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A PIECEWISE P2-NONCONFORMING QUADRILATERAL FINITE ELEMENT
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Abstract. We introduce a piecewise P2-nonconforming quadrilateral finite element. First, we decom-
pose a convex quadrilateral into the union of four triangles divided by its diagonals. Then the finite
element space is defined by the set of all piecewise P2-polynomials that are quadratic in each triangle
and continuously differentiable on the quadrilateral. The degrees of freedom (DOFs) are defined by the
eight values at the two Gauss points on each of the four edges plus the value at the intersection of the
diagonals. Due to the existence of one linear relation among the above DOFs, it turns out the DOFs are
eight. Global basis functions are defined in three types: vertex-wise, edge-wise, and element-wise types.
The corresponding dimensions are counted for both Dirichlet and Neumann types of elliptic problems.
For second-order elliptic problems and the Stokes problem, the local and global interpolation operators
are defined. Also error estimates of optimal order are given in both broken energy and L2(Ω) norms.
The proposed element is also suitable to solve Stokes equations. The element is applied to approximate
each component of velocity fields while the discontinuous P1-nonconforming quadrilateral element is
adopted to approximate the pressure. An optimal error estimate in energy norm is derived. Numerical
results are shown to confirm the optimality of the presented piecewise P2-nonconforming element on
quadrilaterals.
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1. Introduction

It has been well-known that the use of standard lowest order conforming elements in solving solid and fluid
mechanics problems produces undesirable unstable numerical solutions [4,5,8,13,19,32]. In order to avoid these
numerical locking and checker-board solutions, engineers and scientists have developed and used alternatively
higher-order conforming elements [35], techniques to stabilize the finite element method by adding suitable
bubble functions [2] or modify the variational forms by adding stabilization terms [12, 15, 26, 31, 36]. Indeed,
Pierre [47,48], Bank–Welfert [6], and Brezzi et al. [10] observed equivalences between the stabilized finite element
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methods and the use of bubble functions in the Galerkin framework . In another direction, the nonconforming
finite element methods successfully provide stable numerical solutions. See, for instance, [16, 17, 21, 28–30, 49]
for Stokes and Navier–Stokes problems and [3, 9, 27, 38, 40, 43, 45, 57] for elasticity related problems, and the
references therein.

In 1973, the nonconforming finite elements for triangles or tetrahedrons were introduced by Crouzeix and
Raviart [21]. The idea, at least in the P1-nonconforming finite element case, is to employ the DOFs associated
with the values at the midpoint of each edge of triangles in 2D or at the centroid of each face of tetrahedrons
in 3D, by replacing those associated with the values at the vertices in the case of the conforming elements.
These nonconforming elements were shown to provide stable finite element pairs for the Stokes problem and to
give optimal orders of convergence [21], where they together with the piecewise constant element are used to
approximate the velocity and pressure fields, respectively.

Even though the triangular or tetrahedral meshes are popular to use, in many cases where the geometry of the
problem has a quadrilateral nature, one wishes to use quadrilateral or hexahedral meshes with proper elements.
In this direction, nonconforming elements based on quadrilaterals have been proposed by several mathematicians
and engineers, including the Wilson element [42, 56], which was analyzed by Shi [51]. Han [34] introduced
a rectangular element with five local DOFs, Rannacher–Turek [49] presented the rotated Q1 nonconforming
element of four DOFs, which was modified by Cai–Douglas–Santos–Sheen–Ye [16,17,25] later. Park and Sheen
presented the P1-nonconforming finite element on quadrilateral meshes which has the lowest DOFs [46]. A
posteriori error estimates for simplicial and quadrilateral nonconforming element methods have been developed
by Carstensen and Hu [18]. Recently, Altmann and Carstensen introduced the P1-nonconforming element for
arbitrary triangulations into quadrilaterals and triangles of multiply connected domain [1].

Higher degree nonconforming finite elements have been developed basically by using higher order polynomials
on both triangular and quadrilateral meshes. A generalization to higher degree nonconforming elements requires
the patch test [37], which implies that a successful Pk-nonconforming element needs to satisfy a jump condition
such that on each interface the jump of polynomials between two adjacent elements should be orthogonal to
Pk−1 polynomials. This implies that a P2-nonconforming element, if exists, must be continuous at the two Gauss
points on each edge. However, to define the DOFs at the Gauss points causes a trouble due to the existence of
a quadratic polynomial which vanishes at the six Gauss points of edges of any triangle and that of a quadratic
polynomial which vanishes at the eight Gauss points of edges of any rectangle. Therefore, a special attention is
required to be paid when the DOFs for P2-nonconforming elements are defined. A successful P2-nonconforming
element on triangles has been introduced by Fortin and Soulie [30], which is equivalent to an enrichment of the
P2-conforming element with a nonconforming element-wise bubble function. The three dimensional analogue has
been introduced by Fortin [29]. Nonconforming elements based on quadrilaterals have been proposed by Sander
and Beckers [50] and analyzed by Shi [52]. Later, Lee and Sheen [41] proposed a P2-nonconforming element on
rectangles meshes, corresponding to the triangular Fortin–Soulie element. The finite element space proposed
in [41] is locally P2 ⊕ Span{x2y, xy2} is identical to the incomplete biquadratic element proposed by Sander-
Beckers [50], but the DOFs are different: the DOFs defined in [50] are the four vertex values and the four edge
midpoint values, while those in [41] are the eight values at the two Gauss points on each edge and the integral
over the rectangle. However, this element cannot be generalized to the arbitrary quadrilateral meshes. Recently,
Köster et al. [39] presented a higher degree nonconforming elements on arbitrary quadrilateral meshes using
nonparametric basis functions and additional nonconforming cell bubble functions. Recently, the mimetic finite
difference methods have been developed rapidly for general polygonal meshes; for instance, see [11,14,22–24,33],
and the references therein. Especially, among the higher-order mimetic finite difference schemes constructed on
quadrilateral meshes in [33], the degrees of freedom for a quadratic element consist of one interior value and
eight flux normals on edges, which is different from our element to be presented.

The purpose of this paper is to introduce a piecewise P2-nonconforming finite element on arbitrary
convex quadrilateral meshes that passes the generalized patch test. Our finite element space is locally
P2 ⊕ Span{(�+13)2, (�+24)2} with two ramp functions �+13, and �+24 defined in (2.3). Indeed, the space has been
used as a bivariate spline space on quadrilateral [44,55]. Our approach is to use this space as a composite finite
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element to solve second–order elliptic problems and the Stokes problem. For the Stokes problem, we will adopt
a proposed piecewise P2-nonconforming element for the velocity, and piecewise P1-nonconforming element as
in [46], for the pressure. We define the DOFs as the eight values at the two Gauss points on each edge, and
the value at the intersection of two diagonals of the quadrilateral. Indeed, the DOFs associated with the eight
values at the Gauss points are linearly dependent and any seven of them are linearly independent. Thus the
total DOFs are eight. Three types of local and global bases are defined. The first and second types of local and
global bases are defined associated with vertices and edges. The last type of bases is defined by the value at the
intersection of two diagonals. In this case, the basis function vanishes at all Gauss points on the edges, and thus
this is essentially a bubble function. After defining local and global interpolations, we derive the optimal order
error estimates for second-order elliptic problems and the Stokes problem in broken energy norm. In addition,
an optimal order error estimate in L2(Ω)-norm is shown for elliptic problems.

It turns out that our nonconforming finite element space is the union of the conforming piecewise P2 and the
bubble space, similarly to the P2-nonconforming simplicial element of Fortin and Soulie [30].

The contents of the paper are as follows. In Section 2 the piecewise P2 spline function space is analyzed and
equipped with basis functions. In the following section the piecewise P2-nonconforming quadrilateral element is
defined. The dimension and basis functions for the Dirichlet and Neumann problems are given. Then in Section 4,
projection and interpolation operators are defined and convergence analysis is given. Also, the optimal order
error estimates are shown in both discrete energy and L2 norms for elliptic problems. In Section 5, the proposed
element is applied to solve Stokes equations. An optimal order error estimate in broken energy norm for the
Stokes equations is given. Finally, in Section 6, numerical results for the elliptic and Stokes problems are
presented.

2. The piecewise P2 spline function spaces on quadrilaterals

In this section, we first recall a bivariate spline space on a decomposed quadrilateral Q [44,55], which consists
of a piecewise P2 polynomial space. We analyze the structure of the space in detail and endow it with suitable
DOFs. Local basis functions are constructed. We then define global basis functions.

