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THE PERIODIC UNFOLDING METHOD FOR A CLASS OF PARABOLIC
PROBLEMS WITH IMPERFECT INTERFACES *

ZHANYING YANG!

Abstract. In this paper, we use the adapted periodic unfolding method to study the homogeniza-
tion and corrector problems for the parabolic problem in a two-component composite with e-periodic
connected inclusions. The condition imposed on the interface is that the jump of the solution is propor-
tional to the conormal derivative via a function of order €” with v < —1. We give the homogenization
results which include those obtained by Jose in [Rev. Roum. Math. Pures Appl. 54 (2009) 189-222].
We also get the corrector results.
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1. INTRODUCTION

In this paper, we use the adapted periodic unfolding method to study the homogenization and corrector
problem for a linear parabolic problem in a domain {2 C R™ consisting of two components, a connected com-
ponent §21. and a disconnected component (25.. The latter is the union of e-periodic connected inclusions of
size €. The conditions prescribed on the interface I'® = 02, separating §21. from (25, are the continuity of
the conormal derivatives and a jump of the solution proportional to the conormal derivatives via a function of
order €7.

This problem models the heat diffusion in a two-component composite conductor with an e-periodic interface,
where the flux of temperature is proportional to the jump of the temperature field (see Carslaw and Jaeger [7]).
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More precisely, we consider, for the different values of the parameter v < 1, the homogenization and corrector
results for the following problem:

u'ls — diV(ASVulg) = flg in le X (O,T),

u/25 — diV(AEVUQE) = fgg in 926 X (O,T),

A*Vuie - nie = —A*Vuge - noe on I'* x (0,7,

A*Vuqe -nie = —e7h"(uge —ug:) on ' x (0,7), (1.1)
ue =0 on 912 x (0,7T),

u1e(z,0) = UL in (2.,

uge(z,0) = UL, in (2,

where A°(z) := A(x/e), A being a periodic, bounded and positive definite matrix field, h®(z) := h(x/e), with h
positive, bounded and periodic, f: = (fic, fac), US = (UL, US.) and u. = (uyc, us:). Here and in what follows,
any component indexed by i(= 1 or 2) is defined in §2;.. Denote by n;. the unitary outward normal vector
of 0£2;..

This paper focuses on the study when v < —1. Indeed, for v < 1, the homogenization was studied by the
oscillating test functions method (see Tartar [21]) in Jose [18]. The corrector results were given in Donato and
Jose [11] for —1 < v < 1. But for the case of v < —1, to the best knowledge of the author, it was open. The
present paper is devoted to solving this problem.

More precisely, we first study the homogenization results for v < —1, which recover those in [18]. In particular,
we give the precise convergences of flux. For the exact statements, see Theorems 3.1—3.2. To obtain the corrector
results, it is necessary to impose some stronger assumptions than those of the homogenization results. More
precisely, we introduce the assumption on the data f. which is slightly weaker than that in [11], and the
assumption for the initial condition U? which is equivalent to that in [11]. Then, we obtain the corrector results
(for v < —1) which are completely new. In particular, for the technical reason, we present them for v < —1 and
v = —1, respectively. For the exact statements, see Theorems 5.3 and 5.5.

The proofs of our results depend mainly on the periodic unfolding method, which was first introduced by
Cioranescu et al. in [4] for the case of fixed domains (see [5] for more details) and then extended to perforated
ones in Cioranescu et al. [6]. Later, Cioranescu et al. [3] gave a comprehensive presentation of the unfolding
method for perforated domains. Subsequently, this method was adapted to two-component domains which are
separated by a periodic interface in Donato et al. [13], where two unfolding operators over two-component
domains were introduced and their properties were discussed.

Concerning the time-dependent periodic unfolding method for fixed domains, we refer to Gaveau [17], where
some elementary results were listed without proofs. Recently, Donato and the author adapted some results
related to the unfolding method for perforated domains to time-dependent functions in [15], where detailed
proofs were given. There, in order to study problem (1.1), we adapt the unfolding method in two-component
domains in [13] to time-dependent problems (see Sect. 2). We introduce two unfolding operators: 7f and 75 .
The operator 777, originally denoted by 7_* in [15], acts on functions defined on §2;. x (0,T). The operator 75
acts on functions defined on {25 x (0,7"). The most important feature of these operators is that they map
functions defined on the oscillating domain into functions defined on the fixed domain. Hence, in some sense,
they play the role of the extension operators. Also, we list some results related to 777 and 75 . In particular,
we study the properties of their trace on the common boundary, which will be crucial to the treatment of the
interface terms.

For the elliptic problem corresponding to (1.1), Monsurro [19, 20] gave the homogenization for v < —1.
For v > —1, the homogenization was obtained by Donato and Monsurro [12]. These results are based on the
oscillating test functions method. Corresponding corrector results for —1 < v < 1 were proved by Donato [§].
Recently, Donato et al. gave the new proofs of these results by the unfolding method in [13]. For the hyperbolic
problem corresponding to (1.1), Donato et al. proved the homogenization results for v < 1 in [9] and the
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corrector results for —1 < v < 1 in [10]. Our results are also related to those of parabolic problems in perforated
domains which were studied in Donato and Nabil [14].

This paper is organized as follows. In Section 2, we adapt the unfolding method for a two-component domain
in [13]. In particular, we present some important convergence results. Section 3 is devoted to the homogenization
of problem (1.1) according to the different values of . In Section 4, we introduce some assumptions on the initial
data and give the convergence of the energy. Section 5 focuses on the corrector results.

2. PERIODIC UNFOLDING METHOD IN TWO-COMPONENT DOMAINS

2.1. Some notations

Let £2 C R™ be an open and bounded set with Lipschitz boundary, and let € be the general term of a sequence
of positive real numbers which converges to zero.

Denoted by Y = [0,11) x - - - x [0,1,,) the reference cell with [; > 0,47 =1,-- -, n. We suppose that Y7 and Y3
are two nonempty open disjoint subsets of Y such that

Y =Y, UYs,

where Y7 is connected and I" = Y5 is Lipschitz continuous. Let n; be the unit outward normal to Y;, 1 =1, 2.
For any k € Z", we denote
YE=k+Y, D=k +1I, Y=k +Y,

where k; = (k1l1, - - -, knly,) and i = 1,2.
For any fixed ¢, let K. = {k € Z" | Y} N 2 # (),i = 1,2}. We suppose that

0N ( U (d“k)) = 0.

kezn

Write the two components of {2 and the interface, respectively, by:

Qe = |J eVF, Qi = N\,  TF =00
keEK,

Notice that 0f2 and I'® are disjoint, the component (21, is connected and the component (25, is the union of
e~ ™ disjoint translated sets of Y5.
Now we introduce two spaces V¢ and HS. Define V¢ by

Vei={ve H' (1) | v="0on 0N},

endowed with the norm
[vllve = Vvl 2,0

For any ~ € R, the product space
Hf? = {u = (ul,u2) ‘ uy € Vs, Ug € Hl(ggg)}
is equipped with the norm:
lullfre = IVurllZaq,.) + IVuzlia(a,.) + e llur = uzllZa(re)-
Next we recall the following notations related to the unfolding method in [3,5,13]:

I?g _ {k‘ c 7" ‘ 5Yk C Q}’ f\zs — int U 5(/{[ —|—?), AE = Q\ﬁev
keK.
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ﬁig = U €Y;k, Aie = Qis\ﬁig, i = 1,2, fs = 8@25.
kEK.
In what follows, we will use the following notations:

e 0, =1|Yi|/|Y], i=1,2;

o Mo(v) = ﬁfo vdx;

e g is the zero extension to {2 (resp., 2 x (0,T)) of any function g defined on 2;. (resp., £2; x (0,7)) for
1 =1,2;

e The letter T is a fixed positive constant in R.

