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ERROR ESTIMATES FOR GALERKIN REDUCED-ORDER MODELS
OF THE SEMI-DISCRETE WAVE EQUATION
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Abstract. Galerkin reduced-order models for the semi-discrete wave equation, that preserve the
second-order structure, are studied. Error bounds for the full state variables are derived in the con-
tinuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark
average-acceleration scheme is used on the second-order semi-discrete equation. When the approxi-
mating subspace is constructed using the proper orthogonal decomposition, the error estimates are
proportional to the sums of the neglected singular values. Numerical experiments illustrate the theo-
retical results.
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1. Introduction

Reduced-order models have received lots of attention for simulating dynamical systems at a reduced cost.
Numerical simulations have highlighted the efficiency of model-order reduction for many applications. Examples
include linear time-invariant dynamical systems with fixed parameter values [6], systems governed by parame-
terized partial differential equations (PDE) [18,34,36,37], biology [4], aeroelasticity [1,3,27,35], and structural
dynamics [2,12,13,20]. Although reduction techniques have been used for many years, theoretical results on the
state approximation error remain scarce.

For first-order dynamical systems, Rathinam and Petzold [31] derive a priori error bounds of solutions from
a proper orthogonal decomposition (POD) reduced-order model and analyze the effects of small perturbation
on the subspace used for constructing the POD basis. In a follow-up work, Homescu, Petzold, and Serban [16]
compute estimates and bounds for these errors by a combination of small sample statistical condition estimation
and error estimation using the adjoint method. In [21, 22], Kunisch and Volkwein derive error estimates for a
Galerkin POD-based method for a class of nonlinear parabolic partial differential equations (PDE). Nonlinear
problems with a Lipschitz continuous nonlinearity are considered in [21] and extended to the Navier-Stokes
equations in [22]. POD-based Galerkin schemes for parabolic partial differential equations are analyzed before
any spatial discretization is applied. Discrete systems, obtained after time integration with the backward Euler,
the forward Euler, and the Crank−Nicholson methods, are also analyzed. Their analysis provides a rigorous
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argument to the heuristic rule that the error in trajectory approximation should be proportional to the sum of
neglected singular values in the truncated singular value decomposition (SVD) used to obtain the reduced basis.
Following the lecture notes [38], Chaturantabut and Sorensen [11] study state approximation error of POD-
reduced systems for sets of coupled ordinary differential equations with Lipschitz continuous nonlinearities.
Their theoretical result separates the effect of the model reduction from the effect of time discretization and is
illustrated for the case of backward Euler time integration.

Even though the semi-discrete wave equation,

d2y
dt2

(t) + Cy(t) = b(t) (1.1)

(where C is a positive matrix), can be formulated as a first-order dynamical system,

d
dt

[
dy
dt
y

]
+
[

0 C
−I 0

] [
dy
dt
y

]
=
[
f
0

]
, (1.2)

model-order reduction for the first-order system (1.2) might destroy the original structure of (1.1): a reduced-
order system for (1.2) may not correspond to a second-order system of the form (1.1) and the final reduced
state variables may not retain a physical interpretation (for example, by mixing values of the state and of its
time-derivative). Beattie and Gugercin [7, 8] argue that, to preserve the structure, the model-order reduction
should be applied directly to the second-order system. Recently, Chapelle, Gariah, and Sainte-Marie [10] derived
error estimates for a Galerkin−POD reduced system in a function space setting for the wave equation. Their
error analysis relies on a specific projection operator to prove new estimates for the continuous solution. The
authors do not consider time discretization issues. Herkt et al. [14] present an extension for the error analysis of
Kunisch and Volkwein [21,22] to Galerkin-based reduced systems arising from the second-order semi-discretized
wave equation. They study two sets of snapshots. When the snapshots are composed only of state variables
(or displacements), their result yields an upper estimate that grows with decreasing time steps. To control
the right hand side of their error estimate, Herkt et al. [14] include, in the snapshots set, all the velocities
and accelerations. The objective of this paper is to derive error estimates for Galerkin-based reduced systems
applied to the second-order semi-discretized wave equation using a first-order formulation that still preserves
the original structure. The resulting estimates remain bounded with decreasing time steps for Galerkin-based
reduced systems that preserve the structure of the wave equation.

The paper is organized as follows. Section 2 reviews useful general error estimates for a first-order system,

dy
dt

(t) = Ay(t) + b(t).

Then new error estimates are presented for the discrete system obtained after time integration with the
Crank−Nicholson scheme, also investigated in [23, 32]. These results are extended to generalized systems of
the form,

Mdx
dt

(t) = Ax(t) + f(t),

by selecting the appropriate norms to measure the errors. Section 3 presents new estimates for the semi-discrete
wave equation,

M
d2u
dt2

(t) + D
du
dt

(t) + Ku(t) = b(t),

while preserving the structure of the second-order system. The discrete system obtained after time integration
with the average constant acceleration Newmark scheme (γ = 1

2 , β = 1
4 ) is analyzed. Finally Section 4 describes

numerical experiments highlighting the theoretical results. For the sake of clarity, most of the proofs are gathered
in the Appendix.
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2. Error estimates for a system for first-order ordinary differential

equations

This section recalls several standard theoretical results that will be useful for our analysis. These results
provide bounds on the state errors when approximating the solution of a full-order model with the solution of
a reduced-order model.

2.1. Error estimates for a simple first-order dynamical system

Consider the system
dy
dt

(t) = Ay(t) + b(t), y(0) = y0, for t ∈ [0, T ], (2.1)

where the matrix A is constant. Such system appears, for example, after spatial discretization of a parabolic
partial differential equation (as studied in [21]). Results for the system (2.1) are a compilation of bounds from
the works [11, 21, 31].

To build a reduced-order model by Galerkin projection on a subspace, a matrix V is introduced with columns
spanning the subspace. The approximation of state variables y is defined as

yROM(t) = ỹ(t) + Vyr(t), (2.2)

where ỹ(t) is a known function3, and

VT

(
dyROM

dt
(t) − AVyROM(t) − b(t)

)
= 0. (2.3)

The reduced variables yr are defined by the evolution equation⎧⎨
⎩

dyr

dt
(t) =

(
VT V

)−1
VTAVyr(t) +

(
VTV

)−1
VT

(
b + Aỹ(t) − dỹ

dt
(t)
)

,

yr(0) =
(
VT V

)−1
VT (y0 − ỹ(0)) ,

(2.4)

over the time interval [0, T ].
The error is defined as

eROM(t) = y(t) − ỹ(t) − Vyr(t) = y(t) − ỹ(t) − V
(
VTV

)−1
VT (y(t) − ỹ(t))

+ V
[(

VTV
)−1

VT (y(t) − ỹ(t)) − yr(t)
]

(2.5)

and decomposed into two parts, eROM = eP + eV , where eP is the error arising from the projection into the
subspace spanned by V

eP (t) = y(t) − ỹ(t) − V
(
VTV

)−1
VT (y(t) − ỹ(t)) (2.6)

and eV is the error inside the subspace

eV (t) = V
[(

VT V
)−1

VT (y(t) − ỹ(t)) − yr(t)
]
. (2.7)

The error eV satisfies the equation

deV

dt
= V

[(
VTV

)−1
VT dy

dt
− (

VT V
)−1

VT dỹ
dt

− dyr

dt

]
= V

(
VTV

)−1
VT A (eP + eV ) (2.8)

3Usually, ỹ is chosen constant and equal to 0 or y0. A time-dependent choice does not impact the analysis and such a choice
will be convenient for the second-order wave equation.
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with the initial condition eV (0) = 0. The explicit formula for eV is

eV (t) = V
∫ t

0

e(V
T V)−1

VT AV(t−τ)
(
VTV

)−1
VT AeP (τ)dτ

= V
∫ t

0

e(V
T V)−1

VT AV(t−τ)
(
VTV

)−1
VT AZ

(
ZT Z

)−1
ZT eP (τ)dτ, (2.9)

where Z denotes a matrix whose columns span the orthogonal complement of the span of V4.

