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Abstract. In this paper we propose a time discretization of a system of two parabolic equations de-
scribing diffusion-driven atom rearrangement in crystalline matter. The equations express the balances
of microforces and microenergy; the two phase fields are the order parameter and the chemical poten-
tial. The initial and boundary-value problem for the evolutionary system is known to be well posed.
Convergence of the discrete scheme to the solution of the continuous problem is proved by a careful
development of uniform estimates, by weak compactness and a suitable treatment of nonlinearities.
Moreover, for the difference of discrete and continuous solutions we prove an error estimate of order
one with respect to the time step.
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1. Introduction

This paper deals with a time discretization of a PDE system arising from a thermomechanical model for
phase segregation by atom rearrangement on a lattice. The model was proposed by one of us in [29]; the
resulting system has been analyzed in a recent and intensive research work by four of the present authors (see,
in particular, [16, 17], both for well-posedness results and for a detailed presentation of the model).
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The initial and boundary value problem we consider consists in looking for two fields, the chemical potential
μ > 0 and the order parameter ρ ∈ (0, 1), solving

(1 + 2g(ρ))∂tμ+ μ∂tg(ρ) −Δμ = 0 in Ω × (0, T ), (1.1)
∂tρ−Δρ+ f ′(ρ) = μg′(ρ) in Ω × (0, T ), (1.2)

∂νμ = ∂νρ = 0 on Γ × (0, T ), (1.3)
μ|t=0 = μ0 and ρ|t=0 = ρ0 in Ω; (1.4)

here Ω denotes a bounded domain of R
3 with conveniently smooth boundary Γ , T > 0 stands for some final

time, and ∂ν denotes differentiation in the direction of the outward normal ν.
Problem (1.1)–(1.4) is parameterized by two nonlinear scalar-valued functions, g and f , which enter into the

definition of the system’s free energy:

ψ = ψ̂(ρ,∇ρ, μ) = −
(

1
2

+ g(ρ)
)
μ+ f(ρ) +

1
2
|∇ρ|2. (1.5)

We point out that in (1.1)–(1.5) all physical constants have been set equal to 1. We also note that the last two
terms in (1.5) favor phase segregation, the former because it introduces local energy minima, the latter because
it penalizes spatial changes of the order parameter. For g, one can take any smooth function, provided it is
nonnegative in the physically admissible domain:

g(ρ) ≥ 0 for all ρ ∈ (0, 1); (1.6)

accordingly, the coefficient 1/2 of μ in (1.5) should be regarded as a prescribed material bound. As to the
possibly multi-well potential f , we take it to be the sum of two functions:

f(ρ) = f1(ρ) + f2(ρ);

the one, f1, is convex over (0, 1), and such that its derivative f ′
1 (and possibly also f1) is singular at the endpoints

0 and 1 (cf. (2.3)); the other is required to be smooth over the entire interval [0, 1], but not to have any convexity
property, so that in equation (1.2) f ′

2 may serve as a non-monotone perturbation of the increasing function f ′
1.

As to the parameter functions, in [16] the choice made for g was:

g(ρ) = ρ, (1.7)

while the assumptions on f were compatible with choosing a double-well potential:

f(ρ) = α1 {ρ ln(ρ) + (1 − ρ) ln(1 − ρ)} + α2 ρ (1 − ρ) + α3ρ, (1.8)

for some non-negative constants α1, α2, α3. Note that, if α3 is taken null, then, according to whether or not
2α1 ≥ α2, f turns out to be convex in the whole of [0, 1] or it exhibits two wells, with a local maximum at
ρ = 1/2; moreover, for α3 > 0, the combined function:

−g(ρ)μ+ f(ρ) (a part of ψ)

shows one global minimum in all cases, and it depends on the sign of (α3 − μ) which minimum actually occurs.
On the other hand, the framework of paper [17] allows for much more general choices of g and f , as well as for
nonlinear diffusion of μ. Existence and uniqueness results were proved in both [16,17], with different approaches.
Here, we take inspiration from arguments developed either in the one or in the other of those papers.

We introduce a time discretization of system (1.1)–(1.4) which is implicit with respect to the principal terms
and tries to handle very carefully the nonlinearities. Namely, we address the recursive sequence of the elliptic
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problems:

(1 + 2γn) δhμn + μn+1 δhγn −Δμn+1 = 0 in Ω, (1.9)
δhρn −Δρn+1 + f ′(ρn+1) = μng

′(ρn) in Ω, (1.10)
∂νμn+1 = ∂νρn+1 = 0 on Γ , (1.11)

for n = 0, 1, . . . , N , where h = T/N is the time step, γn := g(ρn) and, for any (N + 1)-ple z0, z1, . . . , zN , we let

δhzn := (zn+1 − zn)/h for n = 0, . . . , N − 1.

After showing the existence of a discrete solution at any step, we carry out a number of uniform estimates on
the time-discrete solution which allow us to prove convergence to the unique solution (μ, ρ) of the continuous
problem (1.1)–(1.4), as h tends to 0 (or, equivalently, N goes to +∞). Then, we estimate certain norms of the
difference between the piecewise-linear-in-time interpolants of the discrete solutions and the continuous solution:
more precisely, the first error estimate we prove is of order h1/2; the second, which holds under stronger regularity
assumptions on the initial data, is of order h.

We regard our results as a cornerstone in the construction of a time-and-space discretization of prob-
lem (1.1)–(1.4). With reference to such a complete discretization of Cahn–Hilliard and viscous Cahn–
Hilliard systems, we quote papers [1–8, 21–23]. Some recent efforts can be found in the literature with the
aim of analyzing other classes of phase transition problems, either to show existence via time discretiza-
tion [9, 14, 15, 19, 20, 27, 30, 35, 36] or to prove numerical results such as special convergence properties, stability
or error estimates [11–13,18, 25, 28, 31, 33, 34] (cf. also [26] for a recent review on phase-field models). We dare
say that our contribution goes deeply into the structure of the mathematical problem, because, as is not the
case for many other similar investigations, we succeed in showing a linear order of convergence.

Our paper is organized as follows. In the next section, we list and discuss our assumptions, formulate the
continuous and discrete problems precisely, and state our main results. Section 3 is devoted to proving that
there is a discrete solution. The convergence result is proved in the long and articulate Section 4. Finally, the
last two Sections 5 and 6 contain detailed proofs of the two error estimates.

2. Main results

In this section, we describe the mathematical problem under investigation, introduce the time discretization
scheme, make our assumptions precise, and state our results.

First of all, we assume Ω to be a bounded connected open set in R
3 with smooth boundary Γ . For convenience,

we set
V := H1(Ω), H := L2(Ω), and W := {v ∈ H2(Ω) : ∂νv = 0 on Γ}, (2.1)

and we endow these spaces with their standard norms, for which we use a self-explanatory notation like ‖ · ‖V .
The notation ‖ · ‖p (1 ≤ p ≤ +∞) stands for the standard Lp-norm in Lp(Ω); for short, we sometimes do not
distinguish between a space (or its norm) and a power thereof.

As to the parameter functions f and g, we assume that

f = f1 + f2, where (2.2)
f1 : (0, 1) → [0,+∞) is a convex C2 function satisfying

lim
r↘0

f ′
1(r) = −∞ and lim

r↗1
f ′
1(r) = +∞; (2.3)

f2 : [0, 1] → R is of class C2; (2.4)
g : [0, 1] → R is of class C2 and nonnegative. (2.5)
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For the initial data, we require that

μ0 ∈ V ∩ L∞(Ω) and μ0 ≥ 0 a.e. in Ω; (2.6)
ρ0 ∈W ⊂ C0(Ω) and inf ρ0 > 0, supρ0 < 1. (2.7)

We stress that conditions (2.7) actually imply that ρ0 is 1/2-Hölder continuous: indeed, as Ω is a three-
dimensional domain, W is continuosly embedded in C0,1/2(Ω). As a consequence, also f(ρ0) and f ′(ρ0) are
1/2-Hölder continuous, since f and f ′ are smooth in (0, 1). On the other hand, we point out that in the sequel
we will mostly exploit the compactness of the embedding W ⊂ C0(Ω); Hölder continuity will play no role.

As recalled in the Introduction, in papers [16, 17] two versions of problem (1.1)–(1.4) were solved over an
arbitrary time interval [0, T ] in a rather strong sense, because the solution pairs (μ, ρ) were required to satisfy

μ ∈ H1(0, T ;H) ∩ L2(0, T ;W ), (2.8)
ρ ∈W 1,∞(0, T ;H) ∩H1(0, T ;V ) ∩ L∞(0, T ;W ), (2.9)
μ ≥ 0 a.e. in Q, (2.10)
0 < ρ < 1 a.e. in Q and f ′(ρ) ∈ L∞(0, T ;H). (2.11)

Note that the boundary conditions (1.3) follow from (2.8)–(2.9), due to the definition of W in (2.1). Accordingly,
the solutions to the problems of type (1.1)–(1.4) studied in [16, 17] were pairs (μ, ρ) satisfying, in addition
to (2.8)–(2.11), the system

(1 + 2g(ρ)) ∂tμ+ μ∂tg(ρ) −Δμ = 0 a.e. in Q, (2.12)
∂tρ−Δρ+ f ′(ρ) = μg′(ρ) a.e. in Q, (2.13)

μ(0) = μ0 and ρ(0) = ρ0 a.e. in Ω. (2.14)

Some of the results proved in the quoted papers are summarized in the following theorem.

Theorem 2.1. Let assumptions (2.2)–(2.7) hold. Then, there exists a unique pair (μ, ρ) satisfying (2.8)–(2.11)
and solving problem (2.12)–(2.14). Moreover, μ ∈ L∞(Q), and there exist ρ∗, ρ∗ ∈ (0, 1) such that ρ∗ ≤ ρ ≤ ρ∗

a.e. in Q.

The main aim of the present paper is to show that, given the time-discretization scheme introduced here
below, the discrete solution converges to the solution (μ, ρ) as the time step h tends to zero.