Throughout this paper, we will also use the following general notations:

e ¢ and C denote generic constants which do not depend upon .

e §;; denotes the usual Kronecker symbol.

e The notation L?(Q) will be used both for scalar and vector-valued functions defined on the set O, when no
ambiguity arises.

2.2. Time-dependent unfolding operators in two-component domains

In this subsection, we adapt the unfolding method in two-component domains in [13] to time-dependent
problems. We introduce two unfolding operators: 77 and 75, which map functions defined on the oscillating
domains §21.x(0,T") and £22. x (0, T') into functions defined on the fixed domains 2xY7 x(0,T") and 2xY2x (0,7,
respectively. As stated in [3,13], this avoids the use of any extension operator. Next, we will recall some properties
of 7, which is exactly the unfolding operator 7* in perforated domains in [15]. We also list some properties
of 7. Moreover, we study some properties of the traces of 77 and 75 on the common boundary, which will be
used to treat the interface term.

For any z € R™, we use [z]y to denote its integer part (kily,- - -, knly) such that z — [z]y € Y, and set

{z}y =2—[z]y for zeR"

= ([E), rE)) e

Let us first recall the unfolding operator 7 for the fixed domain 2 x (0,T) introduced in [17], where the
properties of 7¢ are shown without proofs.

Then for each x € R™, one has

Definition 2.1. For p € [1,+00) and ¢ € [1,00], let ¢ be in L2(0,T; LP(§2)). The unfolding operator 7 :
L0, T; LP(£2)) — LU0, T; LP(£2 x Y')) is defined as follows:

T(¢)(z,y, 1) = {¢(€[gy +€y,t) ae. for (z,y,t) € 2. x Y x (0,T),

a.e. for (z,y,t) € A x Y x (0,T).

In a similar way, we extend the unfolding operators in two-component domains in [13] to the following
time-dependent unfolding operators in two-component domains.

Definition 2.2. Let ¢ = 1,2. For p € [1,+00) and g € [1,00], let ¢ be in L2(0,7; LP(§2;.)). The unfolding
operator 7,° : L9(0,T; LP(§2;c)) — L9(0,T; LP(£2 x Y;)) is defined as follows:

x ~
il t .e. f t) € 2. xY; x (0,7T),
r@wan — JPEE] teamt) e for @y € Doxvix 0.1)
a.e. for (z,y,t) € A. x Y; x (0, 7).
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From this definition, the following properties are immediate:
(i) T (vw) =77 ()T (w), Yw,v € LU0, T; LP(£2:c)),
(i) 77 (W) = oI (), Vi € LP(2;) and o € LU(0,T),
(ii)) Vy(Z7(¢)) = €T (Vo), Vo € LU0, T; WHP(£2)).
Lemma 2.3. Concerning T° and 7,7, we have the following:

T (w

K2

2iex(0,1)) = T (W)l 2xv, % (0,1)5

T (V) = T (V)| oxy, x (0.1

where w and ¥ are defined on 2 x (0,T) and 2, x (0,T), respectively.
In Definitions 2.1 and 2.2, if ¢ is independent of t, then 7. and T7(i = 1,2) are the classical unfolding
operators defined in [4] and [13], respectively.

For simplicity, we always write 7,°(¢) instead of 77 (¢|n,. x(0,7)) for any function ¢ defined in £2 x (0, 7).

Next we list some properties of 7,° which are important to the study of the homogenization in Section 3.
For i = 1, the following results were proved in [15]. For i = 2, the proofs are essentially the same. For other
properties and related comments, we refer the reader to [3,13,15].

Proposition 2.4. Let i = 1,2. For p € [1,+00) and q € [1,00], the operator T is linear and continuous
from L9(0,T; LP(£2;.)) to L4(0,T; LP(2 x Y;)). Let ¢ € L(0,T; L*(£2:2)) and w € LI(0,T; LP(£2:.)). For a.e.
t€(0,T), we have

0 7 [ TOE ey = /| o ) = / o ) - / ol )

I O P L T PN L P

Proposition 2.5. Let i =1,2. For q € [1,+], let {¢.} be a sequence in LI(0,T; L (£2;)) such that

/OT/A (6. dz dt — 0. (2.1)

T 1 /7
/ / ¢ dedt — — / / 75 (pe) dedy dt — 0.
0 Qig ‘Y‘ 0 QXYi

As usual, this is denoted by
T 1 /T
/ / ¢ drdt ~ —/ / T (pe) de dy dt. (2.2)
0 2 ‘Y‘ 0 02xY;

In particular, for p,q € (1,+00), let {pc} and {¢¥e} be two sequences in L(0,T;LP(£2;)) and
Lq/(O,T;LP/(QiE)) (1/p+1/p =1, 1/q+1/¢ = 1), respectively. Suppose that

Then

T (pe) — i strongly in LY(0,T; LP(£2 x Y7)),

7

T (e) — oy weakly in LY (0,T; Lp/(ﬂ x Y;)). (2.3)

(3

Then for any n € D(§2), we have

T 1 T
/ / petbendadt — - / / it da dy dt.
0 Qia ‘}/Z| 0 .QXY,‘
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Proposition 2.6. Leti=1,2.
(i) Forp,q€ [1,00), let w € LI(0,T; LP((2)). Then
77 (w) — w strongly in L(0,T; LP(£2 x Y3)).
(ii) For p,q € [1,00), let {we} be a sequence in L1(0,T; LP((2)) such that
we — w strongly in LY(0,T; LP(£2)),

then we have
T (we) — w strongly in L0, T; LP(§2 x Y;)).

(ili) Forp € (1,00) and q € (1,00], let {pe} be a sequence in LI(0,T; LP(§2:)) such that

lpellLaco,r;Le(02:0)) < C.

If
T (pe) — o weakly in L0, T; LP(Q2 x V7)),

then we have
Pe — 0; My, (p) weakly in L4(0,T; L?(12)).