Theorem 2.1. The error between the solution y and the approximation yROM satisfies

∫ T

0

‖eROM(t)‖2
2 dt ≤

(∥∥∥F (T,
(
VT V

)−1
VT AV)

∥∥∥2

VT V

∥∥∥VT AZ
(
ZT Z

)−1
ZT

∥∥∥2

(VT V)−1
+ 1

)
∫ T

0

∥∥∥y(t) − ỹ(t) − V
(
VT V

)−1
VT (y(t) − ỹ(t))

∥∥∥2

2
dt (2.10)

where ‖·‖2 is the usual Euclidian norm. When H is a symmetric positive definite matrix, the matrix norm ‖B‖H

is
√

λmax(BTHB). The constant ‖F (T,B)‖H is defined by

‖F (T,B)‖H = sup
u �=0

√√√√√
∫ T

0

∥∥∥∫ t

0
eB(t−τ)u(τ)dτ

∥∥∥2

H
dt∫ T

0 ‖u(t)‖2
H dt

· (2.11)

This result appeared in [11, 31]. The amplification factor in front of the projection error depends on the
original problem through the quantities A and T as well as the reduced-order model through V. The constant∥∥∥F (T,

(
VT V

)−1
VT AV)

∥∥∥
VT V

is discussed in [11,31]. It usually grows or decays exponentially with T at a rate

that is proportional to the largest eigenvalue for the pencil
(
VT (AT + A)V,VT V

)
. The bound (2.10) indicates

that the error eROM is controlled by the error from the projection into the subspace spanned by V.
If the entire continuous trajectory y(t) is available on the interval [0, T ], a basis generated by the proper

orthogonal decomposition [19, 28] satisfies the following minimization problem

min
rank{V}=k

∫ T

0

∥∥∥y(t) − ỹ(t) − V
(
VT V

)−1
VT (y(t) − ỹ(t))

∥∥∥2

2
dt (2.12)

and ∫ T

0

∥∥∥y(t) − ỹ(t) − V
(
VT V

)−1
VT (y(t) − ỹ(t))

∥∥∥2

2
dt =

r∑
i=k+1

λ∞
i (2.13)

where r is the rank for the matrix

R =
∫ T

0

(y(t) − ỹ(t)) (y(t) − ỹ(t))T dt (2.14)

and (λ∞
i )1≤i≤r is the set of non-zero non-increasing eigenvalues for the pencil (R, I). The notation for R and

for its eigenvalues λ∞
i appeared previously in [11, 22]. When combined with (2.13), the bound (2.10) indicates

that the error when approximating the state variables over the whole time interval [0, T ] is proportional to the
sum of the neglected singular values obtained from the proper orthogonal decomposition.

4V and Z are often composed of orthonormal columns. The general case without orthonormal columns will be used for analyzing
the second-order wave equation.
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Remark 2.2. When the matrix A is symmetric and V is spanned by a subset of eigenvectors, the term VT AZ
is 0 and the error estimate (2.10) simplifies to∫ T

0

‖eROM(t)‖2
2 dt ≤

∫ T

0

∥∥∥y(t) − ỹ(t) − V
(
VT V

)−1
VT (y(t) − ỹ(t))

∥∥∥2

2
dt. (2.15)

Next consider the discrete system obtained when using the trapezoidal time integration scheme,

yj − yj−1

Δt
= A

(
yj + yj−1

2

)
+

bj + bj−1

2
, for 1 ≤ j ≤ nt, (2.16)

where Δt = T/nt, bj = b(jΔt) and yj is the approximation of y(jΔt). Approximating yj as follows

yj ≈ ỹj + Vŷj

(where the sequence {ỹj} is known a priori), the reduced variables for the incremental update satisfies

ŷj − ŷj−1

Δt
=
(
VT V

)−1
VTAV

(
ŷj + ŷj−1

2

)
+
(
VT V

)−1
VT

(
bj + bj−1

2

)

+
(
VTV

)−1
VT A

(
ỹj + ỹj−1

2

)
− (

VTV
)−1

VT

(
ỹj − ỹj−1

Δt

)
(2.17)

with
ŷ0 =

(
VT V

)−1
VT (y0 − ỹ(0)) .

Define the error

ej = yj − ỹj − Vŷj = yj − ỹj − V
(
VT V

)−1
VT (yj − ỹj) + V

[(
VT V

)−1
VT (yj − ỹj) − ŷj

]
(2.18)

and the decomposition, ej = ρj + θj , where

ρj = yj − ỹj − V
(
VTV

)−1
VT (yj − ỹj) ∈ spanZ

and
θj = V

[(
VT V

)−1
VT (yj − ỹj) − ŷj

]
.

Analogously to the previous error eV , the part θj satisfies

θj − θj−1

Δt
= V

(
VT V

)−1
VTA

(
ρj + ρj−1

2
+

θj + θj−1

2

)

with θ0 = 0.

Theorem 2.3. The norms for the error between the approximation yj and the discrete solution from the reduced
order model (2.17) satisfy

Δt

nt∑
j=0

‖yj − ỹj − Vŷj‖2
2 ≤

⎛
⎝Δt

nt∑
j=0

∥∥∥yj − ỹj − V
(
VT V

)−1
VT (yj − ỹj)

∥∥∥2

2

⎞
⎠
⎡
⎣1 + 2α2T

⎛
⎝Δt

nt∑
j=0

e2γjΔt

⎞
⎠
⎤
⎦ ,

(2.19)
where the coefficient α is

α =
1
2

∥∥∥∥∥
(
I − Δt

2
V
(
VTV

)−1
VT A

)−1

V
(
VT V

)−1
VTAZ

(
ZT Z

)−1
ZT

∥∥∥∥∥
2
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and the coefficient γ is

γ =

∥∥∥∥∥
(
I− Δt

2
V
(
VT V

)−1
VT A

)−1

V
(
VT V

)−1
VT A

∥∥∥∥∥
2

.

The proof for this theorem is described in the appendix. This result does not make any assumption on the
matrix A, while the analysis of Kunisch and Volkwein ([21], Thm. 8) requires that the continuous counterpart
to A be symmetric negative definite. When the time-step Δt goes to 0, the right hand side of (2.19) remains
bounded as

α → 1
2

∥∥∥V (
VT V

)−1
VT AZ

(
ZT Z

)−1
ZT

∥∥∥
2

and

Δt

nt∑
j=0

e2γjΔt →
∫ T

0

e2γ∗tdt with γ∗ =
∥∥∥V (

VT V
)−1

VTA
∥∥∥

2
.

The proper orthogonal decomposition using the method of snapshots [33] on the snapshots matrix

Ŝ = [y0 − ỹ0, . . . ,ynt − ỹnt ]

can generate a matrix V whose columns are the eigenvectors of ŜŜT for the k dominant eigenvalues (λi)1≤i≤r.
Then the projection error is given by

nt∑
j=0

∥∥∥yj − ỹj − V
(
VTV

)−1
VT (yj − ỹj)

∥∥∥2

2
=

r∑
j=k+1

λi, (2.20)

where r is the rank of ŜŜT .

Remark 2.4. Convergence of the trapezoidal scheme [30] indicates that

max
0≤j≤nt

‖y(tj) − yj‖ = O (
Δt2

)
. (2.21)

Theorem 2.3 relates the error between the discrete solution from the reduced order model (ỹj + Vŷj)0≤j≤nt

and the approximation to the exact solution (yj)0≤j≤nt
. The error between the exact solution (y (tj))0≤j≤nt

and the discrete solution from the reduced order model satisfies

Δt

nt∑
j=0

‖y(tj) − ỹj − Vŷj‖2
2 ≤ 2Δt

nt∑
j=0

‖y(tj) − yj‖2 + 2Δt

nt∑
j=0

‖yj − ỹj − Vŷj‖2
2 .

When the time-step Δt goes to 0, both terms on the right hand side will be controlled.

2.2. Error estimates for a generalized first-order dynamical system

Consider a generalized first-order dynamical system of the form

Mdx
dt

(t) = Ax(t) + f(t), (2.22)

where M is a symmetric positive definite matrix. Error estimates when approximating the continuous trajectory
x(t) and after time-discretization are presented in this section. The originality of this analysis arises from the
transformation between the generalized first-order system (2.1) and the initial system (2.22). This transformation
is important because it may have severe implications during the numerical computations. For example, Amsallem
and Farhat [5] show that an inappropriate transformation (multliplying by M−1 versus working with M 1

2 ) can
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result in unphysical unstable modes of the resulting reduced-order model. Similarly, an inappropriate choice can
result in more computational work for an iterative eigensolver [15]. In both cases, the transformation with M 1

2

is recommended. This transformation is used here to analyze the system (2.22).
An approximation of x is constructed in the subspace spanned by the columns of V such that

xROM(t) = x̃(t) + Vxr(t)

where the function x̃ is known a priori and the reduced variable xr is solution to the system⎧⎨
⎩VTMV dxr

dt
(t) = VTAVxr(t) + VT

(
Ax̃(t) + f(t) −Mdx̃

dt
(t)
)

,

xr(0) =
(VTMV)−1 VTM (x0 − x̃(0)) ,

(2.23)

over the time interval [0, T ].
Define the error EROM = x − xROM with the parts

EP = x − x̃ − V (VTMV)−1 VTM (x − x̃) (2.24)

and
EV = V

[(VTMV)−1 VTM (x − x̃) − xr

]
. (2.25)

When decomposing Rn as
R

n = spanV ⊕⊥M spanZ,

the projection error EP belongs to spanZ. Theorem 2.1 is modified as follows.