2.1. Analysis of the piecewise P2 spline function spaces

For a convex quadrilateral Q, denote by Q∗ the subdivision of Q by connecting its diagonals such that Q∗

is decomposed into the four non-overlapping triangles Tj, j = 1, · · · , 4, as shown in Figure 1. The space of
multivariate spline functions Sr

k(Q∗) is defined by a set of functions which are piecewise polynomials of degree
k possessing rth order continuous partial derivatives in Q, that is

Sr
k(Q∗) := {f ∈ Cr(Q)| f |Tj ∈ Pk(Tj), j = 1, · · · , 4}, (2.1)

where Pk(Tj) denotes the space of polynomials of degree ≤ k on Tj .
Throughout the section, for a convex quadrilateral Q, designate by O the intersection point of two diagonals,

by Vj , j = 1, · · · , 4, the counterclockwisely numbered vertices of Q, by Mj the midpoints of the segments
Vj−1Vj , by Bj and lj the midpoints and lengths of the segments OVj , j = 1, · · · , 4, modulo 4, respectively,
as shown in Figure 2.

In the case of S1
2(Q∗), it is known [44, 55] that the dimension of S1

2(Q∗) is eight. We will recall this result
and show that f ∈ S1

2(Q∗) is uniquely determined by eight values of f at the four vertices and four midpoints
of edges of Q.

Proposition 2.1. The dimension of S1
2(Q∗) is eight. Furthermore, for any given real numbers aj , a

′
j , j =

1, · · · , 4, there exists a unique f ∈ S1
2(Q∗) such that

f(Vj) = aj , f(Mj) = a′j , j = 1, · · · , 4. (2.2)
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(a) A convex quadrilateral Q (b) Q∗ is decomposed into the four non-overlapping tri-
angles T1, · · · , T4

Figure 1. A quadrilateral Q and its subdivision Q∗.

Figure 2. A quadrilateral Q∗ with vertices Vj ’s, edges Ej ’s, and midpoints Mj ’s. Bj and lj
are the midpoints and lengths of the segments OVj , respectively.

Proof. Let �13 and �24 be the linear polynomials satisfying

�13(V1) = �13(V3) = �24(V2) = �24(V4) = 0. �13(V2) = �24(V1) = 1,

Also define the two ramp functions �+13 and �+24 by

�+13(x, y) = max(�13(x, y), 0) and �+24(x, y) = max(�24(x, y), 0). (2.3)

Since Span{(�+13)2, (�+24)2} is a subspace of S1
2(Q∗) and its intersection with P2(Q) is null, S1

2(Q∗) contains the
following linearly independent set {

1, x, y, xy, x2, y2, (�+13)
2, (�+24)

2
}
,

which implies that the dimension of S1
2(Q∗) is at least eight.

Thus, in order to prove the proposition, it is enough to show that the associated homogeneous system of
equations has only the trivial solution. In other words, assume that f ∈ S1

2(Q∗) vanishes at Vj ,Mj, j = 1, · · · , 4.
Then we only have to prove that f is identically zero.
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Let ξ ∈ S0
1(Q∗) be the continuous piecewise linear polynomial such that

ξ(O) = 1, ξ(Vj) = 0, j = 1, · · · , 4.

Since ξ(Bj) �= 0, for j = 1, · · · , 4, there exists a unique continuous piecewise linear polynomial p ∈ S0
1(Q∗) such

that
p(O) = f(O), p(Bj) = f(Bj)/ξ(Bj), j = 1, · · · , 4.

Since pξ and f belong to S0
2(Q∗) and their values coincide at the thirteen points O,Vj,Mj ,Bj , for j = 1, · · · , 4,

in Q, one sees that
f ≡ pξ.

Let T1 = �OV4V1, and T2 = �OV1V2 be two subtriangles in Q∗ and pj = p|Tj , ξj = ξ|Tj , j = 1, 2. Since
∇f ∈ C0(T1 ∪ T2), ∇f is well-defined on ∂T1 ∩ ∂T2 and

p(∇ξ2 −∇ξ1) + ξ(∇p2 −∇p1) = 0 on ∂T1 ∩ ∂T2.

Note that ∇ξ1 and ∇ξ2 are constant vectors perpendicular to the segments V1V4 and V1V2, respectively.
Hence it follows that p(V1) = 0 due to ξ(V1) = 0 and (∇ξ2 −∇ξ1)(V1) �= 0. A repetition of the argument on
the other vertices of Q implies that

p(Vj) = 0, j = 1, · · · , 4.
Then, p ≡ f(O)ξ, since they belong to S0

1(Q∗) and their values coincide at five points O,Vj , for j = 1, · · · , 4,
in Q.

Recalling that f ≡ pξ, we have f = f(O)ξ2. But ξ2 /∈ S1
2(Q∗), since

∇ξ2j = 2ξj∇ξj , ∇ξj �= ∇ξj+1

on ∂Tj ∩ ∂Tj+1. This shows that f ≡ 0 since f ∈ S1
2(Q∗). This completes the proof. �

Next, we consider how f ∈ S1
2(Q∗) is determined by the eight values at the vertices and edge midpoints

Vj ,Mj, j = 1, · · · , 4. If we clarify five more values of f at the interior points, O,Bj, j = 1, · · · , 4, then f is
uniquely determined on each subtriangle in Q∗, separately. With the aid of following Lemma, we will address
an explicit form of f ∈ S1

2(Q∗), which is useful, in the subsequent Theorem 2.3.

Lemma 2.2. Let a triangle �ABC be divided into two triangles T1 = �OCB and T2 = �OCA by a point O on
the segment AB as shown in Figure 3. Denote the midpoints of OA,OB,CA,CB and CO by OA, OB, CA, CB

and CO, respectively. Let g ∈ C0(T1 ∪ T2) satisfy g|Tj ∈ P2(Tj), j = 1, 2. Then the following condition is
sufficient and necessary for g ∈ C1(T1 ∪ T2).

Dg(CA, CO) −Dg(CO, CB) = Dg(OA, O) −Dg(O,OB) =
1
2
(
Dg(A,O) −Dg(O,B)

)
, (2.4)

where
Dg(Q,R) =

g(Q) − g(R)
|Q−R| , Q,R ∈ R

2.

Proof. Let g ∈ C0(T1 ∪ T2) satisfy g|Tj ∈ P2(Tj), j = 1, 2. Set g1 = g|T1 and g2 = g|T2 and let η be the unit
vector parallel to the vector

−−→
AB. Notice that g ∈ C1(T1 ∪ T2) if and only if

∂g1
∂η

(O) =
∂g2
∂η

(O),
∂g1
∂η

(C) =
∂g2
∂η

(C), (2.5)

since the directional derivatives ∂g1
∂η and ∂g2

∂η are linear functions.
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Figure 3. Points and subtriangles in a triangle �ABC.

It is useful to notice that a univariate function p on the interval [a, b] satisfies

p′
(
a+ b

2

)
=
p(b) − p(a)
b− a

, (2.6)

whenever p is quadratic. We utilize (2.6) to have

∂g1
∂η

(
CA + CO

2

)
= −Dg1(CA, CO), (2.7a)

∂g1
∂η

(
OA +O

2

)
= −Dg1(OA, O), (2.7b)

∂g1
∂η

(OA) = −Dg1(A,O). (2.7c)

Since ∂g1
∂η is linear and CA+CO

2 and OA+O
2 are the midpoints of the segments COA and OAO, respectively, we

have, from (2.7),

∂g1
∂η

(C) = 2
∂g1
∂η

(
CA + CO

2

)
− ∂g1

∂η
(OA) = −2Dg(CA, CO) +Dg(A,O), (2.8a)

∂g1
∂η

(O) = 2
∂g1
∂η

(
OA +O

2

)
− ∂g1

∂η
(OA) = −2Dg(OA, O) +Dg(A,O). (2.8b)

By the same argument for g2, we establish

∂g2
∂η

(C) = −2Dg(CO, CB) +Dg(O,B), (2.9a)

∂g2
∂η

(O) = −2Dg(O,OB) +Dg(O,B). (2.9b)

From (2.8) and (2.9), the conditions in (2.5) are equivalent to (2.4), which completes the proof. �

Theorem 2.3. Let f ∈ S0
2(Q∗). Then f ∈ S1

2(Q∗) if and only if the values of f at the eight boundary points
Vj ,Mj, j = 1, · · · , 4, and the five interior points O,Bj, j = 1, · · · , 4, satisfy the following relationships:

f(O) =
2

(l1 + l3)(l2 + l4)

4∑
j=1

f(Mj)lj+1lj+2 −
1
2

(
l1f(V3) + l3f(V1)

l1 + l3
+
l2f(V4) + l4f(V2)

l2 + l4

)
, (2.10)
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f(Bj) =
lj+1f(Mj) + lj−1f(Mj+1)

lj+1 + lj−1
− 1

4

(
lj+1f(Vj−1) + lj−1f(Vj+1)

lj+1 + lj−1
− f(O)

)
, j = 1, · · · , 4, (2.11)

where the indices are calculated up to modulo 4.