For q = oo, the weak convergences above are replaced by the weak® convergences, respectively.

Proposition 2.7. Let p,q € [1,400). Fori = 1,2, let w. € L9(0,T; LP(£2;c)) and w € LY(0,T; LP(2)), then
the following two assertions are equivalent:

(a) T (we) — w strongly in L1(0,T; LP(£2 x Y;));

(b) [Jwe — WHLq(o’T;Lp(QiE)) — 0.

Furthermore, (a) together with ||we||Leo,7;Lr(4,.)) — 0 is equivalent to
lwe = wllzaorizr(gi)) = 0-

In the following, we are concerned with the action of the unfolding operators on the sequences in L?(0, T’; HE).
To do that, we first recall the following results related to V¢ and HS.

Proposition 2.8 ([11], Rem. 2.3). There exists a positive constants C' (independent of €) such that
H“HHl(le) SC”U”V&, V’LLGVE.

Proposition 2.9 ([11], Prop. 4.1). For v <1, there exist two positive constants c1,ca (independent of €) such
that

elule iy < s < ea(1+ &7 ulesrr s
Now we show some results related to the jump on the interface. For convenience, we set
U = (Ute, Use).
By the definition of 7,7 (i = 1, 2), we have the following result (see also the proof of [13], Lem. 2.14).
Proposition 2.10. For v < 1, suppose that {u.} is a sequence in L*(0,T}; HS). Then for a.e. t € [0,T], we

have
1

— |7 (u1e) — 7—2€(U26)|2 dedoy = / luge — u25|2d0m. (2.4)
€‘Y| 2xI e
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Remark 2.11. For v < 1, let {u.} be a bounded sequence in L*(0,T; HS). By (2.4), Proposition 2.4(ii),
Propositions 2.8 and 2.9, we easily get the following uniform estimates:

17 (uae) L2 0,122 (2x i)y + 175 (Vure) || 20,1522 (2xv)) < 6

175 (u2e) |22 0,722 (2x v2)) + 175 (Vi) || 20,7522 (2xv2)) < 6
11—y

177 (u1e) — 7§E(U2s)||L2(0,T;L2(er)) <ce 7.

If we suppose further that u. satisfies

HUIEHLC’O(O,T;L2(Q15)) + H“25HL°°(0,T;L2(925)) <c

then it follows that
171 (ure) | 0,102 (2xv1)) + 175 (u2e) L= (0,112 (2xv2)) < €

The following proposition is a straightforward consequence of Proposition 2.10.

Proposition 2.12. Let h®(z) = h(x/e) with h € L>(I") being a Y -periodic function. Suppose that ¢ € D(§2),
© € D(0,T) and {u.} is a sequence in L*(0,T; HZ) with v < 1. Then for ¢ small enough,

T 1 /7
5/0 /E he(u1e — uge)pp doy dt = v /0 /er h(y) [T7 (u1e) — T (use) | T (¢)p dz doy dt. (2.5)

We complete this subsection with some convergence results related to the action of the unfolding operator
72(i = 1,2) on the bounded sequences of L?(0,T}; H?), which are crucial to our homogenization results.

Theorem 2.13. Let v < 1. Suppose that {u.} is bounded in L*(0,T; HS). Then there exist up €
L*(0,T; Hy(£2)), up € L*(0,T; L*(£2)), uy € L*(0,T; L*(£2, H}..(Y1))) and Gy € L*(0,T; L*(2, H'(Y2))) such
that, up to a subsequence (still denoted by ¢),

( (ure) = w1 weakly in L*(0,T; L*(2, H' (Y1),

(i) 7 (Vuie) = Vug + Vyur  weakly in L*(0,T; L*(2 x Y1),

(il (uge) = uz  weakly in L*(0,T; L*(2, H'(Y2))),

( (Vuge) = Vs weakly in L*(0,T; L*(2 x Y2)), (2.6)

where Mp(u;) = 0,1 =1,2. Moreover, if v < 1, then u1 = us and

(i) if v < —1, then
ﬁl = ag — yqu1 on (O,T) x 2 X F, (27)

where yr =y — Mpr(y).
(ii) if v = —1, then there exists ( € L*(0,T; L?(2 x I')) such that
e T (wae) — T5 (u2e)) — Ur — o + yrVug + ¢ weakly in L*(0,T; L*(2 x I)). (2.8)

Proof. The proof can be obtained by following the lines of the proofs of Theorem 2.12 in [3] (see also [15],
Thm. 2.19) and Theorem 2.20 in [13]. For the reader’s convenience, we repeat some details as follows.
Following the arguments in the proofs of Theorems 2.17-2.20 in [13] and Theorem 2.12 in [3] (see also [15],
Thm. 2.19), we obtain that (2.6) holds at least for a subsequence.
If v < 1, Remark 2.11 gives

T (ure) — T (uge) — 0 strongly in L?(0,T; L*(2 x T)). (2.9)
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On the other hand, thanks to the properties of trace, (2.6)(i) implies
T (ure) — up  weakly in L(0,T; L*(2 x I')).
Combining this with (2.6)(iii), (2.9) and noticing that u; and us do not depend on y, we get
u; =ug for a.e. (z,t) € 2 x(0,T).
At last, (2.7) and (2.8) can be directly proved by following the arguments in the proof of Theorem 2.20

in [13]. O

3. HOMOGENIZATION RESULTS

In this section, we use the adapted unfolding method presented in Section 2 to study the asymptotic behavior
of the parabolic problem in a two-component composite with e-periodic connected inclusions.

To introduce the coefficient matrix, we define, for o, 5 € R with 0 < o < (3, the set M («, 5, O) of the n x n
matrix-valued functions B(z) € (L*°(O))™*™ such that

(B@)AA) = alAP, [B(x)A| < 6|7

for any A € R™ and a.e. on O.
Assume that A = (a;;(2))1<i,j<n is a Y-periodic matrix such that

Ae M(a,3,Y).

For any € > 0, we set

Af(z) = A(z/e). (3.1)
Let h be a Y-periodic function such that
h e L*(I') and 3 hg € R s.t. 0 < ho < h(y) a.e.in I

Set
he(z) = h(z/e). (3.2)

In what follows, we always suppose v < —1 if not otherwise stated. For T' > 0, we will consider the asymptotic
behavior, as € — 0, of the problem (1.1).
We suppose that

Uf = (UY, Ug.) € L2($212) x L?(£22e),
fE = (f167f2€) € L2 (OaTa L2(Qle)) X L2 (OaTa L2(025))~ (33)

Set
We = {v = (v1,v5) € L2(0,T; V) x L2(0,T; H'(25.))
such that v € L*(0,T;(V®)'), vy € L*(0,T; (Hl((Zgg))’)}
with the norm defined by

[vllwe = llvrllL20,0ve) + o2l L2031 (220)) + 101220, 500 e)) + (W2l 220,73 (H (2200 -
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The variational formulation of problem (1.1) is to find u. = (u1¢, u2:) € W€ such that

(Ui, v1)(vey ve + (Ue, V2) (11 (Qu0)) H (222
+ A*Vu1. Vo doe + A*Vus. Vo do

915 925
+67/ h®(u1e — uge)(v1 — v2) dog = / frevida +/ focva da (3.4)
Ie 216 £22¢

in D'(0,T) for every (vi,vs) € VE x H'(22.),
w1 (x,0) = UYL in 024,
Uge (7,0) = UY. in (2.