Theorem 2.5. The error between the solution x of (2.22) and the approximation xROM satisfies

∫ T

0

‖EROM(t)‖2
M dt ≤

(∥∥∥F (T,
(VTMV)−1 VTAV)

∥∥∥2

VTMV

∥∥∥VTAZ (ZTMZ)−1 ZTM 1
2

∥∥∥2

(VTMV)−1
+ 1

)

×
∫ T

0

∥∥∥x(t) − x̃(t) − V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt, (2.26)

where the constant
∥∥∥F (T,

(VTMV)−1 VTAV)
∥∥∥
VT MV

is defined by (2.11).

The constant
∥∥∥F (T,

(VTMV)−1 VTAV)
∥∥∥
VTMV

also grows or decays exponentially with T at a rate that is

proportional to the largest eigenvalue for the pencil
(VT (AT + A)V ,VTMV). The proof for this theorem relies

on the change of variables y = M 1
2 x and is described in the Appendix.

If the entire continuous trajectory x(t) is available on the interval [0, T ], an approximating subspace may be
obtained by solving the minimization problem

argminrank{V}=k

∫ T

0

∥∥∥x(t) − x̃(t) − V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt.

Introducing the matrix

R =
∫ T

0

(x(t) − x̃(t)) (x(t) − x̃(t))T dt,

an optimal matrix V of rank k will span a stable subspace for the pencil (MRM,M) (see the Appendix).
Denoting (λ∞

i )1≤i≤r the non-zero eigenvalues of the pencil (MRM,M) – ordered in a non-increasing fashion
– the projection error for the minimization problem becomes

min
rank{V}=k

∫ T

0

∥∥∥x(t) − x̃(t) − V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt =

r∑
i=k+1

λ∞
i .
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Remark 2.6. When the matrix A is symmetric and V is spanned by a subset of generalized eigenvectors for
the pencil (A,M), the term VTAZ becomes 0 and the error estimate (2.26) simplifies to∫ T

0

‖EROM(t)‖2
M dt ≤

∫ T

0

∥∥∥x(t) − x̃(t) − V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt. (2.27)

Consider the discrete system obtained from trapezoidal time integration

M
(

xj − xj−1

Δt

)
= A

(
xj + xj−1

2

)
+

fj + fj−1

2
, for 1 ≤ j ≤ nt,

where Δt = T/nt, fj = f(jΔt) and xj is the approximation of x(jΔt).
A reduced-order model is built for the approximation

xj ≈ x̃j + Vx̂j

(where the sequence {x̃j} is known). The reduced variables x̂j satisfy the system

VTMV
(

x̂j − x̂j−1

Δt

)
= VTAV

(
x̂j + x̂j−1

2

)
+ VT

(
fj + fj−1

2

)
+ VTA

(
x̃j + x̃j−1

2

)
− VTM

(
x̃j − x̃j−1

Δt

)
(2.28)

with
x̂0 =

(VTMV)−1 VTM (x0 − x̃0) .

Theorem 2.3 is modified as follows.

Theorem 2.7. The norms for the error between the approximation xj and the discrete solution from the reduced
order model (2.28) satisfy

Δt

nt∑
j=0

‖xj − x̃j − Vx̂j‖2
M ≤

⎛
⎝Δt

nt∑
j=0

∥∥∥xj − x̃j − V (VTMV)−1 VTM (xj − x̃j)
∥∥∥2

M

⎞
⎠

×
⎡
⎣1 + 2α2T

⎛
⎝Δt

nt∑
j=0

e2γjΔt

⎞
⎠
⎤
⎦ , (2.29)

where the coefficient α is

α =
1
2

∥∥∥∥∥M 1
2

(
M− Δt

2
MV (VTMV)−1 VTA

)−1

MV (VTMV)−1 VTAZ (ZTMZ)−1 ZTM 1
2

∥∥∥∥∥
2

and the coefficient γ is

γ =

∥∥∥∥∥M 1
2

(
M− Δt

2
MV (VTMV)−1 VTA

)−1

MV (VTMV)−1 VTAM− 1
2

∥∥∥∥∥
2

.

Remark 2.8. When the time-step Δt goes to 0, the right hand side of (2.29) remains bounded as

α → 1
2

∥∥∥M 1
2V (VTMV)−1 VTAZ (ZTMZ)−1 ZTM 1

2

∥∥∥
2

and

Δt

nt∑
j=0

e2γjΔt →
∫ T

0

e2γ∗tdt with γ∗ =
∥∥∥M 1

2V (VTMV)−1 VTAM− 1
2

∥∥∥
2
.



ERROR ESTIMATES FOR ROM OF THE SEMI-DISCRETE WAVE EQUATION 143

The proper orthogonal decomposition yields, from the matrix

R̂ =
nt∑

j=0

(xj − x̃j) (xj − x̃j)
T

,

a matrix V whose columns are eigenvectors for the pencil
(
MR̂M,M

)
. Denoting (λi)1≤i≤r the non-zero

eigenvalues of the pencil – ordered in a non-increasing fashion – the projection error for this choice of matrix V
is

nt∑
j=0

∥∥∥xj − x̃j − V (VTMV)−1 VTM (xj − x̃j)
∥∥∥2

M
=

r∑
i=k+1

λi.

The eigenvalues (λi)1≤i≤r and the matrix V may also be computed via the eigendecomposition of

[x0 − x̃0, . . . ,xnt − x̃nt ]
T M [x0 − x̃0, . . . ,xnt − x̃nt ] .

Results for the generalized first-order dynamical system (2.22) will be carefully used in the following section
to analyze structure-preserving reduced-order models for the semi-discrete wave equation.

3. Error estimates for reduced-order models of the semi-discrete wave

equation

3.1. Error estimates for structure-preserving reduced-order models

In this section, the semi-discrete wave equation is considered,

M
d2u
dt2

(t) + D
du
dt

(t) + Ku(t) = b(t) (3.1)

where M is a symmetric positive definite matrix. For example, in structural dynamics, M is the mass matrix,
D the damping matrix, and K the stiffness matrix. The objective is to analyze error estimates for structure-
preserving reduced-order models of the form

V̂T MV̂
d2ur

dt2
(t) + V̂T DV̂

dur

dt
(t) + V̂TKV̂ur(t) = g(t) (3.2)

where the columns of V̂ span the subspace of interest and g contains the reduced source terms.
The semi-discrete wave equation (3.1) can be reformulated as a first-order dynamical system,[

M 0
0 1

τ2 M

]
d
dt

([
v
u

])
=
[ −D −K

1
τ2 M 0

] [
v
u

]
+
[
b
0

]
(3.3)

with the initial condition [
v
u

]
(0) =

[
v0

u0

]
, (3.4)

where τ is a characteristic time for the problem of interest. The scaling by 1
τ2 is simply introduced to match

the units for energy-like quantities, i.e.

[
v
u

]T [
M 0
0 1

τ2 M

] [
v
u

]
= vT Mv +

1
τ2

uTMu,

where v is a vector of velocities and u a vector of displacements.
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A reduced-order model is built for the approximation[
vROM(t)
uROM(t)

]
=

[
dũ
dt (t)

ũ(t)

]
+
[
V̂ 0
0 V̂

] [
vr(t)
ur(t)

]
, (3.5)

where the function ũ is known a priori (for example, ũ(t) = u0 + v0t). The reduced variables vr and ur satisfy[
V̂T MV̂ 0

0 1
τ2 V̂TMV̂

]
d
dt

([
vr

ur

])
(t) =

[ −V̂TDV̂ −V̂TKV̂
1
τ2 V̂T MV̂ 0

] [
vr(t)
ur(t)

]
+
[
V̂Tb(t)

0

]

+
[ −V̂TD −V̂TK

1
τ2 V̂T M 0

] [
dũ
dt (t)
ũ(t)

]
−
[
V̂T M 0

0 1
τ2 V̂T M

] [
d2ũ
dt2 (t)
dũ
dt (t)

]
. (3.6)

The second equation implies that the approximation vROM satisfies

vROM(t) =
duROM

dt
(t),

i.e. this structure is preserved for the reduced-order model5. The corresponding second-order equation is

V̂T MV̂
d2ur

dt2
(t) + V̂T DV̂

dur

dt
(t) + V̂TKV̂ur(t) = V̂T b(t) − V̂TM

d2ũ
dt2

(t) − V̂T D
dũ
dt

(t) − V̂TKũ(t), (3.7)

indicating that the second-order structure and the symmetry of matrices (like M and V̂T MV̂) are preserved.
The right hand side is modified to reflect the incremental representation (3.5). The initial conditions for the
reduced variables ur and vr are

ur(0) = (V̂T MV̂)−1V̂T M (u0 − ũ(0)) and vr(0) = (V̂T MV̂)−1V̂T M
(
v0 − dũ

dt
(0)

)
.

