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AN EFFICIENT COMPUTATIONAL FRAMEWORK FOR REDUCED
BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION

OF PARAMETRIZED NAVIER–STOKES FLOWS

Andrea Manzoni
1

Abstract. We present the current Reduced Basis framework for the efficient numerical approximation
of parametrized steady Navier–Stokes equations. We have extended the existing setting developed in
the last decade (see e.g. [S. Deparis, SIAM J. Numer. Anal. 46 (2008) 2039–2067; A. Quarteroni and
G. Rozza, Numer. Methods Partial Differ. Equ. 23 (2007) 923–948; K. Veroy and A.T. Patera, Int.
J. Numer. Methods Fluids 47 (2005) 773–788]) to more general affine and nonaffine parametrizations
(such as volume-based techniques), to a simultaneous velocity-pressure error estimates and to a fully
decoupled Offline/Online procedure in order to speedup the solution of the reduced-order problem.
This is particularly suitable for real-time and many-query contexts, which are both part of our final
goal. Furthermore, we present an efficient numerical implementation for treating nonlinear advection
terms in a convenient way. A residual-based a posteriori error estimation with respect to a truth,
full-order Finite Element approximation is provided for joint pressure/velocity errors, according to the
Brezzi–Rappaz–Raviart stability theory. To do this, we take advantage of an extension of the Successive
Constraint Method for the estimation of stability factors and of a suitable fixed-point algorithm for the
approximation of Sobolev embedding constants. Finally, we present some numerical test cases, in order
to show both the approximation properties and the computational efficiency of the derived framework.
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1. Introduction

In this paper we describe some new contributions to the Reduced Basis (RB) approximation and a pos-
teriori error estimation of parametrized steady incompressible Navier–Stokes equations. We consider a mixed
velocity/pressure formulation of the problem, by addressing the case of (both affine and nonaffine) physical
and geometrical parametrizations, and including for the first time the case of external flows around nonaffinely
parametrized profiles. Our last goal is to solve real-time numerical simulations and optimization or many-query
problems in a very efficient way. Although very strong efforts have been carried out in the last decade to achieve
this goal, classical, full-order approximation techniques – such as the Finite Element (FE) method – still entail
strong computational costs, so that a further enhancement of the computational efficiency is needed.
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This is the main reason why Reduced-Order Models (ROMs), such as the RB method, have gained increasing
popularity in recent years. The goal of a RB method is to approximate the manifold of solutions – i.e., the set
of solutions obtained by varying the parameter vector – through a Galerkin projection onto a space spanned by
few precomputed snapshots (that is, solutions of the full-order problem at some selected parameters values).

In this work we restrict ourselves to the case of parametrized steady incompressible Navier–Stokes equa-
tions. In fact, this problem arises in several fluid flows applications; its rapid and reliable solution represents a
remarkable challenge for a ROM, because of nonlinearities, stability and efficiency issues [16].

First of all, the nonlinear nature of Navier–Stokes equations yields serious concerns from both a physical
and a computational standpoint. For instance, flow can undergo strong changes (bifurcation phenomena) when
the Reynolds number reaches critical values, or even loss of symmetry. Thus, in order to obtain a reliable RB
approximation, we require that the manifold of the solutions is smooth and low-dimensional, and that it consists
of a branch of nonsingular solutions2 – the latter is a standard assumption also in the FE method [4, 5].

Moreover, we need to face the stability issue related to the calculation of pressure fields. As already in the
Stokes case, we can recover the pressure stability at the reduced order level by enriching the reduced velocity
space with the so-called supremizer solutions. In this way, we manage to fulfill a Brezzi inf-sup condition for the
reduced spaces as well. Concerning instead the stability of the approximation, we rely on the Brezzi–Rappaz–
Raviart (BRR) theory [4,5] for the approximation of branches of nonsingular solutions. We remind that stability
factors affect not only the continuous dependence of the solution on data [32], but also the a posteriori error
estimation ensuring the reliability of the RB method.

Furthermore, for the sake of computational efficiency, we need to properly extend the usual Offline/Online
splitting [24, 27] also to nonlinear terms, in order to make both the reduced-order approximation and the error
estimation independent of the full-order approximation, and thus very cheap.

In this paper we show how to deal with these issues. For the first time, we address the multifaceted compo-
nents behind the analysis of the complete steady framework. This includes nonaffine geometrical parametriza-
tions, error bound estimations for velocity/pressure fields jointly, an improved algorithm for the estimation
of parametrized lower bounds of stability factors and a modified fixed-point algorithm for the estimation of
Sobolev embedding constants, together with rigorous mathematical proofs. In particular, this framework takes
advantage of a full uncoupling between the estimation of stability factors and the construction of a reduced
space through a greedy selection of velocity-pressure snapshots. This option has been made possible thanks to
a recent extension of the natural-norm Successive Constraint Method (SCM) [13, 29] to the case of nonlinear
parametrized operators, addressed in [18].

More in detail, we present a general parametrized formulation of Navier–Stokes equations (Sect. 2), capable
of managing with both (physical and geometrical) affine and nonaffine parametrizations, by relying in the latter
case on the Empirical Interpolation Method (EIM) [1]. We also recall the main assumptions required to ensure
the well-posedness of both the parametrized formulation and the full-order approximation (Sects. 3–4), pointing
out which features must be enforced at the reduced-order level (Sect. 5). Another original contribution of this
paper is the setting of a posteriori error estimation for velocity and pressure fields jointly (Sect. 6), obtained by
exploiting the BRR theory. Moreover, we sketch the main points of the extended SCM [18] for computing lower
bounds of stability factors (Sect. 7), and provide a detailed proof of a fixed-point approximation of the Sobolev
embedding constants entering in the expression of the error bound (Sect. 8). Finally, we show some numerical
tests dealing with low and moderate Reynolds flows in parametrized geometries (Sect. 9). Technical proofs of
the stated results are detailed in Appendix A.

We refer to [10, 28] for former contributions on the RB approximation of Stokes problems, and to the recent
work [26], for both a stability and a posteriori error analysis based on the Brezzi’s and the Babuška’s inf-sup the-
ories, respectively. In the Navier–Stokes case, after the pioneering works by Peterson [22], Ito and Ravindran [14],
a general framework for both RB approximation and a posteriori error estimation has been established by Patera,

2RB methods might provide reliable approximations also when bifurcation points are included in the parameter space, if the
latter is properly sampled; see e.g. [12]. Further investigation is ongoing on this issue.
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Veroy [31] and Nguyen [21]. This has been further developed in more recent years [7, 8] by considering a complete
natural norm framework, whereas a first case of simple nonaffine geometrical parametrizations can be found
in [23].

2. Parametrized formulation of steady Navier–Stokes equations

The Navier–Stokes (NS) equations provide a model for the flow motion of a viscous Newtonian incompressible
fluid. In the steady case, on a spatial domain Ω̃ ⊂ Rd, d = 2, 3 (which we assume to be piecewise C2 with convex
corners), they read as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−νΔv + δ(v · ∇)v + ∇p = f in Ω̃

∇ · v = 0 in Ω̃
v = 0 on ΓD0

v = gD on ΓDg

−pn + ν
∂v
∂n

= gN on ΓN ,

(2.1)

where (v, p) = (v(μ), p(μ)) are the velocity and the pressure fields defined on Ω̃, for some given f ∈ (L2(Ω̃))d,
gD ∈ (H1/2(ΓD))d, gN ∈ (H1/2(ΓN ))d. We denote by ΓD = ΓD0 ∪ΓDg the Dirichlet portion of ∂Ω̃, and by n the
normal unit vector to ∂Ω̃. We also define the Reynolds number as Re = L|v̄|/ν, where L is a characteristic length
of the domain, v̄ a typical velocity of the flow and ν the kinematic viscosity. We concentrate on laminar flows,
with Re ∈ [1, 103], in the case d = 2, although the whole framework keeps holding for the case d = 3 as well. Here
μ = (μp,μg)T ∈ D ⊂ RP is a vector of parameters which may characterize either the geometrical configuration
– so that Ω̃ = Ω̃(μg) – or physical properties, such as ν = ν(μp), boundary data gD = gD(μp), gN = gN(μp)
or source terms f = f(μp). For the sake of notation, we shall distinguish between np physical parameters
μp ∈ Dp ⊂ Rnp and ng = P − np physical parameters μg ∈ Dg ⊂ Rng . Hereon, we omit the dependence on μ
wherever understood, and we adopt the convention that repeated indices are implicitly summed over.

If parameters affect the geometrical configuration (i.e. ng ≥ 1), we assume that the parameterized con-
figuration Ω̃(μg) can be obtained as the image of a reference domain Ω through a parametrized map
T (·; μg) : R2×D → R2. In general, we can deal with original domains made up ofKdom mutually nonoverlapping
open subdomains {Ωk}Kdom

k=1 , so that original and reference subdomains can be linked via either an affine or a
nonaffine map T k(·; μg) : R2 ×D → R2, i.e. Ω̃k(μ) = T k(Ωk; μg), 1 ≤ k ≤ Kdom. See e.g. [27] for the regularity
assumptions required to the maps T k(·; μg) in order to ensure the well-posedness of (2.2).