The equation (2.10) implies that the value of a function f ∈ S0
2(Q∗) at the intersection of diagonals is uniquely

determined by the function values at Vj ,Mj , j = 1, · · · , 4. Equation (2.11) means that the values at the
midpoints between the intersection of diagonals and the vertex points are determined by those at O,Vj and
Mj , j = 1, · · · , 4.

Proof. Let f ∈ S1
2(Q∗). Then (2.11) follows from Lemma 2.2 considering the triangle �Vj−1VjVj+1, we have

2
lj−1

(f(Mj) − f(Bj)) −
2
lj+1

(f(Bj) − f(Mj+1)) =
1

2lj−1
(f(Vj−1) − f(O)) − 1

2lj+1
(f(O) − f(Vj+1)),

which implies (2.11) for f(Bj). In order to prove (2.10), we apply Lemma 2.2 again to the triangle �Vj−1VjVj+1

to get

2
lj−1

(f(Bj−1) − f(O)) − 2
lj+1

(f(O) − f(Bj+1)) =
1

2lj−1
(f(Vj−1) − f(O)) − 1

2lj+1
(f(O) − f(Vj+1)). (2.12)

Eliminating f(Bj−1) and f(Bj+1) from (2.12) with the aid of (2.11), we establish (2.10).
Conversely, let f ∈ S0

2(Q∗) satisfy (2.10) and (2.11). Then we will show f ∈ S1
2(Q∗). By Proposition 2.1,

there exists g ∈ S1
2(Q∗) such that

g(Vj) = f(Vj) and g(Mj) = f(Mj), j = 1, · · · , 4.

Since g ∈ S1
2(Q∗) should satisfy (2.10), (2.11), we have

g(O) = f(O), g(Bj) = f(Bj), j = 1, · · · , 4.

Then, in each subtriangle in Q∗, f and g are quadratic and agree with the values at vertices and midpoints.
This of course means f ≡ g, and thus f ∈ S1

2(Q∗). �

We now investigate the relation of f ∈ S1
2(Q∗) on the values at the Gauss points of each edge in Q. Let G2j−1

and G2j be the Gauss points on the segments Vj−1Vj , j = 1, · · · , 4, where the indices are counterclockwisely
numbered as depicted in Figure 4.

The following properties of univariate quadratic functions are useful: let p be a quadratic function and
gj , j = 1, 2, the two Gauss points for the interval [a, b] such that g1 < g2, then p satisfies that

p(g1) + p(g2) =
4
3
p

(
a+ b

2

)
+

1
3

(p(a) + p(b)) , (2.13a)

p(g1) − p(g2) =
1√
3

(p(a) − p(b)) . (2.13b)

We then have the following proposition.

Proposition 2.4. For any f ∈ S0
2(Q∗), the following relationship holds:

4∑
j=1

(f(G2j) − f(G2j−1)) = 0. (2.14)
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Figure 4. Gauss points Gj , j = 1, · · · , 8 in Q∗.

Proof. Since f ∈ S0
2(Q∗) is quadratic on each edge of Q, it follows from (2.13) that

f(G2j) − f(G2j−1) =
1√
3

(
f(Vj) − f(Vj−1)

)
, j = 1, · · · , 4. (2.15)

Therefore
∑4

j=1(f(G2j) − f(G2j−1)) = 0 due to the convention V4 = V0. �

The following proposition is immediate, but useful, which gives explicit formula at the Gauss points if the
values at the vertices and midpoints are given.

Proposition 2.5. Let p ∈ Sk
2 (Q∗), k = 0, 1 be given. Then the values at the Gauss points are given by

p(G2j−1) =
2
3
p(Mj) +

p(Vj−1) + p(Vj)
6

+
1

2
√

3
[p(Vj−1) − p(Vj)] , (2.16a)

p(G2j) =
2
3
p(Mj) +

p(Vj−1) + p(Vj)
6

− 1
2
√

3
[p(Vj−1) − p(Vj)] , (2.16b)

for j = 1, · · · , 4. Moreover, if k = 1, then (2.10) should be fulfilled.

Proof. The proof is an easy consequence of (2.13) and Theorem 2.3. �

Finally, the following theorem is a converse to the above Proposition 2.5 which describes the formula at the
vertices and midpoints given the values at the Gauss points.

Theorem 2.6. For any given real numbers aj , j = 0, · · · , 8, satisfying
4∑

j=1

(a2j − a2j−1) = 0, (2.17)

there exists a unique f ∈ S1
2(Q∗) such that f(Gj) = aj , for j = 1, · · · , 8, and f(O) = a0.

Furthermore, let bj = a2j − a2j−1, for j = 1, · · · , 4, then f ∈ S1
2(Q∗) is uniquely determined by setting

f(Vj) = α+
√

3
4

(bj−1 + 2bj − bj+1), j = 1, · · · , 4, (2.18a)

f(Mj) = −α
2

+
3
4
(a2j + a2j−1) −

√
3

8
(bj−1 − bj+1), j = 1, · · · , 4, (2.18b)

where the indices of b are modulo 4 and α is calculated from (2.10).
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Proof. Suppose aj , j = 0, · · · , 8, are given fulfilling (2.17) and set bj = a2j − a2j−1, for j = 1, · · · , 4. Plugging
into (2.18) the formulae for f(Vj) and f(Mj) in (2.10) and f(O) = a0, one obtains a linear equation in α.
Indeed, the coefficient of α is given by

−2

∑4
j=1 lj+1lj+2

(l1 + l3)(l2 + l4)
= −2,

which is nonzero. Therefore, for given α ∈ R, by Theorem 2.3, there exists f ∈ S1
2(Q∗) which fulfills (2.18).

Moreover, such an f ∈ S1
2(Q∗) satisfies f(O) = a0 and we can easily verify f(Gj) = aj , j = 1, · · · , 8, using the

values of f in (2.13) and (2.18).
To prove uniqueness, suppose that f ∈ S1

2(Q∗) satisfy

f(O) = 0, f(Gj) = 0, j = 1, · · · , 8.

If f(V1) = c, then, from (2.13), we get

f(Vj) = c, f(Mj) = − c

2
, j = 1, · · · , 4.

Applying Theorem 2.3, we have

f(O) =

(
−
∑4

j=1 lj+1lj+2

(l1 + l3)(l2 + l4)
− 1

)
c = −2c.

From f(O) = 0 it follows that c = 0. Thus f vanishes and this completes our proof. �

Remark 2.7. Theorem 2.6 guarantees the existence of four vertex-based functions whose values are 1 at the
two nearest Gauss points from each given vertex and 0 at the other six Gauss points and at the intersection
point of diagonals. Similarly, we have four edge-based functions whose values are 1 at the two Gauss points for
each given edge and 0 at the other six Gauss points and at the intersection point of diagonals. Lastly, there is
one bubble-type function whose values are 1 at the intersection point of diagonals and 0 at all the Gauss points.

2.2. Basis functions for the piecewise P2 spline function space

So far, we have analyzed the structure of a piecewise P2 spline function space S1
2(Q∗), and supplied some

suggestions for endowing it with suitable DOFs in Remark 2.7. Thus we proceed to define the eight local basis
functions by using any seven values at the eight Gauss points plus one bubble function based on Theorem 2.6.

Define the four vertex-wise local basis functions (see Fig. 5a) by

φVj (Gk) =
{

1, k = 2j, 2j + 1
0, otherwise and φVj (O) = 0, j = 1, · · · , 4, (2.19)

the four edge-wise local basis functions (see Fig. 5b) by

φEj (Gk) =
{

1, k = 2j − 1, 2j
0, otherwise and φEj (O) = 0, j = 1, · · · , 4, (2.20)

and the bubble function (see Fig. 5c) by

φQ(O) = 1 and φQ(Gj) = 0, j = 1, · · · , 8. (2.21)
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(a) The vertex-wise nonconforming local basis func-
tion φV(x).

(b) The edge-wise nonconforming local basis func-
tion φE(x).

(c) The bubble type nonconforming local basis func-
tion φQ(x).

Figure 5. Shapes of local basis functions φV(x) in (2.19), φE(x) in (2.20) and φQ(x) in (2.21).

3. The piecewise P2-nonconforming element on quadrilaterals

Based on the analysis of the previous section we are ready to define a piecewise P2-nonconforming quadrilateral
element.

Define the piecewise P2-nonconforming quadrilateral element (Q,PQ, ΣQ) as follows:

• Q is a convex quadrilateral;
• The (piecewise) polynomial space is given by PQ = S1

2(Q∗);
• The degrees of freedom are given by ΣQ = {φ(Gj), j = 1, · · · , 7; φ(O)} for every φ ∈ PQ.

