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A HYPERBOLIC MODEL OF CHEMOTAXIS
ON A NETWORK: A NUMERICAL STUDY
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Abstract. In this paper we deal with a semilinear hyperbolic chemotaxis model in one space dimension
evolving on a network, with suitable transmission conditions at nodes. This framework is motivated
by tissue-engineering scaffolds used for improving wound healing. We introduce a numerical scheme,
which guarantees global mass densities conservation. Moreover our scheme is able to yield a correct
approximation of the effects of the source term at equilibrium. Several numerical tests are presented to
show the behavior of solutions and to discuss the stability and the accuracy of our approximation.
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1. Introduction

The movement of bacteria, cells or other microorganisms under the effect of a chemical stimulus, represented
by a chemoattractant, has been widely studied in mathematics in the last two decades, see [25, 27, 30], and
numerous models involving partial differential equations have been proposed. The basic unknowns in these
chemotactic models are the density of individuals and the concentrations of some chemical attractants. One of
the most considered models is the Patlak–Keller–Segel system [23], where the evolution of the density of cells is
described by a parabolic equation, and the concentration of a chemoattractant is generally given by a parabolic
or elliptic equation, depending on the different regimes to be described and on authors’ choices. The behavior of
this system is quite well-known now: in the one-dimensional case, the solution is always global in time, while in
two and more dimensions the solutions exist globally in time or blow up according to the size of the initial data.
However, a drawback of this model is that the diffusion leads to a fast dissipation or an explosive behavior, and
prevents us to observe intermediate organized structures, like aggregation patterns.

By contrast, models based on hyperbolic/kinetic equations for the evolution of the density of individuals,
are characterized by a finite speed of propagation and have registered a growing consideration in the last few
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years [7–9, 19, 30]. In such models, the population is divided in compartments depending on the velocity of
propagation of individuals, giving raise to kinetic type equations, either with continuous or discrete velocities.

Here we consider an hyperbolic-parabolic system which arises as a simple model for chemotaxis:⎧⎪⎨⎪⎩
ut + vx = 0,

vt + λ2ux = φx u − v,

φt − D φxx = au − bφ.

(1.1)

Such kind of models were originally considered in [32], and later reconsidered in [13]. They are based on an
adaptation to the chemotactic case of the so-called hyperbolic heat or Cattaneo or telegraph equation, adding
a source term accounting for the chemotactic motion in the equation for the flux. The function u is the density
of cells in the considered medium, v is their averaged flux and φ denotes the density of chemoattractant. The
individuals move at a constant speed λ ≥ 0, changing their direction along the axis during the time. The positive
constant D is the diffusion coefficient of the chemoattractant; the positive coefficients a and b, are respectively
its production and degradation rates.

These equations are expected to behave asymptotically as the corresponding parabolic equations, but dis-
playing a different and richer transitory regime, and this is what is known to happen at least without the
chemotactic term. Analytically, these models have been studied in [20, 21] and more recently in [16], where the
analytical features were almost completely worked out, at least around constant equilibrium states, where it is
proved that, at least for the Cauchy problem, the solutions of the hyperbolic and parabolic models are close for
large times.

The novelty of this paper is to consider this one dimensional model on a network. More precisely, we consider
system in the form (1.1) on each arc of the network, and so we have to consider one set of solutions (u, v, φ)
for each arc. Functions on different arcs are coupled using suitable transmission conditions on each node of the
network. Conservation laws or wave equations on networks have already been studied, for example in [10, 18]
for traffic flows or in [6, 34] for flexible strings distributed along a planar graph or in other applications like
chromatography [3]. However, here we consider different types of transmission conditions, which impose the
continuity of the fluxes rather than the continuity of the densities. Therefore, in this article, a particular care
will be given to the proper setting and the numerical approximation of the transmission conditions at nodes,
both for the hyperbolic and the parabolic parts of (1.1). In particular, some conditions have to be imposed
on the approximation of the boundary conditions, in order to ensure the conservation of the total mass of
the system. Let us also mention that a first analytical study of system (1.1) on a network, coupled through
transmission conditions of this type, is carried out in [14].

The study of this system is motivated by the tissue-engineering research concerning the movement of fibrob-
lasts on artificial scaffolds [24, 26, 33], during the process of dermal wound healing. Indeed, the fibroblasts, the
stem cells to be in charge of the reparation of dermal tissue, create a new extracellular matrix, essentially made
by collagen, and, driven by chemotaxis, migrate to fill the wound. The use of artificial scaffolds constituted
by a network of crossed polymeric threads inserted within the wound accelerates fibroblasts’ reparation action,
since they already have a support to walk. Therefore, our simple model of chemotaxis on a network is a good
candidate for reproducing this configuration: the arcs of the network stand for the fibers of the scaffold and the
transport equations give the evolution of the density of fibroblasts on each fiber. Other models for the same
purpose have been proposed in the literature: in [2,5,17,31], some kinetic models of migration of cells on the 3D
extra-cellular matrix have been studied, where the matrix is considered as a continuum support. In this paper,
we reduce the kinetic model to a simpler 1D hyperbolic model, but we set it on a network to mimic the fibers
of an artificial scaffold and the network approach is more appropriate. Actually, in our case the cells dimension
is comparable with the dimension of the section of the fibers, which so can be modeled as a 1D structure, but
both are much smaller than the length of the fibers and the density of the fibers is lower than that of the
extra-cellular matrix.
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The main focus of this paper is on the construction of an effective numerical scheme for computing the
solutions to this problem, which is not an easy task, even for the case of a single arc. In that case, non
constant highly concentrated stationary solutions are expected and schemes which are able to capture these
large gradients in an accurate way are needed. The main problem is to balance correctly the source term with the
differential part, in order to avoid an incorrect approximation of the density flux at equilibrium, as first observed
in [16]. Asymptotic High Order schemes (AHO) were introduced in [29], inspired by [1], to deal with this kind of
inaccuracies. These schemes are based on standard finite differences methods, modified by a suitable treatment
of the source terms, and they take into account the behavior of the solutions near non constant stationary
states. An alternative approach, inspired by the well-balanced methods, has been proposed in [11, 12], with
similar results. However the methods in [29] seem easier to be generalized to the present framework.

Regarding the problem considered in this paper, the main difficulty is in the discretization of the transmission
conditions at node, also enforcing global mass conservation at the discrete level. Therefore, in Section 2 we
explain some analytical properties of problem (1.1), with a particular emphasis on boundary and transmission
conditions. Section 3 is devoted to the numerical approximation of the problem based on a AHO scheme with
a suitable discretization of the transmission and boundary conditions ensuring the mass conservation. In the
present paper, we have chosen to consider only the second order version of the scheme, which is enough for our
purposes, but it is easy to adapt also the third order schemes proposed in [29]. Remark that here, unlike the
single interval case, we are forced, for any given time step, to fix the space step on each arc using relation (3.13)
introduced in Section 3, to obtain consistency on the boundary. Numerical tests (not shown) confirm the necessity
of this supplementary constraint.

Finally, in Section 4, we report some numerical experiments, to show the behavior and the stability of our
scheme. A special attention is given to the stability of the scheme near nodes and the correct behavior of the
approximation for large times and near asymptotic states. It has to be mentioned that during this research
we observed, in contrast with what happens for the diffusive models, the appearance of blow-up phenomena
even for data of relative moderated size. Even if, up to now, there are no rigorous results, which can help to
decide if these singular events are really occurring, or they are just a numerical artifact, our close investigation
in Section 4.3 gives a strong indication towards the first alternative.

2. Analytical background

Let us define a network or a connected graph G = (N ,A), as composed of two finite sets, a set of P nodes
(or vertices) N and a set of N arcs (or edges) A, such that an arc connects a pair of nodes. Since arcs are
bidirectional the graph is non-oriented, but we need to fix an artificial orientation in order to fix a sign to the
velocities. The network is therefore composed of “oriented” arcs and there are two different types of intervals
at a node p ∈ N : incoming ones – the set of these intervals is denoted by Ip – and outgoing ones – whose set is
denoted by Op. For example, on the network depicted in Figure 1, 1, 2 ∈ I and 3, 4 ∈ O. We will also denote
in the following by Iout and Oout the set of the arcs incoming or outgoing from the outer boundaries. The N
arcs of the network are parametrized as intervals ai = [0, Li], i = 1, . . . , N , and for an incoming arc, Li is the
abscissa of the node, whereas it is 0 for an outgoing arc.

2.1. Evolution equations for the problem

We consider system (1.1) on each arc and rewrite it in diagonal variables for its hyperbolic part by setting

u± =
1
2

(
u ± v

λ

)
· (2.1)

Here u+ and u− are the Riemann invariants of the system and u+ (resp. u−) denotes the density of cells following
the orientation of the arc (resp. the density of cells going in the opposite direction). This transformation is
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Figure 1. An example of network.

inverted by u = u+ + u− and v = λ(u+ − u−), and yields:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u+

t + λu+
x =

1
2λ

(
(φx − λ)u+ + (φx + λ)u−) ,

u−
t − λu−

x = − 1
2λ

(
(φx − λ)u+ + (φx + λ)u−) ,

φt − Dφxx = a(u+ + u−) − bφ.

