
ESAIM: M2AN 47 (2013) 1783–1796 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2013088 www.esaim-m2an.org

A CLASS OF NONPARAMETRIC DSSY NONCONFORMING QUADRILATERAL
ELEMENTS ∗

Youngmok Jeon
1
, Hyun Nam

2
, Dongwoo Sheen

3
and Kwangshin Shim

4

Abstract. A new class of nonparametric nonconforming quadrilateral finite elements is introduced
which has the midpoint continuity and the mean value continuity at the interfaces of elements simul-
taneously as the rectangular DSSY element [J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, ESAIM:
M2AN 33 (1999) 747–770.] The parametric DSSY element for general quadrilaterals requires five de-
grees of freedom to have an optimal order of convergence [Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen
and X. Ye, Calcolo 37 (2000) 253–254.], while the new nonparametric DSSY elements require only four
degrees of freedom. The design of new elements is based on the decomposition of a bilinear transform
into a simple bilinear map followed by a suitable affine map. Numerical results are presented to compare
the new elements with the parametric DSSY element.
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1. Introduction

There have been many progresses for nonconforming finite element methods for many mechanical problems
for last decades. Nonconforming elements have been a favorite choice in solving the Stokes and Navier-Stokes
equations [4, 6, 16, 19, 22] in a stable manner. Also, the nonconforming nature facilitates resolving numerical
locking [2, 13, 24] in elasticity problems with the clamped boundary condition. For pure traction boundary
value problems in elasticity, there have been a couple of approaches to avoid numerical locking by employing
conforming and nonconforming elements componentwise [12, 14, 15]. Although there are several higher-order
nonconforming elements, the lowest order nonconforming elements have been especially popular numerical meth-
ods because of its simplicity and stability property [6,19,22]. In particular, the linear simplicial nonconforming
elements introduced by Crouzeix and Raviart [6] have been most widely used. Since the degrees of freedom for
quadrilateral or rectangular elements are usually smaller than those for triangular elements, it is desirable to
use quadrilateral or rectangular elements wherever they can be applied.
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We briefly review some progresses for nonconforming rectangular or quadrilateral elements. Han introduced
firstly a rectangular element which assumes five local degrees of freedom (DOFs) [8] in 1984. Then in 1992
Rannacher and Turek introduced the rotated Q1 nonconforming elements with two types of degrees of free-
dom [19]: the four edge-midpoint value DOFs and the four edge integral DOFs. Chen [5] also used the first type
of DOFs for the same rotated Q1 element. Douglas, Santos, Sheen and Ye introduced a new nonconforming finite
element, which we call the DSSY element in this paper, for which the two types of degrees of freedom are coinci-
dent on rectangular (or parallelogram) meshes [7]. One of the key features of this DSSY element is that it fulfills
the mean value property on each edge. For a convergence analysis, the average continuity property over each edge
implies the pass of “patch test”, which is a sufficient condition for optimal convergence of nonconforming finite
element methods [20, 21, 23]. Notice that using the edge-midpoint values is not only cheaper but also simpler
than using edge-integral values in constructing the local and global basis functions. For instance, in gluing two
neighboring elements across an edge, only one evaluation at the edge midpoint is necessary for the DSSY-type
element while at least two Gauss-point evaluations are necessary for the elements using integral type DOFs.
Therefore, nonconforming elements fulfilling the mean value property have advantages in implementation. The
Crouzeix-Raviart P1-nonconforming elements [6] enjoy the mean value property.

Arnold, Boffi, and Falk provided a theory of convergence order in quadrilateral meshes [1]. A modified DSSY
element was introduced in [3], which requires an additional DOF in order to retain an optimal convergence
order for genuinely quadrilateral meshes. It seems impossible to reduce the number of DOFs from five to four
as long as one considers a parametric DSSY-type element on quadrilateral meshes and still wants to preserve
optimal convergence.

The aim of this paper is to attempt to extend the spirit of rectangular DSSY element to genuinely quadri-
lateral meshes keeping the mean value property with four DOFs, shifting from the parametric realm to the
nonparametric one. Our starting point is based on a clever decomposition of a bilinear map into a simple bilin-
ear map followed by an affine map [11, 17, 18]. This approach induces an intermediate reference quadrilateral,
where a four DOF DSSY-type element can be defined. Then the affine map will preserve P1 and the mean value
property on each edge. We remark that the quadrilateral element introduced in [17] is of only three DOFs, and
a similar element was introduced by Hu and Shi [9], but without any modification they cannot be used to solve
fluid and solid mechanics in a stable manner.