Notation 2.2. Assume that N is a positive integer, and let Z be any normed space. We define δh : ZN+1 → ZN

as follows:

for z = (z0, z1, . . . , zN ) ∈ ZN+1 and w = (w0, . . . , wN−1) ∈ ZN ,

δhzn = (wn) means that wn=
zn+1 − zn

h
for n = 0, . . . , N − 1. (2.15)

We can also iterate the discretization procedure, and define, e.g.,

δ2hzn :=
δhzn+1 − δhzn

h
=
zn+2 − 2zn+1 + zn

h2
for n = 0, . . . , N − 2. (2.16)

Next, by setting h := T/N (without stressing the dependence of h on N) and In := ((n − 1)h, nh) for n =
1, . . . , N , we introduce the interpolation maps from ZN+1 into either L∞(0, T ;Z) or W 1,∞(0, T ;Z) as follows:
for z = (z0, z1, . . . , zN) ∈ ZN+1, we set

zh, zh ∈ L∞(0, T ;Z) and ẑh ∈ W 1,∞(0, T ;Z), (2.17)
zh(t) = zn and zh(t) = zn−1 for a.a. t ∈ In, n = 1, . . . , N, (2.18)
ẑh(0) = z0 and ∂tẑh(t) = δhzn−1 for a.a. t ∈ In, n = 1, . . . , N. (2.19)



ANALYSIS OF A TIME DISCRETIZATION SCHEME FOR A NONSTANDARD VISCOUS CAHN–HILLIARD SYSTEM 1065

These maps yield the backward/forward piecewise-constant and piecewise-linear interpolants of the discrete
vectors. We obviously have:

‖zh‖L∞(0,T ;Z) = max
n=1,...,N

‖zn‖Z , ‖zh‖L∞(0,T ;Z) = max
n=0,...,N−1

‖zn‖Z , (2.20)

‖zh‖2
L2(0,T ;Z) = h

N∑
n=1

‖zn‖2
Z , ‖zh‖2

L2(0,T ;Z) = h

N−1∑
n=0

‖zn‖2
Z . (2.21)

Moreover, as ẑh(t) is a convex combination of zn−1 and zn for t ∈ In, we also have

‖ẑh‖L∞(0,T ;Z) = max
n=0,...,N

‖zn‖Z = max{‖z0‖Z , ‖zh‖L∞(0,T ;Z)}, (2.22)

‖ẑh‖2
L2(0,T ;Z) ≤ h

N∑
n=1

(‖zn−1‖2
Z + ‖zn‖2

Z

) ≤ h‖z0‖2
Z + 2‖zh‖2

L2(0,T ;Z). (2.23)

Finally, by a direct computation, it is straightforward to prove that

‖zh − ẑh‖L∞(0,T ;Z) = max
n=0,...,N−1

‖zn+1 − zn‖Z = h ‖∂tẑh‖L∞(0,T ;Z), (2.24)

‖zh − ẑh‖2
L2(0,T ;Z) =

h

3

N−1∑
n=0

‖zn+1 − zn‖2
Z =

h2

3
‖∂tẑh‖2

L2(0,T ;Z), (2.25)

and that the same identities hold for the difference zh − ẑh.
At this point, we can write the discrete scheme presented in the Introduction in a precise form. For any

positive integer N , we look for two vectors (μn)N
n=0 and (ρn)N

n=0 satisfying the following conditions:

i) the first components μ0 and ρ0 coincide with the initial data;
ii) for n = 0, . . . , N − 1, we have that

μn+1, ρn+1 ∈W, μn+1 ≥ 0 and 0 < ρn+1 < 1 in Ω, f ′(ρn+1) ∈ H ; (2.26)

iii) if (γn)N
n=0 is the vector whose components are γn := g(ρn), there hold

(1 + 2γn) δhμn + μn+1 δhγn −Δμn+1 = 0, (2.27)
δhρn −Δρn+1 + f ′(ρn+1) = μng

′(ρn), (2.28)

for n = 0, . . . , N − 1.

Also in this case, the homogenous Neumann boundary conditions are implicit in the regularity requirements
(see (2.26) and (2.1)).

Clearly, the “true” problem consists in finding (μn+1, ρn+1) once (ρn, μn) is given. Here is our result in this
direction.

Theorem 2.3. Assume (2.2)–(2.7). Then, there exists h0 > 0 such that, for h < h0 and n = 0, . . . , N − 1,
problem (2.27)–(2.28) has a unique solution (μn+1, ρn+1) satisfying (2.26).

Our next results concern firstly convergence of interpolants for vectors (ρn) and (μn) to the solution (μ, ρ)
to problem (2.12)–(2.14), then error estimates. We point out that, for simplicity, the convergence theorem here
below is not stated in a precise form: the topological setting will be specified later, by means of relations
(4.34)–(4.38).

Theorem 2.4. Assume (2.2)–(2.7). Then, in accord with Notation 2.2, the sequences of interpolants for the
discrete solutions given by Theorem 2.3 converge to the solution (μ, ρ) given by Theorem 2.1 as h tends to 0, in
a suitable topology.
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Theorem 2.5. In addition to (2.2)–(2.7), assume that

ρ0 ∈ H3(Ω). (2.29)

Then, for sufficiently small h > 0, the following error estimate holds:

‖ρ̂h − ρ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖μ̂h − μ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c h1/2, (2.30)

where c depends only on the structural assumptions and the data.

Theorem 2.6. In addition to (2.2)–(2.7), assume (2.29) and

μ0 ∈W. (2.31)

Then, for sufficiently small h > 0, the following error estimate holds:

‖ρ̂h − ρ‖H1(0,T ;H)∩L∞(0,T ;V ) + ‖μ̂h − μ‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c h, (2.32)

where c depends only on the structural assumptions and the data.

Remark 2.7. It is easy to see that our assumptions (2.2)–(2.7) ensure that both f ′(ρ0) and μ0g
′(ρ0) belong

to V . It follows that (2.29) is equivalent to

−Δρ0 + f ′(ρ0) − μ0g
′(ρ0) ∈ V. (2.33)

We also notice that the assumptions (2.29) and (2.31) ensure further regularity for the solution (μ, ρ) to the
continuous problem (see the forthcoming Rem. 6.1).

We prove Theorem 2.3 in Section 3 and Theorem 2.4 in Section 4; the last two sections are devoted to proving,
respectively, Theorems 2.5 and 2.6.

Throughout the paper, we account for the well-known embeddings V ⊂ Lq(Ω) (1 ≤ q ≤ 6) and W ⊂ C0(Ω),
and for the related Sobolev inequalities:

‖v‖q ≤ C‖v‖V and ‖v‖∞ ≤ C‖v‖W , (2.34)

for v ∈ V and v ∈ W , respectively, where C depends on Ω only, since sharpness is not needed. We remark that
these embeddings are compact provided that q < 6. In particular, the following compactness inequality holds:

‖v‖4 ≤ σ‖∇v‖H + Cσ‖v‖H , for every v ∈ V and σ > 0; (2.35)

in (2.35), Cσ is a constant that depends only on Ω and σ. Furthermore, we make repeated use of Hölder’s
inequality, of the following elementary identity:

(a− b)a =
1
2
a2 − 1

2
b2 +

1
2

(a− b)2, for every a, b ∈ R, (2.36)

and of Young’s inequality

ab ≤ σa2 +
1
4σ

b2, for every a, b ≥ 0 and σ > 0. (2.37)

Moreover, we use the discrete Gronwall lemma in the following form (see, e.g., [24], Prop. 2.2.1): if (a0, . . . , aN) ∈
[0,+∞)N+1 and (b1, . . . , bN) ∈ [0,+∞)N satisfy

am ≤ a0 +
m−1∑
n=1

bnan for m = 1, . . . , N, then

am ≤ a0 exp

(
m−1∑
n=1

bn

)
for m = 1, . . . , N. (2.38)
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Finally, throughout the paper we use a small-case italic c for a number of different constants that may only
depend on Ω, the final time T , the shape of f , the properties of the data involved in the statements at hand;
those constants we need to refer to are always denoted by capital letters, just like C in (2.34). Moreover,
a notation like cσ signals a constant that depends also on the parameter σ. The reader should keep in mind
that the meaning of c and cσ might change from line to line and even in the same chain of inequalities and that
their values never depend on the time step h.

3. Existence

In this section, we prove Theorem 2.3. We argue inductively with respect to n, i.e., by assuming that a
pair (μn, ρn) satisfying (2.26) with n in place of n + 1 is given, we prove that problem (2.27)–(2.28) has a
unique solution (μn+1, ρn+1) satisfying (2.26). More precisely, as is going to be clear from the proof, we need
less regularity for μn, e.g., μn ∈ V . In particular, our assumptions on μ0 are sufficient to start. We rewrite
(2.27)–(2.28) in the form

(1 + γn + γn+1)μn+1 − hΔμn+1 = (1 + 2γn)μn, (3.1)
ρn+1 − hΔρn+1 + hf ′(ρn+1) = ρn + hμng

′(ρn), (3.2)

and solve (3.2) first for ρn+1 (so that γn+1 is also known), then (3.1). In order to solve both problems, it
is expedient to replace each equation by a minimum problem, at least for h small enough. We consider the
functionals:

J1 : V → R and J2 : V → (−∞,+∞], defined by, respectively,

J1(v) :=
h

2

∫
Ω

|∇v|2 +
1
2

∫
Ω

(1 + γn + γn+1) v2 −
∫

Ω

(1 + 2γn)μn v and (3.3)

J2(v) :=
h

2

∫
Ω

|∇v|2 +
1
2

∫
Ω

v2 + h

∫
Ω

f̃(v) −
∫

Ω

(ρn + hμng
′(ρn)) v. (3.4)

In (3.4), we have f̃ = f̃1+f̃2, where f̃2 is any smooth extension of f2 to the whole of R and f̃1 is the unique convex
and lower semicontinuous extension of f1 that satisfies f̃(r) = +∞ if r �∈ [0, 1]. By the way, it is understood that
the corresponding integral that appears in (3.4) is infinite if f̃(v) does not belong to L1(Ω). Therefore, both
functionals are well-defined and proper whenever μn ∈ V and ρn ∈ W (and this implies boundedness of g(ρn)
and g′(ρn)). Moreover, in view of the above remarks, J1 is continuous, and J2 lower semicontinuous, on V .