Alternatively, due to Proposition 2.5 and Theorem 2.6, the degrees of freedom may be defined as follows:

Σ′
Q = {φ(Vj), φ(Mj), j = 1, · · · , 4; φ(O)} for every φ ∈ PQ.
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3.1. The piecewise P2-nonconforming finite element space

Let Ω be a simply connected polygonal domain with the Lipschitz-continuous boundary ∂Ω and Th = ∪NQ

j=1Qj

be a triangulation of the domain Ω by non-overlapping convex quadrilaterals Qj’s such that Ω = ∪NQ

j=1Qj with
diam(Qj) ≤ h, where NQ is the number of quadrilaterals. Let Q∗

j be the union of subdivision Tj by connecting
its diagonals. Then set T ∗

h = ∪NQ

j=1Q
∗
j .

Let NV , NE and NG denote the number of vertices, edges and Gauss points, respectively, in Th. Set

Vh = {V1,V2, · · · ,VNV } : the set of all vertices in Th,

Eh = {E1,E2, · · · ,ENE} : the set of all edges in Th,

Gh = {G1,G2, · · · ,GNG} : the set of all Gauss points on the edges in Th,

Mh = {M1,M2, · · · ,MNE} : the set of all midpoints on the edges in Th,

Oh = {O1,O2, · · · ,ONQ} : the set of all intersections of the two diagonals of quadrilaterals in Th.

In particular, let N i
V , N

i
E and N i

G denote the number of interior vertices, edges, and Gauss points, respectively.
Also, E i

h and Eb
h will designate the sets of all interior and boundary edges, respectively.

Our objective is to introduce a piecewise P2-nonconforming finite element space associated with the quadri-
lateral decomposition Th. Set

NCh
2 = {vh : Ω → R | vh|Q ∈ S1

2(Q∗) for all Q ∈ Th,

vh is continuous at every Gauss point G ∈ Gh that is not on ∂Ω},
NCh

2,0 = {vh ∈ NCh
2 | vh vanishes at every Gauss point on ∂Ω}.

We also consider the piecewise P2-conforming spaces:

Xh = {vh ∈ C0(Ω)| vh|Q ∈ S1
2(Q∗) ∀Q ∈ Th},

X0,h = {vh ∈ Xh | vh vanishes on ∂Ω},
with the bubble space Φh given as follows:

Φh = {φh ∈ NCh
2 | φh(G) = 0 for all G ∈ Gh}.

3.2. Global basis functions for NCh
2 and NCh

2,0 and their dimensions

For each vertex Vj ∈ Vh, denote by Eh(j) and Gh(j) the set of all edges E ∈ Eh with one of the endpoints
being Vj and the set of Gauss points nearer to Vj of the two Gauss points on E for all E ∈ Eh(j), respectively.
Utilizing the three types of local basis functions given in (2.19), (2.20), and (2.21), we define the three types of
global basis functions for NCh

2 .

Definition 3.1. The first type of global basis functions are associated with vertices Vj ∈ Vh (see Fig. 6a).
Define ϕV

j ∈ NCh
2 , j = 1, · · · , NV , by

ϕV
j (G) =

{
1, G ∈ Gh(j),
0, otherwise,

ϕV
j (Ok) = 0 for all k = 1, · · · , NQ.

The second type of global basis functions are associated with edges Ej ∈ Eh (see Fig. 6b). Define ϕE
j ∈ NCh

2 , j =
1, · · · , NE , by

ϕE
j (G) =

{
1, G is a Gauss point on Ej ,

0, otherwise,

ϕE
j (Ok) = 0 for all k = 1, · · · , NQ.



700 I. KIM ET AL.

0

0

0

0

00

1

1

1

1

1

0

0 0

0

0

0
0

0

0
0

0

0

0
0

0

00
0

0

0 00

00

0
0 0

0 0

(a) The first type global basis function is associated with a
vertex.
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(c) The third type global basis function is associated with
a quadrilateral.

Figure 6. The global basis functions.

The last type of global basis functions are associated with the quadrilaterals (see Fig. 6c). Define ϕQ
j ∈ NCh

2 , j =
1, · · · , NQ, by

ϕQ
j (Gk) = 0, for all k = 1, · · · , NG, and ϕQ

j (Ok) = δjk, for all k = 1, · · · , NQ.

Similarly, define the three types of functions which will serve as global basis functions for NCh
2,0 with those

for NCh
2 excluding φV

j ’s which are associated with boundary vertices and φE
j ’s which are are associated with

boundary edges.
Now let us present the dimensions for the nonconforming finite element spaces NCh

2 and NCh
2,0. We begin

by invoking that Xh is a conforming finite element space whose local DOFs consist of the values at the four
vertices and four midpoints on each quadrilateral by Proposition 2.1. We have the following observation which
is similar to the quadratic nonconforming element on triangles of Fortin and Soulie [30].

Theorem 3.2. Any function in NCh
2 can be written as the sum of a function in piecewise S1

2 -conforming finite
element space Xh and a function in bubble space Φh. This representation can be made uniquely by specifying
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one function value at any vertex in bubble space, that is NCh
2 = Xh + Φh and dim(Xh ∩ Φh) = 1. Moreover,

dim(NCh
2 ) = 2NE = NE +NV +NQ − 1.

Proof. It is clear that Xh + Φh ⊂ NCh
2 since adding to vh ∈ Xh a bubble function φQ on each Q preserves

the continuity at the Gauss points. To prove equality we consider the dimensions of Xh + Φh and NCh
2 . First,

we prove that the intersection of Xh and Φh is one-dimensional. Let us choose the function φh ∈ Xh ∩ Φh

with φh(Vj) = α for some j and φh(Gk) = 0 for all k. Since φh has the same value (zero value) at all Gauss
points and φh ∈ S1

2(Q∗), one sees that φh(Vk) = α for all k due to (2.13). This gives the whole information on
each edge including the midpoint values due to Theorem 2.3. Therefore, with the eight function values at four
vertices and four midpoints, φh ∈ Xh ∩ Φh is uniquely determined by the constant value at Vj . By [41] and
Xh + Φh ⊂ NCh

2 , we have

dimXh + dimΦh − 1 = dim(Xh + Φh) ≤ dimNCh
2 ≤ 2NE. (3.1)

For Xh there are NE + NV DOFs and for Φh there are NQ DOFs. Thus, the number of DOFs of Xh + Φh is
(NE +NV ) +NQ − 1 = NE + (NV +NQ − 1) = 2NE . This completes the proof. �

Remark 3.3. From Theorem 3.2, it follows that NCh
2 is nothing but a standard piecewise P2-conforming finite

element space enriched by the space of bubble functions Φh = Span{φQ
j : for j = 1, · · · , NQ}.

Now, we construct global basis functions for the piecewise P2-nonconforming finite element space NCh
2 .

Theorem 3.4. Let ϕi
j , j = 1, · · · , Ni, i = E, V,Q be the functions defined in Definition 3.1. Either by omitting

any one of vertex-based functions or any one of edge-based functions,

B1 =
{
ϕE

1 , ϕ
E
2 , · · · , ϕE

NE
, ϕV

1 , ϕ
V
2 , · · · , ϕV

NV −1, ϕ
Q
1 , ϕ

Q
2 , · · · , ϕ

Q
NQ

}
or

B2 =
{
ϕE

1 , ϕ
E
2 , · · · , ϕE

NE−1, ϕ
V
1 , ϕ

V
2 , · · · , ϕV

NV
, ϕQ

1 , ϕ
Q
2 , · · · , ϕ

Q
NQ

}
forms a set of global basis functions for NCh

2 .

Proof. The proof of linear independence for the set B1 comes from a similar procedure as Theorem 2.6 in [41].
Indeed, if the linear combination for all vectors in B1 is zero, then the coefficients, say cQk , related to ϕQ

k are zero
for all k = 1, · · · , NQ, by the definition of bubble functions. To show that all the coefficients cVk , c

E
k associated

with ϕV
k , ϕ

E
k are zero, suppose that Vl is a vertex adjacently connected to VNV by an edge Ek = VlVNV . By

using the values of φE
k (Gj) at the Gauss points Gj ∈ Gh(NV ) that is also on Ek, one concludes that cEk should

vanish. This then leads to cVl = 0 since Vl and Gj are connected via Ek. Since Ω is simply connected, by
applying this sweeping out argument on edges and vertices that are connected to Vl’s, we can conclude that all
cVk , c

E
k are zeros. The dimension of the set B1 is 2NE which equals to the dimension of NCh

2 . Thus, B1 forms a
set of global basis functions for NCh

2 . Similar arguments hold for the set B2. �

Next, we investigate the dimension and a global basis function for NCh
2,0.

Theorem 3.5. Any function of NCh
2,0 can be written as the direct sum of a function in the piecewise P2-

conforming finite element space X0,h and one function in the bubble space Φh, that is NCh
2,0 = X0,h ⊕ Φh.