The paper is organized as follows. In section 2 we review some specific properties of the DSSY element. Then
using the decomposition of a bilinear map into a simple bilinear map followed by an affine map, we introduce
a family of quadrilateral elements on an intermediate reference quadrilateral, which is of four DOFs. Based on
this, we define a family of nonparametric quadrilateral elements. Section 3 is devoted to numerical experiments.
The performance of the new nonparametric DSSY elements and the parametric DSSY element is compared in
terms of computation time where the nonparametric DSSY elements show a clear advantage over the parametric
one.

2. Quadrilateral nonconforming elements

In this section we will introduce a nonparametric DSSY element of four local degrees of freedom. First of all
let us review the (parametric) DSSY element in brief.

2.1. The DSSY element

Let Ω be a simply connected polygonal domain in R
2 and (Th)h>0 be a family of shape regular quadrilateral

triangulations of Ω with maxK∈Th
diam(K) = h. Let us denote by Eh the set of all edges in Th. For an element

K ∈ Th we denote four vertices of K by vj for j = 1, 2, 3, 4. Also denote the edge passing through vj−1 and
vj by ej and the midpoint of ej by mj for j = 1, 2, 3, 4, (assuming v0 := v4,) as in Figure 1. The linear
polynomials l13 and l24 are defined in a way that two line equations l13 = 0, l24 = 0 pass through m1, m3, and
m2, m4, respectively. Consider a reference square K̂ = [−1, 1]2. We use the similar notations for vertices, edges,
midpoints of K̂ as those of K such as v̂j , êj , and m̂j for j = 1, 2, 3, 4.
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Figure 1. A bilinear map FK from K̂ to K, a bilinear map SK from K̂ to K̃, and an affine
map AK from K̃ to K.

Let K ∈ Th be any quadrilateral. Then there exists a bilinear map FK : K̂ → K such that FK(K̂) = K.
Notice that FK can be written as follows:

FK(x̂) = v1 +
1 − x̂1

2
(v2 − v1) +

1 − x̂2

2
(v4 − v1) +

(1 − x̂1)(1 − x̂2)
4

(v1 − v2 + v3 − v4). (2.1)

Set
NCDSSY

K̂,l
= {1, x̂1, x̂2, ϕ̂l(x̂1) − ϕ̂l(x̂2)}, l = 1, 2,

where

ϕ̂l(t) =

⎧⎨⎩ t2 − 5
3 t

4, l = 1,

t2 − 25
6 t

4 + 7
2 t

6, l = 2.
(2.2)

Then the degrees of freedom for the DSSY element can be chosen as either four mean values over edges or
four edge-midpoint values, which turn out to be identical. In other words, the DSSY elements fulfill the mean
value property:

1
|êj|

∫
êj

v̂ dσ̂ = v̂(m̂j), j = 1, 2, 3, 4, ∀v̂ ∈ NCDSSY
K̂,l

. (2.3)

In order to retain an optimal convergence order for any quadrilateral mesh, the parametric DSSY element
needs an additional element x̂1x̂2, and therefore the modified reference element reads

NCDSSY
K̂,l

∗
= {1, x̂1, x̂2, x̂1x̂2, ϕ̂l(x̂1) − ϕ̂l(x̂2)}, l = 1, 2,

with an additional degree of freedom ∫
K̂

v̂(x̂)x̂1x̂2 dx̂1dx̂2 .
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The DSSY element on K is then defined by

NCDSSY
K =

{
{v | v = v̂ ◦ F−1

K , v̂ ∈ NCDSSY
K̂,l

∗} if K is a true quadrilateral,
{v | v = v̂ ◦ F−1

K , v̂ ∈ NCDSSY
K̂,l

} if K is a rectangle,

where FK is defined by (2.1). The global parametric DSSY element is defined by

NCp
h = {vh ∈ L2(Ω) | vh|K ∈ NCDSSY

K for K ∈ Th, vh is continuous at the midpoint of each e ∈ Eh},
NCp

h,0 = {vh ∈ NCp
h | vh is zero at the midpoint of e ∈ Eh ∩ ∂Ω}.

2.2. A Class of nonparametric DSSY elements

We are interested in reducing the five degrees of freedom DSSY element to four, but still retaining the mean
value property (2.3). It seems that there does not exist a four-DOF parametric quadrilateral element which
has an optimal order convergence rate and the mean value property simultaneously. Here, we seek a candidate
among nonparametric elements.

2.2.1. A closer look at the DSSY element

For the sake of simplicity of our argument regrading the geometrical property of a basis function, we shall
focus on, ϕ̂1(x̂1) − ϕ̂1(x̂2).