Now, we observe that equations (3.1) and (3.2), when complemented by the regularity requirements in (2.26)
(which yield the homogeneous Neumann boundary conditions), are the strong forms of the Euler–Lagrange
variational equations for the stationary points of J1 and J2, respectively. More precisely, the strong form (3.1)
follows from the variational formulation thanks to the regularity theory of elliptic equations. As far as (3.2)
is concerned, the function f ′ should be replaced – in principle, at least – by the sum ∂f̃1 + f̃ ′

2, where ∂f̃1 is
the subdifferential of f̃1. However, once an L2(Ω)-estimate is obtained for the subdifferential (and standard
arguments of the theory of maximal monotone operators easily yield such an estimate, see, e.g., [10]), the
variational Euler–Lagrange equation can be written exactly in the form (3.2), because ∂f̃1 is single-valued due
to our assumptions on f1 (see (2.3), in particular). Consequently, existence and uniqueness of the solution
(μn, ρn) follow if the functionals (3.3) and (3.4) are convex, so that each of the correponding minimum problems
has a unique solution. This is granted for the first problem: indeed, J1 is strictly convex and coercive, because
g is nonnegative. The same holds for J2, provided that the second derivative of function r �→ r2/2 + hf2(r) is
strictly positive on [0, 1], which is the case if h sup |f ′′

2 | < 1.
It remains to prove that μn+1 ≥ 0. To this end, we multiply (3.1) by −μ−

n+1, where v− = max{−v, 0} denotes
the negative part of v, and integrate over Ω. We obtain:∫

Ω

(1 + g(ρn) + g(ρn+1)) |μ−
n+1|2 + h

∫
Ω

|∇μ−
n+1|2 = −

∫
Ω

(1 + 2g(ρn))μnμ
−
n+1 ≤ 0,

because both g and μn are nonnegative. This implies that μ−
n+1 = 0, and hence that μn+1 ≥ 0.
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4. Convergence

In this section, we prove Theorem 2.4. For convenience, we introduce one more vector, (ξn)N
n=0, and recall

the definition of (γn)N
n=0:

ξn := f ′
1(ρn) and γn := g(ρn) for n = 0, . . . , N. (4.1)

Later on, we also use the interpolants of these vectors according to Notation 2.2. Our argument uses compactness
and monotonicity methods.

First a priori estimate. We multiply (3.1) by μn+1 and integrate over Ω. By accounting for the elementary
identity (2.36), we obtain

1
2

∫
Ω

μ2
n+1 −

1
2

∫
Ω

μ2
n +

1
2

∫
Ω

|μn+1 − μn|2 + h

∫
Ω

|∇μn+1|2

+
∫

Ω

(
γnμ

2
n+1 + γn+1μ

2
n+1 − 2γnμnμn+1

)
= 0.

As γnμ
2
n+1 + γn+1μ

2
n+1 − 2γnμnμn+1 = γn+1μ

2
n+1 − γnμ

2
n + γn(μn+1 − μn)2, we derive that∫

Ω

(
1
2

+ γn+1

)
μ2

n+1 −
∫

Ω

(
1
2

+ γn

)
μ2

n +
∫

Ω

(
1
2

+ γn

)
|μn+1 − μn|2

+ h

∫
Ω

|∇μn+1|2 = 0.

On summing over n = 0, . . . ,m− 1 with 1 ≤ m ≤ N , we conclude that∫
Ω

(
1
2

+ γm

)
μ2

m + h2
m−1∑
n=0

∫
Ω

(
1
2

+ γn

)
|δhμn|2 + h

m−1∑
n=0

∫
Ω

|∇μn+1|2

=
∫

Ω

(
1
2

+ γ0

)
μ2

0 for m = 1, . . . , N.

As g is nonnegative and hence γi ≥ 0, this implies that ‖μm‖H ≤ c for m = 1, . . . , N . Thus, the above estimate
also yields

max
m=1,...,N

‖μm‖2
H + h2

N−1∑
n=0

‖δhμn‖2
H + h

N∑
n=1

‖μn‖2
V ≤ c. (4.2)

In terms of the interpolants introduced in Notation 2.2, with the help of μ0 ∈ V , (2.20)–(2.21), and (2.24)–(2.25)
we have that

‖μh‖2
L∞(0,T ;H)∩L2(0,T ;V ) + ‖μ

h
‖2

L∞(0,T ;H)∩L2(0,T ;V )

+ ‖μ̂h‖2
L∞(0,T ;H)∩L2(0,T ;V ) + h‖∂tμ̂h‖2

L2(0,T ;H) ≤ c. (4.3)

Second a priori estimate. In (3.2), we move ρn to the left-hand side. Then, we multiply by ρn+1 − ρn and
integrate over Ω. We obtain∫

Ω

|ρn+1 − ρn|2 +
h

2

∫
Ω

|∇ρn+1|2 − h

2

∫
Ω

|∇ρn|2 +
h

2

∫
Ω

|∇ρn+1 −∇ρn|2

+ h

∫
Ω

f ′(ρn+1)(ρn+1 − ρn) = h

∫
Ω

μng
′(ρn)(ρn+1 − ρn). (4.4)
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Now, we consider the last integral on the left-hand side of (4.4). We split f ′ = f ′
1 + f ′

2 and use the convexity
assumption of f1 and boundedness for f ′

2. We get∫
Ω

f ′(ρn+1)(ρn+1 − ρn) ≥
∫

Ω

(f1(ρn+1) − f1(ρn)) − c

∫
Ω

|ρn+1 − ρn|.

Since also g′ is bounded, we infer from (4.4) that∫
Ω

|ρn+1 − ρn|2 +
h

2

∫
Ω

|∇ρn+1|2 − h

2

∫
Ω

|∇ρn|2 +
h

2

∫
Ω

|∇ρn+1 −∇ρn|2

+ h

∫
Ω

(f1(ρn+1) − f1(ρn)) ≤ c h

∫
Ω

(1 + μn)|ρn+1 − ρn|

≤ 1
2

∫
Ω

|ρn+1 − ρn|2 + c h2

∫
Ω

(1 + μ2
n) ≤ 1

2

∫
Ω

|ρn+1 − ρn|2 + c h2,

the last inequality being due to (4.3). By dividing by h, summing over n = 0, . . . ,m − 1, and owing to the
obvious inequality mh ≤ c, we conclude that

h

m−1∑
n=0

∫
Ω

|δhρn|2 +
1
2

∫
Ω

|∇ρm+1|2 + h2
m−1∑
n=0

∫
Ω

|δh∇ρn|2 +
∫

Ω

f1(ρm+1) ≤ c (4.5)

for m = 0, . . . , N − 1. As the term involving the difference quotient δhρN−1 is missing in the first sum since
m ≤ N−1, we estimate it directly. We multiply (2.28), written for n = N−1, by hδhρN−1 and integrate over Ω.
We have

h

∫
Ω

|δhρN−1|2 +
∫

Ω

(∇ρN −∇ρN−1) · ∇ρN +
∫

Ω

f ′
1(ρN )(ρN − ρN−1) = h

∫
Ω

φ δhρN−1,

where we have set φ := μN−1 g
′(ρN−1)−f ′

2(ρN−1). Owing to the elementary identity (2.36) and to the convexity
of f1 as before, we have

h‖δhρN−1‖2
H +

1
2
‖∇ρN‖2

H +
1
2
‖∇ρN −∇ρN−1‖2

H +
∫

Ω

f1(ρN )

≤ 1
2
‖∇ρN−1‖2

H +
∫

Ω

f1(ρN−1) + h‖φ‖H ‖δhρN−1‖H

≤ 1
2
‖∇ρN−1‖2

H +
∫

Ω

f1(ρN−1) +
h

2
‖φ‖2

H +
h

2
‖δhρN−1‖H .

Now, we observe that the first two terms of the last line are bounded by (4.5) written with m = N − 2 and that
φ is estimated in H thanks to (4.2) and our assumptions of g and f2. Moreover, the last term of the first line
can be ignored since f1 is nonnegative. Hence, we get the desired bound for the first term. At this point, we can
easily derive an estimate for ‖ρm‖H for m = 1, . . . , N . By using the obvious identity ρm = ρ0 + h

∑m−1
n=0 δhρn

and the Euclidean Schwarz and Young inequalities, we see that

‖ρm‖H ≤ ‖ρ0‖H + h

m−1∑
n=0

‖δhρn‖H ≤ c+
h

2

(
m+

m−1∑
n=0

‖δhρn‖2
H

)
≤ c.

Hence, by recalling (4.5) and our last estimates, we conclude that

h

N−1∑
n=0

‖δhρn‖2
H + max

m=1,...,N
‖ρm‖2

V + h2
N−2∑
n=0

‖δh∇ρn‖2
H ≤ c. (4.6)
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In terms of the interpolants, (4.6) reads (thanks also to ρ0 ∈ V and to (2.20)–(2.21) and (2.24))

‖∂tρ̂h‖2
L2(0,T ;H) + ‖ρh‖2

L∞(0,T ;V ) + ‖ρ
h
‖2

L∞(0,T ;V )

+‖ρ̂h‖2
L∞(0,T ;V ) + h‖∂t∇ρ̂h‖2

L2(0,T−h;H) ≤ c. (4.7)

Third a priori estimate. We come back to (2.28) and rewrite it as (recall (4.1))

−Δρn+1 + ξn+1 = −δhρn + μng
′(ρn) − f ′

2(ρn+1).

Hence, a standard argument (multiplying by −Δρn+1 and by ξn+1) shows that the following estimate holds
true

‖Δρn+1‖H + ‖ξn+1‖H ≤ c‖−δhρn + μng
′(ρn) − f ′

2(ρn+1)‖H .

Thus, we infer that

‖Δρn+1‖2
H + ‖ξn+1‖2

H ≤ c
(‖δhρn‖2

H + ‖μn‖2
H + 1

)
for n = 0, . . . , N − 1. (4.8)

Moreover, by using the regularity theory of elliptic equations, we deduce that

‖ρn+1‖2
W + ‖ξn+1‖2

H ≤ c
(‖ρn+1‖2

V + ‖δhρn‖2
H + ‖μn‖2

H + 1
)
. (4.9)

Now, we multiply (4.8) by h and sum over n = 0, . . . ,m − 1. By accounting for (4.2) and (4.6), we conclude
that

h

N−1∑
n=0

‖ρn+1‖2
W + h

N−1∑
n=0

‖ξn+1‖2
H ≤ c. (4.10)

In terms of the interpolants, (4.10) yields (by accounting for ρ0 ∈ W )

‖ρh‖2
L2(0,T ;W ) + ‖ρ

h
‖2

L2(0,T ;W ) + ‖ρ̂h‖2
L2(0,T ;W ) ≤ c (4.11)

besides an estimate for, e.g., ‖ξh‖ in L2(0, T ;H).

Fourth a priori estimate. We write (2.28) with n + 1 in place of n and take the difference between the
obtained equality and (2.28) itself. Then we multiply this difference by δhρn+1 and integrate over Ω. We have∫

Ω

(δhρn+1 − δhρn)δhρn+1 +
∫

Ω

(∇ρn+2 −∇ρn+1) · δh∇ρn+1

+
∫

Ω

(f ′(ρn+2) − f ′(ρn+1)) δhρn+1 =
∫

Ω

(μn+1g
′(ρn+1) − μng

′(ρn)) δhρn+1. (4.12)

By accounting for the elementary identity (2.36), we get∫
Ω

(δhρn+1 − δhρn)δhρn+1 =
1
2

∫
Ω

|δhρn+1|2 − 1
2

∫
Ω

|δhρn|2 +
1
2

∫
Ω

|δhρn+1 − δhρn|2.