Moreover, dim(NCh
2,0) = N i

E +N i
V +NQ = 2N i

E + 1.

Proof. First, obviously X0,h ⊕ Φh ⊂ NCh
2,0. Assume that there is a nontrivial function φh ∈ X0,h ∩ Φh and

apply the same argument as in the proof of Theorem 3.2. Then one sees that φh is identically zero in the
whole domain Ω owing to the boundary condition. This contradicts to the assumption that φh ∈ X0,h ∩ Φh is
nontrivial. Therefore, X0,h ∩ Φh = {0}. Thus, in order to prove the equality X0,h ⊕ Φh = NCh

2,0, it is sufficient
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to prove dimNCh
2,0 = dimX0,h +dimΦh. The number of DOFs of NCh

2,0 is bounded by 2N i
E +1 (see [41]). The

number of DOFs of X0,h⊕Φh equals to N i
E +N i

V +NQ = 2N i
E +1, due to NE +N i

E = 4NQ, N i
E +NV = 3NQ+1

and N b
E = N b

V , where N b
V and N b

E are the number of boundary vertices and boundary edges, respectively. All
together we have

2N i
E + 1 = dim(X0,h ⊕ Φh) ≤ dimNCh

2,0 ≤ 2N i
E + 1. (3.2)

This completes the proof. �

Theorem 3.6. B =
{
ϕE

1 , ϕ
E
2 , · · · , ϕE

Ni
E
, ϕV

1 , ϕ
V
2 , · · · , ϕV

Ni
V
, ϕQ

1 , ϕ
Q
2 , · · · , ϕ

Q
NQ

}
forms a set of global basis func-

tions for NCh
2,0.

Proof. The proof of linear independence for B follows the same procedure in Theorem 3.4. The dimension of
the set B is 2N i

E + 1 which equals to the dimension of NCh
2,0. Thus, B forms a set of global basis functions for

NCh
2,0. �

4. The error estimates for elliptic problem

In this section, we define some linear and interpolation operators and perform convergence analysis for elliptic
problems with Robin boundary condition. Throughout the section, for an open bounded set S ⊂ R

2 with its
boundary ∂S, we will denote by (·, ·)S and 〈·, ·〉∂S the L2(S) and L2(∂S) inner products, respectively. If S = Ω,
these may be omitted from indices. For Sobolev spaces Hk(S), their norms ‖ · ‖Hk(S) and seminorm | · |Hk(S)

are used.

4.1. Some linear and interpolation operators

Denote by γ0 and γ1 the trace maps from Hs+3/2(Qj) to ΠE⊂∂QjH
s(E) such that γ0v = v|E and γ1v = ∂v

∂ν |E.
Then set

Λ̃h = ΠE∈Ei
h

[
L2(E) × L2(E)

]
×ΠE∈Eb

h
,

Λh =
{
λ ∈ ΠE∈Ei

h
[P1(E) × P1(E)] ×ΠE∈Eb

h
P1(E) : λj = γ0(λ|Qj ) ∈ P1(E); λj + λk = 0

∀E = ∂Qj ∩ ∂Qk; λj = γ0(λ|Qj ) ∈ P1(E) ∀E = ∂Qj ∩ ∂Ω
}
,

where P1(E) denotes the set of linear functions on the edge E. Denoting by P1
E : Λ̃h → Λh the L2 projection.

Then the composition map (P1
E ◦ γ1) : H3/2(Ω) → Λh fulfills〈

∂vj

∂νj
− ((P1

E ◦ γ1)v)j , z

〉
E

= 0 for all z ∈ P1(E), for all E ∩ ∂Qj ∈ E i
h ∪ Eb

h, (4.1)

where vj = v|Qj and νj denotes the unit outward normal to Qj . Then, from the standard polynomial approxi-
mation result we have⎧⎨⎩

NQ∑
j=1

‖ ∂vj

∂νj
− ((P1

E ◦ γ1)v)j‖2
L2(∂Qj)

⎫⎬⎭
1/2

≤ Chs‖v‖Hs+3/2(Ω), 1 < s ≤ 2. (4.2)

Denote Ejk = ∂Qj ∩ ∂Qk for all Qj , Qk ∈ Th whenever the intersection is nonempty. Since vj − vk has zero
values at the Gauss points on Ejk for all v ∈ NCh

2 and the two points Gauss quadrature rule is exact up to
polynomials of degree three, the following useful orthogonality holds.

Proposition 4.1. If u ∈ H3/2(Ω), then the following orthogonality holds: for all w ∈ NCh
2 ,〈

((P1
E ◦ γ1)u)j , wj

〉
Ejk

+
〈
((P1

E ◦ γ1)u)k, wk

〉
Ekj

=
〈
((P1

E ◦ γ1)u)j , wj − wk

〉
Ejk

= 0. (4.3)
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Furthermore, employing the following notation

γ0(NCh
2 ) =

{
ΠE=∂Qj∩∂Qk∈Ei

h

(
γ0wh |∂Qj∩E, γ0wh |∂Qk∩E

)
×ΠE∈Eb

h
γ0wh |E ∀wh ∈ NCh

2

}
,

which is a subset of Λ̃h, designate by Π1
E : γ0(NCh

2 ) → Λh the interpolation such that Π1
E(γ0wh) and wh

coincide at the two Gauss points on E for every edge E in Th for all wh ∈ NCh
2 . Then we have∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈
wh − (Π1

E ◦ γ0)(wh), z
〉
E

= 0 ∀z ∈ ΠE∈Ei
h
P1(E). (4.4)

The following orthogonality is also valid.

Proposition 4.2. If u ∈ H3/2(Ω), then the following orthogonality holds:

∑
Q∈Th

∑
E⊂∂Q\∂Ω

〈
∂u

∂νE
− (P1

E ◦ γ1)u, (Π1
E ◦ γ0)(wh)

〉
E

= 0 for all w ∈ NCh
2 , (4.5)

where νE denotes the unit outward normal to ∂Q.

Let Q be a quadrilateral in Th and Π̃Q be a conforming interpolation operator Π̃Q : H2(Q) → S1
2(Q∗) defined

by

Π̃Qφ(Vj) = φ(Vj), j = 1, · · · , 4, (4.6a)∫
Ej

Π̃Qφ dσ =
∫
Ej

φ dσ, j = 1, · · · , 4, (4.6b)

for all φ ∈ H2(Q). Then define the local interpolation operator ΠQ : H2(Q) → S1
2(Q∗) by

ΠQφ = Π̃Qφ+ αQφ
Q, (4.7)

so that the real number αQ is chosen such that

ΠQφ(OQ) = φ(OQ), (4.8)

where OQ denotes the intersection point of the two diagonals in Q. In other words, the interpolant ΠQφ is a
perturbation of Π̃Qφ by a bubble function φQ. The global interpolation operator Πh : H2(Ω) → NCh

2 is then
defined by localization.

Denote by ‖ · ‖m,h and | · |m,h the usual mesh-dependent norm and seminorm:

‖v‖m,h =

⎡⎣ ∑
Q∈Th

‖v‖2
Hm(Q)

⎤⎦1/2

; |v|m,h =

⎡⎣ ∑
Q∈Th

|v|2Hm(Q)

⎤⎦1/2

.

SinceΠQ preserves S1
2(Q∗) for allQ ∈ Th and P2(Q) ⊂ S1

2(Q∗), it follows from the Bramble–Hilbert lemma [7,19]
that

‖φ−Πhφ‖0,h + h‖φ−Πhφ‖1,h ≤ Chs|φ|Hs(Ω), φ ∈ Hs(Ω), 2 < s ≤ 3. (4.9)
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4.2. A Robin boundary value problem

We consider the following second-order elliptic problem with Robin boundary condition:

−Δu+ αu = f in Ω, (4.10a)

βu+
∂u

∂ν
= g on ∂Ω, (4.10b)

where α ∈ L∞(Ω) and β ∈ L∞(∂Ω) are nonnegative, f ∈ L2(Ω), g ∈ H1/2(∂Ω).
The weak problem of (4.10) is then to find u ∈ H1(Ω) such that

a(u, v) = (f, v) + 〈g, v〉 for all v ∈ H1(Ω), (4.11)

where the bilinear form a(·, ·) : H1(Ω) ×H1(Ω) → R is given by

a(u, v) = (∇u,∇ v) + (αu, v) + 〈βu, v〉 , u, v ∈ H1(Ω).

Also, the piecewise P2-nonconforming finite element method is to find a solution uh ∈ NCh
2 such that

ah(uh, vh) = (f, vh) + 〈g, vh〉 , vh ∈ NCh
2 , (4.12)

where
ah(uh, vh) =

∑
Q∈Th

(∇uh,∇ vh)Q + (αuh, vh) + 〈βuh, vh〉 , uh, vh ∈ NCh
2 .