Let us denote ϕ̂1(x̂1) − ϕ̂1(x̂2) by ψ̂(x̂) for convenience. In the reference domain K̂, the function ψ̂(x̂) can
be factorized as

ψ̂(x̂) = −5
3
(x̂1 − x̂2)(x̂1 + x̂2)

(
x̂2

1 + x̂2
2 −

3
5

)
, (2.4)

from which one can realize that ψ̂(x̂) is the product of three polynomials whose zero-level sets consist of the
two diagonals of K̂ and one circle x̂2

1 + x̂2
2 − 3

5 = 0 in K̂. At this point, a natural question is whether for any
quadrilateral K we may find a function satisfying the mean value properties by using the similar geometrical
idea as ψ̂(x̂).

Among the parametric nonconforming elements in [7], ψ(x) = ψ̂ ◦F−1
K is not a quartic polynomial in general

if K is a genuine quadrilateral, that is, if FK is not an affine map. In most cases it is a non-polynomial function.
Thus ψ(x) would not be similarly regarded as the product of zero level set functions of three geometrical objects,
such as two lines and a circle. This seems to be one of the limits of using parametric elements. We will thus
divert our attention from using the parametric elements and investigate a possible way of finding a suitable four
degrees of freedom element.

2.2.2. Intermediate Spaces

To design such a suitable element, we first decompose the bilinear map FK given by (2.1) into a composition
of a simple bilinear map followed by an affine map [11,17,18]. A bilinear map S : R

2 → R
2 is said to be a simple

bilinear map if there exists a vector s̃ such that S
(
x1
x2

)
=
(
x1
x2

)
+ x1x2s̃ for all

(
x1
x2

)
∈ R

2.

Observe that FK can be written as follows:

FK(x̂) = Ax̂ + x̂1x̂2d + b = A
[
x̂ + x̂1x̂2A

−1d
]
+ b = A [x̂ + x̂1x̂2s̃] + b, (2.5)

where A is a 2 × 2 matrix and b,d, and s̃ are two-dimensional vectors given by

A =
1
4

(v1 − v2 − v3 + v4,v1 + v2 − v3 − v4) ,

d =
v1 − v2 + v3 − v4

4
, b =

v1 + v2 + v3 + v4

4
, s̃ = A−1d.
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Notice that (2.5) can be understood as the following decomposition of an affine map and a simple bilinear map
associated with s̃:

FK = AK ◦ SK ,

where AK : K̃ → K and SK : K̂ → K̃ are given by

AK(x̃) = Ax̃ + b, SK(x̂) = x̂ + x̂1x̂2s̃.

Here, K̃ = SK(K̂) is a quadrilateral with four vertices

ṽ1 = v̂1 + s̃, ṽ2 = v̂2 − s̃, ṽ3 = v̂3 + s̃, ṽ4 = v̂4 − s̃.

It should be stressed that the midpoints of K̂ are invariant under the map SK and that K̃ is a perturbation of
K̂ by a single vector s̃ such that opposite vertices are moved in the same direction (see Fig. 1).

The relations of three mappings AK ,SK ,FK and three domains K̂, K̃,K can be interpreted as follows. For
given quadrilateral K ∈ Th and the reference cube K̂, FK is a unique bilinear map such that FK(v̂j) = vj for
j = 1, 2, 3, 4. It is easy to see that there exists a unique simple bilinear map SK and K̃ such that K̃ = SK(K̂)
and K = AK(K̃). The intermediate reference domain K̃ is very useful when we construct a certain type of basis
functions that have specific features in K since K̃ is connected to the physical domain K by an affine map not
by a bilinear map. Adapted to this spirit, we will construct basis functions in K̃ instead of K̂.

Remark 2.1. Notice that K̃ is convex if and only if

|s̃1| + |s̃2| ≤ 1, (2.6)

where the equality holds if and only if K̃ degenerates to a triangle [18].

Our strategy is to use the intermediate reference domain K̃, where the ansatz is to set a quartic polynomial
similarly to (2.4) as follows:

μ̃(x̃) = −5
3
�̃1(x̃)�̃2(x̃)Q̃(x̃), (2.7)

where �̃j(x̃), j = 1, 2, are linear polynomials and Q̃(x̃) a quadratic polynomial. We seek a quartic polynomial
μ̃(x̃) fulfilling the mean value property (2.3) in K̃. Naturally, set �̃1(x̃) and �̃2(x̃) to be linear polynomials such
that �̃1(x̃) = 0 and �̃2(x̃) = 0 are the equations of lines passing through ṽ1, ṽ3, and ṽ2, ṽ4, respectively. Then
they are given (up to multiplicative constants) by

�̃1(x̃) = x̃1 − x̃2 + s̃2 − s̃1, (2.8a)

�̃2(x̃) = x̃1 + x̃2 + s̃1 + s̃2. (2.8b)