For every fixed ¢, the abstract Galerkin method provides the existence and uniqueness of the solution of prob-
lem (3.4).
In order to study the homogenization of problem (1.1), we need the following assumptions:
UO — (6,U7,0,U9) weakly in L2(£2) x L(12),
fe = (01 f1,02f>) weakly in L2(0,T; L*(2)) x L*(0, T; L*(£2)). (3.5)

Under these assumptions, problem (3.4) has a unique solution u. with the following estimates (see [9], Prop. 3.4):

luiell 220, 7ve) + lwiel Lo 0, 7;02(02:.)) < C
[ugel| 20,111 (250)) + w2l Lo 0,1L2(22)) < C) (3.6)
e? |wie — w2e|l L2(0,7;22(r)) < C,

where the constant C' is independent of €.

The homogenization of problem (1.1) has been studied by the oscillating test functions method in Jose [18].
Here we use the unfolding method to study the homogenization, which will be crucial to get the corrector results.
Notice that, up to now, the corrector results for v < —1 can not be achieved by the Tartar’s oscillating test
function method yet. We also derive the precise convergence of flux.

The study of the homogenization results is carried out according to v < —1 or v = —1.

3.1. The case v < —1

Theorem 3.1. Let A® and h® be defined by (3.1) and (3.2), respectively. For v < —1, suppose that u. is the
solution of (1.1) with (3.3) and (3.5). Then, there exist uy € L*(0,T; H(£2)), uy € L*(0,T; L*(£2, H).(Y1)))
and Uy € L2(0,T; L?(£2, H (Y2))) such that
ue) —uy  weakly in L*(0,T; L*(2, H' (Y1)
Vuie) = Vuy + Vi weakly in L*(0,T; L*
uge) — uy  weakly in L2(0,T; L*(2, H' (Y2)));
Vuge) = Vs weakly in L*(0,T; L*(2 x Y2));
V) W — Oiuy  weakly in L*(0,T; L(12)). (3.7)
where Mrp(u;) = 0 for i = 1,2. The pair (ui,u) is the unique solution in L*(0,T;H}(£2)) x

L*(0,T; L*(£2, H}, (Y))) with Mp(@) = 0, of the problem

)

)
(2 xY1));
)

T 1 /7
— / / wWy dedt + — / / A(Vui + V,0) (V¥ + V, @)pdrdy dt
0o _Jo Y1 Jo Jaxy

T
- [ [0+ vapoasa, (3:8)

Jor all o € D(0,T),¥ € Hj(£2) and & € L*(2,H,.(Y)),
u1($,0) = 01U? +92U3 mn Q,
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where @ € L2(0,T; L?(2, H}..(Y))) is the extension by periodicity of the following function (still denoted by @ ):

per

~ al('ayv ) when Yy e }/13
gy =t 3.9
U( s ) {UQ('aya ) - va’LL1 when (TS }/23 ( )

with yr =y — Mp(y). Also, we have
n
~ Ouy

= -— 3.10
u ; D; (3.10)

where Xj € H:.(Y)(j = 1,---,n) is the solution of the cell problem

per

(3.11)

—div(A(y)V(X; +y;)) =0 inY,
My (X;) =0, X, is Y-periodic.

And uq is the unique solution of the homogenized problem

u’l — diV(AgV’Lu) =01f1+02f5 m 2 x (O,T),
up =0 on 082 x (0,T), (3.12)
up(z,0) = 61U + 6,U7 in 2

with AY = (af;)1<ij<n defined by

n ~

oX;

0 J
)= My | ay w2 | - 3.13
a;; Y (aw + ;am 8yk> (3.13)

Moreover, we have the following convergences:
AV, — AiVul weakly in L*(0,T; L*(12)),

AV — AiVul weakly in L*(0,T; L*(12)), (3.14)

where Al7 = (alj)nxn (1 =1,2) is defined by

I _ . AT
a;; = 0My, (azg + ’;(hk 8yk> . (3.15)

Proof. In view of (3.6), Theorem 2.13 implies that convergences (3.7)(i)—(iv) hold at least for a subsequence
(still denoted by €). By (3.6) and Proposition 2.6(iii), we further obtain that

(i) e — O; My, (uy) weakly in L*(0,T;L*(2)) for i=1,2,
(i) A*Vuie = My, [A(Vur + V1)) weakly in L?(0,T; L*(£2)), (3.16)
(iii) A*Vuge — 02 My, [A(V,12)] weakly in L?(0,T; L*(£2)).

Notice that w; is independent of y, we get convergence (3.7)(v) from (3.16)(i).
Let ¥ € D(R2). For i = 1,2, let ¢; € D(2) and ; € H}. (Y;). Define v;. by

vie(@) = ¥ (@) + 65 (@)o () and ¥ (@) = v () - (8.17)
Then
Vvie = V0 + Vi + 6 (V60 ()

3
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By Proposition 2.6(ii),

“(vie) = W, T (Vvie) — V¥ + V,®; strongly in L*(2 x Y;),

7;
T (¢iy5) — P strongly in L*(2 x Y;) with &i(x,y) = ¢i(x)¢i(y)- (3.18)

Let ¢ € D(£2) and ) € H} (). During the proof of Theorem 3.1, we suppose ¢; = ¢, 1h; = |y, for i = 1,2.
Let ¢ € D(0,T). From (3.7) and (3.18), we use Proposition 2.5 to obtain that

/ / Vi’ dadt — 0; / / w W' dadt,

/ A*Vui-Vuiepdedt — / / A(Vui + Vi) (VP + V,P)pda dy dt,
0 915 ‘Y‘ .Q><Y1

T
/ A*Vus.Vugepdr dt — / / AV, 02) (V& + VD) dr dy dt,
0 (P2 ‘Y‘ 2XYs

T
/ / fieviepdax dt — Qi/ / fiYvpdadt, (3.19)
0o Ju. o Jo

where &(z,y) = ¢(z)1(y). Choosing (vicp, v2-¢) as test function in the variational formulation (3.4), we get

T T
— / / U101 dadt + / A*Vu1. Vv dz dt
0 915 0 Qla

T T
— / / Uge Voo’ dz dt + / / A*VusVugepdr dt
0 .QQE 0 925

T T
:/ flgvlggodxdt—&—/ Sfocvo-pda dt. (3.20)
0 .ng 0 025

Passing to the limit, then making use of (3.9) and (3.19), we obtain the equation in (3.8). Here we also used
the density of D(£2) in Hj(£2) and the density of D(£2) ® H].,(Y1) in L*(£2, H} . (Y1)).
Setting ¥ = 0 in (3.8), we obtain
div, A(Vuy + Vi) = 0.