Moreover, the second integral on the left-hand side of (4.12) can be written in terms of δhρn+1 in an obvious way.
Finally, by splitting f ′ into f ′

1 +f ′
2, observing that the contribution due to the terms involving f ′

1 is nonnegative
since f ′

1 is monotone and moving the other ones to the right-hand side, we see that (4.12) yields the inequality

1
2

∫
Ω

|δhρn+1|2 − 1
2

∫
Ω

|δhρn|2 +
1
2

∫
Ω

|δhρn+1 − δhρn|2 + h

∫
Ω

|δh∇ρn+1|2

≤ −
∫

Ω

(f ′
2(ρn+2) − f ′

2(ρn+1)) δhρn+1 +
∫

Ω

(μn+1g
′(ρn+1) − μng

′(ρn)) δhρn+1. (4.13)
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The first term on the right-hand side of (4.13) is easily treated in the following way:

−
∫

Ω

(f ′
2(ρn+2) − f ′

2(ρn+1)) δhρn+1 ≤ c h

∫
Ω

|δhρn+1|2. (4.14)

On the other hand, we have∫
Ω

(μn+1g
′(ρn+1) − μng

′(ρn)) δhρn+1

=
∫

Ω

μn+1 (g′(ρn+1) − g′(ρn)) δhρn+1 +
∫

Ω

(μn+1 − μn) g′(ρn)δhρn+1

≤ c h

∫
Ω

μn+1|δhρn| |δhρn+1| +
∫

Ω

(μn+1 − μn) g′(ρn)δhρn+1.

Next, we deal with the last integral by using equation (2.27). Owing to our assumptions on g, we obtain∫
Ω

(μn+1 − μn) g′(ρn)δhρn+1 = −h
∫

Ω

g′(ρn)
1 + 2γn

(μn+1 δhγn −Δμn+1) δhρn+1

≤ c h

∫
Ω

μn+1 |δhρn| |δhρn+1| − h

∫
Ω

∇μn+1 · ∇
(
g′(ρn)
1 + 2γn

δhρn+1

)
≤ c h

∫
Ω

μn+1 |δhρn| |δhρn+1|

− h

∫
Ω

g′(ρn)
1 + 2γn

∇μn+1 · ∇δhρn+1 − h

∫
Ω

δhρn+1 ∇μn+1 · ∇ g′(ρn)
1 + 2γn

·

We treat the last three terms separately. Thanks to the Hölder, Sobolev, and Young inequalities, and our
assumption on g, we have for every σ > 0

h

∫
Ω

μn+1 |δhρn| |δhρn+1| ≤ c h ‖μn+1‖4 ‖δhρn‖H ‖δhρn+1‖4

≤ σh‖δhρn+1‖2
V +

c h

σ
‖μn+1‖2

V ‖δhρn‖2
H , (4.15)

−h
∫

Ω

g′(ρn)
1 + 2γn

∇μn+1 · ∇δhρn+1 ≤ c h

∫
Ω

|∇μn+1| |∇δhρn+1|

≤ σ h‖∇δhρn+1‖2
H +

c h

σ
‖∇μn+1‖2

H , (4.16)

−h
∫

Ω

δhρn+1 ∇μn+1 · ∇ g′(ρn)
1 + 2γn

≤ c h

∫
Ω

|δhρn+1| |∇μn+1| |∇ρn|

≤ c h‖δhρn+1‖4 ‖∇μn+1‖H ‖∇ρn‖4

≤ σh‖δhρn+1‖2
V +

c h

σ
‖∇μn+1‖2

H

(‖ρn‖2
H + ‖Δρn‖2

H

)
. (4.17)

Now, we rewrite (4.8) as

‖Δρn‖2
H + ‖ξn‖2

H ≤ c
(‖δhρn−1‖2

H + ‖μn−1‖2
H + 1

)
for n = 1, . . . , N,

and note that we can allow the choice n = 0 provided that we define

ρ−1 := ρ0 and, e.g., μ−1 := 0.
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Hence, we can improve (4.17). By using (4.3) and (4.7) as well, we have

−h
∫

Ω

δhρn+1 ∇μn+1 · ∇ g′(ρn)
1 + 2γn

≤ σh‖δhρn+1‖2
V +

c h

σ
‖∇μn+1‖2

H

(‖ρn‖2
H + ‖δhρn−1‖2

H + ‖μn−1‖2
H + 1

)
≤ σh‖δhρn+1‖2

V +
c h

σ
‖∇μn+1‖2

H

(‖δhρn−1‖2
H + 1

)
. (4.18)

By recalling all these estimates, we see that (4.13) yields

1
2

∫
Ω

|δhρn+1|2 − 1
2

∫
Ω

|δhρn|2 +
1
2

∫
Ω

|δhρn+1 − δhρn|2 + h

∫
Ω

|δh∇ρn+1|2

≤ c h

∫
Ω

|δhρn+1|2 + 3σh‖δhρn+1‖2
V +

c h

σ
‖μn+1‖2

V ‖δhρn‖2
H

+
c h

σ
‖∇μn+1‖2

H

(‖δhρn−1‖2
H + 1

)
.

Now, just by changing the value of the constant c in front of the first integral on the right-hand side, we can
replace the last integral on the left-hand side by ‖δhρn+1‖2

V . Then, we choose σ = 1/4 and rearrange. We obtain

1
2

∫
Ω

|δhρn+1|2 − 1
2

∫
Ω

|δhρn|2 +
1
2

∫
Ω

|δhρn+1 − δhρn|2 +
h

4
‖δhρn+1‖2

V

≤ c h

∫
Ω

|δhρn+1|2 + c h ‖μn+1‖2
V ‖δhρn‖2

H + c h ‖∇μn+1‖2
H

(‖δhρn−1‖2
H + 1

)
.

At this point, by assuming m ≤ N − 1, we sum over n = 0, . . . ,m− 1 and have

1
2

∫
Ω

|δhρm|2 +
1
2

m−1∑
n=0

∫
Ω

|δhρn+1 − δhρn|2 +
h

4

m−1∑
n=0

‖δhρn+1‖2
V

≤ 1
2

∫
Ω

|δhρ0|2 + c h

m−1∑
n=0

∫
Ω

|δhρn+1|2 + c h

m−1∑
n=0

‖μn+1‖2
V ‖δhρn‖2

H

+ c h

m−1∑
n=0

‖∇μn+1‖2
H ‖δhρn−1‖2

H + c h

m−1∑
n=0

‖∇μn+1‖2
H . (4.19)

The second and the last terms on the right-hand side of (4.19) have been already estimated by (4.6) and (4.2),
respectively. To treat the first term, we write (2.28) with n = 0 and add Δρ0 to both sides. Then, we multiply
the resulting equality by δhρ0 and integrate over Ω. After a rearrangement, owing to (2.4) and the assumptions
on the initial data (see (2.7), in particular), we obtain:∫

Ω

|δhρ0|2 + h

∫
Ω

|∇δhρ0|2 +
∫

Ω

(f ′
1(ρ1) − f ′

1(ρ0)) δhρ0

=
∫

Ω

(Δρ0 + μ0g
′(ρ0) − f ′

1(ρ0) − f ′
2(ρ1)) δhρ0 ≤ c‖δhρ0‖H .

As (f ′
1(ρ1) − f ′

1(ρ0)) δhρ0 ≥ 0 due to the monotonicity of f ′
1, we immediately deduce that

‖δhρ0‖2
H + h‖∇δhρ0‖2

H ≤ c. (4.20)
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In particular, the desired estimate for ‖δhρ0‖H is achieved. Therefore, on recalling that δhρ−1 = 0 because
ρ−1 = ρ0, we see that (4.19) yields:

‖δhρm‖2
H +

m−1∑
n=0

‖δhρn+1 − δhρn‖2
H + h

m−1∑
n=0

‖δhρn+1‖2
V

≤ c+ c h

m−1∑
n=0

‖μn+1‖2
V ‖δhρn‖2

H + c h

m−1∑
n=1

‖∇μn+1‖2
H ‖δhρn−1‖2

H

≤ c+ c h

m−1∑
n=0

‖μn+1‖2
V ‖δhρn‖2

H + c h

m−2∑
n=0

‖∇μn+2‖2
H ‖δhρn‖2

H

≤ C1 + C2 h

m−1∑
n=0

(‖μn+1‖2
V + ‖μn+2‖2

V

) ‖δhρn‖2
H

for m = 0, . . . , N − 1. Hence, we can apply the discrete Gronwall lemma (see (2.38), where N is to be replaced
here by N − 1) and deduce that

‖δhρm‖2
H +

m−1∑
n=0

‖δhρn+1 − δhρn‖2
H + h

m−1∑
n=0

‖δhρn+1‖2
V

≤ C1 exp

(
C2h

m−1∑
n=0

(‖μn+1‖2
V + ‖μn+2‖2

V

))

for m = 0, . . . , N − 1. Owing to (4.2), we infer that

‖δhρm‖2
H +

m−1∑
n=0

‖δhρn+1 − δhρn‖2
H + h

m−1∑
n=0

‖δhρn+1‖2
V ≤ c for m = 0, . . . , N − 1;

moreover, using the estimates of δhρ0 and ∇δhρ0 given by (4.20), we conclude that

max
m=0,...,N−1

‖δhρm‖2
H +

N−1∑
n=0

‖δhρn − δhρn−1‖2
H + h

N−1∑
n=0

‖δhρn‖2
V ≤ c. (4.21)

In particular, (4.21) yields:
‖∂tρ̂h‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.22)

Fifth a priori estimate. We improve (4.10)–(4.11). Owing to (4.9), on using (4.21) in addition to previous
estimates, we immediately obtain (cf. also (2.7)) that

‖ρm‖W + ‖ξm‖H ≤ c for m = 0, . . . , N , (4.23)

‖ρh‖2
L∞(0,T ;W ) + ‖ρ

h
‖2

L∞(0,T ;W ) + ‖ρ̂h‖2
L∞(0,T ;W ) ≤ c, (4.24)

as well as an estimate for, e.g., ξh in L∞(0, T ;H).

Sixth a priori estimate. We rewrite (2.27) in the form

(1 + γn + γn+1) δhμn −Δμn+1 = −μn δhγn.
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We test this equality by (μn+1 − μn), and integrate over Ω. We obtain

h

∫
Ω

(1 + γn + γn+1) |δhμn|2 +
∫

Ω

(∇μn+1 −∇μn) · ∇μn+1 = −h
∫

Ω

μn δhγn δhμn.