(2.2)

We complement this system by initial conditions at t = 0 on each arc

u+(x, 0) = u+
0 (x), u−(x, 0) = u−

0 (x), φ(x, 0) = φ0(x), for x ∈ [0, L],

with u+
0 , u−

0 , φ0 some C3 functions. We can also denote by T± = 1
2λ(φx ∓ λ) the turning rates (namely the

probabilities of cells to change direction) and a(u+ + u−) − bφ represents the production and degradation of
the chemoattractant. We assume that all the cells are moving along an arc with the same velocity in modulus
(λ ≥ 0 for cells moving following the arc orientation, −λ for cells moving in the opposite direction), which
may depend however on the characteristics of the arc. For the moment, we omitted the indexes related to the
arc number since no confusion was possible. From now on, however, we need to distinguish the quantities on
different arcs and we denote by u±

i , ui, vi and φi the values of the corresponding variables on the ith arc. On
the outer boundaries, we could consider general boundary conditions:{

u+
i (0, t) = αi(t)u−

i (0, t) + βi(t), if i ∈ Iout,

u−
i (Li, t) = αi(t)u+

i (Li, t) + βi(t), if i ∈ Oout.
(2.3)

For αi(t) = 1 and βi(t) = 0, we just recover the standard no-flux boundary condition

u+
i (., t) = u−

i (., t) (which is equivalent to v(., t) = 0). (2.4)

On the outer boundaries, we also consider no-flux (Neumann) boundary conditions for φ, which read

∂xφi(., t) = 0. (2.5)

The no-flux boundary conditions mean that, on the boundary, the fluxes of cells and chemoattractants are null.
This condition could be generalized, for example in the case when we assume that there is a production of
fibroblasts on the boundary.
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2.2. Transmission conditions at a node

Now, let us describe how to define the conditions at a node; this is an important point, since the behavior
of the solution will be very different according to the conditions we choose. Moreover, let us recall that the
coupling between the densities on the arcs are obtained through these conditions. At node p ∈ N , we have to
give values to the components such that the corresponding characteristics are going out of the node. Therefore,
we consider the following transmission conditions at node:⎧⎪⎪⎪⎨⎪⎪⎪⎩

u−
i (Li, t) =

∑
j∈Ip

ξi,ju
+
j (Lj, t) +

∑
j∈Op

ξi,ju
−
j (0, t), if i ∈ Ip,

u+
i (0, t) =

∑
j∈Ip

ξi,ju
+
j (Lj, t) +

∑
j∈Op

ξi,ju
−
j (0, t), if i ∈ Op,

(2.6)

where the constant ξi,j ∈ [0, 1] are the transmission coefficients: they represent the probability that a cell at a
node decides to move from the ith to the jth arc of the network, also including the turnabout on the same arc.
Let us notice that the condition differs when the arc is an incoming or an outgoing arc. Indeed, for an incoming
(resp. outgoing) arc, the value of the function u+

i (resp. u−
i ) at the node is obtained through the system and

we need only to define u−
i (resp. u+

i ) at the boundary.
These transmission conditions do not guarantee the continuity of the densities at node; however, we are

interested in having the continuity of the fluxes at the node, meaning that we cannot loose nor gain any cells
during the passage through a node. This is obtained using a condition mixing the transmission coefficients ξi,j

and the velocities of the arcs connected at node p. Fixing a node and denoting the velocities of the arcs by
λi ≥ 0, i ∈ Ip ∪ Op, in order to have the flux conservation at node p, which is given by:∑

i∈Ip

λi

(
u+

i (Li, t) − u−
i (Li, t)

)
=
∑
i∈Op

λi

(
u+

i (0, t) − u−
i (0, t)

)
, (2.7)

it is enough to impose the following conditions:∑
i∈Ip∪Op

λiξi,j = λj , j ∈ Ip ∪ Op. (2.8)

Notice that, condition (2.7), can be rewritten in the u − v variables as∑
i∈Ip

vi(Li, t) =
∑
i∈Op

vi(0, t). (2.9)

This condition ensures that the global mass μ(t) of the system is conserved along the time, namely:

μ(t) =
N∑

i=1

∫ Li

0

ui(x, t)dx = μ0 :=
N∑

i=1

∫ Li

0

ui(x, 0)dx, for all t > 0. (2.10)

2.3. Dissipative transmission coefficients for the hyperbolic problem

It is sometimes useful to restrict our attention to the case of positive transmission coefficients of dissipative
type, in the sense that they ensure energy decay of the solutions to the linear version of system (1.1), namely:{

ut + vx = 0,

vt + λ2ux = −v,
(2.11)

on a general network, with no-flux conditions (2.4) on the external nodes, and transmission conditions (2.6) at
the internal nodes, always assuming the flux conservation condition (2.8) at nodes.
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To obtain the decay in time of the energy, which is defined by

E(t) =

(
N∑

i=1

∫ Li

0

(
u2

i (x, t) +
v2

i (x, t)
λ2

i

)
dx

)1/2

,

it is sufficient to impose some equalities on the coefficients, as proved in [14].

Proposition 2.1 ([14]). The energy associated with the solutions to system (2.11), with no-flux conditions (2.4)
on the external nodes, and transmission conditions (2.6) at the internal nodes, assuming condition (2.8), is
decreasing if the transmission coefficients ξi,j belong to [0, 1], and at every node p ∈ N , we have:∑

j∈Ip∪Op

ξi,j = 1 for all i ∈ Ip ∪ Op. (2.12)

Actually, in [14], it is proved that under the assumptions of Proposition 2.1, it is possible to define a monotone
generator of semigroup, and then a contraction semigroup, in the Sobolev space H1, for the linear transmission
problem (2.11) on a network.

The hypothesis of Proposition 2.1 is needed to ensure a energy dissipation property for the hyperbolic part
of the system, when considered without the source term, on a general network. The dissipative structure of the
system is physically relevant to guarantee the stability, and, although the conditions can appear a bit technical,
they are completely motivated.

Let us remark also that in the simplest case of a network composed by two arcs (one incoming and one
outgoing, see next Fig. 3), these conditions are also necessary in order to have the dissipation property. In such
a case we have that dissipativity is given iff:

max
{

0,
λ1 − λ2

λ1

}
≤ ξ1,1 ≤ 1, λ2(1 − ξ2,2) = λ1(1 − ξ1,1). (2.13)

Using the previous relations and conditions on the coefficients ξi,j given by (2.8), we obtain the values for the
two missing coefficients:

ξ1,2 = 1 − ξ1,1, ξ2,1 =
λ1

λ2
(1 − ξ1,1), (2.14)

so, we have only one degree of freedom.

2.4. Transmission conditions for φ

Now let us consider the transmission conditions for φ in system (1.1). We complement conditions (2.3), (2.5),
and (2.6) with a transmission condition for φ. As previously, we do not impose the continuity of the density of
chemoattractant φ, but only the continuity of the flux at node p ∈ N . Therefore, we use the Kedem–Katchalsky
permeability condition [22], which has been first proposed in the case of flux through a membrane. For some
positive coefficients κi,j , we impose at node

Di∂nφi =
∑

j∈Ip∪Op

κi,j(φj − φi), i ∈ Ip ∪ Op. (2.15)

The condition
κi,j = κj,i, i, j = 1, . . . , N (2.16)

yields the conservation of the fluxes at node p, that is to say∑
i∈Ip∪Op

Di∂nφi = 0.

Let us also notice that we can assume that κi,i = 0, i = 1, . . . , N , which does not change condition (2.15).
Finally, notice that the positivity of the transmission coefficients κi,j , guarantees the energy dissipation for the
equation for φ in (1.1), when the term in u is absent.
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Figure 2. Evolution with respect to time of the energy of the system (1.1) assuming non-
dissipative coefficients (on the left) or dissipative coefficients (on the right) for a network of
two arcs with L1 = 6, L2 = 2, λ1 = λ2 = 4, μ0 = 160.

2.5. Evolution of the energy for the complete system

For the sake of completeness, starting from the results stated in Section 2.3 about the connection between
energy decay and the choice of the transmission coefficients ξi,j for the system (2.11), we present an analogous
numerical study for the system (1.1). To this aim, we define the energy function of the system as

E(t) =

{
N∑

i=1

∫ Li

0

(
u2

i (x, t) +
v2

i (x, t)
λ2

i

+ φ2(x, t)
)

dx

}1/2

.