Notice that u; is independent of y and M (u;) = 0. Hence we get (3.10). Then by a standard computation, we
get the convergence (3.14) from (3.16) and the following identity:

% /Y A(Vuy + Vi) V¥dy = AJVu, VI (3.21)
with A9 defined by (3.13).

Moreover, we obtain the equation in (3.12). By a similar argument as that in [15], we know the initial condition
is satisfied. Consequently, u; solves problem (3.12) with AY defined by (3.13).

Standard arguments give the ellipticity of A?Y and the uniqueness of the solution of the homogenized problem.
Hence we get that the pair (u1, %) with Mp(@) = 0 is the unique solution of problem (3.8) due to (3.10). This
implies that all convergences in Theorem 3.1 hold for the whole sequence. O

3.2. The case v = —1

Theorem 3.2. Let A® and h® be defined by (3.1) and (3.2), respectively. For v = —1, suppose that uc is the
solution of (1.1) with (3.3) and (3.5). Then there exist u; € L*(0,T; H}(£2)), Uy € L2(0 T;L*(2,H},.(Y1)))

per

and Uy € L?(0,T; L?(2, H*(Y2))) such that (3.7), where Mp(u;) = 0 (i = 1,2). The triple (u, U1, u2) is the
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unique solution in L2(0,T; H(£2)) x L?(0,T; L*(2, H;er(Yl)))x L?(0,T; L?(02, H;EY(YQ))) with Mp(u1) = 0,
of the problem

T T
1
- / / ¢ drdt + — / / A(Vui + V1) (V¥ + VP )pdedy dt
0 () |Y| .QXYl

1
+— / / A(Vui + V) (V¥ + VDo) de dy dt

‘Y| 02xYs

1 ~
+=—= / / h(y)(u1 — ’ELQ)(@1 — (152)4,0 dx ddy dt (322)

‘Y| 2xI

T
:/ /(91f1 +92f2)wg0dl‘dt
0o Jo
for all o € D(0,T), ¥ € H}(2) and &; € L*($2, H;er(Yi)), 1=1,2,
ui(z,0) = 6,U7 + 0.UY in £2.

Here iy € L*(0,T; L*(2, H),,(Y2))) is the extension by periodicity of the following function (still denoted by
’ug),
122 = ﬂ2 - yqul - C, (323)
where yr =y — Mr(y) and ¢ is some function in L*(0,T; L?(£2)).
Moreover, we have

N i 8u1 j . i 8u1 j
L I L] (3.24)
‘2::1 81‘]‘ 1 = 81‘]‘ 2
where (x],x3) € Hl, (Y1) x H (Y2)(j = 1,...,n) is the solution of the cell problem
—div(A(y)Vx] + ) = in Y,
—div(A(y)V (b + 1)) = 4 in Ya,
AWVOA +yy) - = — ( V(X3 +y;) nz onl, (3.25)
A(y)V (i+yj)~n1=—h(xi—xé) on I,

My, (x1) =0, x is Y-periodic.

And uy is the unique solution of the homogenized problem (3.12) with AY = (af;)1<i j<n defined by

' 0
i = 01 My, (am + Zazk By ) + 02 My, (azg + Zazk 8;(2> (3.26)
k — k

We also have the following convergences:

AVup, — A}YVul weakly in L*(0,T; L*(£2)),
A*Vug. — A%Vul weakly in L*(0,T; L*(£2)), (3.27)

where Al7 = (aéj)nxn (I =1,2) is defined by
n axg
I y . l
a;; = My, (aw + ,;:1 a 8%) ) (3.28)

Proof. The proof of Theorem 3.2 follows from a similar argument as that of Theorem 3.1. The only difference
is that we need to handle the interface term now.
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Let ¢ € D(0,T) and v;- (i = 1,2) be given by (3.17). For the interface term, Proposition 2.12 shows that
T
gl / / he(u1e — uge ) (vie — voe ) do, dt
/ B (u1e = ) (9105 — G5 dor, e

FE
e [ T ) - T ) [T 60) ~ TS )]y .

On the other hand, Theorem 2.13 gives that there exists ¢ € L?(0,T; L%(£2)) such that
e M TE (ure) — Ty (uge)] = Uy — Up + yrVug + ¢ weakly in L?(0,T; L*(2 x I)) (3.29)

for the above subsequence. From (3.18) and (3.29), we get
hm e~ / he (u1e — uge)(v1e — vae ) doy dt
FE

/ / ) (@1 — To + yrVur + ) (P1 — $2)p da doy, dt. (3.30)
|Y| 2xr

We also notice that to prove u; satisfies (3.12), we need the following identity

1
Wl A(Vuy + Vi, ) (V¥ + V1) do dy
|Y| 2xYy
1
VGl A(Vuy + Vi) (V¥ + V, Py) da dy
‘Y| 2XY>
1 - ~
T h(y) (@1 — i) (P — P2) dz do,
‘Y| 2xr
= A)Vu, VY, (3.31)

where A9 = (af;)1<i j<n is defined by (3.26).
The other parts of the proof can be done by a similar argument as that in Theorem 3.1. O

Remark 3.3. For v < —1, Jose [18] proved that
AV + AVug. — (AL + A2)Vuy  weakly in L2(0,T; L(£2)),
where Afy(l = 1,2) is defined by/(?ES) and (3\2/8) for v < —1 and v = —1, respectively. Here, we obtain
separately the convergences of A*Vui. and A*Vuge, as presented in Theorems 3.1 and 3.2.
4. ASYMPTOTIC BEHAVIOR OF THE ENERGY

In this section, we study the asymptotic behavior of the energy which plays a key role in the study of the
corrector results, as evidenced in [1,11], to name a few. To do that, we need some stronger assumptions than
those of the convergence results.

Still let v < —1. We suppose that for the data f;c € L2(0,T; L?(£2;.)), there exists f; € L*(0,T; L?(£2)) such
that

I fie = fillL2c0,m22(0,0)) — 0, i=1,2. (4.1)
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Remark 4.1.

(i) According to Proposition 2.7, assumption (4.1) is equivalent to

/ / | fie|? dadt — 0,

T (fie) — fi strongly in L%(0,T; L*(2 x Y;)). (4.2)
This implies that
(fies foe) = (B1f1,02f5) weakly in L*(0,T5 L*(2)) x L*(0,T; L*(2)).