Recall the Gauss quadrature formula:∫ 1

−1

f(t) d t ≈ 8
9
f(0) +

5
9
(f(ξ) + f(−ξ)), ξ =

√
3
5
,

which is exact for quartic polynomials. An application of this formula simplifies the mean value property (2.3)
into the form

μ̃(g̃2j−1) + μ̃(g̃2j) − 2μ̃(m̂j) = 0, j = 1, . . . , 4, (2.9)
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where

g̃1 = m̂1 − ξ(û2 + s̃), g̃2 = m̂1 + ξ(û2 + s̃),
g̃3 = m̂2 + ξ(û1 + s̃), g̃4 = m̂2 − ξ(û1 + s̃),
g̃5 = m̂3 + ξ(û2 − s̃), g̃6 = m̂3 − ξ(û2 − s̃),
g̃7 = m̂4 − ξ(û1 − s̃), g̃8 = m̂4 + ξ(û1 − s̃),

together with m̂j, j = 1, . . . , 4, are the twelve Gauss points on the edges. Here, and in what follows, we adopt

the notations for the standard unit vectors: û1 =
(

1
0

)
and û2 =

(
0
1

)
. Notice that the equations of lines for

edges ẽj , j = 1, . . . , 4, are given in vector notation as follows:

ẽ1(t) = m̂1 + t(û2 + s̃), ẽ2(t) = m̂2 + t(û1 + s̃), ẽ3(t) = m̂3 + t(û2 − s̃), ẽ4(t) = m̂4 + t(û1 − s̃),

for t ∈ [−1, 1]. Consider the quartic polynomial (2.7) restricted to an edge ẽj(t), t ∈ [−1, 1]. Since �̃1�̃2 is the
product of two linear polynomials which vanishes at the other two end points of each edge, one sees that

�̃1(g̃2j−1)�̃2(g̃2j−1) = �̃1(g̃2j)�̃2(g̃2j) = (1 − ξ2)�̃1(m̂j)�̃2(m̂j),

(
ξ =

√
3
5

)
. (2.10)

A combination of (2.9) and (2.10) yields that (2.3) holds if and only if the quadratic polynomial Q̃ satisfies

Q̃(g̃2j−1) + Q̃(g̃2j) − 5Q̃(m̂j) = 0, j = 1, . . . , 4. (2.11)

A standard use of symbolic calculation gives the general solution of (2.11) in the following form

Q̃(x̃) =
(
x̃1 +

2
5
s̃2

)2

+
(
x̃2 +

2
5
s̃1

)2

− r̃2 + c̃

[
(x̃1 +

2
5
s̃2)(x̃2 +

2
5
s̃1) +

6
25
s̃1s̃2

]
, (2.12)

with r̃ =
√

6
5

√
5
2 − s̃21 − s̃22 for arbitrary constant c̃ ∈ R. Here, we assume that the coefficient of x̃1 is normalized.

Notice that r̃ takes a positive real value if K̃ is convex due to Remark 2.1.
Define, for each c̃ ∈ R,

μ̃(x̃1, x̃2; c̃) = −5
3
�̃1(x̃1, x̃2)�̃2(x̃1, x̃2)Q̃(x̃1, x̃2),

where �̃1 and �̃2 are defined by (2.8) and Q̃ by (2.12) depending on c̃ as well as s̃.
We are now in a position to define a class of nonparametric nonconforming elements on the intermediate

quadrilaterals K̃ with four degrees of freedom as follows.

1. K̃ = SK(K̂);
2. P̃K̃(c̃) = Span{1, x̃1, x̃2, μ̃(x̃1, x̃2; c̃)};
3. Σ̃K̃ = {four edge-midpoint values of K̃} = {four mean values over edges of K̃}.

By the above construction it is apparent that for any element p̃ ∈ P̃K̃(c̃) the mean value property holds:

1
|ẽj|

∫
ẽj

p̃ dσ̃ = p̃(m̃j), j = 1, 2, 3, 4.

Moreover, the above class of intermediate nonparametric elements is unisolvent for most of c̃.

Theorem 2.2. Assume that c̃ is chosen such that s̃21+ s̃22+ 1
3 + c̃ s̃1s̃2 	= 0. Then the intermediate nonparametric

element
(
K̃, P̃K̃(c̃), Σ̃K̃

)
is unisolvent.
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Proof. In order to show unisolvency of the space Span{1, x̃1, x̃2, μ̃(x̃1, x̃2; c̃)} with respect to the degrees of
freedom f(m̂j), j = 1, . . . , 4, denote the functions 1, x̃1, x̃2, and μ̃(x̃1, x̃2; c̃) by φ̃1, φ̃2, φ̃3, and φ̃4, respectively
and also define A = (ajk) ∈M4×4(R) by ajk = φ̃j(m̂k). A symbolic calculation shows that det(A) = 16(s̃21+ s̃22+
1
3 + c̃ s̃1s̃2), from which A is nonsingular for any s̃ ∈ R

2 if and only if c̃ is chosen such that s̃21+ s̃22+ 1
3 + c̃ s̃1s̃2 	= 0.