The parametrized variational formulation of (2.1) can be obtained by standard integration by parts. When
dealing with parametrized geometries, we trace the usual variational formulation, written on Ω̃(μg), back on
the reference domain Ω, so that: given μ ∈ D ⊂ RP , we seek for (v, p) = (v(μ), p(μ)) ∈ V ×Q such that{

ã(v,w; μ) + b(p,w; μ) + c(v,v,w; μ) = F (w; μ) ∀w ∈ V

b(q,v; μ) = G(q; μ) ∀q ∈ Q.
(2.2)

The parametrized forms appearing in (2.2) are defined as follows [23, 28]:

a(v,w; μ) =
Kdom∑
k=1

∫
Ωk

∂v
∂xi

κk
ij(·; μ)

∂w
∂xj

, b(q,w; μ) = −
Kdom∑
k=1

∫
Ωk

qχk
ij(·; μ)

∂wj

∂xi
, (2.3)

c(v,w, z; μ) =
Kdom∑
k=1

∫
Ωk

vi χ
k
ji(·; μ)

∂wm

∂xj
zm, (2.4)
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whereas the transformation tensors appearing in (2.3)-(2.4) are given by:

κk(x; μ) = ν(μp)
(
Jk

T

(·; μg

))−T (
Jk

T

(
x; μg

))−1 |Jk
T

(
x; μg

) |, 1 ≤ k ≤ Kdom (2.5)

χk (x; μ) =
(
Jk

T

(
x; μg

))−T |Jk
T (x; μg)|, 1 ≤ k ≤ Kdom; (2.6)

here Jk
T : R2 ×Dg → R2×2 is the Jacobian matrix of the map T k(·; μg), and |Jk

T | denotes its determinant.
Instead, the linear form is given by

Fs(w; μ) =
Kdom∑
k=1

∫
Ωk

f(μp) ·w |Jk
T (·; μg)|dΩ +

K̄dom∑
k=1

∫
Γ k

N

gN (μp) · w|Jk
T (·; μg)t|dΓ,

where f(μp) ∈ (L2(Ω))2 is a forcing term per unit mass, t is the tangential unit vector to the boundary,
Γ k

N = ∂Ωk ∩ΓN and K̄dom ≤ Kdom is the number of subdomains sharing at least one Neumann side. From now
on, we assume that gN = 0. Moreover, we consider a lifting approach to deal with essential (Dirichlet) boundary
conditions. Thus, we introduce a lift function vD ∈ (H1(Ω))2 such that vD|ΓDg

= gD and vD|ΓD0
= 0, to extend

non-homogeneous boundary conditions to the interior of the domain, and denote by

ã(v(μ),w; μ) = a(v(μ),w; μ) + d(v(μ),w; μ), F (w; μ) = Fs(w; μ) + Fd(w; μ),

where
d(v,w; μ) = c(vD,v,w; μ) + c(v,vD,w; μ) (2.7)

and
Fd(w; μ) = −a(vD,w) − c(vD,vD,w; μ), G(q; μ) = −b(q,vD; μ) (2.8)

are the terms resulting from the lifting of non-homogeneous Dirichlet conditions.
We denote by V = (H1

0,ΓD
(Ω))2, Q = L2(Ω) the functional spaces for velocity and pressure, where

H1
0,ΓD

(Ω) = {v ∈ H1(Ω) : v|ΓD = 0}. We also equip V and Q with the following notions of inner products and
norms:

‖ · ‖V = (·, ·)1/2
V , (v,w)V = (v,w)(H1(Ω))2 ∀v,w ∈ V,

‖ · ‖Q = (·, ·)1/2
Q , (p, q)Q = ν(μ̄p)(p, q)L2(Ω) ∀p, q ∈ Q,

(2.9)

respectively, being (v,w)(H1(Ω))2 = (∇v,∇w)(L2(Ω))2 + (v,w)(L2(Ω))2 and ν(μ̄p) the kinematic viscosity corre-
sponding to a selected value μ̄p. Moreover, we recall that the following Poincaré inequality holds:

1
1 + C2

p

≤
‖∇v‖2

L2(Ω)

‖v‖2
H1(Ω)

≤ 1 ∀v ∈ V, H1
0 (Ω) ⊂ V ⊂ H1(Ω), (2.10)

where Cp = Cp(Ω) > 0 denotes the Poincaré constant.
For the sake of the analysis, we also provide a more compact notation. Let us denote by X the product

space given by X = V × Q, by Y (μ) = (v(μ), p(μ)) ∈ X and W = (w, q). Thus, the parametrized abstract
formulation (2.2) can be rewritten in the following form: find Y (μ) = (v(μ), p(μ)) ∈ X(Ω) such that

A(Y (μ),W ; μ) + C(Y (μ), Y (μ),W ; μ) = F̃ (W ; μ) ∀W ∈ X (2.11)

where
A(Y,W ; μ) = ã(v,w; μ) + b(p,w; μ) + b(q,v; μ),

C(Y, Y,W ; μ) = c(v,v,w; μ),

F̃ (W ; μ) = F (w; μ) +G(q; μ).

(2.12)
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3. Well posedness of parametrized formulation

We now recall the assumptions required to ensure the well-posedness of the parametrized formulation (2.11)
(or (2.2)); some of these will be automatically inherited also by the full-order and the reduced-order approxi-
mations. Moreover, we introduce the affinity assumption to be fulfilled by the parametrized forms, in order to
ensure an efficient Offline/Online computational splitting.

3.1. Well-posedness analysis

The well-posedness of parametrized NS equations can be analyzed either by extending the theory for linear
saddle-point problems to account for the nonlinear terms, or by applying the BRR theory [4,5], valid for a wider
class of nonlinear equations. These two approaches can be regarded as generalizations of the Brezzi theory and
the Babuška theory, respectively, to the nonlinear NS case. Here we recall the main results necessary to frame
this analysis, which are also useful in view of the RB approximation and the a posteriori error estimation.

Recalling our parametrized formulation (2.2), we assume that the bilinear forms a(·, ·; μ) : V × V → R and
b(·, ·; μ) : V × V → R are continuous: for any μ ∈ D,

γa(μ) = sup
v∈V

sup
w∈V

a(v,w; μ)
‖v‖V ‖w‖V

< +∞, γb(μ) = sup
q∈Q

sup
w∈V

b(q,w; μ)
‖w‖V ‖q‖Q

< +∞ (3.1)

and satisfy the following stability assumptions: a(·, ·; μ) is coercive over V , i.e.

∃ αLB(μ) > 0 : α(μ) = inf
w∈V

a(w,w; μ)
‖w‖2

V

≥ αLB(μ) ∀ μ ∈ D (3.2)

and b(·, ·; μ) is inf-sup stable over V ×Q, i.e.

∃ βLB
Br (μ) > 0 : βBr(μ) = inf

q∈Q
sup
w∈X

b(q,w; μ)
‖w‖V ‖q‖Q

≥ βLB
Br (μ) ∀ μ ∈ D. (3.3)

Moreover, thanks to Hölder inequality and Sobolev embedding theorems (see e.g. [30], Chapt. 2, Sect. 1.1),
the trilinear form c(·, ·, ·; μ) : V × V × V → R is continuous:

γc(μ) = sup
v∈V

sup
w∈V

sup
z∈V

c(v,w, z; μ)
‖v‖V ‖w‖V ‖z‖V

< +∞ ∀ μ ∈ D, (3.4)

where the continuity constant γc(μ) is expressed, in the parametrized case, as

γc(μ) = ρ̃2Mc(μ) ≤ ρ2Mc(μ); (3.5)

Mc(μ) is a function depending on the parametrization; see equation (3.15) for its definition. Here ρ = ρ(Ω) and
ρ̃ = ρ̃(Ω) denote the Sobolev embedding constants

ρ2 = sup
v∈V

‖v‖2
L4(Ω)

(∇v,∇v)L2(Ω)
, ρ̃2 = sup

v∈V

‖v‖2
L4(Ω)

(v, v)H1(Ω)
(3.6)

respectively, being ‖w‖Lp(Ω) =
(∫

Ω |w|p)1/p. In particular, ρ̃2 ≤ ρ2 thanks to (2.10).
Under the above assumptions, problem (2.2) admits a solution (see e.g. [30], Chapt. 2, Thm. 1.2) in the

case vD = 0; the same conclusion holds in the case vD �= 0 by replacing a(·, ·; μ) with ã(·, ·; μ) (see e.g. [30],
Chapt. 2, Thm. 1.6). Moreover, the solution is also unique under a suitable small data assumption. In this way,
we can analyze the well-posedness of parametrized steady Navier–Stokes equations by extending the framework
developed for parametrized Stokes equations [26], based on the Brezzi theory [3].
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On the other hand, the more general BRR theory [4, 5] can be applied to state the well-posedness of the
parametrized formulation (2.11). As the Babuška theory for mixed variational problems, it is based on the
global operator Ã(·, ·; μ) : X ×X → R, defined in our case by

Ã(U,W ; μ) = A(U,W ; μ) + C(U,U,W ; μ). (3.7)

Here A(·, ·; μ) and C(·, ·, ·; μ) denote the operators defined in (2.12). Moreover, we denote by

dÃ(Y ; μ)(U,W ) = A(U,W ; μ) + C(Y, U,W ; μ) + C(U, Y,W ; μ) (3.8)

the Fréchet derivative of Ã(·, ·; μ) with respect to the first variable. According to the BRR theory, problem
(2.11) admits a solution if and only if the following continuity condition:

γ(μ) = sup
U∈X

sup
W∈X

dÃ(Y (μ); μ)(U,W )
‖U‖X‖W‖X

< +∞, ∀ μ ∈ D, (3.9)

and the following (Babuška) inf-sup condition:

∃ βLB(μ) > 0 : β(μ) = inf
U∈X

sup
W∈X

dÃ(Y (μ); μ)(U,W )
‖U‖X‖W‖X

≥ βLB(μ) ∀ μ ∈ D (3.10)

hold. Moreover, the solution in a neighborhood of Y (μ) is unique. Besides the well-posedness analysis, this
framework will be exploited in Section 6 also to derive an a posteriori error bound for the RB approximation.