(ii) Donato and Jose [11] introduced the following assumption

fie € L?(0,T; L*(2)), (43)
fie = fi strongly in L?(0,T, L*(£2)), '

which implies assumption (4.1).

Next, we introduce some assumptions on the initial data (UY., US.).
Concerning U2 € L%(£2;.)(i = 1,2), we make the following assumption (see [11]): there exists U° € L?({2)
such that o
UY + Uy — U strongly in  L*(02), (4.4)

which is equivalent to

r\é N . 0 N 2 ) —
{Uis 0;U" weakly in L°(£2), i=1,2, (4.5)

U222,y + 102720250y = 10N 2202
Remark 4.2. Assumption (4.4) is also equivalent to
UL = Ul L2,y — O
This is easily obtained from the fact that 21, and {25, are disjoint.

Now, we consider the asymptotic behavior of the energy. For each e, the energy E¢(t) associated to prob-
lem (1.1) is defined by

1 1 t
E(t) ;:5/Q |u1€(t)|2dx+§/ﬂ |u26(t)|2dx+/0 ; A*Vu1Vuye dz ds
1le 2e le

t t
+ / A*VuoVus. drds + &7 / h¥|ure — uge|? do, ds. (4.6)
0 29¢ 0 Ie

Choosing (u1., uz:) as test function in (3.4) and integrating by parts, E°(¢) can be rewritten as

E<(t) := §HU106||%2(Q15) + §||USEH%2(Q2E) +A A fireuie dzds +/0 o focuge dr ds. (4.7)
1e 2¢

Theorem 4.3 (convergence of energy for v < —1). Let A® and h® be defined by (3.1) and (3.2), respectively.
Suppose that (4.1) and (4.4) hold. If u. is the solution of problem (1.1) with v < —1, then
E¢ — E strongly in C°([0,T)),

where E is the energy associated to the corresponding homogenized problem, defined by

t
E(t) ::%/Q\uﬂzdw—i—/o /QAngVuldwds

with A?Y being the corresponding homogenized matrix.
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Proof. From the homogenization results in Section 3, we have
T (uie) — w1 weakly in L2(0,T; L*(22, H'(Y;))), i=1,2.

By (3.6) and (4.2), we use Proposition 2.5 to obtain that

t 1 t
i [ fewsededs =t [ [ (0T ) dedy ds
e=0Jo Ja,. =0 Y| Jo Joxv:

=0, /Ot/nfiul dx ds. (4.8)

Notice that a direct computation gives

1 t
B = 5100y + [ [ 00+ o) dods.

Combining this with (4.5), (4.7) and (4.8), we conclude that E* — E, Vt € [0,T]. Following the standard
framework of argument, we use the Ascoli—Arzela theorem to get the proof of Theorem 4.3. O

5. CORRECTOR RESULTS

In this section, we are devoted to the corrector results for problem (1.1) with v < —1, which are new. The
proofs mainly rely on the unfolding method. Our method is quite different from that in [11], which is used to
prove the correct results for the case —1 <y < 1.

Now we present two necessary results. The first one is the compactness result of 1.+ in C°([0, T]; H1(£2)),
which can be proved by repeating the proof of Theorem 4.8 in [11], step by step.

Proposition 5.1. Let v < —1. Suppose that (3.3) and (3.5) hold and u. is the solution of problem (1.1). Then,
we have

Ute + Uge — Orur + Oaus in CO([O,T]; H_l(ﬂ))
Moreover, we have
als + ﬂ25 — U1 in CO([()?T]v H_l(g))
The second one is a classical result due to Cioranescu et al. [3].

Proposition 5.2. Let {D.} be a sequence of n x n matrices in M(a,3,0) for some open set O, such that
D. — D a.e. on O (or more generally, in measure in O). If (. — ¢ weakly in L?(O), then

/ D((dx < liminf/ D.(.(. dx.
o =0 Jo

Furthermore, if

limsup/ D dxg/ D(¢( dx.
1] 1]

e—0

then
/ D¢(dx = liH(l)/ D.(.C.dx and (. — ¢ strongly in L*(O).
o «=0Jo
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5.1. The case v < —1

Theorem 5.3. Let A® and h® be defined by (3.1) and (3.2), respectively. For v < —1, suppose that uc is the
solution of problem (1.1) with (4.1) and (4.4). If uy is the solution of the homogenized problem (3.12) with A9
defined by (3.13), then we have

[t1e + t2: — uilleo(o,r);22(2)) — 0,
Vuie — C*Vurl|p2(jo,1):01 (210)) — 05
[Vuze — C*Vur || L2070 (25.)) — 0, (5.1)

where the corrector matriz is defined by

@)= (2) ac. on 2, o
X 5.2
Cij(y) = dij + a—zj(y) a.e. on'Y,

with X; being the solution of the cell problem (3.11).
The proof is based on the following lemma.
Lemma 5.4. Keep the notations and assumptions in Theorem 5.3. For any @ € C>([0,T], D({2)), set

1 t
pu(t) = / e + Tiae — B2dz + / A (Vare — CEV®)(Vur. — CEV) da ds
N 0 J2.

t
+ / A*(Vuge — C°VP)(Vug. — C°VP) dads.
0 925

Then we have

lim sup lpellcoo,ry < llellcogo,m) (5.3)
E—
where
1 t
p(t) = §Hu1 A +/0 /QAQ(W1 — V®)(Vuy — V@) drds. (5.4)

Proof. We first decompose p. into three terms:

Pe = Ple + P2e — P3e; (55)

where

1 1
Ple = —/ \U15|2dl‘ + —/ |U25\2d1‘
2 915 2 925

t t
+ / A*Vu1.Vui. de ds + / A*Vug:Vuo, dx ds,
0 915 0 925
1 t t
p2e = —/ |®2dx + +/ ASCEVPCV P dz ds +/ ASCEVPCEVP da ds,
2 /o 0 Jeu. 0 J 2.
t t
P3e = / (Ure + Uge )Pdx —l—/ / ASC*VdVui. drds +/ / A C*VPVuy, drds
(] 0 915 0 925

t t
+/ ASVU1€C€V¢dxds+/ A*Vus. C*VP da ds. (5.6)
0 915 0 925
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Step 1. In this step, we consider the term ps. which is more complicated than the other two terms. Write ps.

in the form:
P3e = pil’ns + p?ﬂs + pge’

where

P3e = / (Ure + Tz )Pda,
I}
¢

pggz// AEC’EVQVulgdxds—l—// A*C*VPVus. dr ds,
0 J2. (g2

) t t

P :/ AgvulsCEVQsddevL/ AV, C°VP dx ds.
0 21c 0 25

For the term pi_, we have

te[0,T]

Thanks to Proposition 5.1, we obtain
pr— /Qu1d5dx in C°([0,T7).
For the term p3_, by (3.7) and (5.2), we use Proposition 2.5 to get
pa(t / / y)[VP+V @][Vul + Vyu]dedyds
T o Jaxw,

