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CONSERVATION SCHEMES FOR CONVECTION-DIFFUSION EQUATIONS
WITH ROBIN BOUNDARY CONDITIONS ∗, ∗∗
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Abstract. In this article, we present a numerical scheme based on a finite element method in order to
solve a time-dependent convection-diffusion equation problem and satisfy some conservation properties.
In particular, our scheme is able to conserve the total energy for a heat equation or the total mass of
a solute in a fluid for a concentration equation, even if the approximation of the velocity field is not
completely divergence-free. We establish a priori errror estimates for this scheme and we give some
numerical examples which show the efficiency of the method.
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1. Introduction

A standard numerical method for the approximation of the solution of a time dependent convection-diffusion
equation for a variable ϕ transported with incompressible velocity u, consists in multiplying the full equation
by a space dependent test function ψ, in integrating it on the computational domain Ω, and in discretizing it in
space with a finite element method and in time with a finite difference scheme. The diffusion term is integrated
by parts on Ω unlike the advected term u.∇ϕ. The velocity field u is approximated by a velocity field uh

which is not completely divergence-free. For this reason, the standard numerical method does not preserve the
energy or the mass when we model and approximate the evolution of the temperature or a concentration. In the
convection dominated regime, a streamline upwind method SUPG is used in order to stabilize the numerical
scheme, but it has no action on this advected term.

More precisely, when the flow is incompressible and confined in Ω, i.e. when div(u) = 0 in Ω and u.n = 0 on
the boundary ∂Ω, the integral of the variable ϕ on the domain Ω remains constant in time when the source term
is vanishing and when Neumann boundary conditions are applied on the boundary (conservation of the mass
balance). When Robin boundary conditions are applied on the boundary ∂Ω, as for example in a convection-
diffusion thermal problem, an energy mass balance can be established by taking into account the energy crossing
through ∂Ω.
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From a practical viewpoint, the velocity u is often computed with a Navier-Stokes solver which leads to an
approximation uh which is not exactly (elementwise) divergence free. As an unwelcome numerical effect, the mass
balance or the energy balance are not conserved when the time increases. These losses can be important when the
equation is integrated on a long time. In this article, we present an original modification of the standard numerical
scheme in order to eliminate this drawbacks which appears when Neumann or Robin boundary conditions for
ϕ are imposed on ∂Ω. We show that this novel scheme is L2-stable and allows to obtain a constant stationary
solution when the source term is vanishing. We also establish some error estimates produced by this new scheme.

Let us mention that the discretization of the convection term has been widely studied, due to the fact that
it has not all desired properties. For example, in [11], Temam studied a discretization of convection which is
L2-stable, because the standard discretization doesn’t have this property. Another example is the combination
of a finite element method and a finite volume method in order to conserve the numerical fluxes, as done in [1].
However, this approach has the major drawback that two grids coexist during the computation: one for the
finite element method and one for the finite volume method. The method that we propose here doesn’t suffer
from this drawback, can easily be implemented, and ensures the conservation of the numerical fluxes on the
boundary of the domain.

2. Statement of the problem

Let us consider a cavity Ω ⊂ R
3 bounded and with a boundary ∂Ω Lipschitzian. An incompressible fluid

flows in this cavity, with velocity u depending on t ∈ (0,∞) and x ∈ Ω, while a passive scalar or a temperature
field ϕ is convected and diffused. If n is the external unit normal to the domain Ω, we assume that

div (u) = 0 in Ω and u.n = 0 on ∂Ω, (2.1)

where u.n is the Euclidean scalar product of u with n.
The convection-diffusion equation for ϕ is given by:

∂ϕ

∂t
− εΔϕ+ u.∇ϕ = f in (0,+∞) ×Ω, (2.2)

with Robin boundary condition:

ε
∂ϕ

∂n
= α (ϕr − ϕ) on ∂Ω, (2.3)

and initial condition

ϕ = ϕ0 at time t = 0, (2.4)

where ϕr is a given constant number and α is a non negative parameter. In equation (2.2), f is a source term
that depends on t ∈ (0,+∞) and x ∈ Ω, and ε > 0 is the diffusion coefficient.

Let us observe that it is not restrictive to assume that ϕr = 0 since it suffices to change the unknown ϕ onto
(ϕ− ϕr). Thus, in this sequel we assume that ϕr = 0.

From a mathematical point of view, we assume that T > 0 is the final time and that f ∈ L2((0, T )×Ω) and
ϕ0 ∈ L2 (Ω). Using the standard notations for Sobolev spaces H1 (Ω) , H2 (Ω) , H1((0, T ); L2 (Ω)), C1([0, T ] ;
L2 (Ω)), (see [6, 7]), we assume that u ∈ H2 (Ω)3 is given and not depending on t (in fact it is not difficult to
adapt the following discussion to the case where u is depending on t).

A classical weak formulation of (2.2)−(2.3) with ϕr = 0 (see [6, 10]) consists in looking for ϕ ∈
L2((0, T );H1 (Ω)) ∩ C0([0, T ];L2 (Ω)) satisfying for every ψ ∈ H1 (Ω) :∫

Ω

∂ϕ

∂t
ψdx+ ε

∫
Ω

∇ϕ.∇ψdx+ α

∫
∂Ω

ϕψds+
∫

Ω

(u.∇ϕ)ψdx =
∫

Ω

f ψdx. (2.5)
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Since we have assumed that div (u) = 0, then u.∇ϕ = div (uϕ) and (u.∇ϕ)ϕ = 1
2 div

(
uϕ2

)
. Moreover with

u.n = 0 on ∂Ω, we obtain by using the divergence theorem:

Property 1. If ψ = 1 in (2.5), we have:

d
dt

∫
Ω

ϕdx + α

∫
∂Ω

ϕds =
∫

Ω

fdx. (2.6)

This property is important since it describes the conservation of the thermal energy if ϕ is a temperature
variable or the conservation of the mass of material if ϕ is a density variable. For example if the source term is
vanishing and if the physical system is isolated (f = 0 and α = 0), the integral of ϕ on Ω remains constant in
time (conservation of total energy or conservation of total mass in Ω, i.e.

∫
Ω
ϕdx =

∫
Ω
ϕ0dx for every t > 0).