3.2. Affine and nonaffine parametric dependence

In order to develop an Offline/Online computational procedure, we require that the forms (2.3)–(2.4) fulfill
the assumption of affine parametric dependence. In our case, provided the physical parametrizations depend just
on μp but not on the spatial coordinates x, if the transformation maps T k(·; μg) are affine, the parametrized
tensor (2.5)–(2.6) depend just on μ. In this way the bilinear forms (2.3) can be written, for some Qa, Qb > 0,
as:

a (v,w; μ) =
Qa∑
q=1

Θq
a (μ) aq (v,w), b(q,w; μ) =

Qb∑
q=1

Θq
b (μ)bq(q,w); (3.11)

where q is a condensed index of i, j, k quantities and, for 1 ≤ k ≤ Kdom, 1 ≤ i, j ≤ 2,

Θq(i,j,k)
a (μ) = κk

ij(μ), aq(i,j,k)(v,w) =
∫

Ωk

∂v
∂xi

∂w
∂xj

dΩ, (3.12)

Θ
q(i,j,k)
b (μ) = χk

ij(μ), bq(i,j,k)(q,w) = −
∫

Ωk

q
∂wi

∂xj
dΩ. (3.13)

For the trilinear form and the source term (e.g. in the case gN = 0), we have instead:

c(v,w, z; μ) =
Qc∑
q=1

Θq
c(μ)cq(v,w, z), Fs(w; μ) =

Qs∑
q′=1

Θq′
s (μ)F q′

s (w), (3.14)

for some Qc, Qs > 0, where q and q′ are condensed indexes of (i, j, k) and k quantities, respectively, and

Θq(i,j,k)
c (μ) = χk

ji(μ), cq(i,j,k)(v,w, z) =
∫

Ωk

vi
∂wk

∂xj
zk dΩ,

Θq′ (k)
s (μ) = |Jk

T (·; μ)|, F q′ (k)
s (w) =

∫
Ωk

f ·wdΩ.
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On the other hand, if the parametric maps T k(·; μg) are nonaffine, parametrized tensors are function of both
spatial coordinates x and parameter μ. In this case we rely on the EIM (see e.g. [1,17]) in order to recover the
affinity assumption. If we assume, e.g., to deal with a global map (Kdom = 1), each component of the tensors
κ and χ has to be approximated by an affine expansion:

κij(x,μ) =
Ka

ij∑
k=1

βi,j
k (μ)ξi,j

k (x) + εa
i,j(x; μ), χij(x,μ) =

Kb
ij∑

k=1

γi,j
k (μ)ηi,j

k (x) + εb
i,j(x; μ), (3.15)

for 1 ≤ i, j ≤ 2, where Ka
ij and Kb

ij represent the total number of terms obtained for each tensorial component
through EIM. In particular, we denote by Mc(μ) =

√
2maxq=1,...,Qc ‖Θc

q(μ)‖L∞(D) maxq=1,...,Qc ‖ηq‖L∞(Ω),
where ηq is defined in (3.15) – q is a condensed index of i, j, k – and it is such that ηq = 1 in the affine case.

The same expansion (made now by Ks terms) is set up for the tensor appearing at the right-hand-side of
velocity equation:

| det(JT (x; μ))| =
Ks∑
k=1

δk(μ)ψk(x) + εs(x; μ). (3.16)

All the coefficients βi,j
k ’s, γi,j

k ’s, δk’s, ξi,j
k ’s, ηi,j

k ’s and ψk’s are efficiently computable scalar functions and the
error terms are guaranteed to be under some prescribed tolerance:

‖ε(a,b)
i,j (·; μ)‖∞ ≤ εEIM

tol , ‖εs(·; μ)‖∞ ≤ εEIM
tol ∀μ ∈ D.

In this way, we can recover the affine expansions (3.11)–(3.14) by setting

aq(i,j,k)(v,w) =
∫

Ω

ξi,j
k (x)

∂v
∂xi

∂w
∂xj

, bq(i,j,k)(p,w) = −
∫

Ω

ηi,j
k (x)p

∂wi

∂xj
,

cq(i,j,k)(v,w, z) =
∫

Ωk

viη
i,j
k (x)

∂wk

∂xj
zk, F q(k)

s (w) =
∫

Ωk

ψk(x)f · w,

with Θq
a(μ) = βi,j

k (μ), Θq
b (μ) = Θq

c (μ) = γi,j
k (μ), Θq

s(μ) = δk(μ). Thus, we can express all the operators
appearing in (2.2) as linear combinations of parameter-independent forms through some weights given by real
functions of the parameters.

4. Truth approximation: Stability and algebraic formulation

We briefly recall the main features related to the FE truth approximation, over which the RB approximation is
built, as well the conditions ensuring its stability. We also build the algebraic version of the truth approximation,
since it is required later on to set the corresponding structures for the RB approximation.

4.1. Formulation and stability

Let V N ⊂ V and QN ⊂ Q be two subspaces of V and Q, of dimension NV ,NQ < +∞, respectively,
and let us denote by vN (μ) ∈ V N and pN (μ) ∈ QN the FE approximations for the velocity and the pressure
fields [25]. We suppose that the dimension of the FE spaces is large enough that the differences ‖vN (μ)−v(μ)‖V ,
‖pN (μ)−p(μ)‖Q can be neglected – in other words, it can be effectively considered as a “truth” approximation.
Moreover, (2.9) defines our inner product and norm for members of V N ⊂ V and QN ⊂ Q, respectively.

We can now introduce the Galerkin-FE approximation of the parametrized problem (2.11) (or (2.2)): given
μ ∈ D, we seek for Y N (μ) = (vN (μ), pN (μ)) ∈ XN := V N ×QN such that

A
(
Y N (μ),WN ; μ

)
+ C

(
Y N (μ), Y N (μ) ,WN ; μ

)
= F̃

(
WN ; μ

) ∀WN ∈ XN (4.1)
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or, equivalently,{
ã
(
vN (μ),wN ; μ

)
+ b

(
pN (μ),wN ; μ

)
+ c

(
vN (μ),vN (μ),wN ; μ

)
= F

(
wN ; μ

) ∀wN ∈ V N

b
(
qN ,vN (μ); μ

)
= G

(
qN ; μ

) ∀qN ∈ QN .
(4.2)

All the forms are continuous over the discrete spaces V N and QN . In particular, a discrete version of the Sobolev
embedding result can be stated (see e.g. [30]), where

ρ2
N = sup

v∈V N

‖v‖2
L4(Ω)

(∇v,∇v)L2(Ω)
, ρ2

V,N = sup
v∈V N

‖v‖2
L4(Ω)

(v, v)H1(Ω)
(4.3)

are the discrete versions of the Sobolev constants in (3.6). Conversely, the approximation stability is ensured by
imposing that the coercivity and inf-sup conditions are still valid at the discrete level. In particular, a(·, ·; μ) is
automatically coercive over V N :

∃ αLB
N (μ) > 0 : αN (μ) = inf

v∈V N

a(v,v; μ)
‖v‖2

V

≥ αLB
N (μ) ∀ μ ∈ D. (4.4)

On the other hand, we require that b(·, ·; μ) is inf-sup stable over V N ×QN , so that the following discrete Brezzi
inf-sup condition [3]:

∃ βLB
Br,N (μ) > 0 : βBr,N (μ) = inf

q∈QN
sup

w∈V N

b(q,w; μ)
‖w‖V ‖q‖Q

≥ βLB
Br,N (μ) ∀ μ ∈ D (4.5)

holds. This last property is ensured e.g. by choosing V N×QN as the space of Taylor–Hood P2−P1 elements [11];
however, this choice is not restrictive – the whole construction keeps holding for other spaces combinations as
well. We also introduce the (inner, pressure) supremizer operator Tµ

p : QN → V N , defined as

(Tµ
p q,w)V = b(q,w; μ) ∀ w ∈ V N , (4.6)

so that we can express the inf-sup condition (4.5) as (see e.g. [26, 28])

Tµ
p q = arg sup

w∈V N

b(q,w; μ)
‖w‖V

and (βBr,N (μ))2 = inf
q∈QN

(Tµ
p q, T

µ
p q)V

‖q‖2
Q

· (4.7)

This operator will play a fundamental role in the stability of the RB approximation, as we will see in Section 5.
Furthermore, (4.2) admits a solution in the case of homogeneous Dirichlet conditions if (4.4) and (4.5) hold. As
before, in the case of inhomogeneous Dirichlet conditions, we need to replace a(·, ·; μ) with ã(·, ·; μ). Moreover,
by defining γNc (μ) = ρ2

V,NMc(μ) ≤ ρ2
NMc(μ), uniqueness is ensured by the following small data assumption:

4 γNc (μ)(
αLB
N (μ)

)2 ‖F (·; μ)‖(H−1(Ω))2 < 1. (4.8)