Let us now consider two arcs of lengths L1 = 6 and L2 = 2 with the same velocities λ1 = λ2 = 4 and with a total
mass μ0 = 160 defined by (2.10) and distributed as a perturbation of the constant state C0 = 20. Assuming
non-dissipative transmission coefficients such as ξ1,1 = 0.9, ξ2,1 = 0.1, ξ1,2 = 0.3, ξ2,2 = 0.7, we observe that
the energy of the system increases, as shown on the left of Figure 2. On the contrary, assuming dissipative
coefficients such as ξ1,1 = ξ2,2 = 0.9, ξ2,1 = ξ1,2 = 0.1, the energy of the system is bounded and decreases as
shown on the right of Figure 2.

2.6. Stationary solutions

First we consider stationary solutions, which are known to drive the asymptotic behavior of the system. Let
us consider the case of stationary solutions of system (1.1), complemented with boundary conditions (2.4), (2.5),
(2.6), and (2.15). In the general case, we find on each arc the following solution :⎧⎪⎪⎨⎪⎪⎩

vi = const.,

ui = exp(φi/λ2
i )
(

Ci − vi

λ2
i

∫ x

0

exp(−φi(y)/λ2
i )dy

)
,

−Diφi,xx = aiui − biφi,

(2.17)

which leads to solve, on each arc, the scalar non-local equation:

−Diφi,xx = ai exp(φi/λ2
i )
(

Ci − vi

λ2
i

∫ x

0

exp(−φi(y)/λ2
i )dy

)
− biφi, (2.18)

which has to be coupled at each node by the boundary conditions (2.4), (2.5), (2.6), and (2.15).
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Figure 3. One incoming and one outgoing arc connected at a node.

We can prove easily that in the case of dissipative coefficients ξi,j satisfying (2.8), (2.12) and the condition
ξi,j > 0, if all the fluxes vi are null, then the density u is continuous at a node, namely at a node p, the functions
ui, i ∈ Ip∪Op have all the same values. However, this is not the general case.

For the simplest network composed of one incoming I = {1} and one outgoing O = {2} arc, represented in
Figure 3, we find on each interval that v1 = v2 = 0 from condition (2.4), and so we obtain the following local
system for φ1 and φ2 : {−D1φ1,xx = a1C1 exp

(
φ1/λ2

1

)− b1φ1,

−D2φ2,xx = a2C2 exp
(
φ2/λ2

2

)− b2φ2,
(2.19)

with boundary conditions (2.5) and (2.15) for φ1 and φ2, which reads

∂xφ1(L1) = ∂xφ2(0) = κ1,2(φ2(0) − φ1(L1)),

and
∂xφ1(0) = ∂xφ2(L2) = 0.

We have also to take into account the following condition given by transmission condition (2.6) :

λ2ξ2,1C1 exp
(
φ1(L1)/λ2

1

)
= λ1ξ1,2C2 exp

(
φ2(0)/λ2

2

)
.

Solving the corresponding system for φ1 and φ2 is a difficult task, even numerically, since an infinite number of
solutions exist both for φ1 and φ2, as in the case of a single interval [16], and it should be necessary to make
them verify the above conditions at node. In order to simplify our study, we limit ourselves to state a result in
the case of constant (in space) stationary solutions to system (1.1).

Proposition 2.2. Let us consider a general network G = (N ,A) and system (1.1) set on each arc of the
network, complemented with boundary and transmission conditions (2.4), (2.5), (2.6), and (2.15).

(i) For general values of transmission coefficients ξi,j satisfying (2.8), there is no non trivial constant stationary
solution, i.e. the only constant stationary solution is the null one.

(ii) For the special case of transmission coefficients ξi,j satisfying the dissipation relations (2.8) and (2.12) and
of the ratios ai/bi being equal to the same constant α on each arc, there exists a one-parameter stationary
solution, which is constant by arc and is equal to (Ui, 0, αUi) on the ith arc.

Proof. Take a constant (in space) stationary solution to system (1.1). This means that on each arc of the
network, we have three constant values (ui, vi, φi), which satisfy vi = 0, since vi = uiφix = 0, aiui = biφi, and
boundary conditions (2.6), (2.15), which become in that case

ui =
∑

j∈Ip∪Op

ξi,juj, (2.20)

and
0 =

∑
j �=i

κi,j(φj − φi). (2.21)

We remark that conditions (2.4) and (2.5) are automatically satisfied.
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(i) Denoting by N the number of arcs of the network, we have to fix therefore N unknowns to determine the
stationary solution. Conditions (2.20)–(2.21) impose 4 equations by arc, unless the arc is connected to an
outer node. In that case, there are only 2 conditions. To sum up, if we denote by Nout the number of outer
nodes, we need to satisfy 4N−2Nout conditions. Taking into account relations (2.8), we obtain that equations
(2.6) are linked and the system can be reduced to a system of 4N − 2Nout − Nin conditions, where Nin is
the number of inner nodes, which is, generally speaking, greater than the number of unknowns. Therefore,
unless some particular sets of coefficients κi,j and ξi,j , the only solution for previous system is the null one
on each arc.

(ii) Now, let us consider transmission coefficients ξi,j satisfying relations (2.8) and (2.12). We also assume that
there exists a constant αi such that, for all i, we have ai = αbi. In that case, we can find a stationary solution
defined on each arc by (Ui, 0, αUi). Such kind of solution satisfies clearly the transmission condition (2.21),
but satisfies also condition (2.20) with relations (2.12). �

In the case (i) of the previous proposition, since the total initial mass is strictly positive and is preserved in
time, we cannot expect the system to converge asymptotically to a stationary state which is constant on each
arc and so non-constant asymptotic solutions are expected. In the case (ii), the constant state can be reached,
and U is determined by the total mass of the initial data.

3. Numerical schemes

Here we introduce our numerical schemes. We first give some details about schemes for system (1.1) on a
single interval and the discretization of boundary conditions presented in [29]. Therefore, our main goal will
be to generalize these schemes to the case of a network. In the two first subsections, we will concentrate on
the discretization of the hyperbolic part, whereas the discretization of the parabolic part will be treated in
Section 3.3.

3.1. a

bout AHO schemes for system (3.1) on a single interval]Short review of the results from [29] about AHO
schemes for system (3.1) on a single interval

Let us consider a fixed single interval [0, L]. We define a numerical grid using the following notations: h is
the space grid size, k is the time grid size and (xj , tn) = (jh, nk) for j = 0, . . . , M +1, n ∈ N are the grid points.
We also use the notation fn,j for f(xj , tn), where f is an explicitly known function depending on (x, t). Here
we describe the discretization of system (1.1) with no-flux boundary conditions v(0, t) = v(L, t) = 0, denoting
by f = φx u and omitting the parabolic equation for φ. Since we also work with Neumann boundary conditions
for the φ function, the function f will satisfy the following conditions on the boundary : f(0, t) = f(L, t) = 0.
We therefore consider the following system {

ut + vx = 0,

vt + λ2ux = f − v
(3.1)

and rewrite it in a diagonal form, using the usual change of variables (2.1),⎧⎪⎪⎨⎪⎪⎩
u−

t − λu−
x =

1
2
(u+ − u−) − 1

2λ
f,

u+
t + λu+

x =
1
2
(u− − u+) +

1
2λ

f.

(3.2)

Set ω =
(

u−
u+

)
, so that we can rewrite the system in vector form

ωt + Λωx = Bω + F, (3.3)
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with Λ =
(−λ 0

0 λ

)
, B =

1
2

(−1 1
1 −1

)
and F =

1
2λ

(−f
f

)
. In [29], some computations were shown (see Fig. 1, [29])

where the classical upwind scheme fails to compute correctly the solutions of system (1.1) on a single interval.
Indeed, the upwind scheme gives a non negligible non vanishing flux v at equilibrium, whereas the function v
should be equal to 0. To have a reliable scheme, with a correct resolution of fluxes at equilibrium, we have to
deal with Asymptotically High Order schemes in the following form :

ωn+1,j − ωn,j

k
+

Λ

2h

(
ωn,j+1 − ωn,j−1

)− λ

2h
(ωn,j+1 − 2ωn,j + ωn,j−1) =

∑
�=−1,0,1

B� ωn,j+� +
∑

�=−1,0,1

D� Fn,j+�.

(3.4)
With the following choice of the matrices

B0 =
1
4

(−1 1
1 −1

)
, B1 =

1
4

(−1 1
0 0

)
, B−1 =

1
4

(
0 0
1 −1

)
,

D0 =
1
2

(
1 0
0 1

)
, D−1 =

1
2

(
0 0
0 1

)
, D1 =

1
2

(
1 0
0 0

)
,

(3.5)

we have a second-order AHO scheme on every stationary solutions, which is enough to balance the flux of the
system at equilibrium. This means that the scheme is second order when evaluated on stationary solutions.
Monotonicity conditions

B�,i,j ≥ 0, � = −1, 0, 1, i �= j,

1 − k

h
q + kB0,i,i ≥ 0, ∓(−1)i k

h

λ

2
+

k

2h
q + kB±1,i,i ≥ 0, i = 1, 2.

are satisfied if h ≤ 4λ and k ≤ 4h

h + 4λ
thus ensuring component by component global monotonicity when the

source term f vanishes, see [29] for more details. Let us mention that it should be easy to consider third-order
AHO schemes, but for simplicity (these schemes require a fourth-order AHO scheme for the parabolic equation
with a five-points discretization for φx), we prefer to limit our presentation to the second-order case.