To apply the previous results, the following identifications are made

x ↔
[
v
u

]
, V ↔

[
V̂ 0
0 V̂

]
, M ↔

[
M 0
0 1

τ2M

]
, A ↔

[ −D −K
1
τ2M 0

]
. (3.8)

Consequently, the errors satisfy the relationships

‖EROM(t)‖2
M ↔ 1

τ2

∥∥∥u(t) − ũ(t) − V̂ur(t)
∥∥∥2

M
+
∥∥∥∥du

dt
(t) − dũ

dt
(t) − V̂

dur

dt
(t)
∥∥∥∥

2

M

and∥∥∥x(t) − x̃(t) − V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M

↔ 1
τ2

∥∥∥∥u(t) − ũ(t) − V̂
(
V̂T MV̂

)−1

V̂T M (u(t) − ũ(t))
∥∥∥∥

2

M

+
∥∥∥∥du

dt
(t) − dũ

dt
(t) − V̂

(
V̂TMV̂

)−1

V̂T M
(

du
dt

(t) − dũ
dt

(t)
)∥∥∥∥

2

M

.

When decomposing R2n as

R
2n = spanV ⊕⊥M spanZ = span

[
V̂ 0
0 V̂

]
⊕⊥M spanZ,

Theorem 2.1 is modified as follows.

5This feature results also from the choice of

[
dũ
dt

(t)
ũ(t)

]
in the incremental representation (3.5).
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Theorem 3.1. The error between the solution, u, (3.1) and the approximation, uROM = ũ+V̂ur, (3.7) satisfies

∫ T

0

‖u(t) − uROM(t)‖2
M

τ2
+
∥∥∥∥du

dt
(t) − duROM

dt
(t)
∥∥∥∥

2

M

dt

≤
(

1 +
∥∥∥F (T,

(VTMV)−1 VTAV)
∥∥∥2

VT MV

∥∥∥VTAZ (ZTMZ)−1 ZTM 1
2

∥∥∥2

(VT MV)−1

)

×
(∫ T

0

1
τ2

∥∥∥∥u(t) − ũ(t) − V̂
(
V̂T MV̂

)−1

V̂TM (u(t) − ũ(t))
∥∥∥∥

2

M

dt

+
∫ T

0

∥∥∥∥du
dt

(t) − dũ
dt

(t) − V̂
(
V̂T MV̂

)−1

V̂T M
(

du
dt

(t) − dũ
dt

(t)
)∥∥∥∥

2

M

dt

)
, (3.9)

where the constant
∥∥∥F (T,

(VTMV)−1 VTAV)
∥∥∥
VT MV

is defined by (2.11).

Assuming that the entire continuous trajectory u(t) is available on the interval [0;T ], results in Section 2.2
indicate that eigenspaces for the pencil([∫ T

0
M

(
du
dt (t) − dũ

dt (t)
) (

du
dt (t) − dũ

dt (t)
)T

Mdt 1
τ2

∫ T

0
M

(
du
dt (t) − dũ

dt (t)
)
(u(t) − ũ(t))T Mdt

1
τ2

∫ T

0
M (u(t) − ũ(t))

(
du
dt (t) − dũ

dt (t)
)T

Mdt 1
τ4

∫ T

0
M (u(t) − ũ(t)) (u(t) − ũ(t))T Mdt

]
,

[
M 0
0 1

τ2 M

])

have good approximation properties. Unfortunately, these resulting eigenspaces are not guaranteed to preserve
the structure of the semi-discrete wave equation. If, instead, the subspace spanned by V̂ is selected to minimize
the projection error in (3.9), then the matrix V̂ satisfies

V̂ = arg max
rankV=k

∫ T

0

tr

(
MV

(
VT MV

)−1
VT M

(
du
dt

(t) − dũ
dt

(t)
)(

du
dt

(t) − dũ
dt

(t)
)T

)

+
1
τ2

tr
(
MV

(
VT MV

)−1
VT M (u(t) − ũ(t)) (u(t) − ũ(t))T

)
dt.

Following the derivation in the appendix, a minimizing basis V̂ will span a stable subspace for the pencil
(MRM,M), where the matrix R is defined as

R =
∫ T

0

(
du
dt

(t) − dũ
dt

(t)
)(

du
dt

(t) − dũ
dt

(t)
)T

+
1
τ2

(u(t) − ũ(t)) (u(t) − ũ(t))T dt.

Denoting (λ∞
i )1≤i≤r the non-zero eigenvalues of the pencil (MRM,M) – ordered in a non-increasing fashion –

the projection error for the minimization problem becomes

∫ T

0

1
τ2

∥∥∥∥u(t) − ũ(t) − V̂
(
V̂T MV̂

)−1

V̂T M (u(t) − ũ(t))
∥∥∥∥

2

M

dt

+
∫ T

0

∥∥∥∥du
dt

(t) − dũ
dt

(t) − V̂
(
V̂T MV̂

)−1

V̂TM
(

du
dt

(t) − dũ
dt

(t)
)∥∥∥∥

2

M

dt =
r∑

i=k+1

λ∞
i .

Remark 3.2. The error bound (3.9) could be written for the quantity

∫ T

0

‖u(t) − uROM(t)‖2
K +

∥∥∥∥du
dt

(t) − duROM

dt
(t)
∥∥∥∥

2

M

dt (3.10)
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by using the correspondance

M ↔
[
M 0
0 K

]
and A ↔

[−D −K
K 0

]
.

In this case, the minimization problem for the projection error becomes

V̂ = arg min
rankV=k

∫ T

0

∥∥∥u(t) − ũ(t) − V
(
VT KV

)−1
VTK (u(t) − ũ(t))

∥∥∥2

K

+
∥∥∥∥du

dt
(t) − dũ

dt
(t) − V

(
VT MV

)−1
VT M

(
du
dt

(t) − dũ
dt

(t)
)∥∥∥∥

2

M

dt.

However the Euler−Lagrange equation for this minimization problem yields a matrix equation whose solution
remains challenging.

Next consider the Newmark scheme
(
γ = 1

2 , β = 1
4

)
applied to (3.1),⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Maj+1 + Dvj+1 + Kuj+1 = bj+1

vj+1 = vj +
Δt

2
[aj + aj+1]

uj+1 = uj +
Δt

2
[vj + vj+1]

where (aj ,vj ,uj) approximates
(

d2u
dt2 (jΔt), du

dt (jΔt),u(jΔt)
)
. This scheme, also known as the average acceler-

ation method, matches the system obtained from trapezoidal time integration on (3.3),⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M
(

vj − vj−1

Δt

)
= −D

(
vj + vj−1

2

)
− K

(
uj + uj−1

2

)
+

bj + bj−1

2

1
τ2

M
(

uj − uj−1

Δt

)
=

1
τ2

M
(

vj + vj−1

2

)
(see [17], p. 495). Hence the analysis from Section 2.2 will give error estimates when applying the Newmark
scheme to a reduced-order model.

An approximation is constructed of the form[
vj

uj

]
≈
[
ṽj

ũj

]
+
[
V̂v̂j

V̂ûj

]

where the sequences {ũj} and {ṽj} are selected appropriately to preserve the structure of the wave equation.
Given an a priori known sequence {ãj}, the sequences {ũj} and {ṽj} are required to satisfy the steps for the
Newmark scheme, i.e. ⎧⎨

⎩
ṽj+1 = ṽj + Δt

2 [ãj + ãj+1]

ũj+1 = ũj + Δt
2 [ṽj + ṽj+1]

(3.11)

The reduced variables {ûj} and {v̂j} satisfy the system of equations

1
Δt

[
V̂TMV̂ 0

0 1
τ2 V̂T MV̂

] [
v̂j − v̂j−1

ûj − ûj−1

]
=

1
2

[ −V̂TDV̂ −V̂TKV̂
1
τ2 V̂T MV̂ 0

] [
v̂j + v̂j−1

ûj + ûj−1

]

− 1
Δt

[
V̂T M 0

0 1
τ2 V̂T M

] [
ṽj − ṽj−1

ũj − ũj−1

]
+

1
2

[ −V̂TD −V̂TK
1
τ2 V̂T M 0

] [
ṽj + ṽj−1

ũj + ũj−1

]

+
1
2

[
V̂T bj + V̂T bj−1

0

]
. (3.12)
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The second equation implies that the sequences {ûj} and {v̂j} satisfy

V̂T MV̂ (ûj − ûj−1) =
Δt

2
V̂T MV̂ (v̂j + v̂j−1)

because of assumption (3.11). The initial conditions are

v̂0 = (V̂T MV̂)−1V̂T M (v0 − ṽ0) and û0 = (V̂T MV̂)−1V̂T M (u0 − ũ0) .

This reduced-order model is obtained by applying the trapezoidal time integration on (3.6). The relation-
ship between the trapezoidal time integration scheme and the average acceleration method implies that the
model (3.12) matches the scheme obtained with the average acceleration method on (3.7).