Since NCh
2 contains the conforming space Xh, we have the following orthogonality result:

ah(u− uh, wh) = 0 for all wh ∈ Xh. (4.13)

4.3. The error estimates

To show an optimal order of convergence results, we first recall the well-known second Strang’s lemma [53,54].

Lemma 4.3. Let u ∈ H1(Ω) and uh ∈ NCh
2 be the solutions of (4.11) and (4.12), respectively. Then, one has

‖u− uh‖1,h ≤ C

{
inf

vh∈NCh
2

‖u− vh‖1,h + sup
wh∈NCh

2 , wh �=0

|ah(u,wh) − (f, wh) − 〈g, wh〉 |
‖wh‖1,h

}
· (4.14)

Assume sufficient regularity such that u ∈ H3(Ω). Due to (4.9), the first term in the right side of (4.14) is
bounded by

inf
vh∈NCh

2

‖u− vh‖1,h ≤ ‖u−Πhu‖1,h ≤ Chs|u|Hs+1(Ω), 1 < s ≤ 2. (4.15)

In order to bound the second term of the right side of (4.15) which denotes the consistency error, integrate by
parts elementwise so that

ah(u,wh) − (f, wh) − 〈g, wh〉 =
∑

Q∈Th

〈
∂u

∂νQ
, wh

〉
∂Q\∂Ω

, wh ∈ NCh
2 , (4.16)

where νQ designates the unit outward normal vector to ∂Q.
We have the following lemma, which plays an important role in the analysis of nonconforming methods.
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Lemma 4.4. Let u ∈ Hs+1(Ω) for 1 < s ≤ 2. Then we have the following estimate, for all wh ∈ NCh
2 ,∣∣∣∣∣∣

∑
Q∈Th

〈
∂u

∂νQ
, wh

〉
∂Q\∂Ω

∣∣∣∣∣∣ ≤ Chs|u|Hs+1(Ω)‖wh‖1,h, 1 < s ≤ 2.

Proof. First, owing to (4.3), we have

∑
Q∈Th

〈
∂u

∂νQ
, wh

〉
∂Q\∂Ω

=
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈
∂u

∂νE
−
(
P1

E ◦ γ1

)
u,wh

〉
E

. (4.17)

Next, by using (4.5), (4.1), the trace theorem, and (4.2), it follows from (4.17) that∣∣∣∣∣∣
∑

Q∈Th

〈
∂u

∂νQ
, wh

〉
∂Q\∂Ω

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈
∂u

∂νE
− (P1

E ◦ γ1)u,wh − (Π1
E ◦ γ0)(wh)

〉
E

∣∣∣∣∣∣
≤

∑
Q∈Th

∑
E⊂∂Q\∂Ω

∥∥∥∥ ∂u

∂νE
− (P1

E ◦ γ1)u
∥∥∥∥

L2(E)

∥∥wh − (Π1
E ◦ γ0)(wh)

∥∥
L2(E)

≤ Chs
∑

Q∈Th

|u|Hs+1(Q)‖wh‖H1(Q)

≤ Chs|u|Hs+1(Ω)‖wh‖1,h, for 1 < s ≤ 2.

This proves the lemma. �

Owing to Lemma 4.4 applied to (4.16), the consistency term is bounded as follows:

|ah(u,wh) − (f, wh) − 〈g, wh〉 | ≤ Chs|u|Hs+1(Ω)‖wh‖1,h, 1 < s ≤ 2. (4.18)

A combination of (4.15) and (4.18) leads to a discrete H1-norm error estimate, summarized in the following
theorem.

Theorem 4.5. Let u ∈ Hs+1(Ω), 1 < s ≤ 2, and uh ∈ NCh
2 be the solutions of (4.11) and (4.12), respectively.

Then we have

||u− uh||1,h ≤ Chs|u|Hs+1(Ω), 1 < s ≤ 2.

Next, in order to derive an L2-error estimate, we use the Aubin–Nitsche duality argument [41]. Set eh = u− uh

and let η ∈ H2(Ω) be the solution of the dual problem:

−Δη + αη = eh in Ω,

βη +
∂η

∂ν
= 0 on ∂Ω.

with the elliptic regularity:
‖η‖H2(Ω) ≤ C‖eh‖L2(Ω). (4.19)

Let wh ∈ L2(Ω) be arbitrary such that

wh|Q ∈ H1(Q) ∀Q ∈ Th and
∫
Ejk

wh|Qj dσ =
∫
Ekj

wh|Qk
dσ, Qj , Qk ∈ Th,
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where Ejk = Ekj = ∂Qj ∩ ∂Qk. Then, by a similar argument as in the previous consistency error estimate, we
have

|ah(wh, η) − (wh, eh)| ≤ Ch‖η‖H2(Ω)‖wh‖1,h.

In particular, with the choice wh = eh,

|ah(eh, η) − (eh, eh)| ≤ Ch‖η‖H2(Ω)‖eh‖1,h. (4.20)

Let ηh be the conforming interpolant of η to NCh
2 as in (4.6). Then, from (4.13), we get the orthogonality:

ah(eh, ηh) = 0. (4.21)

Now, from (4.19)–(4.21) and Theorem 4.5 it follows that

‖eh‖2
L2(Ω) ≤ |ah(eh, η − ηh)| + Ch‖η‖H2(Ω)‖eh‖1,h

≤ C‖η − ηh‖H1(Ω)‖eh‖1,h + Ch‖η‖H2(Ω)‖eh‖1,h

≤ Ch‖η‖H2(Ω)‖eh‖1,h

≤ Ch‖eh‖L2(Ω)‖eh‖1,h

≤ Chs+1‖eh‖L2(Ω)|u|Hs+1(Ω), 1 < s ≤ 2.

Summarizing the above, we have the following L2-error estimate:

Theorem 4.6. Let u ∈ Hs+1(Ω), 1 < s ≤ 2, and uh ∈ NCh
2 be the solutions of (4.11) and (4.12), respectively.

Then we have

||u− uh||L2(Ω) ≤ Chs+1|u|Hs+1(Ω), 1 < s ≤ 2.

5. The error estimates for the Stokes problem

In this section, we will apply the proposed piecewise P2-nonconforming element for the approximation of
each component of velocity and the piecewise P1-nonconforming element for the pressure to solve the Stokes
problem. We will derive an optimal order error estimate in broken energy norm.

5.1. The Stokes problem

Consider the following stationary Stokes equations:

− μΔu + ∇ p = f in Ω,

div u = 0 in Ω, (5.1)
u = 0 on ∂Ω,

where u = (u1, u2)T represents the velocity vector, p the pressure, f = (f1, f2)T the body force, and μ > 0
denotes the viscosity. As usual set

L2
0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω

q dx = 0
}
,

and consider the variational formulation of (5.1) to seek a pair (u, p) ∈ [H1
0 (Ω)]2 × L2

0(Ω) such that

a(u,v) − b(v, p) = (f ,v) ∀ v ∈ [H1
0 (Ω)]2, (5.2a)

b(u, q) = 0 ∀ q ∈ L2
0(Ω), (5.2b)
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where the bilinear forms are defined by

a(u,v) = μ(∇u,∇v) = μ

2∑
j=1

(∇uj ,∇ vj) and b(v, q) = (div v, q).

Assume that the domain is sufficiently smooth so that the solution of (5.2) is Hs(Ω)-regular for 1 < s ≤ 2. In
other words, for any f ∈ [Hs−2(Ω)]2, the Stokes problem has a unique solution u ∈ [Hs(Ω)]2 ∩ [H1

0 (Ω)]2 and
p ∈ L2

0(Ω) ∩Hs−1(Ω) satisfying the following a priori estimate:

‖u‖Hs(Ω) + ‖p‖Hs−1(Ω) ≤ C‖f‖Hs−2(Ω), (5.3)

where C is a constant independent of the f .
Set Vh = [NCh

2,0]2 and by Wh designate the space of piecewise P1-nonconforming quadrilateral element [46]:

Wh = {q ∈ L2
0(Ω) | q|Qj ∈ P1(Qj) ∀Qj ∈ Th}.

Then, the nonconforming method is to find (uh, ph) ∈ Vh ×Wh fulfilling

ah(uh,vh) − bh(vh, ph) = (f ,vh) ∀ vh ∈ Vh, (5.4a)
bh(uh, qh) = 0 ∀ qh ∈Wh, (5.4b)

where ah(u,v) = μ
∑

Q∈Th
(∇u,∇v)Q and bh(v, q) =

∑
Q∈Th

(div v, q)Q.

5.2. The linear maps and interpolation operators

The linear maps and interpolation operators defined for elliptic problems are extended componentwise to the
vector–valued case, and will be used to analyze convergence of the nonconforming solutions.