As g is nonnegative and Lipschitz continuous, we infer that

h

∫
Ω

|δhμn|2 +
1
2

∫
Ω

|∇μn+1|2 − 1
2

∫
Ω

|∇μn|2 +
1
2

∫
Ω

|∇(μn+1 − μn)|2

≤ c h

∫
Ω

μn |δhρn| |δhμn| ≤ c h ‖μn‖4 ‖δhρn‖4 ‖δhμn‖2

≤ h

2
‖δhμn‖2

H + c h‖δhρn‖2
V

(‖∇μn‖2
H + ‖μn‖2

H

)
≤ h

2
‖δhμn‖2

H + c h‖δhρn‖2
V ‖∇μn‖2

H + c h‖δhρn‖2
V ,

the last inequality being due to (4.2). By rearranging and summing over n = 0, . . . ,m − 1 with 1 ≤ m ≤ N ,
we get:

h

2

m−1∑
n=0

‖δhμn‖2
H +

1
2
‖∇μm‖2

H +
h2

2

m−1∑
n=0

‖∇δhμn‖2
H

≤ 1
2
‖∇μ0‖2

H + c h

m−1∑
n=0

‖δhρn‖2
V ‖∇μn‖2

H + c h

m−1∑
n=0

‖δhρn‖2
V

≤ c+ c h

m−1∑
n=0

‖δhρn‖2
V ‖∇μn‖2

H ,

where we have used (4.21). Now, we first apply the discrete Gronwall lemma (2.38) and then account for (4.21)
once more. We obtain, for m = 1, . . . , N ,

h

m−1∑
n=0

‖δhμn‖2
H + ‖∇μm‖2

H + h2
m−1∑
n=0

‖∇δhμn‖2
H ≤ c. (4.25)

Next, by (2.27), the Hölder and Sobolev inequalities and the Lipschitz continuity of g, we infer that

‖Δμn+1‖H ≤ c (‖δhμn‖H + ‖μn+1δhγn‖H) ≤ c (‖δhμn‖H + ‖μn+1‖4 ‖δhγn‖4)

≤ c (‖δhμn‖H + ‖μn+1‖4 ‖δhρn‖4) ≤ c (‖δhμn‖H + ‖μn+1‖V ‖δhρn‖V ) ;

note that in the last product we can ignore the factor ‖μn+1‖V , due to (4.3) and (4.25), provided we update the
last value of c. By squaring, summing up, and multiplying by h, we thus obtain for m = 1, . . . , N the estimate

h

m−1∑
n=0

‖Δμn+1‖2
H ≤ c h

m−1∑
n=0

‖δhμn‖2
H + c h

m−1∑
n=0

‖δhρn‖2
V ,

and we can replace the H-norm of Δμn+1 by the W -norm of μn+1 thanks to (4.2). We collect this and (4.25)
and account for (4.21) and μ0 ∈ V . We have:

h

N−1∑
n=0

‖δhμn‖2
H + max

n=0,...,N
‖∇μn‖2

H + h

N−1∑
n=0

‖μn+1‖2
W ≤ c, (4.26)
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so that
‖∂tμ̂h‖L2(0,T ;H) + ‖μh‖L∞(0,T ;V )∩L2(0,T ;W ) + ‖μ

h
‖L∞(0,T ;V ) + ‖μ̂h‖L∞(0,T ;V ) ≤ c. (4.27)

We note that (4.25) also gives the non-sharp estimate

h‖∇∂tμ̂h‖2
L2(0,T ;H) ≤ c. (4.28)

Limit and conclusion. By standard weak compactness results, we find some convergent subsequence for
the interpolants. Therefore, in principle, it is understood that the convergence that we refer to holds for a
subsequence. However, once we prove that the limit we find is the solution (μ, ρ) to problem (2.12)–(2.14), then
the whole family of interpolants is convergent, due to uniqueness. For the reader’s convenience, we select some
estimates among those we have proved in the previous steps. These are:

‖μh‖L∞(0,T ;V )∩L2(0,T ;W ) + ‖μ
h
‖L∞(0,T ;V ) + ‖μ̂h‖L∞(0,T ;V ) ≤ c (4.29)

‖ρh‖L∞(0,T ;W ) + ‖ρ
h
‖L∞(0,T ;W ) + ‖ρ̂h‖L∞(0,T ;W ) ≤ c (4.30)

‖∂tμ̂h‖L2(0,T ;H) + ‖∂tρ̂h‖L∞(0,T ;H)∩L2(0,T ;V ) ≤ c. (4.31)

Now, we observe that (4.31) and (2.25) imply that

‖μh − μ̂h‖L2(0,T ;H) + ‖μ
h
− μ̂h‖L2(0,T ;H) ≤ c h (4.32)

‖ρh − ρ̂h‖L2(0,T ;V ) + ‖ρ
h
− ρ̂h‖L2(0,T ;V ) ≤ c h. (4.33)

This yields, in particular, that the weak limits we find for μh, μ
h
, and μ̂h, by using (4.29) and weak compactness

results coincide and that the same happens for ρh, ρ
h
, and ρ̂h. Therefore, we can conclude that some functions

μ and ρ exist such that

μh, μh
, μ̂h → μ weakly star in L∞(0, T ;V ), (4.34)

μh → μ weakly in L2(0, T ;W ), (4.35)
ρh, ρh

, ρ̂h → ρ weakly star in L∞(0, T ;W ), (4.36)

∂tμ̂h → ∂tμ weakly in L2(0, T ;H), (4.37)
∂tρ̂h → ∂tρ weakly star in L∞(0, T ;H) ∩ L2(0, T ;V ). (4.38)

Now we prove that (μ, ρ) satisfies (2.8)–(2.11) and solves problem (2.12)–(2.14).
We remark that the topology alluded to in the statement of Theorem 2.4 is precisely the topology associ-

ated with the convergences specified in (4.34)–(4.38). Clearly, (2.8)–(2.10) are fulfilled. Moreover, the Cauchy
conditions (2.14) are satisfied, because (μ̂h, ρ̂h) converges to (μ, ρ) at least weakly in C0([0, T ];H). Therefore,
it remains to check that (2.11) holds and that equations (2.12)–(2.13) are satisfied. To do that, we read the
discrete problem (2.27)–(2.28) in terms of the interpolants. We have:(

1 + 2γ
h

)
∂tμ̂h + μh∂tγ̂h −Δμh = 0, (4.39)

∂tρ̂h −Δρh + f ′ (ρh) = μ
h
g′
(
ρ

h

)
. (4.40)

Hence, the main problem consists in identifying correctly the limits of the nonlinear terms and those of the
products. To this end, we recover some strong convergence (without looking for sharpness, since it is not
necessary). We first recall that the embeddings V ⊂ H and W ⊂ C0(Ω) are compact, so that we can apply [32]
(Sect. 8, Cor. 4) and deduce that

μ̂h → μ strongly in C0([0, T ];H) and a.e. in Q, (4.41)
ρ̂h → ρ strongly in C0([0, T ];C0(Ω)) = C0

(
Q
)
. (4.42)
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By combining this with (4.32) and (4.33), we infer that

μh, μh
→ μ and ρh, ρh

→ ρ strongly in L2(0, T ;H) and a.e. in Q. (4.43)

We point out that a.e.-convergence actually holds for a subsequence. As f ′
2, g, and g′ are Lipschitz continuous

on [0, 1], we deduce that

φ (ρh) , φ
(
ρ

h

)
→ φ(ρ) strongly in L2(0, T ;H) for φ = f ′

2, g, g
′. (4.44)

On the other hand, by comparison in (4.40), we see that f ′
1 (ρh) remains bounded in L∞(0, T ;H), so that f ′

1 (ρh)
converges (for a subsequence) to some ξ in the weak star topology of such a space. As f ′

1 induces a maximal
monotone operator on L2(Q)×L2(Q) (cf., e.g., [10], Ex. 2.3.3, p. 25), f ′

1 (ρh) → ξ and ρh → ρ weakly in L2(Q),
and

lim sup
h↘0

∫
Q

f ′
1 (ρh) ρh ≤

∫
Q

ξρ,

owing to standard results in the theory of maximal monotone operators (one may see [10], Prop. 2.5, p. 27), we
deduce that 0 < ρ < 1 and ξ = f ′

1(ρ) a.e. in Q. In particular, (2.11) holds. Furthermore, we also have

|∂tγ̂h| = |δhγn| = |δhg(ρn)| ≤ c|δhρn| = c|∂tρ̂h| a.e. in In+1, for n = 0, . . . , N − 1,

so that (4.31) yields an estimate of ∂tγ̂h in L∞(0, T ;H). Hence, thanks to (2.24), we have

‖γ̂h − γh‖L∞(0,T ;H) ≤ c h‖∂tγ̂h‖L∞(0,T ;H) ≤ c h,

whence even γ̂h converges to g(ρ), e.g., strongly in L2(Q). Then, we deduce that

∂tγ̂h → ∂tg(ρ) weakly star in L∞(0, T ;H). (4.45)

Finally, as to the limits of the products in (4.39)–(4.40), we can infer that

γ
h
∂tμ̂h → g(ρ)∂tμ, μh∂tγ̂h → μ∂tg(ρ), μhg

′
(
ρ

h

)
→ μg′(ρ), weakly in L1(Q).

Therefore, (2.12)–(2.13) follow from (4.39)–(4.40), and the proof is complete. In particular, let us stress that
the so found pair (μ, ρ) solves (2.8)–(2.14) and then it must coincide with the unique solution (μ, ρ) of the
continuous problem given by Theorem 2.1.

As a by-product of the above proof, it turns out that

ρ• ≤ ρ̂h, ρh, ρh
≤ ρ• in Q, for some ρ•, ρ• ∈ (0, 1), (4.46)

provided that h is small enough. Indeed, take ρ• ∈ (0, ρ∗) and ρ• ∈ (ρ∗, 1), with ρ∗, ρ∗ ∈ (0, 1) given by
Theorem 2.1. That (4.46) holds for ρ̂h follows from the uniform convergence given by (4.42). This means that
the same bounds hold for ρn, n = 0, . . . , N (where (ρn)N

n=0 is the vector associated with ρ̂h), and hence also for
ρh and ρ

h
.