In the same way as for the continuous level, the BRR theory provides a more general framework to state the
well-posedness of the finite dimensional approximation (2.11). We remark that the discrete version of continuity
and inf-sup stability conditions (3.9)–(3.10) reads as follows: for all μ ∈ D,

γN (μ) = sup
U∈XN

sup
W∈XN

dÃ
(
Y N (μ); μ

)
(U,W )

‖U‖X‖W‖X
< +∞ (4.9)

∃ βLB
N (μ) > 0 : βN (μ) = inf

U∈XN
sup

W∈XN

dÃ
(
Y N (μ); μ

)
(U,W )

‖U‖X‖W‖X
≥ βLB

N (μ). (4.10)
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4.2. Algebraic formulation of the FE truth approximation

We can now derive the matrix formulation corresponding to the Galerkin-FE approximation (4.2); this consti-
tutes an essential ingredient in order to build our RB approximation in the following. Let us denote by {φv

i }NV

i=1

and {φp
i }NQ

i=1 the Lagrangian basis of the FE spaces V N and QN , respectively, so that we can express the FE
velocity and pressure as

vN (μ) =
NV∑
i=1

uNi (μ)φv
i , pN (μ) =

NQ∑
i=1

pNi (μ)φp
i . (4.11)

We remark that the solution to (4.1) is vanishing on the whole Dirichlet boundary, so that the corresponding
velocity approximation fulfilling the boundary conditions is given by vN (μ) + vN

D , being vN
D∈ V N a discrete

function interpolating Dirichlet data. Thus, by denoting as vN (μ) ∈ RNV and pN (μ) ∈ RNQ the vectors of the
degrees of freedom appearing in (4.11), problem (4.2) can be rewritten as:

[
AN (μ) + DN (μ) + CN (vN (μ); μ) BT

N (μ)

BN (μ) 0

][
vN (μ)

pN (μ)

]
=

[
fN (μ)

gN (μ)

]
(4.12)

where, for 1 ≤ i, j ≤ NV and 1 ≤ k ≤ NQ,

(AN (μ))ij = a
(
φv

j ,φ
v
i ; μ

)
, (BN (μ))ki = b (φp

k,φ
v
i ; μ) ,

(CN (w; μ)N )ij =
NV∑
m=1

wN
m c
(
φv

m,φ
v
j ,φ

v
i ; μ

)
, (4.13)

(DN (μ))ij = d
(
φv

j ,φ
v
i ; μ

)
, (gN (μ))k = −b (φp

k,v
N
D ; μ

)
,

(fN (μ))i = Fs (φv
i ; μ) − a

(
vN

D ,φ
v
i ; μ

)− c
(
vN

D ,v
N
D ,φ

v
i ; μ

)
. (4.14)

We solve the nonlinear saddle-point problem (4.12) by means of a fixed-point iteration since, relative to a
Newton iteration, it has a huge ball of convergence (see e.g. [9], Chapt. 7.2 and references therein). Moreover,
if the small data condition (4.8) is satisfied, the fixed-point method is globally convergent. Thus, starting from
an initial guess (v(0)

N (μ),p(0)
N (μ)), for k ≥ 1 we solve

[
AN (μ) + DN (μ) + CN (v(k−1)

N (μ); μ) BT
N (μ)

BN (μ) 0

][
v(k)
N (μ)

p(k)
N (μ)

]
=

[
fN (μ)

gN (μ)

]
, (4.15)

to obtain (v(k)
N (μ),p(k)

N (μ)), until ‖v(k)
N (μ) − v(k−1)

N (μ)‖V ≤ εNS
tol , given a small tolerance εNS

tol > 0. As initial
guess, we take the Stokes solution of (4.12). Each Oseen system (4.15) is solved by means of a sparse LU
factorization; different approaches for solving (4.12) are based on the use of homotopy/continuation with respect
to the parameters, whenever interested in one solution branch, as shown in [7].

5. Reduced Basis approximation of parametrized Navier–Stokes equations

We now present the main components of the RB approximation for parametrized Navier–Stokes equations –
namely, a Galerkin projection onto a low-dimensional space, built through a greedy procedure [24,27]; an efficient
Offline/Online splitting; and a sharp (yet inexpensive) a posteriori error estimation. The characterization of these
ingredients in the case of Navier–Stokes equations is the goal of this section and the following one. In particular,
after showing the construction of stable RB spaces, we deduce the algebraic formulation of the RB problem, as
well as an efficient way to manage the storing of algebraic structures related to nonlinear terms.
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Given a positive integer Nmax, let us introduce a sequence of (hierarchical3) approximation spaces: for N =
1, . . . , Nmax, VN ⊂ V N and QN ⊂ QN areN -dimensional subspaces of V N andQN , respectively, where typically
N � N .

The RB approximation (vN (μ), pN (μ)) of velocity and pressure fields, respectively, can be obtained by
means of a Galerkin projection onto the reduced spaces VN × QN as follows: given μ ∈ D, find YN (μ) =
(vN (μ), pN (μ)) ∈ XN := VN ×QN such that

A(YN (μ),WN ; μ) + C(YN (μ), YN (μ),WN ; μ) = F̃ (WN ; μ) ∀WN ∈ XN (5.1)

or, equivalently,{
ã(vN (μ),wN ; μ) + b(pN (μ),wN ; μ) + c(vN (μ),vN (μ),wN ; μ) = F (wN ; μ) ∀wN ∈ VN

b(qN ,vN (μ); μ) = G(qN ; μ) ∀qN ∈ QN .
(5.2)

In the following subsection we extend to the NS case the construction of stable RB spaces – i.e., spaces which
fulfill the (Brezzi) inf-sup condition stability, by enriching the velocity space with the solutions of the supremizer
problem (4.6) – and briefly discuss the well-posedness of the RB approximation (5.1) (or (5.2)).

5.1. Construction of RB spaces and inf-sup stability

The reduced space XN = VN ×QN is a global approximation space made up of well-chosen solutions (or snap-
shots) (vN (μ1), pN (μ1)), . . . , (vN (μN ), pN (μN )). To build this space, we rely on a standard greedy algorithm
(see e.g. [24,27]), driven by an a posteriori error bound ΔN (μ), such that ‖Y N (μ)−YN (μ)‖X ≤ ΔN (μ) for all
μ ∈ D. Thus, starting from a given parameter value μ1 and the corresponding snapshot (vN (μ1), pN (μ1)), we
iteratively build the set SN = {μ1, . . . ,μN} by selecting, at the (n+ 1)-th iteration of the algorithm,

μn+1 = arg max
µ∈Ξtrain

Δn(μ),

and adding to the reduced space the corresponding snapshot (vN (μn), pN (μn)). In other words, at each
iteration we select, over all possible (vN (μ), pN (μ)), μ ∈ Ξtrain, the snapshot that the a posteriori error bound
Δn(μ) predicts to be worst approximated by the RB approximation associated to the n− 1 snapshots already
retained. Here Ξtrain is a train sample which serves to select the RB space. The procedure stops at that step
N = Nmax for which ΔN (μ) ≤ εRB

tol ∀μ ∈ Ξtrain, being εRB
tol a prescribed positive tolerance.

Nevertheless, a further step is required in order to guarantee the inf-sup stability of the RB approximation.
To this aim, we define the reduced basis pressure space QN ⊂ QN as

QN = span
{
ζ̃p
n := pN (μn), n = 1, . . . , N

}
, N = 1, . . .Nmax. (5.3)

The reduced basis velocity space VN ⊂ V N can be built as

VN = span
{

ζ̃
v

n := vN (μn) , Tµ
p ζ̃

p
n, n = 1, . . . , N

}
, N = 1, . . .Nmax, (5.4)

thus enriching the space of velocity snapshots with the inner (pressure) supremizers.
Thanks to these definitions, problem (5.2) fulfills an equivalent Brezzi RB inf-sup condition. In fact, by

defining the RB stability factor as

βBr,N(μ) = inf
q∈QN

sup
w∈VN

b(q,w; μ)
‖w‖V ‖q‖Q

(5.5)

3In other words, V1 ⊂ V2 ⊂ . . . ⊂ VNmax and Q1 ⊂ Q2 ⊂ . . . ⊂ QNmax . This condition is important in order to ensure an
efficient storing of RB structures, and thus a rapid Online evaluation.
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the following inequalities hold (see e.g. [28] for the proof):

βBr,N (μ) ≥ βBr,N (μ) > 0 ∀μ ∈ D, (5.6)

where βBr,N (μ) is defined in (4.5). We point out that, since the coercivity of the bilinear form a(· ·; μ) –
respectively, ã(·, ·; μ) – is still fulfilled on the reduced velocity space VN ⊂ V N , the RB solution is stable in
the sense of the Brezzi inf-sup condition thanks to (5.6). Uniqueness of the RB solution will be discussed in
Section 6, where we also provide an error estimate for both RB velocity and pressure.

We also remark that, by enriching the velocity space4 with the supremizers Tµ
p ζ̃

p
n, for n = 1, . . .N , the RB

velocity space (5.4) has dimension 2N , the double of the dimension N of the RB pressure space. Finally, we
introduce two orthonormal basis of the RB spaces QN and VN , denoted by {ζp

n}N
n=1 and {ζv

n}2N
n=1, respectively.