/ / VP +V 45] [Vui + Vyus] dz dy ds
|Y‘ .QXYQ

/ / Y)[VP + V, | [Vuy + V] dedyds, Ve [0,T],
|Y| 2XY

where @ is given by Theorem 3.1 and @ is defined by

Y
:;8@"

K3
Furthermore, as we did for getting (3.21), we obtain

t
pa(t) — / / AIVOVuy dzds, Vi€ [0,T].
0o J

max ’ / Ure + Uge )P — ur P dl" < e + t2e — urlleoo,my:m-1(2)) 1Pl co o, 1y 2 (2))-

(5.8)

(5.9)

The Ascoli—Arzela theorem shows that convergence (5.9) still holds in C°([0,77). In fact, by (3.1) and the

assumption on @, the Holder inequality gives

193] <N Al L) IC | L2 IVR L2 (0,7, (2))
Vel L2020y + I[Vu2ell L2(0,7:02 (220 -

From Proposition 8.5, 2, we know there exists a constant Cy (independent of €) such that

1C% | 20y < Ch.

(5.10)
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Together with (3.1), (3.6) and the assumption on @, we have the following estimate:
3l <e VEE[0,T],
where c is independent of ¢ and . Moreover, as s — 07,

l £
105 (t + 8) — p3.(1)] < 87| All Lo () IC% 1 L2(2) I VDIl oo (0,752, (2))
[IVuiellzz 0,122 (1)) + I1Vuzell 220,702 (250 ))]

< cs? — 0, uniformly with respect to €. (5.11)
Hence we conclude that

t
p§6_>/ /Aqusvuldxds in €°(0, T)).
0 2

For the term p3_, arguing as we treated p3., we get

t
pggﬁ/ /Agvulvmxds in C°([0, 7).
0 J

Combining this with the convergence of pi. and p3., we have

t t
p35_>/ u1<15dx+/ /Agwsvul d:cds+/ /Agvulvmxds in C°([0,T7)). (5.12)
02 0 J 0 J

Step 2. For pa., we can easily verify that it is bounded in L>°(0, T'). Similar property holds for its time derivative
due to the smoothness of @. Following the computation in (5.7) and (5.9), we have

1 t
poe — —/ 1®|2dz +/ / ANV deds, Vte [0,T], (5.13)
2/n 0o Je
where & is defined by (5.8). Thus it follows that

1 t
P2 —>—/ |¢|2d33—|—/ /AgV@V@dazds in C°([0,T)). (5.14)
2 Ja 0o Ja

Step 3. For pi., it follows from (4.6) that
plé(t) < Es(t)a vt € [OaT}
This yields
0< pe(t) = pls(t) + 025(75) - pSE(t) < Es(t) + P2s(t) - pSE(t)a vt € [O,T] (515)
By Theorems 4.3, (5.12) and (5.14), we have
B (1) + paclt) — pac(t) — p(t) in C°([0,T)).
This, together with (5.15), implies (5.3). The proof of Lemma 5.4 is completed. O

Proof of Theorem 5.3. By Lemma 5.4 and the classical density result, we can easily prove Theorem 5.3 by
standard arguments (see also [11]). For the reader’s convenience and the completeness, we include the following
details.

In view of u; € L2(0,T; HL(£2))NC°([0,T]; L?(£2)), we know that for § > 0, there exists @ € C*°([0,T]; D(£2))
such that

[ur = @|lco(o,1);L2(2)) < 0,
T); 5.16
{IVul = V| r2(0,1;L2(2)) < 0. o
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Combining this with Lemma 5.4, we have
lims(l)lp llpellcoo,m < llplleoqo,m < €62, (5.17)
£—

where ¢ is independent of € and J.
The ellipticity of A® implies that % [, [t1e + Uz — ®[*da < p.(t). Together with the triangle inequality
and (5.16), it follows that

thélp ||615 + age — ungO([O,T];LQ(Q)) S thélp {QHﬂlg + 525 — @”%o([QT];LQ(Q)) + 262}
< (tmsup pdlesoy + &)
£—
< o (5.18)

On the other hand, by the triangle inequality, (5.10), (5.16) and the Holder inequality, we deduce that

T T
/(; ||Vu15 — CSVU1H%1(91€)dt + /O HVU25 - OEVU1||%1(925)dt

T T

<2 / [Vure — CoV2, gt + 2]C 2 / Vs — V|25 .t
T T

+2/O HVqu—C5V¢||2L1(Q2E)dt—I—QHC‘EH%Q(QQE)/O HVul—V@H%z(Q?E)dt

r T
< C/ Ve — CEVQSH%z(QIE)dt + C/ | Vuge — CEV@”%;(Q%)CU + 2.
0 0

Thanks to the ellipticity of A%, we have

T T
/0 Vure — CEVulHil(le)dt—l—/O Vs — CoVur |21t < c(pe(T) + 62). (5.19)

This, together with (5.17) and (5.18), shows that

limsup [[t1z + U2 — U1||30([0,T];L2(9))

£—

+ lim Sup {HVulg = CVurllfz0minr () T Vu2e = OeV“lH%Q(O,T;Ll(%E))}

< climsup ||pc||co(po,77) + c6? < o2, (5.20)
e—0
which implies (5.1) owing to J being arbitrary. O

5.2. The case v = —1

For the case v = —1, because of the presence of the integral of the jump between u; and 2 on the interface I”
in the limit problem (3.22), the proofs of the corrector results are quite different from those in the case v < —1.

Theorem 5.5. Let A® and h® be defined by (3.1) and (3.2), respectively. For v = —1, suppose that u. is the
solution of problem (1.1) with (4.1) and (4.4). If uy is the solution of the homogenized problem (3.12) with A9
defined by (3.26), then

U1 + t2e — Ul||c°([o,T];L2(n)) — 0,
IVuie = C*Vur || L2 (o, 1121 (2:0)) — 0
|[Vuge — ngu1||L2([0,T];L1(Qza)) — 0, (5.21)
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where the corrector matrices C¢ and D* are defined by

oy =cC (E
C(z)=C (5) ) a.e. on 21,
0
Cij(y) = dij + 82;1 (y) a.e. on Yy,
sy =D (%
D (x)—D(g) j a.e. on (2o,
0
Di;(y) = 65 + 8252 (y) a.e. onYs.

Here x} € H}. (Ya) (still denoted by X3 ) is the extension by periodicity of X3, and (x,x3) is the solution of the

cell problem (3.25).

To prove this result, we need the following result corresponding to Lemma 5.4.
Lemma 5.6. Keep the notations and assumptions in Theorem 5.5. For any © € C*=([0,T], D(2)), write

1 t
ge(t) =3 / [U1e + Tge — D|*da + / / A (Vuye — C°VP)(Vure — C°VP) dads
Q 0o Ja.

t
+ / A®(Vuge — DVP)(Vug. — DVP) dx ds.
0 925

Then we have
limS(l)lp llgellcoo,my < llp)llcogo,m)s (5.22)
where p(t) is given by (5.4) with AY defined by (3.26).