5. Proof of Theorem 2.5

In this section, we prove Theorem 2.5. It is understood that h is as small as needed; oftentimes, we do not
pause and quantify such smallness precisely. First of all, we remind the reader that the interpolants ρ̂h, ρ

h
, and

ρh are uniformly far for 0 and 1 (see (4.46) and the subsequent lines). Therefore, without loss of generality, we
can assume that the derivative function f ′ is Lipschitz continuous. We need additional a priori estimates.
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Auxiliary a priori estimates. We prepare an estimate for ‖∇δhρ0‖H . To this end, we notice that (2.28)
with n = 0 can be written as

δhρ0 − hΔδhρ0 = f ′(ρ0) − f ′(ρ1) − ψ0, (5.1)

where ψ0 := −Δρ0 + f ′(ρ0) − μ0g
′(ρ0). As ψ0 ∈ V by (2.33), we can test (5.1) by −Δδhρ0 and integrate by

parts. In view of the Lipschitz continuity of f ′, we find out that

‖∇δhρ0‖2
H + h‖Δδhρ0‖2

H ≤ c h‖δhρ0‖H ‖Δδhρ0‖H + ‖∇ψ0‖H ‖∇δhρ0‖H

≤ h

2
‖Δδhρ0‖2

H + c h‖δhρ0‖2
H +

1
2
‖∇δhρ0‖2

H + c.

By accounting for (4.20), we obtain the desired estimate

‖∇δhρ0‖H ≤ c. (5.2)

Let us come now to the basic estimate we need. We write (2.28) with (n+1) in place of n, and take the difference
between the so-obtained equality and (2.28) itself. Then, we multiply this difference by −Δδhρn+1 and integrate
over Ω. We easily have, for n = 0, . . . , N − 2, that∫

Ω

(∇δhρn+1 −∇δhρn) · ∇δhρn+1 +
∫

Ω

(Δρn+2 −Δρn+1)Δδhρn+1

= −
∫

Ω

(f ′(ρn+2) − f ′(ρn+1)) (−Δδhρn+1)

+
∫

Ω

(μn+1g
′(ρn+1) − μng

′(ρn)) (−Δδhρn+1). (5.3)

By the elementary identity (2.36), the first integral is equal to

1
2

∫
Ω

|∇δhρn+1|2 − 1
2

∫
Ω

|∇δhρn|2 +
1
2

∫
Ω

|∇δhρn+1 −∇δhρn|2.

On the other hand, we obviously have that∫
Ω

(Δρn+2 −Δρn+1)Δδhρn+1 = h

∫
Ω

|Δδhρn+1|2.

Now, we deal with the right-hand side of (5.3). By Lipschitz continuity, we deduce that

−
∫

Ω

(f ′(ρn+2) − f ′(ρn+1)) (−Δδhρn+1) ≤ c

∫
Ω

|ρn+2 − ρn+1| |Δδhρn+1|

≤ c h

∫
Ω

|δhρn+1| |Δδhρn+1| ≤ h

4

∫
Ω

|Δδhρn+1|2 + c h

∫
Ω

|δhρn+1|2.

As far as the last term of (5.3) is concerned, we combine the above elementary argument with the Hölder and
Young inequalities and the Sobolev embedding V ⊂ L4(Ω). We find:∫

Ω

(μn+1g
′(ρn+1) − μng

′(ρn)) (−Δδhρn+1)

≤ c

∫
Ω

(μn+1|ρn+1 − ρn| + |μn+1 − μn|) |Δδhρn+1|
≤ c h (‖μn+1‖4‖δhρn‖4 + ‖δhμn‖H) ‖Δδhρn+1‖H

≤ h

4

∫
Ω

|Δδhρn+1|2 + ch‖μn+1‖2
V ‖δhρn‖2

V + ch‖δhμn‖2
H .
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By collecting the inequalities we have obtained, we see that (5.3) yields:

1
2

∫
Ω

|∇δhρn+1|2 − 1
2

∫
Ω

|∇δhρn|2 +
1
2

∫
Ω

|∇δhρn+1 −∇δhρn|2 +
h

2

∫
Ω

|Δδhρn+1|2

≤ c h

∫
Ω

|δhρn+1|2 + ch‖μn+1‖2
V ‖δhρn‖2

V + ch‖δhμn‖2
H .

At this point, we sum over n = 0, . . . ,m− 1, with 1 ≤ m ≤ N − 1, and deduce that

1
2

∫
Ω

|∇δhρm|2 +
1
2

m−1∑
n=0

∫
Ω

|∇δhρn+1 −∇δhρn|2 +
h

2

m−1∑
n=0

∫
Ω

|Δδhρn+1|2

≤ 1
2

∫
Ω

|∇δhρ0|2 + c h

N−2∑
n=0

‖δhρn+1‖2
H

+ c max
n=0,...,N−1

‖μn+1‖2
V h

N−1∑
n=0

‖δhρn‖2
V + c h

N−1∑
n=0

‖δhμn‖2
H . (5.4)

The first term on the right-hand side of (5.4) is estimated by (5.2); all other terms on the right-hand side have
been estimated already (cf. (4.22) and (4.27)). Therefore, by recalling also (4.21), we conclude that

max
m=0,...,N−1

‖δhρm‖2
V + h

N−2∑
n=0

‖Δδhρn+1‖2
H ≤ c, (5.5)

‖∂tρ̂h‖L∞(0,T ;V ) + ‖Δ∂tρ̂h‖L2(0,T ;H) ≤ c. (5.6)

Consequence. In view of the regularity theory for elliptic equations and the continuous embedding W ⊂
L∞(Ω), we derive from (5.6) that

‖∂tρ̂h‖L2(0,T ;W ) ≤ c and ‖∂tρ̂h‖L2(0,T ;L∞(Ω)) ≤ c. (5.7)

Moreover, as the second (5.7) means an estimate of the difference quotients associated to the vector (ρn)N
n=0,

and as g is Lipschitz continuous, a similar estimate holds for the vector (g(ρn))N
n=0 (see (4.1)), and we infer that

‖∂tγ̂h‖L2(0,T ;L∞(Ω)) ≤ c. (5.8)

Furthermore, by applying (2.25), we see that (5.6) also implies that

‖Δ(ρh − ρ̂h)‖L2(0,T ;H) ≤ c h. (5.9)

Proof of Theorem 2.5. A possible strategy could be the following: to multiply the difference between (4.39)
and (2.12) by (μ̂h − μ), and the difference between (4.40) and (2.13) by ∂t(ρ̂h − ρ); then, to sum up and start
estimating. However, in order to split calculations and give more transparence to the proof, we prefer to proceed
with those pairs of equation separately, and collect the inequalities we obtain later on. So, we first consider just
one couple, for instance, (4.40) and (2.13). We multiply their difference by ∂t(ρ̂h − ρ), integrate over Qt, where
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t ∈ (0, T ) is arbitrary, and add the same integral to both sides for convenience. We obtain:∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)|2 +
1
2
‖(ρ̂h − ρ)(t)‖2

V

=
∫ t

0

∫
Ω

{
−Δ(ρ̂h − ρh) − (f ′ (ρh) − f ′(ρ))

+ g′
(
ρ

h

)
(μ

h
− μ) + μ

(
g′
(
ρ

h

)
− g′(ρ)

)
+ (ρ̂h − ρ)

}
∂t(ρ̂h − ρ)

≤ 1
2

∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)|2

+ c

∫ t

0

∫
Ω

{
|Δ(ρ̂h−ρh)|2+|ρh−ρ|2+|μ

h
−μ|2+|ρ

h
−ρ|2+|ρ̂h−ρ|2

}
. (5.10)

In the above inequality, we have used the Lipschitz continuity of f ′ and g′, and the boundedness of μ. Now, we
estimate the last integral of (5.10). Thanks to (5.9), we have that∫ t

0

∫
Ω

|Δ(ρ̂h − ρh)|2 ≤ c h2.

On the other hand, owing to (4.33), we obtain:∫ t

0

∫
Ω

(
|ρh − ρ|2 + |ρ

h
− ρ|2 + |ρ̂h − ρ|2

)
≤ c

∫ t

0

∫
Ω

(
|ρh − ρ̂h|2 + |ρ

h
− ρ̂h|2 + |ρ̂h − ρ|2

)
≤ c h2 + c

∫ t

0

∫
Ω

|ρ̂h − ρ|2.

Similarly, we have, by (4.32), that∫ t

0

∫
Ω

|μ
h
− μ|2 ≤ c

∫ t

0

∫
Ω

(
|μ

h
− μ̂h|2 + |μ̂h − μ|2

)
≤ c h2 + c

∫ t

0

∫
Ω

|μ̂h − μ|2.

By collecting the above inequalities, we see that (5.10) and the Gronwall lemma yield:∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)|2 + ‖(ρ̂h − ρ)(t)‖2
V ≤ c

{
h2 +

∫ t

0

∫
Ω

|ρ̂h − ρ|2 +
∫ t

0

∫
Ω

|μ̂h − μ|2
}

(5.11)

for every t ∈ [0, T ]. Now, we deal with equations (4.39) and (2.12). For the reader’s convenience, by recalling
that γh = g (ρh) and γ

h
= g

(
ρ

h

)
(see (4.1)), we rewrite the former in a different way, namely,(

1 + 2g
(
ρ

h

))
∂tμ̂h + μh∂tγ̂h −Δμh = 0. (5.12)

Next, we take the difference between (5.12) and (2.12) and write it as

(1 + 2g(ρ̂h)) ∂t(μ̂h − μ) −Δ(μ̂h − μ) + (μ̂h − μ) = −2∂tμ (g(ρ̂h) − g(ρ)) − ∂tγ̂h (μh − μ) − μ∂t (γ̂h − g(ρ))

+ 2
(
g(ρ̂h) − g

(
ρ

h

))
∂tμ̂h −Δ(μ̂h − μh) + (μ̂h − μ).