Boundary conditions for scheme (3.4) have to be treated carefully, to enforce mass-conservation. In [29], the
following boundary conditions were used :

vn+1,0 = vn+1,M+1 = 0,

un+1,0 =
(

1 − λ
k

h

)
un,0 + λ

k

h
un,1 − k

(
1
h
− 1

2λ

)
vn,1 − k

2λ
fn,1,

un+1,M+1 =
(

1 − λ
k

h

)
un,M+1 + λ

k

h
un,M + k

(
1
h
− 1

2λ

)
vn,M +

k

2λ
fn,M ,

that is to say, in the u±- variables :

un+1,0
+ = un+1,0

− = (1 − λ
k

h
)un,0

− + (λ
k

h
− k

4
)un,1

− +
k

4
un,1

+ − k

4λ
fn,1,

un+1,M+1
+ = un+1,M+1

− = (1 − λ
k

h
)un,M+1

+ + (λ
k

h
− k

4
)un,M

+ +
k

4
un,M
− +

k

4λ
fn,M .

(3.6)

These boundary conditions have been obtained by calculating the difference of the discrete mass at two successive
computational times and defining un+1,0 and un+1,M+1 as a function of the discrete quantities computed at
time tn in order to cancel exactly this difference. Consequently, the discrete mass will be preserved in time as

the continuous mass
∫ L

0

u(x, t)dx is conserved for system (3.1) with boundary conditions v(0, t) = v(L, t) = 0,

at the continuous level. This technique will be generalized in this paper to the case of a network.
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3.2. The AHO scheme for system (3.1) in the case of a network

Let us consider a network as previously defined in Section 2. Each arc ai ∈ A, 1 ≤ i ≤ N , is parametrized as
an interval ai = [0, Li] and is discretized with a space step hi and discretization points xj

i for j = 0, . . . , Mi + 1.
We still denote by k the time step, which is the same for all the arcs of the network. In this subsection, we
denote by wn,j

i the discretization on the grid at time tn and at point xj
i of a function wi, i = 1, . . . , N on the

ith arc for j = 0, . . . , Mi + 1 and n ≥ 0.
Now, we consider the AHO scheme (3.4) on each interval, and we rewrite it in the u − v variables thanks to

the change of variables (2.1), in order to define the discrete boundary and transmission conditions. We keep the
possibility to use different AHO schemes on different intervals and therefore the coefficients of the scheme will

be indexed by the number of the arc. Let R =
( 1 1
−λ λ

)
be the matrix associated to the change of variables (2.1),

namely such that
(

u
v

)
= R

(
u−
u+

)
. We rewrite (3.4) in the variables u and v as:

un+1,j
i = un,j

i − k

2hi

(
vn,j+1

i − vn,j−1
i

)
+

λik

2hi

(
un,j+1

i − 2un,j
i + un,j−1

i

)
+

k

2

( ∑
�=−1,0,1

β�
u,u,iu

n,j+�
i +

1
λi

∑
�=−1,0,1

β�
u,v,iv

n,j+�
i +

1
λi

∑
�=−1,0,1

γ�
u,if

n,j+�
i

)
, (3.7)

vn+1,j
i = vn,j

i − λ2
i k

2hi

(
un,j+1

i − un,j−1
i

)
+

λik

2hi

(
vn,j+1

i − 2vn,j
i + vn,j−1

i

)
+

k

2

(
λi

∑
�=−1,0,1

β�
v,u,iu

n,j+�
i +

∑
�=−1,0,1

β�
v,v,iv

n,j+�
i +

∑
�=−1,0,1

γ�
v,if

n,j+�
i

)
,

with coefficients β�
u,u,i, β�

u,v,i, β�
v,u,i, β�

v,v,i and γ�
u,i, γ�

v,i defined by

RiB�,iR
−1
i =

1
2

(
β�

u,u,i β�
u,v,i/λi

λiβ
�
v,u,i β�

v,v,i

)
, RiD�,iR

−1
i =

1
2

(∗ γ�
u,i/λi

∗ γ�
v,i

)
. (3.8)

Now, we define the numerical boundary conditions associated to this scheme. As before for equation (3.6), we
need four boundary or transmission conditions to implement this scheme on each interval. Considering an arc
and its initial and end nodes, there are two possibilities: either they are external nodes, namely nodes from
the outer boundaries linked to only one arc, or they are internal nodes connecting several arcs together. The
boundary and transmission conditions will therefore depend on this feature. Below, we will impose two boundary
conditions (3.9)–(3.11) at outer nodes, and two transmission conditions (3.10)–(3.12) at inner nodes.

The first type of boundary conditions will come from condition (2.4) at outer nodes:⎧⎨⎩ vn+1,0
i = 0, if i ∈ Iout,

vn+1,Mi+1
i = 0, if i ∈ Oout,

where Iout (resp. Oout) means that the arc is incoming from (resp. outgoing to) the outer boundary. In the
u±-variables, these conditions become:⎧⎨⎩ un+1,0

+,i = un+1,0
−,i , if i ∈ Iout,

un+1,Mi+1
+,i = un+1,Mi+1

−,i , if i ∈ Oout.
(3.9)
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The second one will come from a discretization of the transmission condition (2.6) at node p, that is to say⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
un,Mi+1
−,i =

∑
j∈Ip

ξi,ju
n,Mj+1
+,j +

∑
j∈Op

ξi,ju
n,0
−,j, if i ∈ Ip,

un,0
+,i =

∑
j∈Ip

ξi,ju
n,Mj+1
+,j +

∑
j∈Op

ξi,ju
n,0
−,j, if i ∈ Op.

(3.10)

However, these relations link all the unknowns together and they cannot be used alone. An effective way to
compute all these quantities will be presented after equation (3.12) below. We still have two missing conditions
per arc, which can be recovered by imposing the exact mass conservation between two successive computational

steps. The discrete total mass is given by In
tot =

N∑
i=1

In
i , where the mass corresponding to the arc i is defined

as:

In
i = hi

⎛⎝un,0
i

2
+

Mi∑
j=1

un,j
i +

un,Mi+1
i

2

⎞⎠ = hi

⎛⎝un,0
+,i + un,0

−,i

2
+

Mi∑
j=1

(
un,j

+,i + un,j
−,i

)
+

un,Mi+1
+,i + un,Mi+1

−,i

2

⎞⎠ .

Computing In+1
tot − In

tot, we find:

In+1
tot − In

tot =
N∑

i=1

hik

2

(
1
k

(
un+1,0

+,i − un,0
+,i

)
+

1
k

(
un+1,0
−,i − un,0

−,i

)
+
(

2
λi

hi
+ β−1

u,u,i + β−1
u,v,i

)
un,0

+,i

+
(
β−1

u,u,i − β−1
u,v,i

)
un,0
−,i −

(
β1

u,u,i + β1
u,v,i

)
un,1

+,i −
(

2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
un,1
−,i

− 1
λi

(
γ1

u,if
n,1
i − γ−1

u,if
n,0
i

))
+

hik

2

(
1
k

(
un+1,Mi+1

+,i − un,Mi+1
+,i

)
+

1
k

(
un+1,Mi+1
−,i − un,Mi+1

−,i

)
+
(
β1

u,u,i + β1
u,v,i

)
un,Mi+1

+,i +
(

2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
un,Mi+1
−,i −

(
2
λi

hi
+ β−1

u,u,i + β−1
u,v,i

)
un,Mi

+,i

+
(
β−1

u,v,i − β−1
u,u,i

)
un,Mi

−,i +
1
λi

(
γ1

u,if
n,Mi+1
i − γ−1

u,if
n,Mi

i

))
.