We exploit the Gram-Schmidt orthonormalization procedure to orthonormalize the snapshots; see e.g. [17, 28]
for further details related to its formulation for this kind of spaces. Similarly, we can express the supremizer
solutions in (5.4) in a more efficient way, as in the RB approximation of a Stokes problem, for which a detailed
analysis is reported in [26].

We close this section by underlining an important feature of the RB framework presented in this paper. As we
will see in Section 6, the a posteriori error bound requires the calculation of the stability factor βN (μ) defined
in (4.10). Compared to RB methods for NS equations proposed in the literature (see e.g. [7, 8]), a remarkable
novelty of our approach is the possibility to decouple the generation of the reduced spaces from the calculation
of stability factors. Although the former still exploits the a posteriori error bound (like in [7,8]), the latter can
be performed before computing the FE snapshots, for the sake of computational savings.

5.2. Algebraic formulation of the RB approximation

We now show how the RB approximation (5.2) can be easily formulated in algebraic terms. In fact, by
expressing the RB solution as a combination of the basis functions:

vN (μ) =
2N∑
j=1

vNj(μ)ζv
j , pN (μ) =

N∑
l=1

pNl(μ)ζp
l ,

we have that the weights vN (μ) = (vN 1(μ), . . . , vN 2N (μ))T ∈ R2N and pN (μ) = (pN 1(μ), . . . , pN N (μ))T ∈ RN

are obtained by solving the following RB system:[
AN (μ) + DN (μ) + CN (vN (μ); μ) BT

N (μ)

BN (μ) 0

][
vN (μ)

pN (μ)

]
=

[
fN (μ)

gN (μ)

]
. (5.7)

Matrices and vectors appearing in (5.7) are defined as follows: for 1 ≤ m,n ≤ 2N and 1 ≤ l ≤ N ,

(AN (μ))mn = a (ζv
n, ζ

v
m; μ) , (BN (μ))lm = b (ζp

l , ζ
v
m; μ) ,

(CN (wN ; μ))mn =
2N∑
s=1

wN sc (ζv
s , ζ

v
n, ζ

v
m; μ) ,

(DN (μ))mn = d (ζv
n, ζ

v
m; μ) , (gN (μ))l = −b (ζp

l ,v
N
D ; μ

)
,

(fN (μ))m = Fs (ζv
m; μ) − a

(
vN

D , ζ
v
m; μ

)− c
(
vN

D ,v
N
D , ζ

v
m; μ

)
.

As before, problem (5.7) is solved by means of a fixed-point iteration, like in the FE case. However, with respect
to (4.12), we now deal with a matrix of considerably smaller dimension (3N � NV +NQ), but no longer sparse.

4We should denote by V µ
N the velocity space, because of the µ-dependence of the supremizer operator. However, for the sake of

simplicity, the simplest notation V N has been preferred.



1210 A. MANZONI

Thus, starting from the RB Stokes solution (v(0)
N (μ),p(0)

N (μ)), for k ≥ 1, we compute (v(k)
N (μ),p(k)

N (μ)) by
solving [

AN (μ) + DN (μ) + CN (v(k−1)
N (μ); μ) BT

N (μ)

BN (μ) 0

][
v(k)

N (μ)

p(k)
N (μ)

]
=

[
fN (μ)

gN (μ)

]
, (5.8)

until ‖v(k)
N (μ) − v(k−1)

N (μ)‖V ≤ εNS
tol . We point out that the linearized term can be computed as

2N∑
n=1

(
CN

(
v(k−1)

N (μ); μ
))

mn
v
(k)
N n =

2N∑
s=1

2N∑
n=1

v
(k−1)
N s c (ζv

s , ζ
v
n, ζ

v
m; μ) v(k)

N n, 1 ≤ m ≤ 2N

and thus only the matrices CN (ζv

s
; μ), for 1 ≤ s ≤ 2N , 1 ≤ N ≤ Nmax, defined by

(
CN

(
ζv

s
; μ
))

mn
= c (ζv

s , ζ
v
n, ζ

v
m; μ) ,

have to be stored. In view of an Offline/Online decomposition, it shall prove convenient to express the RB
matrices and vectors appearing in (5.8) in terms of the corresponding FE matrices and vectors of (4.15). The
former are linked to the latter via the basis matrices ṼN ∈ RNV ×2N and Q̃N ∈ RNQ×N given by(

Q̃N

)
il

= (ζp
l , φ

p
i )Q ,

(
ṼN

)
jm

=
(
ζv

m,φ
v
j

)
V

for 1 ≤ i ≤ NQ, 1 ≤ j ≤ NV , 1 ≤ l ≤ N , 1 ≤ m ≤ 2N , where (for the sake of simplicity) we denote by (·, ·)Q

and (·, ·)V also the discrete version of the corresponding inner products defined in (2.9). We remark that the
reduced bases {ζp

l }N
l=1, {ζv

m}2N
m=1, unlike the FE Lagrangian bases {φp

i }NQ

i=1 and {φv
j }NV

j=1, are orthonormal with
respect to (·, ·)Q and (·, ·)V , so that

(ζp
l , ζ

p
m)Q =

NQ∑
r=1

NQ∑
s=1

(
Q̃N

)
ms

(MQ)sr

(
Q̃N

)
rl

= δlm, (ζv
l , ζ

v
m)V =

NV∑
r=1

NV∑
s=1

(
ṼN

)
ms

(MV )sr

(
ṼN

)
rl

= δlm,

where MQ ∈ RNQ×NQ and MV ∈ RNV ×NV are the mass matrices of QN and V N , whose elements are defined
by (MQ)sr = (φp

r , φ
p
s)Q and (MV )sr = (φv

r ,φ
v
s )V , respectively. Thus, by defining QN = M

1/2
Q Q̃N and VN =

M
1/2
V ṼN , RB structures can be defined in terms of the corresponding FE structures as:

AN (μ) = VT
N AN (μ) VN , BN (μ) = QT

N BN (μ) VN , CN (ζv

s
; μ) = VT

NCN (ζv

s
; μ)VN , (5.9)

for 1 ≤ m,n ≤ 2N , 1 ≤ l ≤ N , 1 ≤ s ≤ 2N . In the same way:

DN (μ) = VT
N DN (μ) VN , fN (μ) = VT

N fN (μ), gN (μ) = QT
N gN (μ). (5.10)

A suitable Offline/Online decomposition strategy thus enables to decouple the generation and projection
stages of the RB approximation; although quite standard in the RB context, it features some extra difficulties
if nonlinear terms need to be handled in an efficient way; see Appendix A.1 for further details.

6. A posteriori error estimates based on BRR theory

We now derive an a posteriori error estimate for (affinely and nonaffinely5) parametrized Navier–Stokes
equations in the RB context, accounting for both physical and geometrical parametrizations. Based on the BRR

5A first extension to nonaffinely parametrized nonlinear problems has been presented in [6] for the case of convection-diffusion
problems.



RB APPROXIMATION OF PARAMETRIZED NAVIER–STOKES FLOWS 1211

theory [4, 5], this error estimate combines the dual norm of residuals and a lower bound of the (parametric)
stability factor, given by the Babuška inf-sup constant βN (μ) defined in (4.10). In particular, we extend the
framework already used in [7, 31] in order to deal with an Offline-Online evaluation of both these quantities.

Concerning the dual norms of residuals, their efficient evaluation is made possible thanks to the affine de-
composition of Section 3.2, following a rather standard procedure in the RB context (see e.g. [24,27] and [17]).
However, this strategy may entail very expensive Offline precalculations and storing when dealing with nonlinear
terms, in the case of large affine expansions, such as the ones obtained through EIM. Regarding the stability
factors, we take advantage of a suitable extension of the natural norm SCM [18], briefly sketched in Section 7.

Let us define the residuals rvN (· ; μ) and rp
N (· ; μ), for any w ∈ V N , q ∈ QN , by

rvN (w; μ) := F (w; μ) − ã(vN (μ),w; μ) − b(pN (μ),w; μ) − c(vN (μ),vN (μ),w; μ),

rp
N (q; μ) := G(q; μ) − b(q,vN (μ); μ).

Equivalently, rN (W ; μ) := rvN (w; μ) + rp
N (q; μ) is such that

rN (W ; μ) = F̃ (W ; μ) − Ã(YN (μ),W ; μ) ∀ W ∈ XN . (6.1)

Moreover, let us denote by ‖rN (·; μ)‖X′ = supW∈Y N rN (W ; μ)/‖W‖X the dual norm of the residual and by
βLB
N (μ) a computable lower bound for the stability factor βN (μ). We next introduce a non-dimensional measure

of the residual, defined as:

τN (μ) =
4γ(ρN ; μ)‖rN (·; μ)‖X′

(βLB
N (μ))2

, (6.2)

where γ(ρN ; μ) ≡ γNc (μ) is the (discrete) continuity constant of c(·, ·, ·; μ), depending on the Sobolev embedding
constant ρN defined in (4.3). We point out that (6.2) is similar to the left-hand side of (4.8) – as we will see, the
condition τN (μ) < 1 is strictly related to the uniqueness of the RB approximation. In particular, we can define
N∗(μ) such that τN (μ) < 1 for N ≥ N∗(μ) and require that N∗(μ) ≤ Nmax, for any μ ∈ D. Furthermore,
given Y ∈ X and r ∈ R+, we denote by BX(Y ; r) = {Y ∈ X : ‖Y − Y ‖X ≤ r}.