Let us now denote by ‖v‖ the L2(Ω) norm of v ∈ L2(Ω) and ‖v‖1 =def (ε
∫

Ω
|∇v|2 dx + α

∫
∂Ω

|v|2 ds)
1
2 for

v ∈ H1 (Ω) . Taking ψ = ϕ in (2.5), we have

1
2

d
dt

‖ϕ‖2 + ‖ϕ‖2
1 =

∫
Ω

fϕdx. (2.7)

If λ1 = infv∈H1(Ω)
‖v‖2

1
‖v‖2 , by using the Cauchy-Schwarz inequality, we obtain

Property 2.
d
dt

‖ϕ‖ + λ1 ‖ϕ‖ ≤ ‖f‖ . (2.8)

In particular, if α > 0, then ‖.‖1 is a norm equivalent to the standard H1 norm and λ1 is strictly positive.
Moreover, when f = 0, the variable ϕ is exponentially decreasing and ‖ϕ‖ = e−λ1t‖ϕ0‖. In the case α = 0, we
obtain the same behavior for ϕ− ϕ where ϕ is the mean value of ϕ in Ω. Finally we have

Property 3.

if α = 0 and f = 0, then ϕ = constant is a stationary solution of (2.5) (2.9)

Let us remark that in these three properties, the velocity u has no influence since it is divergence-free.
In the next section, given an approximation uh of u, we would like to define a semi-discretization in space

of (2.5) (by taking ϕh ∈ Vh ⊂ H1(Ω)) that allows to compute an approximation ϕh of ϕ that satisfies the above
properties, i.e.

Property 1h. conservation of the integral of ϕh:

d
dt

∫
Ω

ϕhdx+ α

∫
∂Ω

ϕhds =
∫

Ω

fdx. (2.10)

Property 2h. L2-stability of the scheme:

d
dt

‖ϕh‖ + λ1h‖ϕh‖ ≤ ‖f‖. (2.11)

where λ1h = infvh∈Vh

‖vh‖2
1

‖vh‖2 . Let us mention that in a standard finite element method, we have λ1h ≥ λ1 (see [2]
p. 699), which implies that

d
dt

‖ϕh‖ + λ1 ‖ϕh‖ ≤ ‖f‖ . (2.12)

Property 3h. stationary constant solution:

if α = 0 and f = 0, then ϕh = constant is a stationary solution. (2.13)
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3. Semi-discretization in space

In order to consider a semi-discretization in space of Equation (2.5), we assume for the sake of simplicity,
that Ω is a polyhedral domain. If Γh is a conforming mesh of Ω composed by tetrahedra K ∈ Γh with diameter
hK smaller than h, we define the standard finite element space Vh of piecewise polynomial functions P1 (K) of
degree 1 on K by

Vh = {g : Ω → R : g continuous and g|K ∈ P1 (K) , ∀ K ∈ Γh}. (3.1)

When hK is small with respect to ε/ ‖uh‖L2(K) for every K ∈ Γh, a standard finite element approximation
scheme in space for computing an approximation ϕh of ϕ is to look for a function ϕh ∈ H1((0, T ) ;Vh) satisfying:

∫
Ω

∂ϕh

∂t
ψhdx+ ε

∫
Ω

∇ϕh.∇ψhdx+ α

∫
∂Ω

ϕhψhds+
∫

Ω

L(uh,ϕh, ψh)dx =
∫

Ω

f ψhdx, ∀ψh ∈ Vh, (3.2)

where uh ∈ V 3
h is an approximation of u obtained for instance with a finite element Navier-Stokes code, and∫

Ω L(uh,ϕh, ψh)dx is a discretization of
∫

Ω(u.∇ϕ)ψdx. The most popular approximation of
∫

Ω(u.∇ϕ)ψdx is
obtained by setting L(uh,ϕh, ψh) = (uh.∇ϕh)ψh.

In (3.2) we assume that the initial condition ϕ0 is given in Vh and if it is not the case, we take a projection
ϕ0

h ∈ Vh of ϕ0 as initial condition ϕh (0) .
Of course if hK is greater than ε/ ‖uh‖L2(K) for someK ∈ Γh (convection dominated regime in a neighborhood

of K), an artificial term, SUPG-like is added to (3.2) (see [3]) which is

ω
∑

K∈Γh

τKhK

2 ‖uh‖L2(K)

∫
K

(uh.∇ϕh)(uh.∇ψh)dx. (3.3)

This term allows to eliminate some spurious numerical oscillations. In (3.3), ω is an appropriate constant and
τK = max(0, 1 − 2ε/hK ‖uh‖L2(K)). Another possibility to eliminate spurious numerical oscillation is to add
to (3.2) an edge stabilization (see [4]). In the following we neglect the addition of these artificial terms which
have no influence on our conclusions.

Let us assume that uh is an approximation of u with the following properties: there exists a constant C such
that

‖u − uh‖ + h ‖∇ (u − uh)‖ ≤ Ch2. (3.4)

and
uh · n = 0 on ∂Ω. (3.5)

Even if div(uh) is not vanishing but only of order h in the L2-norm, we would like the trilinear functional
L : (u, ϕ, ψ) ∈ H1(Ω)3 ×H1(Ω) ×H1(Ω) → L(u, ϕ, ψ) ∈ R to satisfy the following properties, for consistency
reasons and in order to satisfy (2.10), (2.12), (2.13):

1)
∫

Ω

L(u,ϕ, ψ)dx =
∫

Ω

(u.∇ϕ)ψdx, ∀ϕ, ψ ∈ H1(Ω);

2)
∫

Ω

L(uh,ψh, 1)dx = 0 ∀ψh ∈ Vh;

3)
∫

Ω

L(uh,ψh, ψh)dx = 0 ∀ψh ∈ Vh;

4)
∫

Ω

L(uh, 1, ψh)dx = 0 ∀ψh ∈ Vh.
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Table 1. Conservation properties for different discretizations of the convective term L when
div uh �= 0.

L(uh, ϕh, ψh) Property 1h Property 2h Property 3h
L1 no no yes
L2 yes no no
L3 yes no no
L4 no yes no
L5 yes yes yes

In order to satisfy the consistency relation 1), the standard versions of L for the discretization of
∫

Ω(u.∇ϕ)ψdx
by

∫
Ω
L(uh,ϕh, ψh)dx are the following:

L1) L(u,ϕ, ψ) = (u.∇ϕ)ψ,
L2) L(u,ϕ, ψ) = −(u.∇ψ)ϕ,
L3) L(u,ϕ, ψ) = div(ϕu)ψ,
L4) L(u,ϕ, ψ) = 1

2 ((u.∇ϕ)ψ − (u.∇ψ)ϕ).