Proof. The proof of Lemma 5.6 follows from a similar argument as that of Lemma 5.4. Here, we only indicate
the different parts. We first decompose g. into three terms:

ge = gie + g2c — g3e, (523)

where

1 1
gie = _/ |u16‘2dx + _/ |U26‘2d1’
2 21 2 29c

¢ ¢
+ / A*Vui1.Vui. doeds + / A*Vuo.Vuo, dx ds,
0 21 0 22

t t
P / 1®|2da + / AFCEVPCEVS da ds + / A*DVSDVS dx ds,
2 2 0 915 0 025

t t
J3e = / (U1e + g )Pda + / A C*VDPVuy. daeds + / A D*VPVus, drds
2 0 _le 0 925

t t
+/ AVu1.C*VPdr ds +/ A*Vus. DFVP dx ds. (5.24)
0 21 0 22

Step 1. In this step, we study the term g;.. It is different from the corresponding one in the case v < —1, due
to the consideration of interface term.
By (4.6), we have

t
g1e = E° — 871/ he|uie — ugg\z do,ds, Vtel0,T].
o Jre
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From Theorem 4.3, we know that
Ef — E strongly in C°([0,TY)). (5.25)

For the interface term £~! fot fra he|u1e — uge|?dods, we know that it is bounded in H'(0,7T) due to (3.2)
and (3.6). By the compactness of the injection H'(0,T) C C°([0,T]), we get that

g1 is compact in C°([0, T7). (5.26)

On the other hand, for any ¢ € [0, 7], we use Proposition 2.10 to obtain

t t
et / / he(uge — u25)2 doyds > et / /A he(u1e — u26)2 do, ds
0 € e

\Y| / /er ( e ;T;(U%)f dz doy ds. (5.27)

Notice that (3.23) and (3.29) imply ! [T (u1c) — 75 (u2)] — Ur —tip weakly in L?(0,T; L2(£2x I')). Combining
this with (5.27), then making use of Proposition 5.2 with D = h, we obtain

lim 1nf { / he (u1e — ug.)? doy, ds] / / V(1 — 1ip)? da doy ds, (5.28)
e—0 Ie ‘Y‘ xr

where u; and w9 are given by Theorem 3.2. Hence

e—0

limsup g1 < E — / / )(Uy — tiz)? dedo, ds, ¥t € [0,T]. (5.29)
|Y‘ 0xr

Step 2. This step is devoted to the study of g3.. Decompose g3. into three terms:
g3e = g?{e + 932»5 + gge’

where
gés = / (ﬂle + ﬂ25)@d1’7
Q
t
ggs :/ / A C*VdVui, dxds—i—/ / A*D*VPVus. dx ds,
0 J2. 29c
t t
g = / AV, . CEVP da ds + / A*Vuy, DEVP da ds.
0 .ng 0 025
Repeating the arguments about pi_ in Lemma 5.4, we have
g — / wdde in CO([0,T]). (5.30)
0
For the term g3_, by Proposition 2.5 and Theorem 3.2, arguing as we did for getting (5.7), we obtain
ga.(t / / Ve +V 451][Vu1 + V] de dy ds
‘Y‘ .QXYl

/ / Ve +V @2][Vu1 + Vyis]dedyds for any t € [0,T7],
|Y| QXYQ
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where 52 is defined by

Iooi=1,2.
Za%xﬂ i=1,

Moreover, (3.31) allows us to deduce

g2 (t _>/ /AOVgZiVuldwdS Y/ /Q 52)(ﬂl—ﬁ2)dwdoyds, vt € [0,T]. (5.31)
xI

This convergence still holds in C°([0,77]) due to the Ascoli—Arzela theorem. In fact, it is easily obtained from
the following estimate corresponding to that of p3_:

195 )] < 1Al Loy {NC N L2 20) IV Dl 200,73 10 (20 [ VUae | 20,7512 (210
+ D% 220 IV @] 20,7350 () Vtzel | 20 7:22(2200)
In [19], Monsurro proved that there exist two constants Cy and Cs (independent of €) such that
1€l L2 (1) < €1 and [[D7][L2(0,.) < Co. (5.32)
Together with (3.1), (3.6) and the assumption on @, we have
g5 < e Ve (0T,

where the constant c is independent of ¢ and . Moreover, as s — 07, we get the following estimate corresponding
o (5.11):

95 (t+ ) — g3.(t)]

IA

57| All oo () | V@l os 0,72 ()
AN L2 @un) IVutell e o,rsn2( 1)) + 1D 2000 VU2l 20,7522 (0220)) |

IA

1 . .
cs? — 0, uniformly with respect to e.

Hence we have

t 1 t ~ ~
ok - / / AOVEVu, da ds — —/ / h(y) By — B) (@, — iz) dwdory ds in CO([0,T]).  (5.33)
0o J ‘Y‘ 2xr

Similarly, we also have

t 1 t ~ ~
@ = / / AV, VP da ds — W/ / h(y) @iy — i2)(B1 — Bp) dwdory ds in CO([0,T]).  (5.34)
QxIr

Step 3. For any t € [0, 7], following the computation in (5.31), we obtain the following pointwise limit
goe —= /|¢| dz + — / / Y)[VP + V,01][VP + V, & | dz dy ds
|Y‘ .QXYl

/ / Y)[V® + V, D] [VP + V,Ps) dz dy ds
|Y| 2XYs

:1/ |¢|2dx+/ /ongﬁvgﬁdxds——// — ;)2 dzdoy, ds.
2 /o 0 Jo Y| QxT

Moreover, the same arguments as those of po. in Lemma 5.4 show that
1 2 ' 0
g2 —= | |P|*dx + AIVOVPdrds
2 Ja 0 Jo

—%/ /Mh(y)(g’b} — &,)?dzdoy, ds in C°([0,T]). (5.35)
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Now we focus on g.. Making use of (5.26)—(5.30) and (5.33)—(5.35), we have

ge is compact in C°([0, 7))

and
1/t R ~ o~
0 <timswge <p— o [ [ R )~ @1 - E)] dedoy ds < p, Vi€ 0.7)
e—0 |Y| 0 J2xI'
where we used the assumption on h in the last inequality. This implies the desired result. O

Proof of Theorem 5.5. With Lemma 5.6 at our disposal, the Proof of Theorem 5.5 is completed by repeating
the details in the Proof of Theorem 5.3. O

Remark 5.7. For the case v € (—1, 1], the corrector results were proved by the oscillating test functions method
n [11]. In fact, these results can be also proved by the periodic unfolding method. The argument is similar to
that of Theorem 5.3.
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