We are now ready to state the following

Theorem 6.1. Let us denote by Y N (μ) and by YN (μ) the truth approximation (4.2) and the reduced basis
approximation (5.2), respectively. If N ≥ N∗(μ), there exists a unique solution Y N (μ) to (4.2) in the open ball

BX

(
YN (μ);

βLB
N (μ)

2γ(ρN ; μ)

)
=
{
Y ∈ X : ‖Y − YN (μ)‖X ≤ βLB

N (μ)
2γ(ρN ; μ)

}
.

Furthermore, the following a posteriori error estimation holds:

‖Y N (μ) − YN (μ)‖X ≤ βLB
N (μ)

2γ(ρN ; μ)

(
1 −

√
1 − τN (μ)

)
=: ΔN (μ) ∀μ ∈ D. (6.3)

Proof. The result can be obtained as a slight variation of Proposition 2.1 of [31], by considering the operator
g(W,V ; μ) = Ã(W,V ; μ)− F̃ (V ; μ), and remarking that dg(Z;W,V ; μ) = dÃ(Z;W,V ; μ). It essentially follows
the proof of the inverse function theorem (see e.g. Thm. 2.1 of [5]); further details can be found in [17]. �

In this way, we can generalize the available a posteriori error bounds for NS equations as follows: (i) by
considering the global NS operator Ã(·, ·; μ) (including also the pressure terms) and the lower bound βLB

N (μ),
we provide a joint error estimate for both RB velocity and pressure; (ii) by considering the continuity factor
γ(ρN ; μ) of the trilinear form instead of the Sobolev embedding constant ρN such as, e.g., in [31], we can deal
with problems involving parametrized trilinear terms – obtained, for instance, when dealing with parametrized
geometries. Moreover, in the case of nonaffine problems the correction factor maxq=1,...,Qc ‖ηq‖L∞(Ω) affects the
definition of γ(ρN ; μ), whereas it reduces to 1 in the affine case – see (3.5).
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Remark 6.2. Note that (6.3) can be seen as the nonlinear extension of the – much simpler – Stokes (linear) error
bound ΔN,s(μ) = ‖rN (μ)‖X′/βLB

A,N (μ) (for both velocity and pressure), being βLB
A,N (μ) a lower bound of the

stability factor of the Stokes operator (see e.g [26], Sect. 6), to which (6.3) reduces in the limit ‖rN (·; μ)‖X′ → 0.

Very often, the efficient evaluation of stability factors of parametrized operators is the most challenging stage
of the whole procedure. To this aim, we have developed in [18] a SCM algorithm which can be performed before
(and independently from) the generation of a reduced approximation. This strategy relies on a simple trick
motivated by the continuity of the trilinear form c(·, ·, ·; μ). In fact, since the error bound is related to the RB
solution YN (μ), the derivative of the global operator and the stability factor have to be evaluated with respect
to YN (μ). Thus, we should replace Y N (μ) with YN (μ) and consider

βN
N (μ) = inf

U∈XN
sup

W∈XN

dÃ(YN (μ); μ)(U,W )
‖U‖X‖W‖X

(6.4)

instead of (4.10). However, evaluating (6.4) would be infeasible during the Offline stage, if we aim at evaluating
the lower bound of the stability factor before running the greedy algorithm for the construction of the RB space.
Thus, we compute a lower bound to βN (μ) defined by (4.10), instead of βN

N (μ), because we have that

∣∣βN (μ) − βN
N (μ)

∣∣ ≤ 2γNc (μ)
∥∥Y N (μ) − YN (μ)

∥∥
X

∀μ ∈ D,
by exploiting the trilinearity and the continuity of c(·, ··; μ). Provided the error ‖Y N (μ)−YN(μ)‖X is sufficiently
small, βN (μ) yields a very accurate approximation of βN

N (μ), giving the chance to estimate a lower bound to
the (discrete) stability factor βN (μ) – indeed very close to βN

N (μ) – before assembling the reduced space.
Results reported in [18] confirm the accuracy of this approximation: as a matter of fact, we get an estimate
2γNc (μ)‖Y N (μ)−YN (μ)‖X of order 10−4 and an effective error |βN (μ)−βN

N (μ)| of order 10−5, whenN = Nmax,
together with a very fast decay with respect to N . In any case, a good error control can be ensured by choosing
a suitable stopping tolerance in the greedy procedure.

7. Approximation of lower bounds of stability factors

In this section we sketch the main ingredients of a recent extension of the SCM to the case of nonlinear
parametrized operators, presented in [18]. Based on the successive solution of suitable linear optimization prob-
lems, SCM has been developed for the special requirements of the RB method, such as an efficient Offline-Online
strategy. A general version using the so-called natural norm has been introduced in [29] and further analyzed
in [13]; furthermore, it has been applied for the first time to saddle point Stokes problems in [26]. Very recently,
we have provided some theoretical justifications allowing to extend this method to nonlinear problems in an
efficient way, as discussed in the previous section. We have taken advantage of this extension in the present RB
framework for NS equations, in order to estimate a lower bound of the stability factor βN (μ).

To reach this goal, we can rewrite βN (μ) as

βN (μ) := inf
U∈XN

sup
W∈XN

dÃ
(
Y N ; μ

)
(U,W )

‖U‖X‖W‖X
= inf

U∈XN

dÃ
(
Y N ; μ

)
(U, TµU ; μ)

‖U‖X‖TµU‖X
(7.1)

by introducing the (global) supremizer operator Tµ : XN → XN , defined as

(TµU,W )X = dÃ
(
Y N ; μ

)
(U,W ) ∀ W ∈ XN , (7.2)

such that, similarly to (4.7)

TµU = arg sup
W∈XN

dÃ(Y N ; μ)(U,W )
‖W‖X

and (βN (μ))2 = inf
U∈XN

‖TµU‖2
X

‖U‖2
X

· (7.3)
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Following [13, 29], we adopt a natural norm SCM procedure based on the patching of some local inf-sup
stability factors computed for a set of J parameter values S = {μ1∗, . . . ,μJ∗}, selected e.g. through a greedy
procedure; detailed proofs and computational procedures can be found in [18].

The key observation is provided by the following relation:

βN (μ) = inf
U∈XN

sup
W∈XN

dÃ
(
Y N (μ); μ

)
(U,W )

‖T μ∗W‖X‖U‖X

‖T μ∗
W‖X

‖W‖X

≥ inf
U∈XN

sup
W∈XN

dA
(
Y N (μ); μ

)
(U,W )

‖T μ∗W‖X‖U‖X
inf

W∈XN

‖T μ∗
W‖X

‖W‖X
= βµ∗(μ)βN (μ∗) ≥ β̃µ∗(μ)βN (μ∗) . (7.4)

Here βµ∗(μ) is a surrogate of βN (μ) upon μ∗ ∈ S, whereas β̃µ∗(μ) is a lower bound such that

β̃µ∗(μ) := inf
U∈XN

dÃ(Y N (μ); μ)(U, T μ∗
U)

‖T μ∗U‖2
X

≤ inf
U∈XN

‖TµU‖X

‖T μ∗U‖X
= inf

U∈XN
sup

W∈Y N

dÃ(Y N (μ); μ)(U,W )
‖T μ∗U‖X‖W‖X

=: βµ∗(μ), (7.5)

thanks to Cauchy–Schwarz inequality and the fact that dÃ(Y N ; μ)(W,T μ∗
W ) = (TµW,T μ∗

W ). We call
‖T μ∗ · ‖X the natural norm; it is equivalent to ‖ · ‖X in a neighborhood Pµ∗ � μ∗ since we assume that
βN (μ) > 0 ∀μ ∈ D.

Concerning the evaluation of β̃µ∗(μ), the key point is the possibility to define this quantity as the solution
of a linear program of dimension Qa +Qb +Qc. Thus, an approximated lower bound of β̃µ∗(μ) results from the
solution of a sequence of suitable relaxed linear programs, obtained by adding iteratively a set of constraints.
See e.g. [13,18] for a detailed explanation of such a procedure. We only remark that the (Offline) solution of the
linear programs entails the evaluation of the NS solution Y N (μ∗) for μ = μ∗ and for any μ = μ̂∗ corresponding
to a new added constraint. Moreover, this strategy is suitable for an efficient Offline/Online evaluation of the
lower bound, for any new μ ∈ D, which clearly does not require to obtain Y N (μ).

Remark 7.1. Using the natural norm ‖Tµ · ‖X to equip the space X = V × Q instead of (2.9), would lead
to more effective bounds, as shown e.g. in [7]. However, since this norm is μ-dependent, it is computationally
expensive in the case of p ≥ 2 parameters and/or large affine expansions of the parametrized operators; for
this reason we have decided to use the natural norm just during the SCM algorithm. In this way, the SCM
stage is decoupled from the greedy algorithm for the assembling of the RB space; as a matter of fact, also bases
orthonormalization and Sobolev embedding constants evaluation are less involved. Furthermore, by equipping
Q with a weighted L2 norm, and using a natural norm in the SCM algorithm, we obtain larger lower bounds
βLB
N (μ), thus improving the effectivity of the error estimate (6.3).