Unfortunately, none of these choices satisfies the relations 2), 3), 4) at the same time when divuh is not vanishing.
Hence properties 1h) to 3h) cannot be satisfied simultaneously. A summary of the conservation properties is
shown in Table 1. In this article, we advocate the following discretization of L:

L5) L(u,ϕ, ψ) =
1
2

[
(u.∇ϕ)(ψ − ψ) − (u.∇ψ)(ϕ− ϕ)

]
where the notation ω = 1

|Ω|
∫

Ω
ωdx denotes the mean value of a function ω on Ω. It is easy to verify that the

above relations 1), 2), 3), and 4) are simultaneously satisfied with this choice and consequently the properties
1h), 2h) and 3h) are simultaneously satisfied with choice (L5), as shown in Table 1.

Replacing L(uh, ϕh, ψh) by (L5) in Scheme (3.2), we advocate the following space approximation of (2.5): we
are looking for ϕh ∈ H1((0, T );Vh) satisfying:∫

Ω

∂ϕh

∂t
ψhdx+ ε

∫
Ω

∇ϕh.∇ψhdx+ α

∫
∂Ω

ϕhψhds+
1
2

∫
Ω

(uh.∇ϕh)(ψh − ψh)dx

− 1
2

∫
Ω

(uh.∇ψh)(ϕh − ϕh)dx =
∫

Ω

f ψhdx, ∀ψh ∈ Vh.

(3.6)

Remark 3.1. As said before, if we want to eliminate some spurious numerical oscillations in dominated con-
vection problem, we can add a SUPG term of the form (3.3) in numerical scheme (3.6). We can easily show
that this term has no influence on the conservation of the three desired properties. In particular, the addition
of (3.3) into (3.6) increase the L2-stability of the scheme and (2.12) still holds.

From a practical point of view, it is not convenient to work with Scheme (3.6). Indeed, the support of ψh−ψh

is Ω and hence the matrix obtained by Scheme (3.6) is not sparse anymore and becomes full. To avoid this,
we use a partition of the function space. More precisely, if W is a space of integrable functions defined on Ω,
we denote by W̃ = {g ∈ W :

∫
Ω gdx = 0}, and we use the partition W = W̃ ⊕ R. Hence, if ω ∈ W, we set

ω = 1
|Ω|

∫
Ω ωdx and ω = ω̃ + ω with ω ∈ R and ω̃ = ω − ω ∈ W̃ . Let us consider ϕ̃h ∈ H1((0, T ); Ṽh) and ϕh ∈

H1((0, T ); R) solution of both equations:∫
Ω

∂ϕ̃h

∂t
ψhdx+ ε

∫
Ω

∇ϕ̃h.∇ψhdx+ α

∫
∂Ω

(ϕh + ϕ̃h)ψhds+
1
2

∫
Ω

(uh.∇ϕ̃h)ψhdx

−1
2

∫
Ω

(uh.∇ψh)ϕ̃hdx =
∫

Ω

f ψhdx, ∀ψh ∈ Ṽh, (3.7)
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and

d
dt

∫
Ω

ϕhdx+ α

∫
∂Ω

(ϕh + ϕ̃h)ds =
∫

Ω

f dx, (3.8)

with initial condition ϕ̃h(0) = ϕ0
h − ϕ0

h, where ϕ0
h is an approximation of ϕ0 and ϕ0

h = ϕh(0) = 1
|Ω|

∫
Ω ϕ

0
hdx.

Taking consecutively ψh ∈ Ṽh, ψh ≡ 1 in (3.6) and using ϕh = ϕ̃h +ϕh, we easily verify that Problem (3.6) and
Problem (3.7)−(3.8) are equivalent.

In (3.7) the mean value of the test function ψh is equal to zero, which is not standard in the finite element
method. Thus this constrain is taken into account by a Lagrange multiplier λ. On the other hand we add
an equation in order to impose

∫
Ω ϕ̃hdx = 0. Consequently we are looking for ϕ̃h ∈ H1((0, T );Vh), ϕh ∈

H1((0, T ); R) and λ ∈ H1((0, T ); R) satisfying:∫
Ω

∂ϕ̃h

∂t
ψhdx+ ε

∫
Ω

∇ϕ̃h.∇ψhdx+ α

∫
∂Ω

(ϕh + ϕ̃h)ψhds+
1
2

∫
Ω

(uh.∇ϕ̃h)ψhdx

−1
2

∫
Ω

(uh.∇ψh)ϕ̃hdx+ λ

∫
Ω

ψhdx =
∫

Ω

f ψhdx, ∀ψh ∈ Vh, (3.9)

d
dt

∫
Ω

ϕhdx+ α

∫
∂Ω

(ϕh + ϕ̃h)ds =
∫

Ω

f dx, (3.10)

∫
Ω

ϕ̃hdx = 0. (3.11)

If the dimension of Vh is N, then (3.9), (3.10) and (3.11) is a system of ordinary differential equation in time
with (N + 2) equations, in which the unknowns ϕ̃h, ϕh and λ are coupled. In the case α = 0 (Neumann boundary
conditions) the unknown ϕh is not coupled to the other variables ϕ̃h and λ. In conclusion, Problem (3.6) is
equivalent to (3.9), (3.10), (3.11), but on a practical point of view, this last formulation is easier to solve than
the previous one.

4. Error estimates

Now we establish error bounds between ϕ and ϕh in various norms, when ϕh is solution of (3.6). To do this,
we follow [12] and assume the realistic hypothesis (3.4) on the velocity field u and its approximation uh.

Let us remark that estimate (3.4) holds in a lot of standard finite element methods when u ∈ H2 (Ω). In this
case u is continuous on Ω. By using the inverse inequality when Γh is quasi-regular [5], it follows that there
exists a constant C such that

‖u − uh‖L∞(Ω) ≤ Ch1/2, (4.1)

and consequently ‖uh‖L∞(Ω) is bounded, independently of h. In order to simplify the presentation, we assume in
the following that uh.n = 0 on the boundary ∂Ω of Ω, but div (uh) is not necessarily vanishing. A consequence
of (2.1) and (3.4) is that

‖div (uh)‖ ≤ Ch. (4.2)

In the following, we suppose that α is strictly positive. Then (μ, ω)1 =def ε
∫

Ω ∇μ.∇ωdx + α
∫

∂Ω μωds is
a scalar product on H1 (Ω) equivalent to the standard H1(Ω) scalar product. In this case we can define the
projector Rh : μ ∈ H1 (Ω) → Rhμ ∈ Vh by:

(μ−Rhμ, ω)1 = 0, ∀ω ∈ Vh, ∀μ ∈ H1 (Ω) , (4.3)
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and it is well known that if the triangulation is regular, in the sense of [5], there exists a constant C satisfying

‖μ−Rhμ‖ + h ‖∇(μ−Rhμ)‖ ≤ Ch2 ‖μ‖H2(Ω) ∀μ ∈ H2 (Ω) . (4.4)

In order to prove convergence results, we introduce, as in [12] the following notations:

θ = ϕh −Rhϕ and ρ = Rhϕ− ϕ, (4.5)

and we have θ + ρ = ϕh − ϕ.