We are going to impose boundary conditions such that the right-hand side in the previous difference is exactly
canceled. On the outer boundaries we obtain the following type of boundary conditions, following equation (3.6):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un+1,0
+,i = un+1,0

−,i =
(

1 − λi
k

hi
− kβ−1

u,u,i

)
un,0
−,i +

k

2

(
2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
un,1
−,i

+
k

2
(
β1

u,u,i + β1
u,v,i

)
un,1

+,i +
k

2λi

(
γ1

u,if
n,1
i − γ−1

u,if
n,0
i

)
, if i ∈ Iout,

un+1,M+1
+,i = un+1,M+1

−,i =
(

1 − λi
k

hi
− kβ−1

u,u,i

)
un,M+1

+,i +
k

2

(
2
λi

hi
+ β1

u,u,i − β−1
u,v,i

)
un,M

+,i

+
k

2
(
β1

u,u,i + β−1
u,v,i

)
un,M
−,i − k

2λi

(
γ1

u,if
n,Mi+1
i − γ−1

u,if
n,Mi

i

)
, if i ∈ Oout,

(3.11)

where Iout and Oout have the same meaning as previously. These expressions correspond to boundary condi-
tions (3.6) in the case of a more general AHO scheme [29]. Then, using the conditions (3.11) to simplify the
computation of In+1

tot − In
tot and summing with respect to the nodes instead of the arcs, we can rewrite the
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remaining difference of mass in u± variables as:

In+1
tot − In

tot =
∑
p∈N

∑
i∈Op

hik

2

(
1
k

un+1,0
+,i +

1
k
un+1,0
−,i + un,0

+,i

(
−1

k
+ 2

λi

hi
+ β−1

u,u,i + β−1
u,v,i

)

+ un,0
−,i

(
−1

k
+ β−1

u,u,i − β−1
u,v,i

)
− un,1

+,i

(
β1

u,u,i + β1
u,v,i

)
+ un,1

−,i

(
−2

λi

hi
− β1

u,u,i + β1
u,v,i

)

− 1
λi

(
γ1

u,if
n,1
i − γ−1

u,if
n,0
i

))
+
∑
p∈N

∑
i∈Ip

hik

2

(
1
k
un+1,Mi+1

+,i +
1
k

un+1,Mi+1
−,i

+ un,Mi+1
+,i

(
−1

k
+ β1

u,u,i + β1
u,v,i

)
+ un,Mi+1

−,i

(
−1

k
+ 2

λi

hi
+ β1

u,u,i − β1
u,v,i

)

− un,Mi

+,i

(
2
λi

hi
+ β−1

u,u,i + β−1
u,v,i

)
+ un,Mi

−,i

(−β−1
u,u,i + β−1

u,v,i

)
+

1
λi

(
γ1

u,if
n,Mi+1
i − γ−1

u,if
n,Mi

i

))
.

Therefore, using the transmission conditions (3.10) for un+1,Mi+1
−,i if i ∈ Ip and for un+1,0

+,i if i ∈ Op, we can split
the equation interval by interval and obtain the following numerical boundary conditions:

un+1,Mi+1
+,i = hi

⎛⎝hi +
∑

j∈Ip∪Op

hjξj,i

⎞⎠−1

×
(

un,Mi+1
+,i

(
1 − kβ1

u,u,i − kβ1
u,v,i

)

+ un,Mi+1
−,i

(
1 − 2k

λi

hi
− kβ1

u,u,i + kβ1
u,v,i

)
+ kun,Mi

+,i

(
2
λi

hi
+ β−1

u,u,i + β−1
u,v,i

)

+ kun,Mi

−,i

(
β−1

u,u,i − β−1
u,v,i

)− k

λi

(
γ1

u,if
n,Mi+1
i − γ−1

u,if
n,Mi

i

))
, if i ∈ Ip, (3.12)

un+1,0
−,i = hi

⎛⎝hi +
∑

j∈Ip∪Op

hjξj,i

⎞⎠−1

×
(

un,0
+,i

(
1 − 2k

λi

hi
− kβ−1

u,u,i − kβ−1
u,v,i

)
+ un,0

−,i

(
1 − kβ−1

u,u,i + kβ−1
u,v,i

)

+ kun,1
+,i

(
β1

u,u,i + β1
u,v,i

)
+ kun,1

−,i

(
2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
+

k

λi

(
γ1

u,if
n,1
i − γ−1

u,if
n,0
i

))
, if i ∈ Op.

Once these quantities are computed, we can use equations (3.10) at time tn+1, to obtain un+1,Mi+1
−,i if i ∈ Ip

and un+1,0
+,i if i ∈ Op.

In conclusion, we have imposed four boundary conditions (3.9), (3.10), (3.11), and (3.12) on each interval.
Conditions (3.9) and (3.11) deal with the outer boundary, whereas conditions (3.10) and (3.12) deal with the
node. Under these conditions, the total numerical mass is conserved at each step.

Now, we have to discuss the consistency of all these conditions. First, conditions (3.9), (3.10) are imposed
exactly. Besides, it has been proved in [29] that conditions (3.11), set on the outer boundary, are generally
of order one and of order two on stationary solutions. Finally, we need to consider the consistency of the
conditions (3.12) at node. We present here only the case i ∈ Op. Expanding in Taylor series up to order one,



244 G. BRETTI ET AL.

we get:

un+1,0
−,i −

⎛⎝1 +
∑

j∈Ip∪Op

hj

hi
ξj,i

⎞⎠−1

×
(

un,0
+,i

(
1 − 2k

λi

hi
− kβ−1

u,u,i − kβ−1
u,v,i

)
+ un,0

−,i

(
1 − kβ−1

u,u,i + kβ−1
u,v,i

)
+ kun,1

+,i

(
β1

u,u,i + β1
u,v,i

)
+ kun,1

−,i

(
2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
+

k

λi

(
γ1

u,if
n,1
i − γ−1

u,if
n,0
i

))

= un,0
−,i

⎛⎜⎝1 −
⎛⎝1 +

∑
j∈Ip∪Op

hj

hi
ξj,i

⎞⎠−1(
1 + 2k

λi

hi

)⎞⎟⎠− un,0
+,i

⎛⎝1 +
∑

j∈Ip∪Op

hj

hi
ξj,i

⎞⎠−1(
1 − 2k

λi

hi

)

+ O

⎛⎝k +
∑

i∈Ip∪Op

hi

⎞⎠ .

Now, to have consistency, namely to cancel the last two terms on the R.H.S., we need to impose the following
condition linking the space and the time step on each arc:

hi = 2kλi, (3.13)

which implies, thanks to (2.8): ⎛⎝1 +
∑

j∈Ip∪Op

hj

hi
ξj,i

⎞⎠−1

=
1
2
·

Under this condition and using equations (3.2), expanding in Taylor series up to order three we find:

un+1,0
−,i −

⎛⎝1 +
∑

j∈Ip∪Op

hj

hi
ξj,i

⎞⎠−1

×
(

un,0
+,i

(
1 − 2k

λi

hi
− kβ−1

u,u,i − kβ−1
u,v,i

)
+ un,0

−,i

(
1 − kβ−1

u,u,i + kβ−1
u,v,i

)

+ kun,1
+,i

(
β1

u,u,i + β1
u,v,i

)
+ kun,1

−,i

(
2
λi

hi
+ β1

u,u,i − β1
u,v,i

)
+

k

λi

(
γ1

u,if
n,1
i − γ−1

u,if
n,0
i

))

=
k

2
un,0
−,i

(
β1

u,v,i + β−1
u,u,i − β1

u,u,i − β−1
u,v,i

)
+ k∂tu

n,0
−,i +

k2

2
∂ttu

n,0
−,i − kλi

(
1 + k(β1

u,u,i − β1
u,v,i)

)
∂xun,0

−,i

− k2λ2
i ∂xxun,0

−,i +
k

2
un,0

+,i

(
β−1

u,u,i + β−1
u,v,i − β1

u,u,i − β1
u,v,i

)− k2λi

(
β1

u,u,i + β1
u,v,i

)
∂xun,0

+,i

− k

2λi

(
γ1

u,i − γ−1
u,i

)
fn,0

i − k2γ1
u,i∂xfn,0

i + O
(
k3
)

=
k

2

(
un,0
−,i

(−1 + β1
u,v,i + β−1

u,u,i − β1
u,u,i − β−1

u,v,i

)
+ un,0

+,i

(
1 + β−1

u,u,i + β−1
u,v,i − β1

u,u,i − β1
u,v,i

)

− 1
λi

(
1 + γ1

u,i − γ−1
u,i

)
fn,0

i

)
+ k2

(
1
2
∂ttu

n,0
−,i − λi∂txun,0

−,i − λi

(
1
2

+ β1
u,u,i − β1

u,v,i

)
∂xun,0

−,i

− λi

(
−1

2
+ β1

u,u,i + β1
u,v,i

)
∂xun,0

+,i −
(

γ1
u,i +

1
2

)
∂xfn,0

i

)
+ O

(
k3
)
.



A HYPERBOLIC MODEL OF CHEMOTAXIS ON A NETWORK: A NUMERICAL STUDY 245

Thanks to this development we can state our general result of consistency.

Proposition 3.1. Given a general scheme in the form (3.4), the conditions (3.12) at node are consistent only
if on each arc the condition (3.13) is verified. To have the second order accuracy at node the following conditions
on the coefficients of the scheme have to be verified:

β1
u,u,i = β−1

u,u,i, β1
u,v,i − β−1

u,v,i = 1, γ−1
u,i − γ1

u,i = 1. (3.14)

Moreover, to have a third order accuracy for stationary solutions, we need :

β1
u,u,i = β−1

u,u,i = 0, β1
u,v,i = −β−1

u,v,i =
1
2
, γ1

u,i = −γ−1
u,i = −1

2
. (3.15)

Notice that, all these conditions are satisfied for the Roe scheme defined by (3.5).