We refer to [18] for a detailed explanation of the SCM algorithm in the NS case; we only point out that, in this
latter case, further (expensive) calculations are required with respect to the Stokes case, due to the (linearization
of) nonlinear operators and the solution of a high-fidelity NS problem for each selected μj∗, as well as for each
added constraint [13]. This features a large additional cost, since the SCM algorithm may take several iterations
to converge. For this reason, we have taken into account some heuristic (but cheaper) alternatives to deal with
the case of p > 2 parameters. For instance, we can consider the approximation of a global lower bound by seeking
for the minimum of βN (μ) all over the parameter space D through a numerical optimization procedure. Although
it provides less effective lower bounds, this alternative strategy is more feasible, provided the convergence is
rapid – note that each evaluation entails the solution of both a high-fidelity NS problem and an eigenproblem
for the linearized NS operator – and βN (μ) does not show strong parametric variations. This latter requirement
is fulfilled, e.g., when dealing with geometrical parametrizations featuring small deformations. Better options
could involve, for instance, an interpolation of the function μ → βN (μ) built e.g. with radial basis functions,
which are well suited for interpolating scattered data and thus require potentially few evaluations of βN (μ).
We remind the interested reader to [18] for further details.
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8. Approximation of Sobolev embedding constants

We present here a fixed-point algorithm for the computation of the (discrete) Sobolev constant (4.3). This
algorithm has been firstly addressed in [7]; here we provide a complete proof of the theoretical results it is built
over. To set this procedure, we need to reformulate the evaluation of the Sobolev constant (4.3) as a fixed point
iteration for a suitable operator involving the solution of an eigenproblem.

In this section we refer to discrete functions and spaces by omitting the dependence on N , so that here (v, v)V

denotes the inner product (∇v,∇v)L2(Ω) ∀v ∈ V N (we consider the approximation ρN of the Sobolev constant
ρ defined in (3.6)). First of all, let us denote with u∗ the element of V N (not necessarily unique) satisfying

u∗ = arg max
v∈V N

‖v‖2
4

(v, v)V
, (u∗, u∗)V = 1. (8.1)

Then, let us define the operator σ : V N → V N as

σ(w) = w2/‖w‖2
4; (8.2)

note that ‖σ(w)‖2 = 1, for all w ∈ V N . Thus, given a nonnegative function z ∈ L2(Ω), let us introduce the
following eigenproblems: for each 1 ≤ i ≤ N , ui(z) ∈ V N and λi(z) ∈ R+ are solution of∫

Ω

zui(z)v = λi(z)(ui(z), v)V N ∀v ∈ V N , with (ui(z), ui(z))V = 1. (8.3)

Here we consider the eigenvalues {λi(z)}Ni=1 in increasing order, with 0 ≤ λ1(z) ≤ . . . ≤ λN (z), and denote with
umax(z) = uN (z). We remark that

λmax(z) = max
v∈V N

(
1

(v, v)V

∫
Ω

zv2

)
(8.4)

by definition of Rayleigh quotient. A fixed-point iteration for the approximation of ρ2
N is motivated by the

following

Lemma 8.1. The discrete Sobolev embedding constant ρN and the element u∗ defined by (4.3) and (8.1),
respectively, satisfy

λmax(σ(u∗)) = ρ2
N , umax(σ(u∗)) = u∗.

See Appendix A.2 for the proof. Thus, in order to develop a fixed-point procedure based on the above result,
we point out that, by denoting ∂u := umax(z2) − umax(z1)

λmax(z2) − λmax(z1) =
∫

Ω

z2u
2
max(z2) −

∫
Ω

z1u
2
max(z1)

=
∫

Ω

(z2 − z1)u2
max(z1)+

∫
Ω

z2umax(z2)δu+
∫

Ω

z1umax(z1)δu +
∫

Ω

(z2 − z1)umax(z1)δu. (8.5)

We can show (see Appendix A.3 for the proof) the following

Lemma 8.2. Given two non-negative functions z1, z2 ∈ L2(Ω), the corresponding maximum eigenvalues
λmax(z1), λmax(z2) defined by (8.4) are such that

λmax(z2) − λmax(z1) =
∫

Ω

(z2 − z1)u2
max(z1) + O(‖z2 − z1‖2

2).
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We are now ready to set a fixed point algorithm for the evaluation of the Sobolev embedding constant.
Starting from z(0) = 1, for k = 1, 2, . . ., we evaluate

φ(k) = λmax

(
z(k−1)

)
; z(k) = σ

(
umax

(
z(k−1)

))
,

until |φ(k) − φ(k−1)| < εSob
tol , given a prescribed tolerance εSob

tol > 0. In order to prove that φ(k) → ρ2
N as k → ∞,

we observe that, owing to Lemma 8.2, the following relationship holds:

φ(k+1) − φ(k) = λmax

(
z(k)

)
− λmax

(
z(k−1)

)
=
∫

Ω

(
σ(umax

(
z(k−1)

))
− σ

(
umax

(
z(k−2))

))
u2

max

(
z(k−1)

)
+ O

(∥∥∥z(k−1) − z(k−2)
∥∥∥2

2

)
. (8.6)

At this point, it just remains to show that the first term in the last expression is non-negative, so that the
fixed-point iteration at least heads in the right direction – we remark that a fixed point of the algorithm is not
the supremizer of (8.4), but it is at least a local supremizer. Thanks to definition (8.2), the factor u2

max(z
(k−1))

appearing in (8.6) can be rewritten as u2
max(z(k−1)) = σ(umax(z(k−1)))‖umax(z(k−1))‖2

4, so that

∫
Ω

(
σ
(
umax

(
z(k−1)

))
− σ

(
umax

(
z(k−2)

)))
u2

max

(
z(k−1)

)

=
∥∥∥umax

(
z(k−1)

)∥∥∥2

4

(
σ
(
umax

(
z(k−1)

))
, σ
(
umax

(
z(k−1)

))
− σ

(
umax

(
z(k−2)

)))
2

(8.7)

is a positive quantity (see Appendix A.3 for the proof).
In particular, we observed a very fast convergence of the fixed point algorithm above. In fact, it requires

no more than 10 iterations to compute the Sobolev embedding constants for the test cases presented in the
following section, by choosing a tolerance εSob

tol = 10−5. In any case, evaluating the Sobolev constant is an Offline
operation, since this quantity does not depend on parameters (recall that in case of geometrical parameters,
computations are performed on a fixed, reference domain).

9. Numerical results

In this section we present some numerical results for moderate Reynolds viscous flows in different geometries.
Proceeding by increasing complexity, we consider a flow over a backward facing step parametrized by the
Reynolds number (Sect. 9.1); in a double elbow duct parametrized by the Reynolds number and the aspect
ratio (Sect. 9.2); and around an airfoil profile, whose shape is parametrized through a set of control points
(Sect. 9.3). All the details concerning the construction of RB spaces and the computational performances are
reported in Section 9.4.

9.1. Case 1. Flow over a backward facing step

We consider a parametrized flow over a backward facing step geometry, reported in Figure 1. We denote
by Ωk, k = 1, 2 the portions of the channel with different sectional area, and consider p = 1 parameter, the
Reynolds number μ1 = Re ∈ D = [10, 250]. Here the domain is parameter-independent, thus Ω̃k ≡ Ωk. A
parabolic flow gD is imposed at the inlet ΓDg = Γ1, such that

∫
Γ1

gD = 1, while a free-stress condition (gN = 0)
is imposed at the outflow ΓN = Γ5; the forcing term is f = (0, 0). Here we have that Re = 1/ν, since both the
characteristic length, i.e. the channel width at the inflow, and the characteristic velocity |v̄| =

∫
Γ1

gD, are equal
to 1.

Concerning the Offline stage, we rely on a P2 − P1 FE approximation, and first we run the SCM algorithm.
In Figure 2 (left) we report the values of the stability factor βN (μ) together with the lower bounds βLB

N (μ).
Note the approximation is made by J = 7 local patches, each of them centered around μ1∗, . . . ,μJ∗.
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Figure 1. Case 1. Parametrized geometry and domain boundaries.
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Figure 2. Case 1. Left: stability factor βN (μ) and lower bound βLB
N (μ) as functions of μ;

black squares indicate the computed values βN (μ∗) by SCM. Right: convergence of the greedy
algorithm; here Ξtrain is a uniform random sample of size ntrain = 500, εRB

tol = 5 × 10−3.

Then, we run the greedy algorithm for the construction of the RB spaces. Through this procedure, we select
Nmax = 12 basis functions with a prescribed tolerance εRB

tol = 5×10−3. The convergence of the greedy algorithm
is reported in Figure 2 (right).

Regarding the Online stage, evaluation of the errors between the FE and the RB approximations (over a
train sample Ξtest of size ntest = 50, for N = 1, . . . , Nmax) and the corresponding error bounds are reported in
Figure 3. In this case we have N∗(μ) = 6 (recall that N∗(μ) is such that τN (μ) < 1 for N ≥ N∗(μ)), whereas
we can keep τN (μ) as error bound for N < N∗(μ). We also plot the linear error bound ΔN,s(μ), which results
proportional to τN (μ), and indeed very close to ΔN (μ) for N ≥ N∗(μ). We can remark that the effectivity
of the error bound, i.e. the ratio between the error estimate ΔN (μ) and the computed error, is in any case of
about 102. We report in Figure 3 (right) the errors and the error bounds for N = Nmax, as functions of μ.