In order to establish some error estimates, we assume that the initial conditions ϕ0 and ϕ0
h satisfy

ϕ0 ∈ H2 (Ω) and ϕ0
h = Rhϕ0. (4.6)

Lemma 4.1. We assume that ϕ ∈ C1([0, T ] ;H2(Ω)) and that there exists a constant C independent of h such
that ‖ϕh‖L∞(Ω) ≤ C, ∀t ∈ (0, T ) (L∞-stability). Moreover we assume that Hypothesis (3.4) is satisfied, that
uh · n = 0 on ∂Ω and that the mesh Γh is quasi-regular. Under theses assumptions, there exists a constant C
independent of h and ε which satisfies:

‖θ (t)‖ ≤ e−λ1t ‖θ (0)‖ +
∫ t

0

‖ρt(s)‖ e−λ1(t−s)ds+ Cht, 0 < t < T, (4.7)

where ρt = d
dtρ.

Proof. By taking ψ = θ in (2.5) and (3.6), we obtain:

∫
Ω

∂

∂t
(ϕ− ϕh) θdx+ (ϕ− ϕh, θ)1 +

1
2

∫
Ω

((θ− θ)[u.∇ϕ−uh.∇ϕh] + (ϕh −ϕh)uh.∇θ− (ϕ− ϕ)u.∇θ)dx = 0.

In order to evaluate the first term above, we write:

S1 =
∫

Ω

∂

∂t
(ϕ− ϕh) θdx

=
∫

Ω

∂

∂t
(ϕ−Rhϕ) θdx +

∫
Ω

∂

∂t
(Rhϕ− ϕh) θdx

= −
∫

Ω

ρtθdx− 1
2

d
dt

‖θ‖2
.

In order to evaluate the second term, we use (4.3) and we write:

S2 = (ϕ− ϕh, θ)1
= (ϕ−Rhϕ, θ)1 + (Rhϕ− ϕh, θ)1
= − (θ, θ)1 ≤ −λ1 ‖θ‖2

.
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It remains to evaluate the third term. Integrating by parts and using (2.1) with uh.n = 0 on ∂Ω, we obtain:

S3 =
1
2

∫
Ω

((θ − θ)[u.∇ϕ− uh.∇ϕh] + (ϕh − ϕh)uh.∇θ − (ϕ− ϕ)u.∇θ)dx

=
1
2

∫
Ω

(2(θ − θ)u.∇ϕ− 2(θ − θ)uh.∇ϕh − (ϕh − ϕh)(θ − θ) div uh)dx

=
1
2

∫
Ω

(2(θ − θ)u.∇(ϕ−Rhϕ) + 2(θ − θ)u.∇(Rhϕ− ϕh)

+ 2(θ − θ)(u − uh).∇ϕh − (θ − θ)(ϕh − ϕh) div uh)dx

=
1
2

∫
Ω

(−2(θ − θ)u.∇ρ− u.∇θ2 + 2(θ − θ)(u − uh).∇ϕh

− (θ − θ)(ϕh − ϕh) div uh)dx

=
1
2

∫
Ω

(−2(θ − θ)u.∇ρ+ 2(θ − θ)(u − uh).∇ϕh − (θ − θ)(ϕh − ϕh) div uh)dx,

and consequently:

|S3| ≤
[
‖u‖L∞(Ω) ‖∇ρ‖ + ‖u − uh‖L2(Ω) ‖∇ϕh‖L∞(Ω) +

1
2
‖ϕh − ϕh‖L∞(Ω) ‖div uh‖

] ∥∥θ − θ
∥∥ .

Taking into account the inverse inequality ‖∇ϕh‖L∞(Ω) ≤ Ch−1 ‖ϕh‖L∞(Ω) (see [5]), the inequality
∥∥θ∥∥ ≤ ‖θ‖

and the fact that ‖ϕh‖L∞(Ω) is assumed to be bounded, we obtain with (3.4)–(4.2):

|S3| ≤ C(‖∇ρ‖ + h) ‖θ‖

where C is a generic constant independent of h and t ∈ (0, T ).
Since we assumed that ϕ ∈ C1([0, T ] ;H2 (Ω)), then by (4.4), ‖∇ρ‖ is bounded with respect to h and

consequently:

|S3| ≤ Ch ‖θ‖ .

Using Estimates S1, S2, S3 we finally obtain:

1
2

d
dt

‖θ‖2 + λ1 ‖θ‖2 ≤ (‖ρt‖ + Ch) ‖θ‖ ,

which implies

d
dt

‖θ‖ + λ1 ‖θ‖ ≤ (‖ρt‖ + Ch).

Setting v (t) = ‖θ (t)‖ eλ1t, we have d
dtv (t) = ( d

dt ‖θ‖ + λ1 ‖θ‖)eλ1t ≤ (‖ρt‖ + Ch)eλ1t and finally:

‖θ (t)‖ ≤ e−λ1t ‖θ (0)‖ +
∫ t

0

‖ρt(s)‖ e−λ1(t−s)ds+
Ch

λ1

(
1 − e−λ1t

)
. �

Theorem 4.1. We assume that ϕ ∈ C1([0, T ] ;H2(Ω)) and that there exists a constant C independent of h
such that ‖ϕh‖L∞(Ω) ≤ C, ∀t ∈ (0, T ) (L∞ − stability). Moreover we assume that Hypotheses (3.4), (4.6) are
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satisfied, that uh · n = 0 on ∂Ω and that the mesh Γh is quasi-regular. Under these assumptions there exists a
constant C1 independent of h which satisfies:

‖ϕ− ϕh‖L∞(0,T ;L2(Ω)) ≤ C1h. (4.8)

Proof. From (4.4), (4.6) and Hypothesis ϕ ∈ C1([0, T ] ;H2(Ω)), we have:

‖ρ(t)‖ ≤ Ch2 and
(∫ t

0

‖ρt(s)‖2 ds
) 1

2

≤ Ch2 for every t ∈ (0, T ),

‖θ (0)‖ = ‖ϕh (0) − ϕ (0)‖ ≤ Ch2,

where C is a generic constant. Using Lemma 4.1 and the equality ϕh − ϕ = θ + ρ, we easily prove inequal-
ity (4.8). �

In order to estimate ‖∇(ϕ− ϕh)‖L∞(0,T ;L2(Ω)) we start by proving

Lemma 4.2. We assume the hypotheses of Lemma 4.1. Then there exists a constant C which satisfies

‖θt‖2 +
1
2

d
dt

‖θ‖2
1 ≤ ‖θt‖ [‖ρt‖ + C(h+ ‖θ‖1)]. (4.9)

where θt = d
dtθ, ρt = d

dtρ.