Theorem 3.3. The norms for the error between the approximation (uj ,vj) and the discrete solution from the
reduced order model (3.12) satisfy

nt∑
j=0

1
τ2

∥∥∥uj − ũj − V̂ûj

∥∥∥2

M
+
∥∥∥vj − ṽj − V̂v̂j

∥∥∥2

M
≤
⎡
⎣1 + 2α2T

⎛
⎝Δt

nt∑
j=0

e2γjΔt

⎞
⎠
⎤
⎦

×
⎛
⎝ 1

τ2

nt∑
j=0

∥∥∥∥uj − ũj − V̂
(
V̂T MV̂

)−1

V̂T M (uj − ũj)
∥∥∥∥

2

M

+
nt∑

j=0

∥∥∥∥vj − ṽj − V̂
(
V̂T MV̂

)−1

V̂T M (vj − ṽj)
∥∥∥∥

2

M

⎞
⎠ (3.13)

where the constants α and γ are defined in Theorem 2.7 with the identifications (3.8).

Derivations in the appendix indicate that the proper orthogonal decomposition generates, from the matrix

R̂ =
nt∑

j=0

(vj − ṽj) (vj − ṽj)
T +

1
τ2

(uj − ũj) (uj − ũj)
T

,

a matrix V̂ whose columns are the dominant eigenvectors for the pencil
(
MR̂M,M

)
. Denoting (λi)1≤i≤r the

non-zero eigenvalues of the pencil – ordered in a non-increasing fashion – the projection error for this choice of
matrix V̂ is

nt∑
j=0

∥∥∥∥vj − ṽj − V̂
(
V̂T MV̂

)−1

V̂T M (vj − ṽj)
∥∥∥∥

2

M

+
1
τ2

nt∑
j=0

∥∥∥∥uj − ũj − V̂
(
V̂TMV̂

)−1

V̂T M (uj − ũj)
∥∥∥∥

2

M

=
r∑

i=k+1

λi.

In practice, the eigenvalues (λi)1≤i≤r are computed through the eigenvalue decomposition of the correlation
matrix ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

(v0 − ṽ0)T

...
(vnt − ṽnt)T

1
τ (u0 − ũ0)

T

...
1
τ (unt − ũnt)

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

M
[

(v0 − ṽ0) . . . (vnt − ṽnt)
1
τ

(u0 − ũ0) . . .
1
τ

(unt − ũnt)
]

.

Theorem 3.3 justifies the heuristic argument that the error when approximating the full state variables is
controlled by the sum of neglected singular values, obtained from the proper orthogonal decomposition.
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3.2. Snapshots choice

Theorem 3.3 suggests to use a set of snapshots composed of velocities and displacements. This choice is
reminiscent of the one made by Kunisch and Volkwein [21]. In the following, different snapshot matrices are
discussed and related to the error estimate (3.13). It will be shown that the projection error is bounded for each
choice of the snapshots in terms of the corresponding neglected eigenvalues.

Denoting by U, V, and A the snapshot matrices for the displacement, velocity, and acceleration, respectively,

U = [u0, u1, . . . , unt ] , V = [v0, v1, . . . , vnt ] , A = [a0, a1, . . . , ant ] ,

the average acceleration time-integration scheme enforces the identities

V = v0[1 1T ] +
Δt

2
A

[
0 1T

0 T̃

]
and U = u0[1 1T ] +

Δt

2
V

[
0 1T

0 T̃

]
(3.14)

where the matrix T̃ is the upper triangular matrix

T̃ =

⎡
⎢⎢⎢⎢⎣

1 2 . . . 2

0 1
. . .

...
...

. . . . . . 2
0 . . . 0 1

⎤
⎥⎥⎥⎥⎦ ∈ R

nt×nt , (3.15)

and 1 is a column vector of ones of dimension nt. Similarly, the sequences {ãj}, {ṽj}, and {ũj} generate,
respectively, the matrices Ã, Ṽ, and Ũ. Relation (3.11) yields

Ṽ = ṽ0[1 1T ] +
Δt

2
Ã

[
0 1T

0 T̃

]
and Ũ = ũ0[1 1T ] +

Δt

2
Ṽ

[
0 1T

0 T̃

]
. (3.16)

In the previous analysis, a reduced basis is used for approximating the increments to the initial velocity and
displacement. Three choices of snapshots are studied, namely

• S(1) = 1
τ

(
U − Ũ

)
• S(2) =

[
1
τ

(
U − Ũ

)
, V − Ṽ

]
• S(3) =

[
1
τ

(
U − Ũ

)
, V − Ṽ, τ

(
A − Ã

)]
(
λ

(j)
i

)
1≤i≤r(j)

will denote the non-zero eigenvalues of the correlation matrix C(j) =
(
S(j)

)T
MS(j), sorted

decreasingly. To shorten the error equations, the absolute projection error in (3.13) is decomposed into the
parts

e2
v =

nt∑
j=0

∥∥∥∥
(

(I − V̂
(
V̂TMV̂

)−1

V̂T M
)

(vj − ṽj)
∥∥∥∥

2

M

=
nt∑

j=0

∥∥(I− ΠV̂

)
(vj − ṽj)

∥∥2

M
=
∥∥∥M 1

2
(
I− ΠV̂

)
(V − Ṽ)

∥∥∥2

F
(3.17)

and

e2
u =

1
τ2

nt∑
j=0

∥∥∥∥
(

(I − V̂
(
V̂TMV̂

)−1

V̂T M
)

(uj − ũj)
∥∥∥∥

2

M

=
1
τ2

∥∥∥M 1
2
(
I− ΠV̂

)
(U − Ũ)

∥∥∥2

F
(3.18)

where V̂ is defining the reduced basis.
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Considering the three different choices of snapshots, the errors (3.17) and (3.18) are bounded in terms of the
corresponding eigenvalues λ

(j)
i as follows.

• Choice of snapshots S(1): the proper orthogonal decomposition generates a matrix V̂ of rank k such that

min
rank(V̂)=k

∥∥∥M 1
2
(
I − ΠV̂

)
S(1)

∥∥∥
F

=

√√√√ r(1)∑
i=k+1

λ
(1)
i .

The projection error (3.18) verifies

e2
u =

1
τ2

∥∥∥M 1
2
(
I − ΠV̂

) (
U − Ũ

)∥∥∥2

F
=
∥∥∥M 1

2
(
I− ΠV̂

)
S(1)

∥∥∥2

F
=

r(1)∑
i=k+1

λ
(1)
i

=

⎛
⎝∑r(1)

i=k+1 λ
(1)
i∑r(1)

i=1 λ
(1)
i

⎞
⎠ 1

τ2

∥∥∥M 1
2

(
U − Ũ

)∥∥∥2

F
. (3.19)

The property,
ΠT

V̂
MΠV̂ = MΠV̂ = ΠT

V̂
M,

gives

e2
v =

∥∥∥M 1
2
(
I − ΠV̂

) (
V − Ṽ

)∥∥∥2

F
≤
∥∥∥M 1

2

(
V − Ṽ

)∥∥∥2

F
, (3.20)

indicating that the projection error remains bounded when Δt goes to 0,

lim
Δt→0

Δt
∥∥∥M 1

2
(
I − ΠV̂

) (
V − Ṽ

)∥∥∥2

F
≤ lim

Δt→0
Δt

∥∥∥M 1
2

(
V − Ṽ

)∥∥∥2

F
=
∫ T

0

∥∥∥∥du
dt

(t) − dũ
dt

(t)
∥∥∥∥

2

M

dt.

In addition, relations (3.14) and (3.16) yield

U − Ũ = (u0 − ũ0) [1 1T ] +
Δt

2

(
V − Ṽ

)[ 0 1T

0 T̃

]
, (3.21)

U − Ũ = (u0 − ũ0) [1 1T ] +
Δt

2

(
V − Ṽ

)[ 1 0
0 T̃

]
+

Δt

2
(v0 − ṽ0) [−1 1T ], (3.22)

and

V − Ṽ =
2

Δt

(
U − Ũ

) [ 1 0
0 T̃

−1

]
− 2

Δt
(u0 − ũ0) [1 1T

T̃
−1] − (v0 − ṽ0) [−1 1T

T̃
−1].

By combining the previous equality and (3.19), the projection error ev then satisfies

e2
v =

∥∥∥M 1
2
(
I− ΠV̂

)(
V − Ṽ

)∥∥∥2

F
≤ Cκ(T̃)2

⎛
⎝∑r(1)

i=k+1 λ
(1)
i∑r(1)

i=1 λ
(1)
i

⎞
⎠∥∥∥M 1

2

(
V − Ṽ

)∥∥∥2

F

+ C

(
κ(T̃)
Δt

)2 ∥∥∥M 1
2
(
I− ΠV̂

)
(u0 − ũ0)

∥∥∥2

F
+ Cκ(T̃)2

∥∥∥M 1
2
(
I− ΠV̂

)
(v0 − ṽ0)

∥∥∥2

F
, (3.23)

where the constant C does not depend on Δt and κ(T̃) denotes the condition number of the matrix T̃ for the
Frobenius norm. The projection error ev is therefore bounded by the minimum between (3.20) and (3.23).
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• Choice of snapshots S(2): a proper orthogonal decomposition creates a matrix V̂ of rank k such that

min
rank(V̂)=k

∥∥∥M 1
2
(
I − ΠV̂

)
S(2)

∥∥∥
F

=

√√√√ r(2)∑
i=k+1

λ
(2)
i .