Finally, we multiply this equality by (μ̂h − μ) and obtain the following identity:

∂t

{(
1
2 + g(ρ̂h)

)
(μ̂h − μ)2

}−Δ(μ̂h − μ) (μ̂h − μ) + (μ̂h − μ)2

= ∂tg(ρ̂h) (μ̂h − μ)2 − 2∂tμ (g(ρ̂h) − g(ρ)) (μ̂h − μ)
− ∂tγ̂h (μh − μ)(μ̂h − μ) − μ∂t (γ̂h − g(ρ)) (μ̂h − μ)

+ 2
(
g(ρ̂h) − g

(
ρ

h

))
∂tμ̂h (μ̂h − μ) −Δ(μ̂h − μh) (μ̂h − μ) + (μ̂h − μ)2. (5.13)
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At this point, we integrate over Qt. As g is nonnegative, we get:

1
2

∫
Ω

|(μ̂h − μ)(t)|2 +
∫ t

0

‖(μ̂h − μ)(s)‖2
V ds ≤

7∑
j=1

Ij(t), (5.14)

with an obvious meaning of Ij(t), j = 1, . . . , 7. Now, we estimate these integrals, but the last one. By combining
the Hölder, Young, and Sobolev inequalities, and in view of (5.6), we have that

I1(t) ≤ c

∫ t

0

‖∂tρ̂h(s)‖4‖(μ̂h − μ)(s)‖H‖(μ̂h − μ)(s)‖4 ds

≤ c

∫ t

0

‖∂tρ̂h(s)‖V ‖(μ̂h − μ)(s)‖H‖(μ̂h − μ)(s)‖V ds

≤ σ

∫ t

0

‖(μ̂h − μ)(s)‖2
V ds+ cσ

∫ t

0

‖(μ̂h − μ)(s)‖2
H ds,

where σ > 0 is arbitrary. Similarly, we infer that

I2(t) ≤ 2
∫ t

0

‖∂tμ(s)‖H‖(ρ̂h − ρ)(s)‖4‖(μ̂h − μ)(s)‖4 ds

≤ σ

∫ t

0

‖(μ̂h − μ)(s)‖2
V ds+ cσ

∫ t

0

‖∂tμ(s)‖2
H‖(ρ̂h − ρ)(s)‖2

V ds.

Notice that, by means of the Gronwall lemma, we shall be able to control the last integral in terms of the
L1(0, T )-norm of the function s �→ ‖∂tμ(s)‖2

H (cf. (2.8)). We use a similar procedure for the next integral and
notice that the same remark holds, due to (5.8). Indeed, we have that

I3(t) ≤
∫ t

0

‖∂tγ̂h(s)‖∞‖(μ̂h − μ)(s)‖H‖(μh − μ)(s)‖H ds

≤
∫ t

0

‖∂tγ̂h(s)‖∞‖(μ̂h − μ)(s)‖H (‖(μ̂h − μ)(s)‖H + ‖(μh − μ̂h)(s)‖H) ds

≤
∫ t

0

‖∂tγ̂h(s)‖2
∞‖(μ̂h − μ)(s)‖2

H ds+ c

∫ t

0

(‖(μ̂h − μ)(s)‖2
H + ‖(μh − μ̂h)(s)‖2

H

)
ds

≤ c

∫ t

0

(‖∂tγ̂h(s)‖2
∞ + 1

) ‖(μ̂h − μ)(s)‖2
H ds+ ch2,

where the last inequality is due to (4.32). In order to treat I4(t), we prove a preliminary estimate, namely, that

|∂t (γ̂h − g(ρ))| ≤ c
{
|ρh − ρ̂h| +

∣∣∣ρ
h
− ρ̂h

∣∣∣+ |ρ̂h − ρ|
}
|∂tρ̂h| + c |∂t(ρ̂h − ρ)| (5.15)

a.e. in Q. As we argue pointwise, we fix (x, t) a.e. in Q and choose n such that t belongs to the interval
(nh, (n + 1)h]; in order to simplify the notation, we omit writing at what point (x, t) we work. By the mean
value theorem, we find r between ρn and ρn+1 such that

∂t (γ̂h − g(ρ)) =
g(ρn+1) − g(ρn)

h
− g′(ρ)∂tρ = g′(r)

ρn+1 − ρn

h
− g′(ρ)∂tρ

= g′(r)∂tρ̂h − g′(ρ)∂tρ = (g′(r) − g′(ρ)) ∂tρ̂h + g′(ρ) (∂tρ̂h − ∂tρ) .
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As g′ is bounded and Lipschitz continuous, we infer that

|∂t (γ̂h − g(ρ)) | ≤ c|r − ρ| |∂tρ̂h| + c|∂tρ̂h − ∂tρ|.
On the other hand, we have

|r − ρ| ≤ |r − ρn| + |ρn − ρ| ≤ |ρn+1 − ρn| + |ρn − ρ| = |ρh − ρ
h
| + |ρ

h
− ρ| ≤ |ρh − ρ̂h| + 2|ρ

h
− ρ̂h| + |ρ̂h − ρ|.

Hence, (5.15) follows, and we can use it to estimate I4(t). We also account for the boundedness of μ and for
identity (2.24) and the analogue identity concerning zh. We have:

I4(t) ≤ c

∫ t

0

∫
Ω

{|ρh − ρ̂h| + |ρ
h
− ρ̂h| + |ρ̂h − ρ|} |∂tρ̂h| |μ̂h − μ|

+ c

∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)| |μ̂h − μ|

≤ c

∫ t

0

{‖ρh(s) − ρ̂h(s)‖2
H + ‖ρ

h
(s) − ρ̂h(s)‖2

H + ‖ρ̂h(s) − ρ(s)‖2
H

} ‖∂tρ̂h(s)‖2
∞ ds

+
1
2

∫ t

0

‖∂t(ρ̂h − ρ)(s)‖2
H ds+ c

∫ t

0

‖(μ̂h − μ)(s)‖2
H ds

≤ c h2‖∂tρ̂h‖2
L∞(0,T ;H) ‖∂tρ̂h‖2

L2(0,T ;L∞(Ω)) + c

∫ t

0

‖∂tρ̂h(s)‖2
∞ ‖ρ̂h(s) − ρ(s)‖2

H ds

+
1
2

∫ t

0

‖∂t(ρ̂h − ρ)(s)‖2
H ds+ c

∫ t

0

‖(μ̂h − μ)(s)‖2
H ds;

furthermore, estimates (4.31) and (5.7) allow us to infer that

I4(t) ≤ c h2 + c

∫ t

0

‖∂tρ̂h(s)‖2
∞ ‖ρ̂h(s) − ρ(s)‖2

V ds+
1
2

∫ t

0

‖∂t(ρ̂h − ρ)(s)‖2
H ds

+ c

∫ t

0

(
1 + ‖∂tρ̂h(s)‖2

∞
) ‖(μ̂h − μ)(s)‖2

H ds.

Next, we deal with I5(t). By accounting for (2.25) and (5.7), we deduce that

I5(t) ≤ c

∫ t

0

‖
(
ρ̂h − ρ

h

)
(s)‖∞‖∂tμ̂h(s)‖H‖(μ̂h − μ)(s)‖H ds

≤ c h2‖∂tρ̂h‖2
L2(0,T ;L∞(Ω)) + c

∫ t

0

‖∂tμ̂h(s)‖2
H‖(μ̂h − μ)(s)‖2

H ds

≤ c h2 + c

∫ t

0

‖∂tμ̂h(s)‖2
H‖(μ̂h − μ)(s)‖2

H ds.

We note at once that we shall be able to control even the last terms of the last two estimates with the help of
the Gronwall lemma, in view of (5.7) and (4.31), respectively. Finally, thanks to (2.25) once more, we have:

I6(t) =
∫ t

0

∫
Ω

∇(μ̂h − μh) · ∇(μ̂h − μ)

≤ σ

∫ t

0

∫
Ω

|∇(μ̂h − μ)|2 + cσ

∫ t

0

∫
Ω

|∇(μ̂h − μh)|2

≤ σ

∫ t

0

∫
Ω

|∇(μ̂h − μ)|2 + cσ h
2‖∇∂tμ̂h‖2

L2(0,T ;H)

≤ σ

∫ t

0

∫
Ω

|∇(μ̂h − μ)|2 + cσ h, (5.16)
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where the last inequality is a consequence of the non-sharp estimate (4.28). We stress that I6 is the only term
of order h instead of h2. At this point, we collect all the estimates of the integrals Ij we have obtained, and
come back to (5.13)–(5.14). If we choose σ small enough, we conclude that

1
2
‖(μ̂h − μ)(t)‖2

H +
1
2

∫ t

0

‖(μ̂h − μ)(s)‖2
V ds

≤ c

{
h+

∫ t

0

(
1 + ‖∂tγ̂h(s)‖2

∞ + ‖∂tμ̂h(s)‖2
H

) ‖(μ̂h − μ)(s)‖2
H ds

+
∫ t

0

(‖∂tμ(s)‖2
H + ‖∂tρ̂h(s)‖2

∞
) ‖ρ̂h(s) − ρ(s)‖2

V ds

+
∫ t

0

∫
Ω

|∂t(ρ̂h − ρ)|2
}

+
1
2

∫ t

0

‖∂t(ρ̂h − ρ)(s)‖2
H ds (5.17)

for every t ∈ [0, T ]. Now, we revert to (5.11) and add it to (5.17). After rearranging, we apply the Gronwall
lemma and obtain (2.30). This concludes the proof.

6. Proof of Theorem 2.6

As is clear from the proof of Theorem 2.5, to obtain estimate (2.32) there is just one step to modify, namely,
the estimate of I6 (see (5.16)), which was based on the non-sharp inequality (4.28). Thus, we only have to prove
that our further assumption (2.31) implies that I6 must be of order h2, not h. Moreover, it is clear that this is
true whenever we improve (4.28) and replace it by

‖∇∂tμ̂h‖2
L2(0,T ;H) ≤ c, i.e., h

N−1∑
n=0

‖∇δhμn‖2
H ≤ c. (6.1)

Hence, it suffices to prove (6.1). In order to make our argument transparent, we prove some additional estimates,
the first of which holds under assumption (2.31).

Further a priori estimates. We prepare an estimate of ‖δhμ0‖H . In view of (2.31), we write equation
(2.27), with n = 0, in the form:

(1 + 2γ0)δhμ0 − hΔδhμ0 = Δμ0 − μ1 δhγ0,

and test it by δhμ0. As γ0 is nonnegative, we immediately arrive at∫
Ω

|δhμ0|2 + h

∫
Ω

|∇δhμ0|2 ≤ (‖Δμ0‖H + ‖μ1‖4 ‖δhρ0‖4) ‖δhμ0‖H .

Thanks to (2.31), the Sobolev inequality, (4.26), and (5.5), we deduce that

‖δhμ0‖H + h

∫
Ω

|∇δhμ0|2 ≤ c. (6.2)

Let us come to the basic estimate we need. We improve (4.21) and obtain a bound for the second-difference
quotients δ2hρn (see (2.16)). We write (2.28), with (n + 1) in place of n, and test the difference between the
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resulting relation and (2.28) itself by (δhρn+1 − δhρn). We find:∫
Ω

|δhρn+1 − δhρn|2 + h

∫
Ω

∇δhρn+1 · ∇(δhρn+1 − δhρn)

= −
∫

Ω

(f ′(ρn+2) − f ′(ρn+1)) (δhρn+1 − δhρn)

+ h

∫
Ω

(g′(ρn+1)δhμn + μnδh(g′(ρn))) (δhρn+1 − δhρn)

≤ C h

∫
Ω

(|δhρn+1| + |δhμn| + |μn| |δhρn|) |δhρn+1 − δhρn|. (6.3)

By the elementary identity (2.36), we have:

∇δhρn+1 · ∇(δhρn+1 − δhρn) =
1
2
|∇δhρn+1|2 − 1

2
|∇δhρn|2 +

1
2
|∇δhρn+1 −∇δhρn|2.