Let P1
E◦γ1 : [H3/2(Ω)]2 → [Λh]2 and (Π1

E◦γ0) : Vh → [ΠE∈Eh
P1(E)]2 be defined such that their components

are defined by P1
E ◦ γ1 and Π1

E ◦ γ0 as in Section 4.1 and recall (4.1)–(4.3) and (4.4)–(4.5) for each vector
component, respectively. Also define the projections PWh

: L2(Ω) → Wh and P0
E : L2(E) → P0(E) for each

edge E by

(PWh
q, η)Qj = (q, η)Qj ∀η ∈ P1(Qj) and ∀Qj ∈ Th, ∀q ∈ L2(Ω), (5.5a)〈

P0
Eq, ζ

〉
E

= 〈q, ζ〉E ∀ζ ∈ P0(E), ∀q ∈ L2(E). (5.5b)

It then follows from the standard polynomial approximation result that

‖PWh
q − q‖0,h + h|PWh

q − q|1,h ≤ Ch2‖q‖H2(Ω) ∀q ∈ ΠQj∈Th
H2(Qj), (5.6a)⎧⎨⎩∑

∂Qj

‖P0
Eq − q‖2

L2(∂Qj)

⎫⎬⎭
1/2

≤ Ch‖q‖H3/2(Qj) ∀q ∈ H3/2(Qj). (5.6b)

The following lemma will be useful.

Lemma 5.1. Let w ∈ [Hs+1(Ω)]2, 1 < s ≤ 2, and q ∈ H2(Ω). Then we have the following estimates:∣∣∣∣∣∣
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈
∂w
∂ν

,v
〉

E

∣∣∣∣∣∣ ≤ Chs‖w‖Hs+1(Ω)|v|1,h ∀v ∈ [H1
0 (Ω)]2 ∪ Vh, (5.7a)

∣∣∣∣∣∣
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈q,ν · wh〉E

∣∣∣∣∣∣ ≤ Ch2‖q‖H2(Ω)|wh|1,h ∀wh ∈ Vh. (5.7b)
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Proof. Let v ∈ [H1
0 (Ω)]2∪Vh be arbitrary. The estimate (5.7a) is obvious from Lemma 4.4. Next, let q ∈ H2(Ω)

be given. By using the linear map Π1
E ◦ γ0 and the trace theorem, we have∣∣∣∣∣∣

∑
Q∈Th

∑
E⊂∂Q\∂Ω

〈q,ν ·wh〉E

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈
q − (Π1

E ◦ γ0)q,ν ·wh

〉
E

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈
q − (Π1

E ◦ γ0)q,ν · (wh − P0
Ewh)

〉
E

∣∣∣∣∣∣
≤ Ch3/2‖q‖H2(Ω)h

1/2|wh|1,h = Ch2‖q‖H2(Ω)|wh|1,h,

where P0
E is the componentwise extension of P0

E to vectors. Hence, the proof is complete. �

We defined the interpolation operator Πh for the elliptic problems in Section 4. In this subsection, we also
introduce the interpolation operator Πh so that it satisfies the hypothesis H.1 of Crouzeix and Raviart [21],
that is

Πh ∈ L([H2(Ω)]2;Vh), (5.8a)
(div Πhv, qh) = (div v, qh) ∀qh ∈Wh, (5.8b)
‖v − Πhv‖1,h ≤ Ch2|v|H3(Ω) ∀v ∈ [H3(Ω)]2. (5.8c)

Now, we consider the interpolation operator ΠQ in two steps. We first define for v = (v1, v2)T ∈ [H2(Q)]2,

Π̃Qv =
(
Π̃Qv1
Π̃Qv2

)
, (5.9)

where Π̃Qvi is defined by relations (4.6). We thereafter define

ΠQv = Π̃Qv +

⎛⎝α1
Qφ

Q(x)

α2
Qφ

Q(x)

⎞⎠ , (5.10)

where α1
Q and α2

Q are determined such that∫
Q

div ΠQv qh dx =
∫

Q

div v qh dx ∀qh ∈ P1(Q). (5.11)

The global interpolation operator Πh : [H2(Ω)]2 → Vh is then extended by using ΠQ. The analogue of (4.9)
holds:

‖v − Πhv‖0,h + h‖v − Πhv‖1,h ≤ Chs|v|Hs(Ω), v ∈ Hs(Ω), 2 < s ≤ 3. (5.12)

5.3. The inf-sup condition and error estimates

It is well-known that the bilinear form b(·, ·) satisfies the continuous inf-sup condition, i.e., there exists a
positive constant β such that

sup
v∈[H1

0 (Ω)]2

b(v, q)
|v|1,Ω

≥ β‖q‖L2(Ω) ∀q ∈ L2
0(Ω).
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The argument in references [13,17,21] proves that the bilinear form bh(·, ·) satisfies a discrete inf-sup condition
on the pair of the finite element space Vh ×Wh such that, for any qh ∈Wh ⊂ L2

0(Ω),

sup
vh∈Vh

bh(vh, qh)
|vh|1,h

≥ sup
w∈[H2(Ω)]2

bh(Πhw, qh)
|Πhw|1,h

(5.13)

= sup
w∈[H2(Ω)]2

b(w, qh)
|w|1,h

≥ β‖qh‖L2(Ω).

Moreover, in this subsection, we introduce the optimal-order error estimates in the (broken) energy-norm for
the velocity and the L2-norm for the pressure. The energy-norm error analysis in the velocity is based on (5.2)
and (5.4), and then an application of the discrete inf-sup condition (5.13) estimate results in the error estimate
of the pressure.

Lemma 5.2. Let (u, p) ∈ [H3(Ω)]2 × H2(Ω) and (uh, p) ∈ Vh × Wh be the solutions of (5.2) and (5.4),
respectively. Then the following estimates hold:

|u− uh|1,h ≤ inf
vh∈Vh

|u − vh|1,h + sup
vh∈Vh

|ah(u,vh) − bh(vh, p) − (f ,vh)|
|vh|1,h

, (5.14a)

‖p− ph‖L2(Ω) ≤ inf
qh∈Wh

|p− qh|L2(Ω) + sup
vh∈Vh

|ah(u,vh) − bh(vh, p) − (f ,vh)|
|vh|1,h

(5.14b)

+ inf
vh∈Vh

|u − vh|1,h.

Proof. For vh ∈ Vh, if follows from (5.2) and (5.4) that

μ|uh − vh|21,h = ah(uh − vh,uh − vh) (5.15)
= ah(uh,uh − vh) − ah(u,uh − vh) + ah(u − vh,uh − vh)

= (f ,uh − vh) + bh(uh − vh, p) − ah(u,uh − vh) + ah(u − vh,uh − vh).

Dividing both sides of (5.15) by |uh − vh|1,h gives

μ|uh − vh|1,h ≤ sup
wh∈Vh

|(f ,wh) + bh(wh, p) − ah(u,wh)|
|wh|1,h

+ |u − vh|1,h· (5.16)

By using the triangle inequality and (5.16), we see that

|u− uh|1,h ≤ 1
μ

sup
wh∈Vh

|(f ,wh) + bh(wh, p) − ah(u,wh)|
|wh|1,h

+
(

1 +
1
μ

)
inf

vh∈Vh

|u − vh|1,h, (5.17)

which proves (5.14a).
Next, for vh ∈ Vh and qh ∈ Wh, from the discrete variational formulation (5.4), we get

bh(vh, qh − ph) = bh(vh, qh − p) + bh(vh, p) − bh(vh, ph) (5.18)
= bh(vh, qh − p) + bh(vh, p) + (f ,vh) − ah(uh,vh) (5.19)
= bh(vh, qh − p) + ah(u − uh,vh) + [(f ,vh) + bh(vh, p) − ah(u,vh)]. (5.20)

It thus follows from the above equality that

sup
vh∈Vh

|bh(vh, qh − ph)|
|vh|1,h

≤ C{||qh − p||L2(Ω) + |u− uh|1,h} (5.21)

+ sup
vh∈Vh

|(f ,vh) + bh(vh, p)−ah(u,vh)|
|vh|1,h

·
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By using the triangle inequality, we have

‖p− ph‖L2(Ω) ≤ ‖p− qh‖L2(Ω) + ‖ph − qh‖L2(Ω). (5.22)

From the discrete the inf-sup condition (5.13), we have

β‖ph − qh‖L2(Ω) ≤ sup
vh∈Vh

|bh(vh, qh − ph)|
|vh|1,h

· (5.23)

Then, a combination of the above inequalities (5.21)–(5.23) and result of (5.14a) leads to (5.14c). �

Theorem 5.3. Let (u, p) ∈ [H3(Ω)]2 × H2(Ω) and (uh, p) ∈ Vh ×Wh be the solutions of (5.2) and (5.4),
respectively. Then there exists a positive constant C such that

|u − uh|1,h + ‖p− ph‖L2(Ω) ≤ Ch2(‖u‖H3(Ω) + ‖p‖H2(Ω)). (5.24)

Proof. Multiply (5.1) by vh ∈ Vh, and integrating by parts on each element, we see that

(f ,vh) = (−μΔu + ∇ p,vh)

= ah(u,vh) − bh(vh, p) − μ
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈
∂u
∂ν

,vh

〉
E

+
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈p,ν · vh〉E .