By definition of S(2), the projection errors satisfy

e2
u + e2

v =
1
τ2

∥∥∥M 1
2
(
I − ΠV̂

) (
U − Ũ

)∥∥∥2

F
+
∥∥∥M 1

2
(
I − ΠV̂

) (
V − Ṽ

)∥∥∥2

F
=

r(2)∑
i=k+1

λ
(2)
i

=

⎛
⎝∑r(2)

i=k+1 λ
(2)
i∑r(2)

i=1 λ
(2)
i

⎞
⎠(

1
τ2

∥∥∥M 1
2

(
U − Ũ

)∥∥∥2

F
+
∥∥∥M 1

2

(
V − Ṽ

)∥∥∥2

F

)
.

• Choice of snapshots S(3): the proper orthogonal decomposition generates a matrix V̂ of rank k such that

min
rank(V̂)=k

∥∥∥M 1
2
(
I − ΠV̂

)
S(3)

∥∥∥
F

=

√√√√ r(3)∑
i=k+1

λ
(3)
i .

For this case, the projection errors satisfy

e2
u + e2

v =
1
τ2

∥∥∥M 1
2
(
I − ΠV̂

) (
U − Ũ

)∥∥∥2

F
+
∥∥∥M 1

2
(
I − ΠV̂

) (
V − Ṽ

)∥∥∥2

F

≤
⎛
⎝∑r(3)

i=k+1 λ
(3)
i∑r(3)

i=1 λ
(3)
i

⎞
⎠(

1
τ2

∥∥∥M 1
2

(
U − Ũ

)∥∥∥2

F
+
∥∥∥M 1

2

(
V − Ṽ

)∥∥∥2

F
+ τ2

∥∥∥M 1
2

(
A − Ã

)∥∥∥2

F

)

because
[

1
τ

(
U − Ũ

)
, V − Ṽ

]
is a subset of the columns of S(3).

All these estimates highlight that the norms for the projection errors, when using a set of snapshots composed
either of (1) displacement snapshots, (2) velocities and of displacements snapshots and (3) a set of acceleration,
velocity and displacement snapshots, are bounded in terms of the corresponding neglected singular values.

In the case of snapshots based on displacements only, the bounds in Theorem 3.3 and the bounds on the
projection error norms remain bounded when Δt goes to 0. This result is an improvement over the one de-
scribed by Herkt et al. in [14] A comparison of the estimates for the second and third choices of snapshots also
highlights the fact that adding acceleration snapshots, as suggested by Herkt and coworkers in [14], does not
add information that leads to better projection error estimates for velocity and displacement.

4. Numerical experiments

In this section, numerical experiments are conducted for three different application systems. The objective is
to illustrate the theoretical results obtained for the semi-discrete wave equation. The accuracy of the reduced
models constructed using (1) the three snapshots collections presented above and (2) eigendecomposition are
studied by computing the total relative error

eROM(k) =

√√√√√√√√√√

nt∑
j=0

∥∥∥vj − ṽj − V̂v̂j

∥∥∥2

M
+

1
τ2

∥∥∥uj − ũj − V̂ûj

∥∥∥2

M

nt∑
j=0

‖vj‖2
M +

1
τ2

‖uj‖2
M

, (4.1)
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Figure 1. Chain of 20 mass-spring-damper blocks.

with ṽj = v0 and ũj = u0 + jΔtv0, the total projection error

eROM,p(k) =√√√√√√
∑nt

j=0

∥∥∥∥vj − ṽj − V̂
(
V̂TMV̂

)−1

V̂T M(vj − ṽj)
∥∥∥∥

2

M

+ 1
τ2

∥∥∥∥uj − ũj − V̂
(
V̂T MV̂

)−1

V̂T M(uj − ũj)
∥∥∥∥

2

M∑nt

j=0 ‖vj‖2
M + 1

τ2 ‖uj‖2
M

,

(4.2)

their ratio
eROM(k)
eROM,p(k)

the two components of the relative error:

eROM,u(k) =

√√√√√√√√√√

1
τ2

nt∑
j=0

∥∥∥uj − ũj − V̂ûj

∥∥∥2

M

nt∑
j=0

‖vj‖2
M +

1
τ2

‖uj‖2
M

,

and

eROM,v(k) =

√√√√√√√√√√

nt∑
j=0

∥∥∥vj − ṽj − V̂v̂j

∥∥∥2

M

nt∑
j=0

‖vj‖2
M +

1
τ2

‖uj‖2
M

.

The projection error can serve as an error predictor for the reduced-order model, provided the error ratio
does not increase drastically when the size k of the model increases. In that case, the truncation can be used
to determine a priori the increase in dimension of the reduced-order model (ROM) to achieve a given error
reduction.

4.1. Discrete mass-spring-damper system

The first system of interest is a chain of 20 discrete systems constituted of masses, dampers and springs.
This chain is depicted in Figure 1. An impulse force is applied to the mass at the extremity of the chain. The
configuration of each block is represented in Figure 2. Finally, the physical characteristics of each mass, spring
and damper are reported in Table 1.

The system has 80 displacement degrees of freedom and 80 velocity degrees of freedom. Time integration is
performed using the Newmark scheme with equidistant time-step Δt = 0.1 s. Here τ = 1 s. nt = 50 snapshots
are generated by applying an impulse input elongation u to the right extremity of the spring of stiffness k5
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Figure 2. Mass-spring-damper block configuration.

Table 1. Physical properties of the mass-damper-spring elements.

Masses Dampers Springs
(kg) (Ns/m) (N/m)

m1 125 c1 5 k1 12
m2 25 c2 1.6 k2 1
m3 5 c3 0.4 k3 3
m4 1 c4 0.1 k4 9

k5 27
k6 11

attached to the extremal block. Nonzero initial conditions (displacement u0 and velocity v0) are considered:
the initial displacement vector is 1 and the initial velocity profile is linear, the left-most mass having zero initial
velocity and the right-most mass unitary initial velocity.

A comparison of the errors, projection errors and their ratios associated with each snapshot collection is re-
ported in Figure 3. Similar results are also reported for ROMs based on modal truncation (eigendecomposition).
The error associated with the reduced-order models based on POD decreases sharply in all three cases, reaching
10−8 relative error for ROMs of dimension k = 12. On the other hand, ROMs based on eigendecomposition
lead to much less accurate predictions, with errors of the order of 10%. Adding eigenmodes does not improve
the error for ROMs of dimension smaller than 12. This illustrates the fact that, as opposed to ROMs based on
POD, ROMs based on modal truncation are not trained for a specific scenario and require a large basis size
to achieve high accuracy. In the present case, all snapshot choices lead to similar accuracy for a given size k.
Furthermore, the projection error appears to be a good a priori indicator of the error. The error decomposition
in the case of snapshots based on displacement and velocity is also reported in Figure 3.

The error ratio for ROMs based on the eigendecomposition is equal to one. This observation is in agreement
with the first remark in Section 2.1 and Theorem 3.1. It shows that the error between the ROM and the
underlying high-fidelity model is equal to the projection error. However, this projection error can be large, as
illustrated in the present case.

4.2. Butterfly gyro system

The second set of numerical experiments is carried on a butterfly gyro MEMS originally developed and
presented by Lienemann and coworkers in [26]. The full-order linear operators associated with this model are
available as part of the Oberwolfach model depository [29]. A Rayleigh damping of the form D = 10−6 × K
is chosen. The physical model is discretized by the finite elements method, resulting in 17, 361 displacement
degrees of freedom. The system input applies simultaneously eight distinct voltages to the MEMS. Four de-
tections electrodes recording local structural displacements are also defined. Time integration is performed by
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Figure 3. Comparison for the mass-spring-damper system of the error (top left), projection
error (top right) and errors ratio (bottom left) obtained with each model reduction approach,
as well as the error decomposition in the case of displacement and velocity snapshots (bottom
right).

the Newmark scheme with a constant time step Δt = 7.5 × 10−6 s. A step input vector (DC voltages) is here
applied with zero initial conditions, resulting in the collection of nt = 200 snapshots. A choice τ = 1 s in made.

The displacements of the center of the first detection electrode [29] obtained using (1) the high-dimensional
finite element model of dimension 17, 361 and (2) the reduced-order models of dimension 10 generated using
each method are first compared in Figure 4. The reader can observe that each ROM leads to very accurate
responses when compared to the underlying high-fidelity model except for the displacement of the electrode
in the x-direction obtained with the ROM that was generated using displacement, velocity and acceleration
snapshots. The best predictions are here obtained using the ROM generated from displacement snapshots.