This completes the proof. �

For c̃ = 0, the quadratic equation Q̃(x̃) = 0 denotes the circle with center − 2
5

(
s̃2
s̃1

)
and radius r̃. In this

case, (2.12) can be easily derived by a geometric argument as follows. Indeed, assume that Q̃(x̃) = 0 denotes

the circle with center c =
(
c1
c2

)
and radius r so that Q̃(x̃) = (x̃ − c) · (x̃ − c) − r2. Then (2.11) implies that

(g̃2j−1 − c) · (g̃2j−1 − c) + (g̃2j − c) · (g̃2j − c) − 5(m̂j − c) · (m̂j − c) = −3r2, j = 1, . . . , 4.

Arrange these equations as follows:

(c − η̃2j−1) · (c − η̃2j) = r2, j = 1, . . . , 4, (2.13)

where the points η̃2j−1 and η̃2j are given between g̃2j−1 and m̂j , and g̃2j and m̂j , respectively, explicitly defined

as follows: with η =
√

2
5 ,

η̃1 = m̂1 − η(û2 + s̃), η̃2 = m̂1 + η(û2 + s̃),
η̃3 = m̂2 + η(û1 + s̃), η̃4 = m̂2 − η(û1 + s̃),
η̃5 = m̂3 + η(û2 − s̃), η̃6 = m̂3 − η(û2 − s̃),
η̃7 = m̂4 − η(û1 − s̃), η̃8 = m̂4 + η(û1 − s̃).

Geometrically, (2.13) is equivalent to saying that the location of c is such that the four inner products of the
vectors c − η̃2j−1 and c − η̃2j , for j = 1, . . . , 4, are equal. It is straightforward from the equations (2.13) for
j = 1 and j = 3 to see that c1 = −η2s̃2, and similarly from those for j = 2 and j = 4 to see that c2 = −η2s̃1.
Then r = r̃ follows immediately. Thus c and r are identical to the center and radius of the circle represented in
(2.12) in the case of c̃ = 0.

2.2.3. The global nonparametric quadrilateral nonconforming elements

Turn to the physical domain K. It is straightforward to define the finite elements from K̃ to K by using the
affine map AK which enables the transformed elements to retain the mean value property and unisolvency. A
class of nonparametric nonconforming elements on quadrilaterals K with four degrees of freedom as follows.

1. K = FK(K̂);
2. NCK = PK(c̃) = Span{1, x1, x2, μ(x1, x2; c̃)};
3. ΣK = {four edge-midpoint values of K} = {four mean values over edges of K},
where μ(x1, x2; c̃) is a quartic polynomial defined by μ(x1, x2; c̃) = μ̃ ◦ A−1

K (x1, x2; c̃) = − 5
3�1(x1, x2)�2(x1, x2)

q(x1, x2; c̃), with

�1(x) = �̃1 ◦ A−1
K (x), �2(x) = �̃2 ◦ A−1

K (x), q(x; c̃) = Q̃ ◦ A−1
K (x).

Notice that μ(x; c̃) can be interpreted as a product of two linear polynomials and one quadratic polynomial
such that the straight lines �1(x) = 0 and �2(x) = 0 are passing through v1, v3 and v2, v4, respectively and
q(x; c̃) = 0 is an ellipse which is determined to satisfy the mean value properties for μ̃(x̃).

We now define the global nonparametric DSSY element spaces as follows

NCnp
h = {vh ∈ L2(Ω) | vh|K ∈ NCK for K ∈ Th, vh is continuous at the midpoint of each e ∈ Eh},

NCnp
h,0 = {vh ∈ NCnp

h | vh is zero at the midpoint of each e ∈ Eh ∩ ∂Ω}.
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Remark 2.3. Since these new finite element spaces have the orthogonal property as in [7], clearly the optimal
convergence order is guaranteed for solving second-order elliptic problems. Indeed, (2.3) implies the pass of a
patch test against constant functions on each interior edge (see (2.7a) and (2.7b) of [7]), which in turn implies
the following bound of the consistent error term in the second Strang lemma:

sup
wh∈NCnp

h,0

|ah(u,wh) − (f, wh)|
‖wh‖1,h

≤ C‖u‖2h,

where u ∈ H2(Ω) ∩ H1
0 (Ω) is a solution to a(u, v) = (f, v) ∀v ∈ H1

0 (Ω), and a(·, ·) and ah(·, ·) are bounded,
coercive bilinear forms on H1

0 (Ω) and NCnp
h,0, respectively.