3.3. Discretization of the parabolic equation for φ in system (2.2)

Here we explain how to compute the approximations fn+1,j
i of the function f on the arc i at discretization

point xj
i and time tn+1 needed for computing (3.7), (3.11) and (3.12). Referring to system (2.2), we have

f = φxu, where φ satisfies the parabolic equation φt −D φxx = au− bφ on each arc. Boundary conditions for φ
are given by equations (2.5) on the outer boundary and (2.15) at a node.

We solve the parabolic equation, using a finite differences scheme in space and a Crank–Nicolson method in
time, namely an explicit-implicit method in time.

Therefore, we will have the following equation for φn+1,j
i , 1 ≤ j ≤ Mi,

φn+1,j
i = φn,j

i − Dik

2h2
i

(
−φn,j+1

i + 2φn,j
i − φn,j−1

i

)
− Dik

2h2
i

(
−φn+1,j+1

i + 2φn+1,j
i − φn+1,j−1

i

)
+

aik

2
(un+1,j

i + un,j
i ) − bik

2
(φn+1,j

i + φn,j
i ).

(3.16)

Now, let us find the two boundary conditions needed on each interval. As in Section 3.2, the boundary conditions
will be given in the case of an outer node and in the case of an inner node. On the outer boundary, condition (2.5)
for φ is discretized using a second order approximation, which is⎧⎪⎨⎪⎩

φn+1,0
i =

4
3
φn+1,1

i − 1
3
φn+1,2

i , if i ∈ Iout,

φn+1,Mi+1
i =

4
3
φn+1,Mi

i − 1
3
φn+1,Mi−1

i , if i ∈ Oout.

(3.17)

Let us now describe our numerical approximation for the transmission condition (2.15) which, as the transmission
condition for the hyperbolic part (2.6), couples the φ functions of arcs having a node in common.

Condition (2.15) is discretized using the same second-order discretization formula as before, namely we have
at node p,

φn+1,Mi+1
i =

4
3
φn+1,Mi

i − 1
3
φn+1,Mi−1

i +
2
3

hi

Di

∑
j∈Ip

κi,j

(
φ

n+1,Mj+1
j − φn+1,Mi+1

i

)
+

2
3

hi

Di

∑
j∈Op

κi,j

(
φn+1,0

j − φn+1,Mi+1
i

)
, if i ∈ Ip,

φn+1,0
i =

4
3
φn+1,1

i − 1
3
φn+1,2

i +
2
3

hi

Di

∑
j∈Ip

κi,j

(
φ

n+1,Mj+1
j − φn+1,0

i

)
+

2
3

hi

Di

∑
j∈Op

κi,j

(
φn+1,0

j − φn+1,0
i

)
, if i ∈ Op.
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These relations can be rewritten as:⎛⎝1 +
2
3

hi

Di

∑
j∈Ip∪Op

κi,j

⎞⎠
︸ ︷︷ ︸

=ηp
i

φn+1,Mi+1
i =

4
3
φn+1,Mi

i − 1
3
φn+1,Mi−1

i +
2
3

hi

Di

∑
j∈Ip

κi,jφ
n+1,Mj+1
j

+
2
3

hi

Di

∑
j∈Op

κi,jφ
n+1,0
j , if i ∈ Ip,⎛⎝1 +

2
3

hi

Di

∑
j∈Ip∪Op

κi,j

⎞⎠
︸ ︷︷ ︸

=ηp
i

φn+1,0
i =

4
3
φn+1,1

i − 1
3
φn+1,2

i +
2
3

hi

Di

∑
j∈Ip

κi,jφ
n+1,Mj+1
j

+
2
3

hi

Di

∑
j∈Op

κi,jφ
n+1,0
j , if i ∈ Op.

(3.18)

Let us remark that the previous discretizations are compatible with relations (3.17) considering that for outer
boundaries the coefficients κi,j are null. Therefore, in this case, the value of ηout

i is just equal to 1. Since
equations (3.18) are coupling the unknowns of all arcs altogether, we have to solve a large system which
contains all the equations of type (3.16) and also the discretizations of transmission conditions (3.18). Note that
for the computational resolution of the mentioned system, characterized by a sparse banded matrix, we used
the LAPACK-Linear Algebra PACKage routine DGBSV designed for banded matrix. Once the values of φn+1,j

i

are known, we can compute a second-order discretization of the derivatives of φ which gives the values of the f
function, namely:

φn+1,j
x,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2 hi

(
φn+1,j+1

i − φn+1,j−1
i

)
, 1 ≤ j ≤ Mi,

1
2 hi

(
−φn+1,2

i + 4φn+1,1
i − 3φn+1,0

i

)
, j = 0,

1
2 hi

(
φn+1,Mi−1

i − 4φn+1,Mi

i + 3φn+1,Mi+1
i

)
, j = Mi + 1.

The discretization of f needed at equations (3.7), (3.11), and (3.12) is therefore given by fn+1,j
i = φn+1,j

x,i un+1,j
i .

Notice that no a priori bound is known for the term fn+1,j
i = φn+1,j

x,i un+1,j
i independently on n and therefore

a stability result would be hard to obtain. However, we would see in the tests of Section 4 that the stability is
guaranteed at a numerical level.

4. Numerical tests

Here we present some numerical experiments for system (1.1) on networks, with the use of the methods
introduced in Section 3, namely the second-order AHO scheme for the hyperbolic part, complemented with
the Crank-Nicolson scheme for the parabolic part. We start with a simple test for the AHO scheme on the
hyperbolic part of Section 3 in the case of a simplified system, where φx is equal to a constant α on each arc,
for which we know the exact stationary states.
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4.1. Case φx constant

For this example, we omit the equation for φ so that the system becomes⎧⎪⎪⎨⎪⎪⎩
u+

t + λu+
x =

1
2λ

(
(α − λ)u+ + (α + λ)u−) ,

u−
t − λu−

x = − 1
2λ

(
(α − λ)u+ + (α + λ)u−) . (4.1)

This system is suitable to test the accuracy of the numerical approximation, since it is easy to compute its
asymptotic stationary solutions. We also rewrite the previous system (4.1) using the usual change of variables
(2.1) which gives {

ut + vx = 0,

vt + λ2ux = α u − v,
(4.2)

with α a constant. To satisfy the subcharacteristic condition in [28], we also assume that

λ > |α|. (4.3)

The subcharacteristic condition guarantees the stability of the singular perturbation induced by the source term
thanks to the monotonicity and the contraction of the corresponding linear operator. Let us explain how to find
the stationary states in the case of the two-arcs network of Figure 3. The method can be easily generalized to
more complex networks. In that case, the stationary solutions satisfy the following equations on the intervals
I1 and I2 : {

vi,x = 0,

λ2
i ui,x = αi ui − vi,

that is to say {
vi = const.,

ui = Ci exp(αix/λ2
i ) + vi/αi.

(4.4)

Since both intervals are connected to the outer boundary, due to boundary condition (2.4), we have v1 = v2 = 0.

Therefore we obtain non constant solutions on each arc, given by u±
i =

ui

2
=

Ci

2
exp(αix/λ2

i ) and the constants

Ci are computed thanks to condition (2.6). Remark that, in that case, we do not expect to have asymptotic
states given by constant stationary solutions, since the only possible constant solution is the null one, which
will be unsuitable, due to the constraint of the conservation of mass. Set

C̃1 =
C1

λ1
exp(α1L1/λ2

1), C̃2 =
C2

λ2
· (4.5)

These constants solve the following system :

MC̃ =

(
λ1(ξ1,1 − 1) λ2ξ1,2

λ1ξ2,1 λ2(ξ2,2 − 1)

)(
C̃1

C̃2

)
= 0. (4.6)

According to (2.8), Ker M �= {0}, and so we have at most one equation and two unknowns. Therefore, there
exists at least one family of non trivial stationary solutions to system (4.2) and exactly one family when
dim Ker M = 1. Remark that in the general case of a single node with an arbitrary number of incoming and
outgoing arcs, assuming that all coefficients ξi,j are strictly positive – or more generally, that the matrix formed
by these coefficients is irreducible, which is somewhat meaningful in the biological context, we can prove that
we have exactly dim Ker M = 1, thanks to the classical Perron–Frobenius theorem.
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Figure 4. Comparison between the densities of the exact and the numerical stationary so-
lutions on arcs 1 and 2 obtained for λ1 = 2, λ2 = 1, αi = α = 0.5, initial mass μ0 = 250
distributed on the network as a symmetric perturbation of the value C0 = 50, L1 = 4, L2 = 1,
dissipative coefficients ξ1,1 = 0.8, ξ2,1 = 0.4, ξ1,2 = 0.2, ξ2,2 = 0.6 and time T = 28.