A comparison of the errors, projection errors and their ratios is provided in Figure 5. One can observe that,
in most cases, the most accurate ROMs result from a choice of displacement and velocity snapshots. POD
based on velocity, displacement and acceleration snapshots is the snapshot-based method resulting in the least
accurate predictions. Interestingly, the accuracy of ROMs based on eigenvalue decomposition improves sharply
only when certain modes are added to the basis, such as mode 5 and 15. The associated ROMs are however less
accurate in general than their POD-based counterparts.

The projection error provides accurate a priori error estimates, except for ROMs of small dimension based on
displacement and the three sets of snapshots. The error decomposition shows that the total error is dominated
by the velocity error term.
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Figure 4. Time responses of the displacement at a sensor location: comparison between the full
model response and the responses of each reduced-order model of dimension k = 10 obtained
using the following approaches: POD using displacement snapshots (top left), displacement and
velocity snapshots (top right), displacement, velocity and acceleration snapshots (bottom left)
and eigendecomposition (bottom right).

4.3. Synthetic system

A third set of numerical experiments is carried on to study the effect of space discretization onto the error
estimation. For that purpose, a synthetic example, initially studied by Herkt and coworkers in [14] is considered.
The system stems from the discretization of the continuous wave equation

∂2y

∂t2
(x, t) − ∂2y

∂x2
(x, t) = 0, (x, t) ∈ [0, 1] × [0, T ],

y(x, t) = 0, x ∈ {0, 1}. (4.3)

Appropriate initial conditions are chosen such that the solution to the system is

y(x, t) =
21∑

i=1

sin (iπx) cos (iπt) . (4.4)
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Figure 5. Comparison for the gyro system of the error (top left), projection error (top right)
and errors ratio (bottom left) obtained with each model reduction approach, as well as the
error decomposition in the case of displacement and velocity snapshots (bottom right).

The system is discretized in space by the finite element method with piecewise linear elements. In a first set
of experiments, a discretization with N = 128 elements is used. The system is then discretized in space by the
Newmark scheme using an equidistant time step Δt = 0.0078 s and τ = 1 s. Two final times are considered: (a)
T = 2 s, which corresponds to one period for the solution, (b) T = 0.4 s.

When T = 2 s, 256 displacement, velocity and acceleration snapshots are collected, respectively. The four
model reduction approaches considered are applied and the corresponding errors, projection errors and ratios
reported in Figure 6. The most accurate ROMs are the ones containing the velocity snapshots, as ROMs based
on displacement snapshots only lead to poor predictions, similar to the ones based on modal truncation. By
construction, all ROMs of dimension k = 21 lead to perfect accuracy. The projection error a priori estimates
show perfect agreement with the error, except in the case of displacement snapshots, for which the agreement
is fair. This means that the error between the ROMs and the high-dimensional model in the subspace spanned
by the reduced-order bases is negligible when compared to the projection error.

Next, the same numerical experiments are performed when T = 0.4 s, leading to the collection of 51 snapshots.
In that case, all POD-based ROMs lead to a similar level of accuracy for a given choice of ROM dimension k.
On the other hand, modal truncation-based ROMs are much less accurate for k < 21. The projection error is
in good agreement with the error, except in the case of large ROMs, for which the errors are close to machine
precision. Once again, the total error is dominated by its velocity component.

Figure 8 illustrates the behavior of the ratio between the total relative error (4.1) and the total projection
error (4.2) when T = 2 s as the mesh size and the time steps are decreased. The dimension of the reduced-order
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Figure 6. Comparison for the synthetic system with T = 2 of the error (top left), projection
error (top right) and errors ratio (bottom left) obtained with each model reduction approach,
as well as the error decomposition in the case of displacement and velocity snapshots (bottom
right).

models is set at 18 and the relative projection errors (4.2) are between 6% and 60%. For a fixed mesh size, the
ratios appear to converge to a fixed value as the time steps are decreased. Only the reduced order models built
with displacement snapshots yield a ratio different from 1. These asymptotic plateaus do not appear to depend
on the mesh size. However, for the reduced order models built with displacement snapshots, the critical time
step below which the ratio is constant depends on the mesh size. A finer mesh size requires a smaller critical
time step, even though the time integration scheme is implicit. This experiment illustrates that models built on
displacements snapshots do not behave, with respect to the mesh size, as robustly as the models built with the
other sets of snapshots.

5. Conclusions

Reduced-order models are an efficient tool for simulating dynamical systems at a reduced cost. Theoretical
results on the state approximation error have so far been focused on first-order dynamical systems. The extension
of these analyses to the second-order semi-discrete wave equation requires special attention to preserve the
original structure and to retain the physical interpretation of the reduced variables.

In this work, error bounds for the full state variables of the semi-discrete wave equation have been derived
in the continuous setting (when the whole trajectory is known) and in the discrete setting when the Newmark
average-acceleration scheme is used. When the approximating subspace is constructed using the proper orthog-
onal decomposition, the error estimates are proportional to the sums of the neglected singular values. Numerical
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Figure 7. Comparison for the synthetic system with T = 0.4 of the error (top left), projection
error (top right) and errors ratio (bottom left) obtained with each model reduction approach,
as well as the error decomposition in the case of displacement and velocity snapshots (bottom
right).

experiments illustrate the theoretical results when the choice of snapshots is set heuristically. Some procedures
for automatic selection of these snapshots exist in the literature [9, 24, 25].

Appendix A. Proofs

A.1. Proof of Theorem 2.3

The bound in this theorem relies on a Gronwall-like inequality. Consider the sequence (φn)0≤n≤nt
such that

0 ≤ φn ≤ βφn−1 + αΔtpn + αΔtpn−1, for n ≥ 1,

where β ≥ 1 and α is a non-negative number. The sequence (pn)0≤n≤nt
is made of non-negative numbers. For

1 ≤ n ≤ nt, φn satisfies

φn ≤ βnφ0 + αΔtpj + αΔt(1 + β)
n−1∑
i=0

βn−1−ipi, for n ≥ 1. (A.1)



158 D. AMSALLEM ET AL.

Figure 8. Comparison for the synthetic system of the errors ratio obtained with each model
reduction approach when the space and time discretizations are varied.

The proof of (A.1) is made by mathematical induction. The estimate is valid for n = 1 (because 1 ≤ 1 + β).
Assume it is is satisfied up to n − 1, then φn satisfies

φn ≤ βφn−1 + αΔtpn + αΔtpn−1 ≤ β

(
βn−1φ0 + αΔtpn−1 + αΔt(1 + β)

n−2∑
i=0

βn−2−ipi

)
+ αΔtpn + αΔtpn−1.

Re-organizing the terms yields

φn ≤ βnφ0 + αΔtpn + αΔt(1 + β)pn−1 + αΔt(1 + β)
n−2∑
i=0

βn−1−ipi,

which concludes the induction. Equation (A.1) can be rewritten as follows

φn ≤ βnφ0 + αΔt(1 +
1
β

)
n∑

i=0

βn−ipi. (A.2)

Squaring the inequality and using the Cauchy−Schwarz inequality yield

φ2
n ≤ 2β2nφ2

0 + 2α2 (Δt)2
(

1 +
1
β

)2
(

nt∑
i=0

β2i

)(
nt∑
i=0

p2
i

)
for 0 ≤ n ≤ nt
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and

Δt

nt∑
j=0

φ2
j ≤ 2φ2

0

(
Δt

nt∑
i=0

β2i

)
+ 2α2 (NΔt)

(
Δt

nt∑
i=0

β2i

)(
Δt

nt∑
i=0

p2
i

)
. (A.3)

Recall that the part θj satisfies

θj − θj−1

Δt
= V

(
VT V

)−1
VTA

(
ρj + ρj−1

2
+

θj + θj−1

2

)

or

θj =

(
I + Δt

(
I− Δt

2
V
(
VT V

)−1
VT A

)−1

V
(
VTV

)−1
VT A

)
θj−1

+
Δt

2

(
I − Δt

2
V
(
VT V

)−1
VT A

)−1

V
(
VT V

)−1
VT A (ρj + ρj−1) . (A.4)

The theorem is proved by selecting φ0 = 0, φn = ‖θn‖2,

β =

∥∥∥∥∥I + Δt

(
I− Δt

2
V
(
VT V

)−1
VT A

)−1

V
(
VT V

)−1
VT A

∥∥∥∥∥
2

,

α =
1
2

∥∥∥∥∥
(
I − Δt

2
V
(
VTV

)−1
VT A

)−1

V
(
VT V

)−1
VTAZ

(
ZT Z

)−1
ZT

∥∥∥∥∥
2

and pn = ‖ρn‖2. Note that the definition of β yields

β ≤ 1 + γΔt ≤ eγΔt (with γ > 0) and
nt∑

j=0

β2j ≤
nt∑

j=0

e2γjΔt.