Remark 2.4. The new nonparametric DSSY elements will be used as a stable family of mixed finite elements
for the velocity fields, combined with the piecewise constant element for pressure, in solving the Navier-Stokes
equations [4,10,19]. The nonconforming nature enables us to solve elasticity problems without numerical locking,
either [13, 24]. See the numerical experiments in Subsections 3.2 and 3.3.

Remark 2.5. In practice, the choice c̃ = 0 is recommended since it minimizes the number of computations in
applying quadrature rules.

Remark 2.6. One may construct basis functions in a sixth-degree polynomial space other than the quartic
polynomial as in (2.2) following the same idea. However, using a higher-degree polynomial space requires a
higher accuracy quadrature rule in the construction of the stiffness matrix. In this sense, the quartic polynomial
space seems to be a reasonable choice in view of implementation issues.

3. Numerical results

3.1. The elliptic problem

In this section we perform numerical experiments for a simple elliptic problem:

−Δu = f in Ω,
u = 0 on ∂Ω,

on the domain Ω = (0, 1)2. The source function f is given so that the exact solution is

u(x) = sinπx1 sinπx2.

We consider two kinds of elements: the parametric DSSY element NCp
h,0, and the nonparametric DSSY

elements NCnp
h,0 with c̃ = 0 and c̃ = 1. Also two types of quadrilateral meshes were employed: uniformly

θ-dependent quadrilateral meshes as shown in Figure 2 and the randomly perturbed quadrilateral meshes
depicted in Figure 3. The uniformly θ-dependent quadrilaterals become rectangles if θ = 0, while they degenerate
into triangles if θ = 1.

The tables containing numerical results are organized as follows: the parametric nonconforming elements in
Tables 1 and 4, the nonparametric nonconforming elements with c̃ = 0 in Tables 2 and 5, and those with c̃ = 1 in
Tables 3 and 6; the uniformly θ-dependent trapezoidal meshes in Tables 1–3 and the nonuniform quadrilateral
meshes in Tables 4–6.

We tested several different θ’s, but the convergence behaviors were quite similar and thus we report only the
case of θ = 0.7.

Numerical experiments were performed with increasing values of c̃ such as 10, 100, 1000, and so on. The larger
c̃ values are chosen, the slower convergence is observed. We only present numerics for the two nonparametric
elements with c̃ = 0 and 1. At this point we recommend readers to use c̃ = 0 for its simplicity.
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(1− θ)h

h

(1 + θ)h

Figure 2. A uniform trapezoidal triangulation with a trapezoidal with parameter 0 ≤ θ < 1.

Figure 3. A nonuniform randomly perturbed quadrilateral triangulation.

As observed in the uniform mesh the convergence order is optimal for both elements and the values of
numerical solutions are almost identical. In order to compare cost efficiency in a fair fashion, we computed
nonparametric basis functions for each quadrilateral and applied the static condensation to circumvent bubble
functions for parametric element also for each quadrilateral. From Table 7 we observe that when the mesh
size h is larger than 1/100, the nonparametric element is cheaper to use; however, the computing time ratios
approach to 1 (still the use of nonparametric element seems to be cheaper), as the mesh size tends to decrease.
These phenomena are perhaps due to the fact that the additional cost in static condensation for the parametric
elements takes a less portion in the total computing time as the mesh size decreases.

3.2. The incompressible Stokes equations

In this subsection, we apply NCnp
h,0 to approximate each component of the velocity fields in solving the incom-

pressible Stokes equations in two dimensions, while the piecewise constant element is employed to approximate
the pressure.
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Table 1. Computational results for NCp
h,0 with θ = 0.7 for the elliptic problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 40 0.5284E-01 – 0.8532 –
1/8 176 0.1556E-01 1.76 0.4458 0.94
1/16 736 0.4184E-02 1.89 0.2274 0.97
1/32 3008 0.1096E-02 1.93 0.1147 0.99
1/64 12 160 0.2810E-03 1.96 0.5756E-01 0.99
1/128 48 896 0.7117E-04 1.98 0.2883E-01 1.00
1/256 196 096 0.1791E-04 1.99 0.1443E-01 1.00

Table 2. Computational results for NCnp
h,0 with θ = 0.7 and c̃ = 0 for the elliptic problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 24 0.5437E-01 – 0.8221 –
1/8 112 0.1568E-01 1.79 0.4302 0.93
1/16 480 0.4145E-02 1.92 0.2213 0.96
1/32 1984 0.1084E-02 1.93 0.1124 0.98
1/64 8064 0.2788E-03 1.96 0.5659E-01 0.99
1/128 32 512 0.7077E-04 1.98 0.2839E-01 1.00
1/256 130 560 0.1783E-04 1.99 0.1422E-01 1.00

