate3 from Figure 6A;

minimum is 7.52 (blue), maximum is
7.90 (red).

(b) Detail of plate3 from Figure 6B; mini-

mum is 1.36 (blue), maximum is 2.20 (red).

Figure 7. Temperature profiles for our system with 6 stems and 5 plates: detail for the middle
plate.

We next demonstrate a “parameter sweep”: we predict the field and outputs of our system as we vary the
“horizontal scaling” parameter W̃ for plate3 from 0.5 to 2; we hold all other parameters fixed per (7.12), (7.13),
and hence now Ieff = 1. Figure 6A presents the temperature field for W̃ = 0.5, while Figure 6B presents
the temperature profile for W̃ = 2; Figures 7A and 7B provide a “zoomed-in view” of plate3 extracted from
Figures 6A and 6B, respectively. We note that the change in W̃ results in a significant change in the overall
temperature as well as the temperature distribution. We show in Figure 8 the system output s̃2(μ) and associated
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Figure 8. Plot of s̃2(μ) (solid line) and error bounds (dashed lines) at 21 evenly spaced param-
eters for the plate3 horizontal scaling parameter W̃ in the range [0.5, 2] – all other parameters
are as defined in (7.12), (7.13). The output error bounds in the left and right plots are based
on Δs(μ) and Δs∗(μ), respectively.

output error bounds at 21 parameters in the range [0.5, 2]; the error bounds confirm good accuracy in each case.
In this case we have τRB

sc = 0.10 s, which is now only twice τRB
S , and hence the static condensation RBE is

clearly advantageous with respect to both a truth static condensation approach (Alternative I) and a global
finite element approach (Alternative II).

We now consider a new system, System2, which has many repeated components. We instantiate 15 stems
and 14 plates and stack them in the same way (stem → plate → stem) as in System1. In this case we set zero
Neumann boundary conditions on the bottom and top ports of stem1 and stem15, respectively. This system
accommodates up to 101 independent parameters, however for our homogeneous system we set each stem
parameter to μstem ≡ (1; 0.01, 1), and each plate parameter to μplate ≡ (1, 1; 0.008, 1). The solution field is
shown in Figure 9A; we obtain a relative error bound of ΔU(μ)/‖Ũ(μ)‖2 = 0.010. In this case we have Ieff = 2,
and τRB

sc = 0.12 s compared to τRB
S = 0.14 s. The dimension of the static condensation system is nsc = 750 –

compared to dim(Xh) = 107 500. This case with many repeated components unequivocally satisfies our sufficient
condition for the static condensation RBE approach to be much more efficient than a standard global finite
element approach.

As our next example we consider a system System3 which is a rearrangement of System2 (recall our definition
of a rearrangement from Sect. 6). We now disconnect stem4 from plate4 to introduce a “crack,” and we set
P2 = 0 to impose a zero Neumann condition on the crack. This yields a slightly larger static condensation
system, nsc = 775. The temperature field in this case is shown in Figure 9B: the crack leads to a significantly
higher temperature in stem4, as expected; the accuracy of the prediction is confirmed by the relative error bound
ΔU(μ)/‖Ũ(μ)‖2 = 0.0102. Since System3 is a rearrangement of System2 (the immediately preceding simulation),
we obtain Ieff = 0, and τRB

sc = 0 s, τRB
S = 0.14 s. This example illustrates the ease with which we may consider

topology variations.
Finally, as our last thermal case we construct the system shown in Figure 10 which contains all three types of

reference components: the system contains 7 stems, 3 plates, and 3 “T”-junction components, with parameters
set as follows

μstem1 ≡ (1; 0.01, 1), μstem2 ≡ (1; 0.01, 1.25), μstem3 ≡ (1; 0.01, 1), μstem4 ≡ (1; 0.01, 1.2),

μstem5 ≡ (1; 0.005, 1), μstem6 ≡ (0.7; 0.01, 1), μstem7 ≡ (0.7; 0.01, 1),
μplate1 ≡ (1, 1; 0.01, 1), μplate2 ≡ (1, 0.8; 0.008, 1.2), μplate3 ≡ (1, 1; 0.01, 1),
μT-junction1

≡ (0.01, 1), μT-junction2
≡ (0.001, 1), μT-junction3

≡ (0.005, 1).
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(a) “Repeated component” system; min-
imum is 2.50 (blue), maximum is 5.49
(red).

(b) “Repeated component” system with
“crack” between stem4 and plate4; min-
imum is 1.64 (blue), maximum is 5.50
(red).

Figure 9. Temperature fields for two system configurations with 15 identical stems and 14
identical plates.