Proof. By taking ψ = θt in (2.5) and (3.6) we obtain:∫
Ω

∂

∂t
(ϕ− ϕh) θtdx+ (ϕ− ϕh, θt)1

+
1
2

∫
Ω

((θt − θt)[u.∇ϕ− uh.∇ϕh] + (ϕh − ϕh)uh.∇θt − (ϕ − ϕ)u.∇θt)dx = 0.

In order to evaluate the first term above we write:

S1 =
∫

Ω

∂

∂t
(ϕ− ϕh) θtdx

=
∫

Ω

∂

∂t
(ϕ−Rhϕ) θtdx+

∫
Ω

∂

∂t
(Rhϕ− ϕh) θtdx

= −
∫

Ω

ρtθtdx− ‖θt‖2
.

In order to evaluate the second term we write:

S2 = (ϕ− ϕh, θt)1

= (ϕ− Rhϕ, θt)1 −
1
2

d
dt

‖θ‖2
1 .

The third term is evaluated like in Lemma 4.1:

S3 =
1
2

∫
Ω

((θt − θt)[u.∇ϕ− uh.∇ϕh] + (ϕh − ϕh)uh.∇θt − (ϕ− ϕ)u.∇θt)dx

=
1
2

∫
Ω

(2(θt − θt)u.∇ϕ− 2(θt − θt)uh.∇ϕh − (ϕh − ϕh)(θt − θt) div uh)dx

=
1
2

∫
Ω

(−2(θt − θt)u.∇ρ− 2(θt − θt)u.∇θ

+ 2(θt − θt)(u − uh).∇ϕh − (ϕh − ϕh)(θt − θt) div uh)dx.
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It follows with ‖∇ρ‖ ≤ Ch (see (4.4)) and ‖∇θ‖2 ≤ 1
ε ‖θ‖

2
1 that:

|S3| ≤
[
‖u‖L∞(Ω) C(h+ ‖θ‖1) + ‖u − uh‖ ‖∇ϕh‖L∞(Ω) +

1
2
‖div uh‖ ‖(ϕh − ϕh)‖L∞(Ω)

] ∥∥(θt − θt)
∥∥

and with (3.4), (4.1), and the inverse inequality ‖∇ϕh‖L∞(Ω) ≤ Ch−1 ‖ϕh‖L∞(Ω) , we obtain |S3| ≤ C(h +
‖θ‖1) ‖θt‖ and finally the announced result of Lemma 4.2. �

Theorem 4.2. We assume that ϕ ∈ C1([0, T ] ;H2(Ω)) and that there exists a constant C independent of h
such that ‖ϕh‖L∞(Ω) ≤ C, ∀t ∈ (0, T ) (L∞ − stability). Moreover we assume that Hypotheses (3.4), (4.6) are
satisfied, that uh · n = 0 on ∂Ω and that the mesh Γh is quasi-regular. Under these assumptions, there exists a
constant C2 independent of h which satisfies:

‖ϕ− ϕh‖L∞(0,T ;H1(Ω)) ≤ C2h. (4.10)

Proof. We have

‖θt‖ [‖ρt‖ + C(h+ ‖θ‖1)] ≤
1
2
‖θt‖2 +

1
2
[‖ρt‖ + C(h+ ‖θ‖1)]

2

≤ 1
2
‖θt‖2 + ‖ρt‖2 + 2C2(h2 + ‖θ‖2

1).

The inequality of Lemma 4.2 implies, if C is a generic constant, that

1
2
‖θt‖2 +

1
2

d
dt

‖θ‖2
1 ≤ C(h2 + ‖θ‖2

1) + ‖ρt‖2
.

From this above relation we obtain ‖θ(t)‖2
1 ≤ C(‖θ(0)‖2

1 + h2 +
∫ t

0
‖ρt(s)‖2 ds).

Since ϕ ∈ C1([0, T ] ;H2(Ω)), there exists a constant C such that:

‖θ(t)‖2
1 ≤ C(‖θ(0)‖2

1 + h2) for every t ∈ (0, T ).

Relations (4.4) and (4.6) imply that ‖θ (0)‖1 ≤ Ch. Finally by (4.4) : ‖ϕ− ϕh‖1 = ‖θ + ρ‖1 ≤ Ch for every
t ∈ [0, T ]. �

5. Discretization in time with a conservative scheme

As before, we assume that α is strictly positive. Let us consider a backward Euler scheme in order to
discretize (3.6) in time. If 0 = t0 < t1 < t2 < . . . < tn < . . . < tN = T is a discretization of the time interval
[0, T ] and if we assume that we know the approximations ϕn

h � ϕh (tn) at time tn, we are looking for ϕn+1
h ∈ Vh

satisfying ∫
Ω

ϕn+1
h − ϕn

h

tn+1 − tn
ψdx+ ε

∫
Ω

∇ϕn+1
h .∇ψdx+ α

∫
∂Ω

ϕn+1
h ψds

+
1
2

∫
Ω

(uh.∇ϕn+1
h )

(
ψ − ψ

)
dx− 1

2

∫
Ω

(uh.∇ψ)
(
ϕn+1

h − ϕn+1
h

)
dx

=
∫

Ω

f
(
tn+1

)
ψdx, ∀ψ ∈ Vh.

(5.1)
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Remark 5.1. In practice, in order to solve Problem (5.1) with the finite element method we decompose ϕn+1
h =

ϕn+1
h + ϕ̃n+1

h and we introduce a Lagrange multiplier in order to take into account that
(
ψ − ψ

)
has mean value

zero as in (3.9)−(3.10)−(3.11).

Remark 5.2. When we take ψ = ϕn+1
h in (5.1) we obtain:

∥∥ϕn+1
h

∥∥2
+ (tn+1 − tn)

∥∥ϕn+1
h

∥∥2

1
≤

∫
Ω

ϕn+1
h ϕn

hdx+ (tn+1 − tn)
∥∥f (

tn+1
)∥∥ ∥∥ϕn+1

h

∥∥
and it follows

(1 + λ1 (tn+1 − tn))
∥∥ϕn+1

h

∥∥ ≤ ‖ϕn
h‖ + (tn+1 − tn)

∥∥f (
tn+1

)∥∥ . (5.2)

Properties (1h), (2h) , (3h) mentioned in Section 1 are satisfied with the scheme (5.1).