On the other hand, by the Sobolev inequality, (4.26), and (5.5), we infer that

C h

∫
Ω

(|δhρn+1| + |δhμn| + |μn| |δhρn|) |δhρn+1 − δhρn|

≤ 1
2

∫
Ω

|δhρn+1 − δhρn|2 + c h2
(‖δhρn+1‖2

H + ‖δhμn‖2
H + ‖μn‖2

4 ‖δhρn‖2
4

)
≤ 1

2

∫
Ω

|δhρn+1 − δhρn|2 + c h2
(‖δhρn+1‖2

H + ‖δhμn‖2
H + ‖μn‖2

V ‖δhρn‖2
V

)
≤ 1

2

∫
Ω

|δhρn+1 − δhρn|2 + c h2
(‖δhρn+1‖2

H + ‖δhμn‖2
H + 1

)
.

Now, we combine this estimate, the identity just above, and (6.3). Then, we divide by h and sum over n =
0, . . . ,m− 1, where 1 ≤ m ≤ N − 1. We obtain:

h

2

m−1∑
n=0

‖δ2hρn‖2
H +

1
2
‖∇δhρm‖2

H +
1
2

m−1∑
n=0

‖∇δhρn+1 −∇δhρn‖2
H

≤ 1
2
‖∇δhρ0‖2

H + c h

m−1∑
n=0

‖δhρn+1‖2
H + c h

m−1∑
n=0

‖δhμn‖2
H + c.

At this point, by (5.5), (4.6), and (4.26), we conclude that

h

N−2∑
n=0

‖δ2hρn‖2
H ≤ c. (6.4)

Consequence. With a view toward deriving an estimate for δ2hγn, we begin by arguing pointwise. So, for a.a.
(x, t) ∈ Q (once again we omit writing at what point of Q we work) and for suitable r1 between ρn+2 and ρn+1,
and r2 between ρn and ρn+1, we have by the Taylor formula:∣∣δ2hγn

∣∣ = h−2 |g(ρn+2) − g(ρn+1) + g(ρn) − g(ρn+1)|
= h−2 |g′(ρn+1)(ρn+2 − ρn+1) + 1

2 g
′′(r1)(ρn+2 − ρn+1)2

+ g′(ρn+1)(ρn − ρn+1) + 1
2 g

′′(r2)(ρn − ρn+1)2|
≤ c

∣∣δ2hρn

∣∣+ c
(|δhρn+1|2 + |δhρn|2

)
.
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Now, we square this pointwise estimate, integrate over Ω, sum over n, and deduce that

h

N−2∑
n=0

‖δ2hγn‖2
H ≤ c h

N−2∑
n=0

‖δ2hρn‖2
H + c h

N−1∑
n=0

‖δhρn‖4
4.

Then, (6.4), the Sobolev inequality, and (5.5) yield:

h
N−2∑
n=0

‖δ2hγn‖2
H ≤ c. (6.5)

Proof of Theorem 2.6. As said before, it suffices to prove (6.1). We reason that, in order to obtain the analogous
estimate for the solution to the continuous problem, one first differentiates (2.12) with respect to time and

then tests the resulting equality by ∂tμ; this yields the desired term
∫ t

0

∫
Ω

|∇∂tμ|2 on the left-hand side. The

idea is to perform the corresponding procedure on the discrete equation (2.27). However, it turns out that the
calculation in the discrete case becomes simpler if one tests by the analogue of the product (1 + 2g(ρ))∂tμ. To
simplify the notation, we introduce the vector π defined by

πn := (1 + 2γn)δhμn for n = 0, . . . , N − 1. (6.6)

We write (2.27) with (n + 1) in place of n, and take the difference between the resulting equality and (2.27)
itself. Then, we test this difference by πn+1 and integrate over Ω. By taking the elementary identity (2.36) into
account, we obtain for n = 0, . . . , N − 2 that

1
2

∫
Ω

|πn+1|2 − 1
2

∫
Ω

|πn|2 +
1
2

∫
Ω

|πn+1 − πn|2 + h

∫
Ω

∇δhμn+1 · ∇πn+1

= −
∫

Ω

(μn+2 δhγn+1 − μn+1 δhγn) πn+1.

By computing the fourth term on the left-hand side with the help of (6.6), recalling that g is nonnegative, and
rearranging, we deduce that

∫
Ω

|πn+1|2 −
∫

Ω

|πn|2 +
∫

Ω

|πn+1 − πn|2 + 2h
∫

Ω

|∇δhμn+1|2

≤ −2
∫

Ω

(μn+2 δhγn+1 − μn+1 δhγn) πn+1 − 4h
∫

Ω

δhμn+1 ∇δhμn+1 · ∇γn+1

= −2
∫

Ω

πn+1(μn+2 − μn+1) δhγn+1 − 2
∫

Ω

πn+1 μn+1 (δhγn+1 − δhγn)

− 4h
∫

Ω

δhμn+1 ∇δhμn+1 · ∇γn+1

= −2h
∫

Ω

πn+1 δhμn+1 δhγn+1 − 2h
∫

Ω

πn+1 μn+1 δ
2
hγn

− 4h
∫

Ω

δhμn+1 ∇δhμn+1 · ∇γn+1. (6.7)
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Now, we estimate each term of the right-hand side separately, before summing over n, in order to simplify the
notation. For the first one, we use Hölder and Sobolev inequalities, and estimates (5.5) and (6.4). We have:

− 2h
∫

Ω

πn+1 δhμn+1 δhγn+1 ≤ 2h‖πn+1‖4 ‖δhμn+1‖H ‖δhγn+1‖4 ≤ c h‖δhμn+1‖V ‖δhμn+1‖H ‖δhρn+1‖V

≤ h

4
(‖∇δhμn+1‖2

H + ‖δhμn+1‖2
H

)
+ c h‖δhμn+1‖2

H

≤ h

4
‖∇δhμn+1‖2

H + c h ‖πn+1‖2
H

≤ h

4
‖∇δhμn+1‖2

H + c h ‖πn‖2
H + C h ‖πn+1 − πn‖2

H .

For h small enough, namely, for h ≤ 1/(3C), we conclude that

−2h
∫

Ω

πn+1 δhμn+1 δhγn+1 ≤ h

4
‖∇δhμn+1‖2

H + c h ‖πn‖2
H +

1
3
‖πn+1 − πn‖2

H .

Next, by (4.26), we similarly have:

−2h
∫

Ω

πn+1 μn+1 δ
2
hγn ≤ c h‖δhμn+1‖4 ‖μn+1‖4 ‖δ2hγn‖H

≤ h

4
(‖∇δhμn+1‖2

H + ‖δhμn+1‖2
H

)
+ c h ‖μn+1‖2

V ‖δ2hγn‖2
H

≤ h

4
‖∇δhμn+1‖2

H + h ‖πn‖2
H +

1
3
‖πn+1 − πn‖2

H + c h ‖δ2hγn‖2
H ,

for sufficiently small h. Finally, by accounting for (4.23), Sobolev inequality, and the compactness inequal-
ity (2.35), we have that, for h small enough,

−4h
∫

Ω

δhμn+1 ∇δhμn+1 · ∇γn+1 ≤ c h‖δhμn+1‖4 ‖∇δhμn+1‖H ‖∇ρn+1‖4

≤ h

4
‖∇δhμn+1‖2

H + c h‖δhμn+1‖2
4 ‖∇ρn+1‖2

V ≤ h

4
‖∇δhμn+1‖2

H + c h‖δhμn+1‖2
4

≤ h

4
‖∇δhμn+1‖2

H + h
(

1
4 ‖∇δhμn+1‖2

H + c‖δhμn+1‖2
H

)
≤ h

2
‖∇δhμn+1‖2

H + c h‖πn+1‖2
H ≤ h

2
‖∇δhμn+1‖2

H + c h‖πn‖2
H +

1
3
‖πn+1 − πn‖2

H .

At this point, we combine the inequalities just obtained with (6.7) and note that the terms involving πn+1 − πn

cancel out. Then, we sum over n = 0, . . . ,m− 1, with 1 ≤ m ≤ (N − 1). We obtain:

‖πm‖2
H + h

m−1∑
n=0

‖∇δhμn+1‖2
H ≤ ‖π0‖2

H + h

m−1∑
n=0

‖πn‖2
H + h

m−1∑
n=0

‖δ2hγn‖2
H

and the discrete Gronwall lemma allows us to deduce that

‖πm‖2
H + h

m−1∑
n=0

‖∇δhμn+1‖2
H ≤ c

(
‖π0‖2

H + c h

N−2∑
n=0

‖δ2hγn‖2
H

)
for 1 ≤ m ≤ (N − 1). From (6.2) and (6.5), we infer that

h

N−2∑
n=0

‖∇δhμn+1‖2
H ≤ c.

This and (6.2) yield (6.1), and the proof is complete.
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Remark 6.1. As a consequence of estimates (6.1) and (6.4), the solution to the continuous problem enjoys the
following additional regularity properties:

∇∂tμ ∈ L2(Q) and ∂2
t ρ ∈ L2(Q).

This can give even more: for instance, equation (2.13) can be differentiated with respect to time, to show that
Δ∂tρ belongs to L2(Q) as well, so as to conclude that

ρ ∈ H2(0, T ;H) ∩H1(0, T ;W ).

However, this regularity result could be proved formally and directly for the continuous problem.
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[15] P. Colli, M. Frémond and O. Klein, Global existence of a solution to a phase field model for supercooling. Nonlinear Anal.
Real World Appl. 2 (2001) 523–539.

[16] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous
Cahn-Hilliard system. SIAM J. Appl. Math. 71 (2011) 1849–1870.

[17] P. Colli, G. Gilardi, P. Podio-Guidugli and J. Sprekels, Global existence and uniqueness for a singular/degenerate Cahn–Hilliard
system with viscosity. J. Differ. Equ. 254 (2013) 4217–4244.

[18] C. Eck, B. Jadamba and P. Knabner, Error estimates for a finite element discretization of a phase field model for mixtures.
SIAM J. Numer. Anal. 47 (2010) 4429–4445.
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