By using the Lemma 5.1, we get

|(f ,vh) − ah(u,vh) + bh(vh, p)| ≤ μ

∣∣∣∣∣∣
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈
∂u
∂ν

,vh

〉
E

∣∣∣∣∣∣+
∣∣∣∣∣∣
∑

Q∈Th

∑
E⊂∂Q\∂Ω

〈p,ν · vh〉E

∣∣∣∣∣∣
≤ C1h

2(‖u‖H3(Ω) + ‖p‖H2(Ω))|vh|1,h,

(5.25)

where C1 is constant. From (5.25) and Lemma 5.2, we obtain

|u− uh|1,h + ‖p− ph‖L2(Ω) ≤ inf
vh∈Vh

|u− vh|1,h

+ inf
qh∈Wh

||p− qh||L2(Ω) + sup
vh∈Vh

|ah(u,vh) − bh(vh, p) − (f ,vh)|
|vh|1,h

≤ inf
vh∈Vh

|u− vh|1,h + inf
qh∈Wh

||p− qh||L2(Ω)

+C1h
2(‖u‖H3(Ω) + ‖p‖H2(Ω)).

We choose vh := Πhv ∈ Vh and qh := PWh
q ∈Wh, for v ∈ [H3(Ω)]2 and q ∈ H2(Ω). By using (5.6) and (5.12),

we can have the estimates (5.24). This completes the proof of the theorem. �

6. Numerical results

In this section, we describe our numerical algorithms and their applications to the Robin, Neumann, and
Dirichlet elliptic problems by using the proposed piecewise P2-nonconforming finite element. In addition, we
illustrate our numerical algorithms and their applications to the Stokes problem.
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Table 1. The Robin problem: The apparent L2 and broken energy norm errors and their
reduction ratios on the quadrilateral meshes.

h DOFs ‖u − uh‖0 ratio ‖u − uh‖h ratio
1/4 80 0.108139E-01 – 0.368472E+00 –
1/8 288 0.174690E-02 2.63 0.108033E+00 1.77
1/16 1088 0.234655E-03 2.90 0.275774E-01 1.97
1/32 4224 0.320626E-04 2.87 0.720034E-02 1.94
1/64 16640 0.400834E-05 3.00 0.179782E-02 2.00
1/128 66048 0.500288E-06 3.00 0.448901E-03 2.00

6.1. Numerical implementation

Let Ω be a unit square. In order to generate a quadrilateral mesh, we first generate a uniform quadrilateral
mesh, and then perturb it randomly for each vertex (see Fig. 7). We solve the discrete bilinear forms for the
Robin, Neumann, and Dirichlet boundary problems and the stationary Stokes problem. In order to check error
decay behavior precisely, our numerical integration to calculate the discretized weak form (4.12) adopts a 24-
point quadrature rule for each quadrilateral [20]. In our implementation, it is necessary to physically construct
the four subtriangles of each quadrilateral. Indeed, each quadrilateral Q is first decomposed into four triangles
by its diagonals �13 and �24 as shown in Figure 1. Then for each triangle, we choose the quadrature rule based
on six barycentric points which are exact upto polynomials of degree four. If, instead, we use simply the four
point or the nine point Gauss quadrature rule on each quadrilateral, we are not able to get sufficiently precise
point values in numerical integration that contain the polynomials (�+13)

2 and (�+24)
2.

6.2. Numerical examples for elliptic problems

In this subsection, we illustrate three numerical examples of elliptic problem. After assembling the mass and
stiffness matrices, one arrives at the linear system Ax = b where A is a symmetric, positive definite matrix.
The linear system is solved by the CG (Conjugate Gradient) method with initial guess x0 = 0.0 and tolerance
ε = 10−10.

First, consider the Robin problem:

−Δu+ u = f in Ω,

u+
∂u

∂ν
= g on ∂Ω,

where Ω = (0, 1)2. The source terms f and g are generated from the exact solution

u(x, y) = cos(2πx) cos(2πy)
(
x3 − y4 + x2y3

)
.

Table 1 shows the numerical results on the quadrilateral meshes using the proposed piecewise P2-nonconforming
finite element, where the error reduction ratios in L2 and energy norms are optimal. The generated quadrilateral
mesh for 16 × 16 case is shown in Figure 7.

As a second example, consider the Neumann problem:

−Δu+ u = f in Ω,

∂u

∂ν
= g on ∂Ω,

where Ω = (0, 1)2. The source terms f and g are generated from the same exact solution used in Robin problem.
Table 2 shows the numerical results on the meshes using the proposed piecewise P2-nonconforming finite element.
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Table 2. The Neumann problem: The apparent L2 and broken energy norm errors and their
reduction ratios on the quadrilateral meshes.

h DOFs ‖u − uh‖0 ratio ‖u − uh‖h ratio
1/4 80 0.110603E-01 – 0 0.367487E+00 –
1/8 288 0.175355E-02 2.66 0.107900E+00 1.77
1/16 1088 0.234800E-03 2.90 0.275582E-01 1.97
1/32 4224 0.320650E-04 2.87 0.719831E-02 1.94
1/64 16640 0.400822E-05 3.00 0.179756E-02 2.00
1/128 66048 0.500270E-06 3.00 0.448870E-03 2.00

Table 3. The Dirichlet problem: The apparent L2 and broken energy norm errors and their
reduction ratios on the quadrilateral meshes.

h DOFs ‖u − uh‖0 ratio ‖u − uh‖h ratio
1/4 49 0.102292E-01 – 0.358321E+00 –
1/8 225 0.176445E-02 2.54 0.107652E+00 1.73
1/16 961 0.240300E-03 2.88 0.282108E-01 1.93
1/32 3369 0.318292E-04 2.92 0.753306E-02 1.90
1/64 16129 0.403027E-05 2.98 0.187971E-02 2.00
1/128 65025 0.503134E-06 3.00 0.470513E-03 2.00

Figure 7. The generated quadrilateral mesh for 16 × 16 case.

Finally, we consider the following Dirichlet problem:

−Δu+ u = f in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1)2. The source term f is calculated from the exact solution

u(x, y) = sin(2πx) sin
(
2πy)(x3 − y4 + x2y3

)
.

Table 3 shows the numerical results on the quadrilateral meshes using the proposed piecewise P2-nonconforming
finite element. The error reduction ratios in L2 and energy norm are optimal.
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Table 4. The Stokes problem: The apparent L2 and broken energy norm errors and their
reduction ratios on the quadrilateral meshes.

h DOFs ‖u − uh‖0 ratio |u − uh|1 ratio ‖p − ph‖0 ratio
1/4 106 0.129588E-01 – 0.166315E+00 – 0.212764E+00 –
1/8 498 0.105722E-02 3.62 0.342813E-01 2.28 0.422747E-01 2.33
1/16 2146 0.129835E-03 3.03 0.824496E-02 2.06 0.954216E-02 2.15
1/32 8898 0.160508E-04 3.02 0.212246E-02 1.96 0.232163E-02 2.04
1/64 36226 0.211149E-05 2.93 0.536311E-03 1.98 0.567958E-03 2.03

6.3. Numerical examples for the Stokes problem

In this subsection, we present an example in the two dimensional Stokes problem to illustrate the validity of
the theoretical results obtained in the previous section.

The velocity and pressure variables are approximated by using randomly generated quadrilateral meshes.

First, the exact solution for u, which is divergence-free, is given by ∇× ψ, where

ψ(x, y) = exp(x+ 2y)x2(x− 1)2y2(y − 1)2,

with the exact solution for p given by
− sin(2πx) sin(2πy).

Then the body force term f can be generated by −Δu + ∇p. The numerical results are presented in Table 4 in
terms of the H1-norm and L2-norm convergence rates. Also, in this table, DOFs mean the number of degrees
of freedom for the velocity and pressure. In our case, DOFs are explicitly given by 2N i

E + 3N i
V + 2NQ − 1.

7. Conclusions

In this paper, we have developed a piecewise P2-nonconforming finite element method that can be used on
genuinely quadrilateral meshes. We provide rigorous mathematical analysis about the DOFs and error estimates.
We have confirmed that our numerical results match very well with theoretical results in the elliptic and Stokes
problems. In addition, our proposed method can be extended further for other problems, such as the Navier–
Stokes and elasticity problems. An extension to three dimensions is our on-going project.
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