In order to establish an error estimate we proceed again like in [12] . We limit us to the case α > 0 and we
set analogously to (4.5)

θn = ϕn
h −Rhϕ (tn) and ρn = Rhϕ (tn) − ϕ (tn) . (5.3)

In order to simplify the notations, we denote by

rn+1 = tn+1 − tn and ϕn = ϕ (tn) , (5.4)
∂θn+1 =

(
θn+1 − θn

)
/ (tn+1 − tn) (5.5)

τ = max
1≤n≤N

rn. (5.6)

Theorem 5.1. We assume that ϕ ∈ C1([0, T ] ;H2(Ω))∩C2([0, T ] ;L2(Ω)) and that there exists a constant C in-
dependent of h and n such that ‖ϕn

h‖L∞(Ω) ≤ C, (L∞-stability). Moreover we assume that Hypotheses (3.4), (4.6)
are satisfied, that uh ·n = 0 on ∂Ω and that the mesh Γh is quasi-regular. Under these assumptions, there exists
a constant C3 independent of h which satisfies:

‖ϕ(tn) − ϕn
h‖L2(Ω) ≤ C3(h+ τ) for every 0 < n ≤ N. (5.7)

Proof. The proof of Theorem 5.1 is very similar to the proof of Theorem 4.1 via Lemma 4.1. By choosing
ψ = θn+1 in (2.5) and in (5.1), we obtain, with an integration by parts of the term 1

2

∫
Ω(uh.∇ψ)ϕn+1

h dx:∫
Ω

∂θn+1.θn+1dx+
∥∥θn+1

∥∥2

1
=

∫
Ω

(ωn+1
1 + ωn+1

2 )θn+1dx (5.8)

with
ωn+1

1 = u.∇ϕn+1 − uh.∇ϕn+1
h − 1

2
div (uh) (ϕn+1

h − ϕn+1
h )

and
ωn+1

2 =
∂ϕ

∂t
(tn+1) − ∂Rhϕ

n+1.

The error estimate for
∫

Ω ω
n+1
1 θn+1dx is obtained as for S3 in Lemma 4.1 by replacing θ by θn+1, i.e.∣∣∣∣

∫
Ω

ωn+1
1 .θn+1dx

∣∣∣∣ ≤ C(
∥∥∇ρn+1

∥∥ + h)
∥∥θn+1

∥∥ ≤ Dh
∥∥θn+1

∥∥ , (5.9)
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where C, D are two constants independent of h and n. The error estimate for
∫

Ω ω
n+1
2 θn+1dx follows from (4.4):∣∣∣∣

∫
Ω

ωn+1
2 θn+1dx

∣∣∣∣ ≤
∣∣∣∣
∫

Ω

(
∂ϕ

∂t
(tn+1) − ∂ϕn+1)θn+1dx

∣∣∣∣ +
∣∣∣∣
∫

Ω

∂ρn+1θn+1dx
∣∣∣∣

and consequently, since we have assumed ϕ ∈ C1([0, T ] ;H2(Ω)) ∩ C2([0, T ] ;L2(Ω)):∣∣∣∣
∫

Ω

ωn+1
2 θn+1dx

∣∣∣∣ ≤ C(rn+1 + rn+1h
2)

∥∥θn+1
∥∥ ≤ Dτ

∥∥θn+1
∥∥ . (5.10)

From (5.8), (5.9) and (5.10) we obtain:

∥∥θn+1
∥∥ ≤ [‖θn‖ + Crn+1(τ + h)].

Taking into account that
∑n

j=1 rj = tn, we finally obtain:

‖θn‖ ≤
∥∥θ0∥∥ + Ctn(τ + h) ≤

∥∥θ0∥∥ + CT (τ + h).

In order to complete the proof of Theorem 5.1, we use the same arguments as the ones in the proof of
Theorem 4.1. �

By choosing ψ = ∂θn+1 in (2.5) and in (5.1), like in Theorems 4.2 and 5.1, the following result is standard
(see [7, 12]):

Theorem 5.2. We assume the hypotheses of Theorem 5.1. Then there exists a constant C4 such that

‖∇(ϕ(tn) − ϕn
h)‖L2(Ω) ≤ C4(h+ τ) for every 0 < n ≤ N. (5.11)

Remark 5.3. It is possible to improve the L2 estimation (5.7) in Theorem 5.3 by ‖ϕ(tn) − ϕn
h‖ ≤ C4(h2 +

τ) ∀ 0 < n ≤ N , but under the stronger hypothesis ‖∇ϕh(t)‖L∞(Ω) ≤ C ∀t ∈ (0, T ) (the stability of the
gradient). To prove this result, it is enough to replace the projection Rh used in Lemma 4.1 by the projection
R̃h : μ ∈ H1(Ω) → R̃hμ ∈ Vh defined by

a(μ− R̃hμ, ω) = 0, ∀ω ∈ Vh, ∀μ ∈ H1(Ω)

where the coercive bilinear form a(., .) on H1(Ω) is given by:

a(μ, ω) = ε

∫
Ω

∇μ · ∇ωdx+
1
2

∫
Ω

(u · ∇μ)(ω − ω̄)dx − 1
2

∫
Ω

(u · ∇ω)(μ− μ̄)dx + α

∫
∂Ω

μωds.

About Neumann boundary conditions
If α = 0 then (μ, ω)1 =def ε

∫
Ω ∇μ.∇ωdx is a scalar product on H̃1 (Ω) . In this case we can define the

operator Rh : μ ∈ H̃1 (Ω) → Rhμ ∈ Ṽh by:

(μ−Rhμ, ω)1 = 0, ∀ω ∈ Ṽh, ∀μ ∈ H̃1 (Ω) , (5.12)

and in this case λ1 = infμ∈H̃1(Ω)

(μ,μ)1
‖μ‖2 is positive. Moreover we have seen that if we decompose ϕ and ϕh by

ϕ = ϕ+ ϕ̃ and ϕh = ϕh + ϕ̃h, then the equations for ϕ̃ and ϕ are not coupled and analogously for ϕ̃h and ϕh.
By defining θ = ϕ̃h − Rhϕ̃ and ρ = Rhϕ̃ − ϕ̃, then Lemmas 4.1 and 4.2 remain true for functions with zero
meanvalue and allow to obtain Theorems 4.1, 4.2, 5.1 and 5.2 even if α = 0.
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6. Numerical results

We now check numerically that the conservative scheme presented in this article has the desired properties,
even if the stabilization terms (3.3) are added into (3.6). Let Ω ⊂ R

3 be the domain [−1, 1]2 × [−0.1, 0.1] and

u(x, y, z) =
(
− cos

(
3πx
2

)
sin

(
3πy
2

)
, sin

(
3πx
2

)
cos

(
3πy
2

)
, 0

)
. (6.1)

It is easy to remark that u ·n = 0 on ∂Ω and that div u = 0. We also define the following exchange coefficient

α =
{

1 if |z| < 0.1
0 if |z| = 0.1 (6.2)

which implies that the domain is isolated on its top and bottom and in this particular case, the flow is two-
dimensional. We numerically solve the following problem: find ϕ : (0, T )×Ω → R such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ϕ

∂t
− εΔϕ+ u · ∇ϕ = f in Ω

ε
∂ϕ

∂n
= −αϕ on ∂Ω

ϕ(0) = ϕ0.