Table 3. Computational results for NCnp
h,0 with θ = 0.7 and c̃ = 1 for the elliptic problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 24 0.5840E-01 – 0.8486 –
1/8 112 0.1655E-01 1.82 0.4452 0.93
1/16 480 0.4229E-02 1.97 0.2261 0.98
1/32 1984 0.1102E-02 1.94 0.1145 0.98
1/64 8064 0.2836E-03 1.96 0.5760E-01 0.99
1/128 32 512 0.7212E-04 1.98 0.2887E-01 1.00
1/256 130 560 0.1819E-04 1.99 0.1446E-01 1.00

Set Ω = (0, 1)2 and consider the following Stokes equations:

−Δu + ∇p = f in Ω,
∇ · u = 0 in Ω,

u = 0 on ∂Ω,

where the force term f is generated by the following exact solution

u(x1, x2) =
(

ex1+2x2(x4
1 − 2x3

1 + x2
1)(2x

4
2 − 4x2

2 + 2x2)
−ex1+2x2(x4

1 + 2x3
1 − 5x2

1 + 2x1)(x4
2 − 2x3

2 + x2
2)

)
,

p(x1, x2) = − sin 2πx1 sin 2πx2.

Table 8 shows the numerical results on uniform trapezoidal meshes with θ = 0.7 and c̃ = 0. Similarly, Table 9
presents the results on the perturbed nonuniform meshes with c̃ = 0. From these numerical results, we observe
the optimal convergence rates of O(h2) and O(h) for the velocity and pressure in L2 norm, respectively. The
numerical solutions in the case with c̃ 	= 0 behave similarly, whose tables are omitted to report.
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Table 4. Computational results for NCp
h,0 on the nonuniform randomly perturbed meshes for

the elliptic problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 40 0.3490E-01 – 0.7183 –
1/8 176 0.8663E-02 2.01 0.3657 0.97
1/16 736 0.2287E-02 1.92 0.1871 0.97
1/32 3008 0.5835E-03 1.97 0.9387E-01 0.99
1/64 12 160 0.1481E-03 1.98 0.4721E-01 0.99
1/128 48 896 0.3729E-04 1.99 0.2363E-01 1.00
1/256 196 096 0.9350E-05 2.00 0.1183E-01 1.00

Table 5. Computational results for NCnp
h,0 on the nonuiform randomly perturbed meshes

when c̃ = 0 for the elliptic problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 24 0.3594E-01 – 0.7363 –
1/8 112 0.8760E-02 2.04 0.3682 1.00
1/16 480 0.2290E-02 1.94 0.1873 0.98
1/32 1984 0.5834E-03 1.97 0.9386E-01 1.00
1/64 8064 0.1479E-03 1.98 0.4718E-01 0.99
1/128 32 512 0.3725E-04 1.99 0.2362E-01 1.00
1/256 130 560 0.9341E-05 2.00 0.1182E-01 1.00

Table 6. Computational results for NCnp
h,0 on the nonuniform randomly perturbed meshes

when c̃ = 1 for the elliptic problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 24 0.3598E-01 – 0.7370 –
1/8 112 0.8752E-02 2.04 0.3684 1.00
1/16 480 0.2290E-02 1.93 0.1874 0.98
1/32 1984 0.5842E-03 1.97 0.9398E-01 1.00
1/64 8064 0.1481E-03 1.98 0.4725E-01 0.99
1/128 32 512 0.3730E-04 1.99 0.2365E-01 1.00
1/256 130 560 0.9353E-05 2.00 0.1184E-01 1.00

3.3. The planar linear elasticity problem

In this subsection, the nonparametric element NCnp
h,0 is applied to approximate each component of the dis-

placement fields for the planar linear elasticity problem with the clamped boundary condition.
Set Ω = (0, 1)2. For (μ, λ) ∈ [μ0, μ1] × [λ1,∞), consider the following elasticity equations with homogeneous

boundary condition:

−(λ+ μ)∇(∇ · u) − μΔu = f in Ω,
u = 0 on ∂Ω,

where the external force term f is generated by the following exact solution

u1(x1, x2) = sin 2πx2(−1 + cos 2πx1) +
1

1 + λ
sinπx1 sinπx2,

u2(x1, x2) = − sin 2πx1(−1 + cos 2πx2) +
1

1 + λ
sinπx1 sinπx2.
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Table 7. Ratio of computing time t(NCnp
h,0)/t(NCp

h,0) for the elliptic problem on uniform
trapezoidal meshes with varying parameter θ and on nonuniform randomly perturbed meshes.