Figure 10. Temperature field for a system which contains all three types of thermal
components; minimum is 3.22 (blue), maximum is 9.06 (red).

The temperature field is shown in Figure 10, and we obtain the relative error bound ΔU(μ)/‖Ũ(μ)‖2 = 0.014.
Here the total Online computation time is 0.56 s, with τRB

sc = 0.47 s and τRB
S = 0.09 s; nsc = 425 compared to

dim(Xh) = 26,425. This example illustrates the good side of the curse of dimensionality: we obtain combinatorial
flexibility in system design but cost increases only algebraically.

Note that in the thermal fin examples above we employ the heat transfer coefficient as a simple (but typically
quite effective) engineering approximation for the much more difficult coupled conduction/fluid flow problem in
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(a) pillar (b) arch

Figure 11. The two components of the historic structure library: the first archetype component
is a pillar, the second archetype component is an arch. Ports are shaded in red.

the fin and the surrounding air. The latter is not amenable to our techniques due a fundamental, and perhaps
the main, limitation of our approach: linearity as required by the static condensation procedure.

7.2. Linear elasticity: historic structure library

We now move to the solid mechanics example. In this case, the solution is a vector field of displacements.
The port mode and interface function constructions directly apply to this case, except that we now solve vector
problems in (3.8) and (3.11), (3.12), (3.13). In this case, well-posedness of the Schur complement system relies
on Korn’s inequality, and we do not analyze this issue here – though we do note that our a posteriori error
bound results in Propositions 5.3 and 5.6 still apply.

We consider the two archetype components shown in Figure 11: (i) a “pillar” component, and (ii) an
“arch” component. The dimensional physical domain of the pillar archetype component, m = 1, is (0,W ) ×
(0.5H̃W ), where W is a dimensional length scale. We then non-dimensionalize to obtain the physical domain
Ω̂o

m=1(μ̂
geo
m=1) = (0, 1)× (0, 5H̃) as shown in Figure 11A. The pillar has two ports corresponding to the bottom

and top boundaries of the domain, respectively. We consider μ̂geo
1 = H̃ and the domain D̂geo

1 ≡ [0.02, 2.0]. We set
Ωm=1 = Ω̂o

1(μ̂geo
1 = 1). We consider equilibrium elasticity on the archetype component (we also permit transla-

tions but not rotations) for a linear isotropic medium with Young’s modulus ẼE0 (nominal Young’s modulus
E0) subject to a uniform body force ρ̃ρ0g (nominal density ρ0, acceleration of gravity g) in the (negative) vertical
direction. We introduce the coefficient parameters μ̂coeff

1 = (Ẽ, ρ̃) and the corresponding coefficient parameter
domain is D̂coeff

1 ≡ [1, 10] × [10−7, 10−6]. (The small magnitude of ρ̃ is due to the ratio of gravitational and
elastic stress effects for realistic values of the Young’s modulus). We refer to [28] for the construction of the
operators; the affine forms are recovered with Qa1 = 3 and Qf1 = 1. The nondimensional displacement is scaled
by ρ0gW 2/E0.

Let m = 2 denote the arch archetype component with domain Ωm=2 = Ω̂o
2 as shown in Figure 11B; this

component has no geometric parameters. The arch has four ports corresponding to the four boundaries shown
in Figure 11B. We consider two (non-dimensional) coefficient parameters: μcoeff

2 = (Ẽ, ρ̃) with domain D̂coeff
2 ≡

[1, 10] × [10−7, 10−6]. The physical model is again a linear isotropic medium subject to a uniform body force.
Given the absence of geometric variations, Qa2 = Qf2 = 1.

For both m = 1 and m = 2 the parameters corresponding to the Young’s modulus and the material density
are both free. The m = 2 component is particularly simple: the Young’s modulus Ẽ scales a in both (4.1)
and (4.2); the material density ρ̃ scales (only) the right-hand side of (4.1). It follows that for m = 2 there are in
fact no “real” parameters: in (4.1), the bubble functions scale as 1/ρ̃; in (4.2) the bubble function scales as ρ̃/Ẽ.
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Figure 12. The “pont du Gard” bridge structure.

We now perform the Offline stage for the two components in our library. We have 5 nodes on each port, and
since the problem is defined for a vector (displacement field), we obtain N ports

1 = 20 and N ports
2 = 40. We set

the (relative) tolerance for termination of the Greedy algorithm for each component to 10−5 or Nlim = 15. For
the pillar component we obtain dim(B̃1,j,k;0) = 15 for each j ∈ {1, 2}, 1 ≤ k ≤ 10. For the arch component we
obtain only one basis function in each RB bubble space: the RB Greedy algorithm detects the free parameters
automatically.