(6.3)

Let Th be a uniform discretization of the domain Ω such that h := maxK∈Th
(diam(K)) = 0.2, Δt = T/N ,

tn = nΔt, n = 0, . . . , N and Vh the space of piecewise linear finite elements defined on Th. The space-time
discretization using the backward Euler method in time of (6.3) becomes: given ϕ0

h = ϕ0, for n = 0, . . . , N − 1,
we are looking for ϕn+1

h ∈ Vh satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

ϕn+1
h − ϕn

h

Δt
ψhdx+

∫
Ω

ε∇ϕn+1
h · ∇ψhdx+

∫
Ω

L(uh, ϕ
n+1
h , ψh)dx

+
∫

∂Ω

αϕn+1
h ψhds+

∑
K∈Th

∫
K

β1δK
hK

‖uh‖
(uh · ∇ϕn+1

h )(uh · ∇ψh)dx

+
∑

K∈Th

∫
K

β2δKhK‖uh‖(∇ϕn+1
h · ∇ψh)dx =

∫
Ω

fn+1ψhdx

(6.4)

for all ψh ∈ Vh, where β1 is a stabilization parameter, β2 an artificial diffusion parameter, δK is a function of
local Péclet number PeK , i.e. δK = 1 if PeK ≥ 1 and δK = PeK if not. In (6.4), L(uh, ϕ

n+1
h , ψh) is a discretization

of the convective term, where uh is an approximation of the velocity field (6.1). In our computation, uh is
obtained using a P1 − P1 stabilized stationary Navier-Stokes solver in which the force term is such that (6.1) is
a solution of the Navier-Stokes equations with pressure p(x, y, z) = 1

4 (cos(3πx) + cos(3πy)). The velocity field
uh is computed only once, before solving (6.3), and then used at each time step for the computation of ϕn+1

h .
In (6.4), we have added a SUPG stabilization term and an artificial diffusion term, because hK > ε/‖u‖L2(K).

These stabilization terms do not influence the conservation of the integral, because both terms vanish when
the test function ψh ≡ 1 is taken. Nevertheless we have to take them into account for L2 stability verification,
because they do not vanish when ψh ≡ ϕn+1

h . Actually, both are positive and contribute to stabilize the scheme.
We describe here the conservation properties that we claim our scheme satisfies numerically. The first one is

the conservation of the integral, which states that

d
dt

∫
Ω

ϕdx =
∫

Ω

fdx+
∫

∂Ω

α(ϕr − ϕ)ds.
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In our numerical tests, ϕr ≡ 0 and using backward Euler for time discretization of this relation, we obtain the
discrete integral conservation: for n = 0, . . . , N − 1∫

Ω

ϕn+1
h dx+Δt

∫
∂Ω

αϕn+1
h ds =

∫
Ω

ϕn
h +Δt

∫
Ω

fn+1dx. (6.5)

The L2-stability has not to take into account the convective term as shown in (2.7), (2.8) for the exact
equation in which

∫
Ω(u ·∇ϕ)ϕdx = 0. In order to quantify the effect of the approximation

∫
Ω Lh(uh, ϕh, ϕh)dx

in scheme (6.4), we propose to evaluate the L2 stability of the approximate problem with the following criterion.
We take ψh = ϕn+1

h in (6.4) and we remove the convection term to obtain

‖ϕn+1
h ‖2

L2(Ω) +Δt

(∫
∂Ω

α(ϕn+1
h )2ds+

∫
Ω

ε|∇ϕn+1
h |2dx

)
+Δt

(
S1(ϕn+1

h , ϕn+1
h ) + S2(ϕn+1

h , ϕn+1
h )

)
=

∫
Ω

ϕn+1
h ϕn

hdx+Δt

∫
Ω

fn+1ϕn+1
h dx,

(6.6)

where
S1(ϕh, ψh) =

∑
K∈Th

∫
K

β1δK
hK

‖uh‖
(uh · ∇ϕh)(uh · ∇ψh)dx,

and
S2(ϕh, ψh) =

∑
K∈Th

∫
K

β2δKhK‖uh‖(∇ϕh · ∇ψh)dx.

Remark that S1(ϕh, ϕh) and S2(ϕh, ϕh) are positive and contribute to the L2-stability. If follows that Equal-
ity (6.6), together with the Cauchy-Schwarz inequality, implies that

‖ϕn+1
h ‖2 +Δt‖ϕn+1

h ‖2
1 ≤ ‖ϕn+1

h ‖ · ‖ϕn
h‖ +Δt‖fn+1‖ · ‖ϕn+1

h ‖.

By using the fact that λ1h = infvh∈Vh

‖vh‖2
1

‖vh‖2 ≥ λ1, we obtain

(1 + λ1Δt)‖ϕn+1
h ‖ ≤ ‖ϕn

h‖ +Δt‖fn+1‖

or
‖ϕn+1

h ‖ − ‖ϕn
h‖

Δt
+ λ1‖ϕn+1

h ‖ ≤ ‖fn+1‖ (6.7)

which is the backward discretization in time of (2.12) and proves that our scheme is L2 stable.
Finally, the third property is the conservation of a constant solution, i.e.

when f = 0, then ϕh = constant is a stationary solution of (6.4). (6.8)

We now focus on the discretization of the convective term L(uh, ϕh, ψh). We recall that they are mainly four
standard possiblities other than the scheme proposed in this article

L1. L(uh, ϕh, ψh) = (uh · ∇ϕh)ψh,
L2. L(uh, ϕh, ψh) = −(uh · ∇ψh)ϕh,
L3. L(uh, ϕh, ψh) = div(uhϕh)ψh,
L4. L(uh, ϕh, ψh) = 1

2 (uh · ∇ϕh)ψh − 1
2 (uh · ∇ψh)ϕh,

and our scheme is

L5. L(uh, ϕh, ψh) = 1
2 (uh · ∇ϕh)(ψh − ψh) − 1

2 (uh · ∇ψh)(ϕh − ϕh).
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Due to the fact that div uh is not equal to zero, each of the first four discretization conserves in principle
and a priori only one of the three desired properties, i.e. (6.5), (6.6), (6.8). Of course, scheme L5 is the only
one which conserves the three properties. We recall that Table 1 summarizes the conservated properties of each
L(uh, ϕh, ψh).