A.2. Proofs for Section 2.2

Results in this section are reformulations of results in Theorems 2.1 and 2.3. The matrix M is symmetric
positive definite and its symmetric square root M 1

2 is obtained using the eigendecomposition and taking the
square root of all the eigenvalues. When the state variables x satisfy the system,

Mdx
dt

= Ax + f with x(0) = x0,

the state variables y = M 1
2 x verify

dy
dt

= M− 1
2AM− 1

2 y + M− 1
2 f with y(0) = y0 = M 1

2 x0.

The subspace spanned by V is associated with the subspace spanned by V = M 1
2V . The reduced-order models

have the following identification

xROM = x̃ + Vxr ↔ yROM = ỹ + Vxr = M 1
2 xROM.

If the error when approximating the state variable y is decomposed as

eROM = y − ỹ − V
(
VT V

)−1
VT (y − ỹ) + V

[(
VT V

)−1
VT (y − ỹ) − xr

]
,
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then the error EROM = x − xROM is written as

EROM = x − x̃− V (VTMV)−1 VTM (x − x̃) + V
[(VTMV)−1 VTM (x − x̃) − xr

]
and, for norms, ‖eROM‖2 = ‖EROM‖M and∥∥∥y − ỹ − V

(
VT V

)−1
VT (y − ỹ)

∥∥∥
2

=
∥∥∥x − x̃ − V (VTMV)−1 VTM (x − x̃)

∥∥∥
M

.

Similarly, the matrix norm
∥∥∥VT AZ

(
ZT Z

)−1
ZT

∥∥∥
(VT V)−1

satisfies

∥∥∥VT AZ
(
ZT Z

)−1
ZT

∥∥∥
(VT V)−1

=
∥∥∥VTAZ (ZTMZ)−1 ZTM 1

2

∥∥∥
(VT MV)−1

where the columns of matrix Z span the M-orthogonal complement for the span of V . The results for the
discrete scheme obtained after using the trapezoidal time integration are derived in a similar way.

To study the proper orthogonal decomposition for this generalized first-order system, a subspace of dimension
k is obtained by solving the minimization problem

argminrank{V}=k

∫ T

0

∥∥∥x(t) − x̃(t) − V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt.

The same subspace is obtained by the maximization problem

argmaxrank{V}=k

∫ T

0

∥∥∥V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt.

The norm can be written as
∥∥∥V (VTMV)−1 VTM (x(t) − x̃(t))

∥∥∥2

M

= tr
(
MV (VTMV)−1 VTM (x(t) − x̃(t)) (x(t) − x̃(t))T MV (VTMV)−1 VT

)
= tr

(
VTM (x(t) − x̃(t)) (x(t) − x̃(t))T MV (VTMV)−1

)
.

By introducing the matrix

R =
∫ T

0

(x(t) − x̃(t)) (x(t) − x̃(t))T dt,

the norm to maximize becomes∫ T

0

∥∥∥V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
= tr

(
VTMRMV (VTMV)−1

)
.

A stationary point will satisfy

MRMV (VTMV)−1
= MV (VTMV)−1 VTMRMV (VTMV)−1

,

indicating that V is a stable subspace for the pencil (MRM,M). Denoting (λ∞
i )1≤i≤r the non-zero eigenvalues

of the pencil (MRM,M) – ordered in a non-increasing fashion – the projection error for the minimization
problem is ∫ T

0

∥∥∥x(t) − x̃(t) − V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt =

r∑
i=k+1

λ∞
i ,
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where V is composed of the first k dominant eigenvectors. Similarly, the proper orthogonal decomposition for
the discrete snapshots xj − x̃j will study the eigendecomposition for the pencil

(
MR̂M,M

)
where the matrix

R̂ is

R̂ =
nt∑

j=0

(xj − x̃j) (xj − x̃j)
T

.

A.3. Derivation for Section 3

If the entire continuous trajectory is available on the interval [0, T ], the proper orthogonal decomposition can
generate a subspace of dimension k by solving the minimization problem

argminrank{V}=k

∫ T

0

∥∥∥x(t) − x̃(t) − V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt where x =

[
du
dt (t)
u(t)

]
.

The same subspace is obtained by the maximization problem

argmaxrank{V}=k

∫ T

0

∥∥∥V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt.

Rewrite the norm as∥∥∥V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M

= tr
(
MV (VTMV)−1 VTM (x(t) − x̃(t)) (x(t) − x̃(t))T MV (VTMV)−1 VT

)
= tr

(
VTM (x(t) − x̃(t)) (x(t) − x̃(t))T MV (VTMV)−1

)
.

The inner matrix satisfies

(x(t) − x̃(t)) (x(t) − x̃(t))T =

[(
du
dt (t) − dũ

dt (t)
) (

du
dt (t) − dũ

dt (t)
)T (

du
dt (t) − dũ

dt (t)
)
(u(t) − ũ(t))T

(u(t) − ũ(t))
(

du
dt (t) − dũ

dt (t)
)T

(u(t) − ũ(t)) (u(t) − ũ(t))T

]
.

Since the matrices V and M are diagonal, the norm becomes∫ T

0

∥∥∥V (VTMV)−1 VTM (x(t) − x̃(t))
∥∥∥2

M
dt = tr

(
V̂T MRMV̂

(
V̂T MV̂

)−1
)

where the matrix R is defined as

R =
∫ T

0

(
du
dt

(t) − dũ
dt

(t)
)(

du
dt

(t) − dũ
dt

(t)
)T

+
1
τ2

(u(t) − ũ(t)) (u(t) − ũ(t))T dt.

A stationary point will satisfy

MRMV̂
(
V̂T MV̂

)−1

= MV̂
(
V̂T MV̂

)−1

V̂T MRMV̂
(
V̂T MV̂

)−1

,

indicating that V̂ is a stable subspace for the pencil (MRM,M). Denoting (λ∞
i )1≤i≤r the non-zero eigenvalues

of the pencil (MRM,M) – ordered in a non-increasing fashion – the projection error for the minimization
problem is
∫ T

0

1
τ2

∥∥∥∥u(t) − ũ(t) − V̂
(
V̂T MV̂

)−1

V̂T M (u(t) − ũ(t))
∥∥∥∥

2

M

dt

+
∫ T

0

∥∥∥∥
(

du
dt

(t) − dũ
dt

(t)
)
− V̂

(
V̂T MV̂

)−1

V̂TM
(

du
dt

(t) − dũ
dt

(t)
)∥∥∥∥

2

M

dt =
r∑

i=k+1

λ∞
i .
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burger Beiträge zur Angewandten Math. 2011–06 (2011).

[15] U. Hetmaniuk and R. Lehoucq, Uniform accuracy of eigenpairs from a shift-invert Lanczos method. SIAM J. Matrix Anal.
Appl. 28 (2006) 927–948.

[16] C. Homescu, L. Petzold and R. Serban, Error estimation for reduced-order models of dynamical systems. SIAM Rev. 49 (2007)
277–299.

[17] T. Hughes, The finite element method: linear static and dynamic finite element analysis. Prentice–Hall (1987).

[18] D. B. Huynh, D. Knezevic and A. Patera, A Laplace transform certified reduced basis method; application to the heat equation
and wave equation. C.R. Acad. Sci. Paris, Série I 349 (2011) 401–405.

[19] K. Karhunen, Zur Spektraltheorie Stochastischer Prozesse. Ann. Acad. Sci. Fennicae 34 (1946).

[20] G. Kerschen, J.C. Golinval, A. Vakakis and L. Bergman, The method of proper orthogonal decomposition for dynamical
characterization and order reduction of mechanical systems: an overview. Nonlinear Dyn. 41 (2005) 147–169.

[21] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90
(2001) 117–148.

[22] K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics.
SIAM J. Numer. Anal. 40 (2002) 492–515.

[23] K. Kunisch and S. Volkwein, Crank−Nicholson Galerkin proper orthogonal decomposition approximations for a general equa-
tion in fluid dynamics. 18th GAMM Seminar on Multigrid and Related Methods for Optimization Problems, Leipzig (2002)
97–114.

[24] K. Kunisch and S. Volkwein, Optimal snapshot location for computing POD basis functions. ESAIM: M2AN 44 (2010) 509–529.

[25] O. Lass and S. Volkwein. Adaptive POD basis computation for parameterized nonlinear systems using optimal snapshot
location. Konstanzer Schriften Math. 304 (2012) 1–27.

[26] J. Lienemann, D. Billger, E. B. Rudnyi, A. Greiner and J.G. Korvink, MEMS compact modeling meets model order reduction:
examples of the application of Arnoldi methods to microsystems devices. Technical Proceedings of the 2004 Nanotechnology
conference and trade show, Nanotech 2004, March 1-7, Boston, MA 2 (2004) 303–306.

[27] T. Lieu and C. Farhat, Adaptation of aeroelastic reduced-order models and application to an F-16 configuration. AIAA J. 45
(2007) 1244–1269.
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