In the case we are looking for an asymptotic state as a stationary state of the system, we can also take into
account the conservation for mass. In that case, the stationary state we compute should have the same mass as
the initial datum. More precisely, according to equation

μ0 =
2∑

i=1

∫ Li

0

Ci exp
(

αix

λi
2

)
dx =

2∑
i=1

Ci
λ2

i

αi

(
exp
(

αiLi

λi
2

)
− 1
)

,

we have that the free parameter is fixed by the mass conservation.

In particular we set L1 = 4, L2 = 1, αi = α = 0.5, λ1 = 2, λ2 = 1 and take the dissipative transmission
coefficients ξ1,1 = 0.8, ξ2,1 = 0.4, ξ1,2 = 0.2, ξ2,2 = 0.6. If μ0 = 250, the system is solved by C̃1 ∼ 28.13 and
C̃2 ∼ 56.25, so that the stationary solutions are u1 = C1 exp(x/8) and u2 = C2 exp(x/2), with C1 ∼ 34.12 and
C2 ∼ 56.25. The numerical simulations provide the asymptotic densities plotted in Figure 4 and we notice a
nice agreement with the stationary solutions computed analytically. Remark that densities are continuous at
the node as explained in Section 2.6 for dissipative coefficients and vanishing fluxes.

In Figure 5 we present the log-log plot of the error in the L1 norm and L2 norm between the approximated
and the the asymptotic solutions on each arc, computed using the formulas (4.7) and (4.8) of Section 4.4,
between the approximated and the asymptotic solutions to system (4.2). The results in Figure 5 show that the
AHO approximation scheme provides the stationary solutions of the simplified hyperbolic model (4.2) with an
accuracy of first order, and the error for the flux function v tends clearly to zero, faster than for the function u.
Remark that the order estimates for the L∞ norm computed as in (4.9) are exactly the same as the results for
the L1 norm and the L2-norm.

More examples and results showing the asymptotic behavior of solutions to the simple problem (4.2) on larger
networks can be found in [4], while some analytical results are given in [14].
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Figure 5. Log-log plot of the error in the L1-norm (on the left) and L2-norm (on the right)
between the approximated and the the asymptotic solutions on each arc, as a function of
the space step, to system (4.2). Initial data are distributed on the network as a symmetric
perturbation of the value C0 = 50. We used different space steps satisfying condition (3.13),
with λ1 = 2, λ2 = 1, L1 = 4, L2 = 1, μ0 = 250, T = 50.
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Figure 6. Initial data: small perturbation of the value C0 = 20, with the total mass μ0 = 160.

4.2. Asymptotic solutions to the full system (2.2)

Next, we deal with the full system (2.2), which now include the chemotaxis equation. First, we consider
again a network with only two arcs. We take the following data: the total mass μ0 = 160 distributed as a
small perturbation of the value C0 = 20 on two arcs of length L1 = 6 and L2 = 2, see Figure 6, ai = bi = 1,
ui(x, 0) = φi(x, 0) and vi(x, 0) = 0, i = 1, 2 and λ1 = 5, λ2 = 4. In the next figures we represent the asymptotic
stable solutions to system (2.2) on the two-arcs network, produced by our scheme. All the solutions are plotted
at a time where the stationary state is already reached. In particular, in Figure 7 we plot a constant solution
obtained using the dissipative transmission coefficients of Section 2.3. In that case we can observe what was
explained in Section 2.6, namely that in the case of two arcs and one node, there exist particular dissipative
transmission coefficients, such that the asymptotic stationary solutions are constants on all the arcs. In Figure 8
we plot the more common case of non-constant solutions, obtained using different parameters and non-dissipative
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Figure 7. Asymptotic solution at time T = 7.7 for λ1 = 5, λ2 = 4, dissipative coefficients
ξ1,1 = 0.8, ξ2,1 = 0.25, ξ1,2 = 0.2, ξ2,2 = 0.75.
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Figure 8. Asymptotic solution at time T = 30 for λ1 = 5, λ2 = 4, in case of non-dissipative
coefficients ξ1,1 = 0.8, ξ2,1 = 0.25, ξ1,2 = 0.24, ξ2,2 = 0.7.

coefficients. In both cases the limit flux function v is equal to zero everywhere, since for the stationary solution
the flux is constant, the flux on the external nodes is zero, and all the arcs are connected to external nodes.

Let us now consider a larger network composed of twelve nodes and four arcs, see Figure 9. We choose some
non-dissipative transmission coefficients, given in Table 1, in order to satisfy condition (2.8). Let us consider
as initial condition on the incoming arc 5, the function plotted in Figure 10, where we put a small symmetric
perturbation of the constant state C0 = 110.

In this case it is hard to compute analytically the stationary solutions. We only know that non-constant
solutions are generally expected, according to the discussion in Section 2.6. In Figure 11 we plot the asymptotic
densities on the network node by node, starting from North-East and proceeding in a clockwise direction. Notice
that most of the arcs are repeated in the different figures. In Figure 12 the asymptotic fluxes are represented,
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Figure 9. A network composed of twelve arcs (six incoming and six outgoing) connected by
four internal nodes.

Table 1. Transmission coefficients used for the numerical simulations of Figures 11 and 12
given node by node.

ξ12,12 = 0.1, ξ11,12 = 0.3, ξ3,12 = 0.3, ξ4,12 = 0.3,
Node S-W ξ12,11 = 0.2, ξ11,11 = 0.2, ξ3,11 = 0.3, ξ4,11 = 0.3,

ξ12,3 = 0.2, ξ11,3 = 0.2, ξ3,3 = 0.4, ξ4,3 = 0.2,
ξ12,4 = 0.5, ξ11,4 = 0.1, ξ3,4 = 0.2, ξ4,4 = 0.2,
ξ3,3 = 0.1, ξ10,3 = 0.3, ξ9,3 = 0.3, ξ2,3 = 0.3,

Node S-E ξ3,10 = 0.2, ξ10,10 = 0.2, ξ9,10 = 0.3, ξ2,10 = 0.3,
ξ3,9 = 0.2, ξ10,9 = 0.2, ξ9,9 = 0.4, ξ2,9 = 0.2,
ξ3,2 = 0.5, ξ10,2 = 0.1, ξ9,2 = 0.2, ξ2,2 = 0.2,
ξ1,1 = 0.1, ξ2,1 = 0.3, ξ8,1 = 0.3, ξ7,1 = 0.3,

Node N-E ξ1,2 = 0.2, ξ2,2 = 0.2, ξ8,2 = 0.3, ξ7,2 = 0.3,
ξ1,8 = 0.2, ξ2,8 = 0.2, ξ8,8 = 0.4, ξ7,8 = 0.2,
ξ1,7 = 0.5, ξ2,7 = 0.1, ξ8,7 = 0.2, ξ7,7 = 0.2,
ξ5,5 = 0.1, ξ4,5 = 0.3, ξ1,5 = 0.3, ξ6,5 = 0.3,

Node N-W ξ5,4 = 0.2, ξ4,4 = 0.2, ξ1,4 = 0.3, ξ6,4 = 0.3,
ξ5,1 = 0.2, ξ4,1 = 0.2, ξ1,1 = 0.4, ξ6,1 = 0.2,
ξ5,6 = 0.5, ξ4,6 = 0.1, ξ1,6 = 0.2, ξ6,6 = 0.2.
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Figure 10. Initial condition for u and φ on arc 5 of the network presented in Figure 9.
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Figure 11. Stationary solutions for the network composed of 12 arcs and 4 nodes of Figure 9:
the densities are computed at time T = 30, the values of the parameters are given by: λi =
λ = 10, Li = 1, ai = bi = Di = 1. The transmission coefficients can be found in Table 1. The
total initial mass μ0 = 1320 is distributed as a perturbation of the constant state C0 = 110 on
arc 5 as in Figure 10 and as the constant density C0 = 110 on the other arcs, with hi = h =
0.01, k = 0.0005.

and again our scheme is able to stabilize them correctly. We notice that the fluxes of arcs connected to outer
boundaries vanish, whereas the fluxes of inner arcs, even if they are constant, are different from zero.

4.3. Instabilities: the appearance of numerical blow-up

Let us consider some cases that present a strong asymptotical instability. Indeed, for some values of the
parameters of the problem, namely of the arc’s length L and the cell velocity λ, in connection with the total
mass distributed on the arcs of the network, we can observe increasing oscillations, which eventually may cause
the blow-up of solutions. It is important to notice that the blow-up can be already observed for this model
even for a single arc, see Example 4.1 below, when the total mass μ0 is large with respect to the characteristic
parameters L and λ. However, here the presence of more arcs, and so, a greater total length and total mass,
makes this kind of phenomenon much more frequent.

Example 4.1. Here we assume that we have only one interval with L = 1 and λ = 10 and we take, as initial
condition for the density and the chemoattractant, a symmetric perturbation of a constant state C0 = 9000.
The total mass is μ0 = 9000, as shown in Figure 13. The solution presents a clear blow-up at time T = 0.1, see
Figure 14. This blow-up seems associated to non physical negative values of the density function u, and it is
observed in the same way even for refined meshes (see Tab. 2 for the case of two arcs). This is not surprising,
since the quasimonotonicity of the system, see again [28], is violated when the gradient φx is larger than λ.