To check the (6.5) and (6.6) equalities, we compute f and ϕ0 in (6.3) so that the solution ϕ is given by

ϕ(t, x, y, z) = (1 − e−λt)
[
cos(x) − cos(1)

ε
+ sin(1)

] [
cos(y) − cos(1)

ε
+ sin(1)

]
(6.9)

with λ = 0.005. With this right hand side f , we compute ϕn+1
h solution of (6.4) with α defined in (6.2) and

ε = 10−5. For numerical approximation, we use Δt = 1 and make 3000 iterations. At each time step n, we
compute the quantity

ΔP1(n) =
|I1 − I2|

|I1|
where I1, I2 are respectively the left-hand side and right-hand side of (6.5). We note that if the integral
conservation property is satisfied, ΔP1(n) = 0 for n = 0, . . . , N − 1. Similary, for L2 stability, we compute at
each time step the estimator

ΔP2(n) =
|J1 − J2|

|J1|
(6.10)

where J1, J2 are respectively the left-hand side and right-hand side of (6.6). If ΔP2(n) = 0, then the discrete
L2 stability is achieved.

Let ϕr ≡ 10, ε, α and u as before. To verify the conservation of constant solution, we solve the following
problem ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ϕ

∂t
− εΔϕ+ u · ∇ϕ = 0 in Ω

ε
∂ϕ

∂n
= α(ϕr − ϕ) on ∂Ω

ϕ(0) = ϕr,

(6.11)

and the solution is ϕ ≡ ϕr for every t. Of course, we adapt numerical scheme (6.4) to problem (6.11) by adding∫
∂Ω ϕrψhdx to the right hand side of (6.4). The estimator we use to check the conservation of constant solution

at each time step n = 0, . . . , N − 1 is

ΔP3(n) =
‖ϕr − ϕn+1

h ‖L∞

10
· (6.12)

Defining
• Π1 = max0≤n≤N−1ΔP1(n),
• Π2 = max0≤n≤N−1ΔP2(n),
• Π3 = max0≤n≤N−1ΔP3(n),

results are shown in Table 2.
The results of Table 2 exactly match the claims in Table 1. We can also notice that the numerical scheme L5

is the only one which numerically satisfies the three conservation properties up to computer precision.
We now focus on error estimates for our new scheme. The exact solution we use to numerically verify

Theorems 5.1 and 5.2 is the function defined in (6.9) with ε = λ = 0.1. With this value of ε, we do not have
to stabilize the numerical scheme. We have performed our computations on a structured mesh of parameter
h = 0.1, 0.05, 0.025 and 0.0125. We set T = 4 × 10−2[s], Δt = h2 and compute ‖ϕ(T ) − ϕn

h(T )‖L2(Ω) and
‖∇(ϕ(T ) − ϕn

h(T ))‖L2(Ω) for each h. The approximated velocity field uh is computed as for the verification of
properties P1 to P3. We obtained the results of Figure 1, which show that ‖ϕ(T )−ϕn

h(T )‖L2(Ω) is of order two
and that ‖∇(ϕ(T )−ϕn

h(T ))‖L2(Ω) is of order one. This shows that error estimates of Theorem 5.2 are optimal,
but that we need stronger hypotheses in Theorem 5.1 to ensure the convergence of order two for the L2 norm
of the solution (see Rem. 5.3).
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Table 2. Numerical verification of the properties 1 to 3.

L(uh, ϕh, ψh) Π1 Π2 Π3

L1 1.56 × 10−4 0.0015 1.50 × 10−10

L2 4.17 × 10−11 0.0014 0.0035

L3 4.02 × 10−11 0.0015 0.0035

L4 8.48 × 10−5 1.21 × 10−12 0.0018

L5 1.14 × 10−11 3.38 × 10−12 7.11 × 10−14

Figure 1. ‖ϕ(T ) − ϕn
h(T )‖L2(Ω) and ‖∇(ϕ(T ) − ϕn

h(T ))‖L2(Ω) for various mesh size h.

7. Conclusion

In this work, we have developed a new finite element numerical scheme for a convection-diffusion equation,
which numerically conserves the integral, is L2 stable, and conserves the constant solution even if the given
convection field uh is not completely divergence-free. We compare this new scheme with standard discretizations
of the convective term and we show that only our scheme is able to conserve the three properties simultaneously.
We have also derived a priori error estimates for this scheme and the numerical results show that these bounds are
optimal. We haven’t observe any numerical drawbacks for this scheme, except that the linear system associated
with it has two full rows and two full colums in addition to those in the classical schemes. However, it has almost
no incidence on CPU time. Thus we claim that only the finite element numerical scheme corresponding to L5 is
efficient for numerical applications coupling the incompressible Navier-Stokes equations with the convection-
diffusion equation, as in [8, 9].

References

[1] P. Angot, V. Dolej, M. Feistauer and J. Felcman, Analysis of a combined barycentric finite volumenonconforming finite element
method for nonlinear convection-diffusion problems, Applications of Mathematics, vol. 43. Kluwer Academic Publishers-Plenum
Publishers (1998) 263–310.

[2] I. Babuska and J. Osborn, Eigenvalue problems, Handbook of Numerical Analysis, vol. 2. Elsevier (1991) 641–787.



CONSERVATION SCHEMES FOR CONVECTION-DIFFUSION EQUATIONS WITH ROBIN BOUNDARY CONDITIONS 1781

[3] A. Brooks and T. Hughes, Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular
emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Engrg. 32 (1982) 199–259

[4] E. Burman and P.Hansbo, Edge stabilization for Galerkin approximations of convection–diffusion–reaction problems. Comput.
Methods Appl. Mech. Engrg. 193 (2004) 1437–1453

[5] P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Company (1978).

[6] R. Dautray and J.-L. Lions, Chap XVIII. Evolution Problems: Variational Methods, Math. Anal. and Numer. Methods Sci.
Technology. vol. 5, Springer-Verlag, Heidelberg (2000) 467–680.
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