h θ = 0.3 θ = 0.5 θ = 0.7 Random mesh
1/8 0.6764 0.6764 0.6666 0.6571
1/16 0.6711 0.6621 0.6802 0.6712
1/32 0.6796 0.6761 0.6844 0.7022
1/64 0.7333 0.7285 0.7303 0.7344
1/128 0.7611 0.7656 0.7540 0.7275
1/256 0.8136 0.8296 0.7924 0.7875
1/512 0.9431 0.9170 0.8861 0.8415

Table 8. Computational results for NCnp
h,0 with θ = 0.7 and c̃ = 0 for the Stokes problem.

h DOF ||u − uh||0,Ω ratio ||p − ph||0,Ω ratio
1/4 63 0.1302E-01 – 0.2770 –
1/8 287 0.5424E-02 1.26 0.1898 0.55
1/16 1215 0.1631E-02 1.73 0.9571E-01 0.99
1/32 4991 0.4396E-03 1.89 0.4801E-01 1.00
1/64 20 223 0.1130E-03 1.96 0.2410E-01 0.99
1/128 81 407 0.2855E-04 1.98 0.1208E-01 1.00

Table 9. Computational results for NCnp
h,0 on the perturbed nonuniform mesh when c̃ = 0 for

the Stokes problem.

h DOF ||u − uh||0,Ω ratio ||p − ph||0,Ω ratio
1/4 63 0.1205E-01 – 0.2960 –
1/8 287 0.3474E-02 1.79 0.1635 0.85
1/16 1215 0.9061E-03 1.94 0.8381E-01 0.96
1/32 4991 0.2332E-03 1.96 0.4216E-01 0.99
1/64 20 223 0.5801E-04 2.00 0.2103E-01 1.00
1/128 81 407 0.1455E-04 2.00 0.1052E-01 1.00

Table 10. Computational results for NCnp
h,0 with θ = 0.7, c̃ = 0, μ = 1, and λ = 1 for the

elasticity problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 48 0.3787 – 5.640 –
1/8 224 0.1074 1.81 2.941 0.93
1/16 960 0.2911E-01 1.88 1.524 0.94
1/32 3968 0.7521E-02 1.95 0.7712 0.98
1/64 16 128 0.1906E-02 1.98 0.3870 0.99
1/128 65 024 0.4793E-03 1.99 0.1937 1.00

In order to check numerical locking phenomena, the Lamé parameters are chosen such that (μ, λ) = (1, 1)
and (1, 105). The numerical results are presented in Tables 10 and 11 for both cases on uniform trapezoidal
meshes with θ = 0.7 and c̃ = 0. Similar results are given in Tables 12 and 13 for both cases on the randomly
perturbed meshes with c̃ = 0. One can easily observe from the numerical results that the nonparametric element
NCnp

h,0 can be used to solve planar elasticity problems with the clamped boundary condition optimally without
numerical locking.
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Table 11. Computational results for NCnp
h,0 with θ = 0.7, c̃ = 0, μ = 1, and λ = 105 for the

elasticity problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 48 0.3781 – 5.631 –
1/8 224 0.1075 1.81 2.918 0.95
1/16 960 0.2900E-01 1.89 1.511 0.95
1/32 3968 0.7495E-02 1.95 0.7642 0.98
1/64 16 128 0.1902E-02 1.98 0.3834 0.99
1/128 65 024 0.4789E-03 1.99 0.1919 1.00

Table 12. Computational results for NCnp
h,0 on the perturbed nonuniform mesh with c̃ = 0,

μ = 1, and λ = 1 for the elasticity problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 48 0.2517 – 4.679 –
1/8 224 0.6530E-01 1.77 2.459 0.73
1/16 960 0.1724E-01 1.92 1.264 0.96
1/32 3968 0.4392E-02 1.97 0.6382 0.99
1/64 16 128 0.1105E-02 1.99 0.3197 1.00
1/128 65 024 0.2776E-03 1.99 0.1601 1.00

Table 13. Computational results for NCnp
h,0 on the perturbed nonuniform mesh with c̃ = 0,

μ = 1, and λ = 105 for the elasticity problem.

h DOF ||u − uh||0,Ω ratio ||u − uh||1,h ratio
1/4 48 0.2523 – 4.659 –
1/8 224 0.6591E-01 1.93 2.444 0.93
1/16 960 0.1746E-01 1.92 1.255 0.96
1/32 3968 0.4461E-02 1.97 0.6334 0.99
1/64 16 128 0.1124E-02 1.99 0.3174 1.00
1/128 65 024 0.2825E-03 1.99 0.1589 1.00
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