We then consider the Online stage. In all cases we use the full RB dimension available. We first consider
a “pont du Gard” system, System1, consisting of four layers of components stacked as shown in Figure 12.
The first and the third layers have 6 pillar components each; and the second and fourth layers have 6 arch
components each. The ordering of the first and second layers are pillar1 → pillar2 → . . . → pillar6, and arch1

→ arch2 → . . . → arch6, respectively, from the left to the right; similarly, the ordering for the third and fourth
layers are pillar7 → . . .→ pillar12 and arch7 → . . .→ arch12. We also introduce our system output: s(μ) is the
vertical displacement of the top port of arch1. The system has 60 parameters in total; note, however, that in
this system Dgeo is a strict subset of Π1≤i≤ID̂geo

M(i) since all the pillars in the third layer must be of the same
length μgeo

1 .
For our first analysis we set pillar parameters for the first layer to

μpillar1 ≡ (0.6; 1, 10−7), μpillar2 ≡ (0.8; 1, 10−7), μpillar3 ≡ (1.2; 1, 10−7),
μpillar4 ≡ (1.0; 1, 10−7), μpillar5 ≡ (0.8; 1, 10−7), μpillar6 ≡ (0.6; 1, 10−7); (7.14)

all pillar parameters in the third layer are set to

μpillar7 = μpillar8 = μpillar9 = μpillar10 = μpillar11 = μpillar12 ≡ (1.2; 1, 10−7); (7.15)

all the arch parameters are set to μarch = (0.2, 10−7). (The situation is depicted in Fig. 12). We apply (clamped)
zero Dirichlet boundary conditions on all the bottom ports of all the pillars on the bottom (foundation) layer,
as well as on the four arch ports on the extreme left and extreme right sides of the structure.

The displacement field of the structure is shown in Figure 13A. The associated RBE system output is
s̃(μ) = −5.65 × 10−5. We obtained the field output bound ΔU(μ) = 1.537 × 10−7 and the system output
error bound Δs = 9.72 × 10−8. The true field error is ‖U(μ) − Ũ(μ)‖2 = 4.47 × 10−9: the effectivity of the
error bound is ΔU(μ)/‖U(μ) − Ũ(μ)‖2 = 34.38, which is very good; we can further improve this result to
ΔU∗ (μ)/‖U(μ) − Ũ(μ)‖2 = 17.43. The Online computation time in this case is 0.47 s, with τRB

sc = 0.30 s
and τRB

S = 0.17 s. The truth solution computed via the truth static condensation approach of Section 3.2
requires computation time of τFE

sc = 46 s. The static condensation system is of size nsc = 440 – compared to
dim(Xh) = 23 208.

We next demonstrate a “parameter sweep”: we predict the field and output of our system as we vary the height
H̃ of (all) the pillars in the third layer from 0.1 to 2.0; we hold all the other parameters fixed per (7.14), (7.15)
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(a) H̃ = 1.2 (b) H̃ = 0.2

Figure 13. Displacement field of the bridge for different values of the height H̃ of (all) the
pillars in the third layer; the displacement field is scaled by a factor of 40 000.
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Figure 14. Plot of s̃(μ) (solid line) and error bounds (dashed lines) at 20 evenly spaced values
of H̃ .

and μarch = (1, 10−7). Note that we have Ieff = I ′var = 1 in this example because the pillars in the third layer
constitute a single clone set. We show two displacement fields for two different values of H̃ , H̃ = 1.2 and
H̃ = 0.2, in Figure 13. We present in Figure 14 the output s̃(μ) and associated error bounds at 20 parameter
values in the range [0.1,2.0]. Since Ieff = 1, τRB

sc is now reduced to only 0.03 s for each new value of the sweep
parameter, while we still have τRB

S = 0.17 s.

For our final example, we consider a System2 which is the same structure as in Figure 12, except now we
disconnect the top port of the second pillar in the third layer, pillar8, from the arch on the fourth layer, arch8,
to model a broken column. We consider the same parameter values as in (7.14), (7.15) (and μarch = (1.0, 10−7))
except now μpillar7 = (0.1; 1, 10−7) to represent a column “stub.” Hence in this case we change the component
connectivity with respect to System1, and we also only modify a single component’s parameters: Ieff = 1.
We show the displacement field in Figure 15; as expected, the deflections near the broken column are greatly
amplified. This example illustrates the ease with which we may consider both parametric and topological
variations in design exercises.
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Figure 15. Displacement field for the bridge system with one “broken pillar”; the displacement
field is scaled by a factor of 10 000.
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