A HYPERBOLIC MODEL OF CHEMOTAXIS ON A NETWORK: A NUMERICAL STUDY 253

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

fl
u
x
 (

v
)

x

1
2
3
4
5
6
7
8
9

10
11
12

Figure 12. The asymptotic fluxes of the arcs of the network composed of 12 arcs and 4 nodes
at time T = 30, with the same data as Figure 11.
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Figure 13. The initial condition u0(x) is a symmetric perturbation of a constant state
C0 = 9000, the total mass is μ0 = 9000.

Example 4.2. Here we take two arcs of length L1 = 6 and L2 = 2 and the initial density as in Figure 6,
with ai = bi = 1, ui(x, 0) = φi(x, 0), and vi(x, 0) = 0, i = 1, 2. Then we change the values of velocities λ1

and λ2 in order to see how they influence the behavior of solutions to system (1.1). At the junction we assume
transmission and dissipative coefficients, taking ξ1,1 = 0.96 and then satisfying equations (2.13)–(2.14). What
we observe is that solutions blow up in finite time or not according to the relative values of λ1 and λ2, as it is
shown in Figure 15. More precisely, we can observe three different regimes. If λ2 is large with respect to 1

λ1−2 ,
solutions stay bounded and converge to stationary solutions (green “x” in Fig. 15). If λ1 is small with λ2 large
enough, then solutions blow up in finite time (red “+” in Fig. 15). Finally, there is a small region in between,
λ1 around the value 3 and λ2 small enough, such that solutions present a large spike at the boundaries (marked
by blue asterisks “*”).

Let us now focus on the blow-up behavior. Referring to Figure 15, we can choose a pair of velocities belonging
to the blow-up region marked by red crosses “+”, to say λ1 = 1 and λ2 = 2. The time step just before the
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Figure 14. Blow-up of the solution at time T = 0.1, for data in Figure 13 with L = 1, λ = 10,
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Figure 15. Schematization of the regions describing the behavior of solution for μ0 =160 and
the velocities λ1 and λ2 varying: blow-up (marked by red crosses “+”), solutions with a spike
at the boundaries (marked by blue asterisks “*”) and stable stationary solutions (marked by
green “x”).

numerical blow-up time of corresponding solutions, starting from initial data as in Figure 6, is plotted in
Figure 16. Even if apparently we are close to the transmission point, there are many grid points separating
it from the blow-up point. To show that the blow-up is not just a numerical artifact, we perform the same
simulation with the same data, but on refined grids. In Table 2 we report the blow-up time of solutions to
system (1.1) for a fixed global mass μ0 when either the CFL condition ν = k

hλ or h go to zero. Out of the case
of ν = 1, which appears to be more unstable, the blow-up time is independent of the meshes and has to be
considered to occur in the analytical solutions.

4.4. Comparisons and errors

Let us define the error in norm for the numerical solution u on each arc i. We denote by uT
l (hi) the numerical

solution obtained with the space step discretization equal to hi, computed in the node xi
l at the final time T ,
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Figure 16. Blow-up at time T = 4, for initial data as in Figure 6, with L1 = 6, L2 = 2, λ1 = 1
and λ2 = 2, dissipative coefficients with ξ1,1 = 0.96, the total mass is equal to μ0 = 160: on the
left the density u and the concentration φ, on the right the flux v. The space steps are equal
to h1 = 0.001, h2 = 0.002.

Table 2. Blow-up times of the solutions to system (1.1) when either the CFL condition ν = k
hλ

or h go to zero, with transmission coefficients of dissipative type, L1 = 6, L2 = 2, λ1 = 1, λ2 = 2,
μ0 = 160.

Blow-up time

k ν = 1 ν = 1
2

ν = 1
4

ν = 1
8

0.005 2 4 4 4

0.00125 1 4 4 4

0.0005 0.5 4 4 4

with Mi + 1 the number of nodes on each arc. Then, the error in the L1-norm is given by:

eL1,i
m =

∑
l=0,...,m (Mi+1)

εmhi

∣∣uT
l (εm−1hi) − uT

2l (εmhi)
∣∣ with εm = 2−m, m = 1, 2, (4.7)

the error in the L2-norm is:

eL2,i
m =

⎧⎨⎩ ∑
l=0,...,m (Mi+1)

εmhi

(
uT

l (εm−1hi) − uT
2l (εmhi)

)2⎫⎬⎭
1
2

with εm = 2−m, m = 1, 2, (4.8)

and the error in the L∞-norm is:

eL∞,i
m = max

l=0,...,m (Mi+1)

∣∣uT
l (εm−1hi) − uT

2l (εmhi)
∣∣ with εm = 2−m, m = 1, 2. (4.9)

We can introduce the formal order of convergence γi
u of the numerical method in the chosen norm for the

computation of u on each arc as

ei
m

ei
m+1

=
(

εm

εm+1

)γi
u

· (4.10)
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Table 3. Orders and errors of the approximation scheme in the L1-norm for the solutions to
system (1.1), Li = 1, λi = 4, i = 1, 2, μ0 = 120.06, T = 25.

2k γu Error on u γφ Error on φ γv Error on v

0.00625 0.916393 1.78849e-04 0.965238 1.78848e-04 1.212334 3.34559e-07

0.003125 0.959614 8.87206e-05 0.982631 8.87207e-05 –0.058657 1.44060e-07

0.0015625 0.980243 4.41941e-05 0.990856 4.41954e-05 0.666605 1.49949e-07

0.00078125 0.986317 2.20550e-05 0.992983 2.20651e-05 0.863690 9.43741e-08

0.000390625 0.937936 1.10172e-05 0.937109 1.10280e-05 0.955806 5.17981e-08

Table 4. Orders and errors of the approximation scheme in the L2-norm for the solutions to
system (1.1), Li = 1, λi = 4, i = 1, 2, μ0 = 120.06, T = 25.

2k γu Error on u γφ Error on φ γv Error on v

0.00625 0.907699 1.76684e-04 0.956396 1.76655e-04 1.200150 3.68290e-07

0.003125 0.954776 8.81778e-05 0.978138 8.81718e-05 –0.059309 1.59922e-07

0.0015625 0.977727 4.40729e-05 0.988592 4.40590e-05 0.667014 1.66520e-07

0.00078125 0.984965 2.20339e-05 0.991838 2.20316e-05 0.852842 1.04872e-07

0.000390625 0.936044 1.10174e-05 0.936412 1.10200e-05 0.917088 5.78318e-08

Table 5. Orders and errors of the approximation scheme in the L∞-norm for the solutions to
system (1.1), Li = 1, λi = 4, i = 1, 2, μ0 = 120.06, T = 25.

2k γu Error on u γφ Error on φ γv Error on v

0.00625 0.931061 1.79476e-04 0.955242 1.75732e-04 1.141181 5.09809e-07

0.003125 0.927426 8.93231e-05 0.967453 8.80677e-05 –0.046692 2.30825e-07

0.0015625 0.964805 4.58313e-05 0.983334 4.44117e-05 0.666408 2.38407e-07

0.00078125 0.976492 2.32098e-05 0.988576 2.23097e-05 0.857633 1.50162e-07

0.000390625 0.904241 1.17039e-05 0.926685 1.11911e-05 0.948519 8.27802e-08

Then, for a fixed norm, we can define the total error on the network of N arcs as

TOTerr =
N∑

i=1

ei
1. (4.11)

and the formal order of convergence of the numerical method on the network as the minimum:

γu = min
i

γi
u, (4.12)

and analogous definitions can be provided for the computation of numerical error for φ and v.
Tables 3, 4 and 5 show, respectively, the L1-error (4.7), L2-error (4.8) and L∞-error (4.9) on the asymptotic

solutions u, φ and v and order of convergence (4.12) of the approximation scheme applied to a network composed
by 2 arcs having the same length L1 = L2 = 1 and the same velocities λ1 = λ2 = 4, with total initial mass
μ0 = 120.06 distributed as a perturbation of the constant state C0 = 60.
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The results in Tables 3, 4 and 5 show the effectiveness of AHO approximation scheme in the solution of
the transmission problem represented by the hyperbolic model (1.1). We notice indeed that even in this more
general case the scheme still keeps a formal accuracy of first order, although the interactions at the boundaries
could deteriorate its accuracy.
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& Applications (Berlin) [Mathematics & Applications]. Springer-Verlag, Berlin (2006).

[7] Y. Dolak and T. Hillen, Cattaneo models for chemosensitive movement. Numerical solution and pattern formation. J. Math.
Biol. 46 (2003) 153–170; corrected version after misprinted p. 160 in J. Math. Biol. 46 (2003) 461–478.
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