As we can see in Figure 3 (left), the (norm of) RB approximation errors decreases quite rapidly when N
increases, uniformly over the parameter space. In fact, the maximum error (jointly for velocity and pressure) is
of order 10−2 when N = 6, of order 10−4 when N = 10, and drops to 10−5 when N = Nmax = 12. Moreover,
the location of the selected snapshots – i.e., those parameter values belonging to SN = {μ1, . . . ,μN} – is rather
evident, thus confirming the consistency of the RB approximation. As a matter of fact, the Online evaluation
obtained by choosing μ ∈ SN yields approximation errors which are close to working precision.
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Figure 3. Case 1. Left: online evaluations of error bounds ΔN (μ) (maximum and average over
ntest = 50 sampled μ values), Stokes (linear) error bounds ΔN,s(μ) (average), indicators τN (μ)
(maximum) and errors (average and maximum) between FE and RB approximations. Right:
online evaluations of errors and error bounds ΔN (μ) as functions of μ, for N = Nmax.

Figure 4. Case 1. RB solutions for velocity and pressure with streamlines for μ = 50 (top)
and μ = 250 (bottom).

In Figure 4 we plot some representative solutions. The presence of a flow separation caused by the sudden
change in section geometry, as well as of an increasingly larger recirculation with increasing Reynolds numbers,
are recovered also by the RB approximation, as expected (see e.g. [2]).

Finally, we report in Figure 5 the errors between FE and RB approximations, for both the pressure and the
velocity field, by considering μ = 50, 150, 250. We can remark that pointwise errors over the spatial domain
are indeed very small, provided a good sampling of the parameter space has been performed during the Offline
stage. In particular, errors for both velocity and pressure fields in the cases μ = 50, 150 are of order 10−5, and
even smaller for μ = 250, according to the behavior of the error norms reported in Figure 3 (right).

9.2. Case 2. Flow in a parametrized double elbow geometry

We now consider a parametrized flow in the geometrical configuration of Figure 6, representing a double elbow
pipeline. We identify the (now parametrized) regions Ωk, 1 ≤ k ≤ 3, which represent the three portions of the
channel with constant sizes (k = 1, 3) and variable sizes (k = 2). We consider p = 2 parameters, μ1 = 1/ν and
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Figure 5. Case 1. Errors between FE and RB approximations for velocity (left) and pressure
(right) for μ = 50 (top), μ = 150 (middle) and μ = 250 (bottom). The RB approximation is
computed with N = Nmax = 12 basis functions.

Figure 6. Parametrized geometry and domain boundaries for the double elbow pipeline case.

the aspect ratio μ2 of the vertical portion of the pipeline; the parameter domain is given by D = [20, 150]× [2, 5].
A parabolic flow gD is imposed at the inlet ΓDg = Γ1, such that maxΓ1 gD = 1, while a free-stress condition
(gN = 0) is imposed at the outflow ΓN = Γ6 and f = (0, 0). Here we have Re = μ1, provided we assume as
characteristic length L the channel width, and as characteristic velocity |v̄| = maxΓ1 gD, both equal to 1.

Concerning the Offline stage, we rely on a P2−P1 FE approximation, and first we run the SCM algorithm. In
Figure 7 we report the values of the stability factor βN (μ) together with the lower bounds βLB

N (μ) obtained by
the SCM algorithm. We remark that, with respect to test case 1, here the approximation of the lower bound is
made by many more local patches, because of the interplay between the geometrical and the physical element,
and that the J = 176 selected parameter values μ1∗, . . . ,μJ∗ are gathered close to larger values of μ1 = Re. We
experienced the same behavior of the SCM algorithm in other test cases related to NS flows parametrized with
respect to both physical and geometrical quantities. The rather poor rate of convergence of such a procedure
occurring in this case has been one of the main reasons which have motivated the implementation of heuristic
strategies, in order to evaluate stability factors in a reasonable time.

Then, we run the greedy algorithm for the construction of the RB spaces; its convergence is reported in
Figure 8 (left). In this case, Nmax = 30 basis functions are selected, with a prescribed tolerance εRB

tol = 5×10−2.
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Figure 7. Case 2. Left: lower bound of the stability factor βLB
N (μ) as function of (μ1, μ2) and

computed values βN (μ∗) during the SCM algorithm. Right: stability factor βN (μ) and lower
bound βLB

N (μ) for μ1 = 125 (top) and μ2 = 3.25.
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Figure 8. Case 2. Left: convergence of the greedy algorithm; here Ξtrain is a uniform random
sample of size ntrain = 500, whereas εRB

tol = 5 × 10−2. Right: online evaluations of error bounds
ΔN (μ) (maximum and average over ntest = 50 sampled μ values), Stokes (linear) error bounds
ΔN,s(μ) (average), indicators τN (μ) (maximum) and errors (average and maximum) between
FE and RB approximations.
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Figure 9. Case 2. RB solutions for velocity and pressure for μ = (100, 4) (top), μ = (150, 2)
(bottom).

Regarding the Online stage, the evaluation of the errors between the FE and the RB approximations (over
a train sample Ξtest of size ntest = 100, for N = 1, . . . , Nmax) and the corresponding error bounds are reported
in Figure 8 (right). However, also in this case the effectivity of the error bound is of about 102 and the Stokes
(linear) error bound ΔN,s(μ) is very close to ΔN (μ) for N ≥ N∗(μ).

Finally, we report in Figure 9 some representative solutions. We observe that close to channel corners the
flow shows both recirculation regions and detachments which significantly grow when μ1 = Re increases.

For the sake of space, we do not report plots of the approximation errors over the spatial domain, which
look very similar to the ones shown in Figure 5. As a matter of fact, also in this case pointwise errors over the
spatial domain are indeed very small. As we can see in Figure 8 (left), the (norm of) RB approximation errors
decreases quite rapidly (from 10−2 when N = 15, to 10−4 when N = Nmax = 30), uniformly over the parameter
space.

9.3. Case 3. Flow around a parametrized NACA airfoil

Finally, we consider the approximation of a steady flow around a family of NACA0012 airfoil profiles (see
Fig. 10). In order to change both the orientation and the shape of the airfoil, we parametrize the geometry of the
domain Ω̃ = Ω̃(μ) using a nonaffine Free-Form Deformation (FFD) map (see e.g. [20]). This is a volume-based
parametrization, where deformations are induced by moving some control points, through a set of parameters.

In particular, here a 6 × 6 lattice of control points is placed around the airfoil and the closest four control
points (represented in red) are allowed to move along the x2-direction, thus giving p = 4 parameters (i.e. the
vertical displacements of the free control points), varying in D = [−0.4, 0.4]4.

A parabolic flow gD is imposed at the inlet ΓDg = Γin, such that |v̄| =
∫

Γin
gD = 20/3, while a free-stress

condition (gN = 0) is imposed at the outflow ΓN = Γout, whereas ΓD0 = ΓB ; the forcing term is f = (0, 0).
Here Re = 160 since the characteristic length, i.e. the width of the airfoil, is about 0.2.

Concerning the Offline stage, we rely on a P2−P1 FE approximation also in this case. A further pre-processing
is required in this case, in order to recover the affine parametric dependence. To this goal, we employ the EIM
procedure (see Sect. 3.2), with a prescribed tolerance εEIM

tol = 10−4; in particular, we prescribe εEIM
tol smaller
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Figure 10. Case 3. Parametrized geometry: reference (left) and original (right) configurations.
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Figure 11. Case 3. Left: convergence of the greedy algorithm; here Ξtrain is a uniform random
sample of size ntrain = 1000 and RB tolerance is εRB

tol = 2.5 × 10−3. Right: online evaluations
of the error bound ΔN (μ) (average over ntest = 100 sampled μ values) and the error (average
and maximum) between FE and RB approximations.

than the tolerance εRB
tol used as stopping criterion in the greedy procedure. Here the range of variation of the

stability factor over the parametric domain, by direct inspection, is rather contained, we opt for a constant
lower bound instead of running the SCM procedure. We thus compute a lower bound through a numerical
minimization algorithm, based on sequential quadratic programming; in this case, βLB

N = 7.5 × 10−3.

Then, we run the greedy algorithm for the construction of the RB spaces; its convergence is reported in
Figure 11 (left). In this case,Nmax = 17 basis functions are selected, with a prescribed tolerance εRB

tol = 2.5×10−3.

Regarding the Online stage, the evaluation of the errors between the FE and the RB approximations (over
a train sample Ξtest of size ntest = 100, for N = 1, . . . , Nmax) and the corresponding error bounds are reported
in Figure 11 (right). In this case N∗(μ) = 1, so that the error bound ΔN (μ) can be employed from the very
beginning for both the greedy selection procedure and the online error evaluation. We do not report neither the
error indicator τN (μ), nor the Stokes (linear) error bound ΔN,s(μ), since this latter is very close to ΔN (μ).
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Figure 12. Case 3. RB solutions for velocity and pressure for different values of μ ∈ D.

Finally, we report in Figure 12 some representative solutions for selected values of the parameters. Also in
this case the plots of the approximation errors over the spatial domain look very similar to the ones shown in
Figure 5. Moreover, as we can see from Figure 11 (right), the (norm of) RB approximation errors decreases
quite rapidly (from 10−2 when N = 4, to 5× 10−3 when N = Nmax = 17), uniformly over the parameter space.

9.4. Summary of results

We can now summarize the computational performances of the RB framework presented in this paper. We
report all the details related to numerical simulations in the following Table 1.

The number of affine operator components Qa +Qb +Qc is larger in case 3 compared to other cases, because
of the EIM procedure employed to recover the affine parametric dependence in this nonaffine case. We point
out that Qa +Qb +Qc can be considered as an index of the parametric complexity of the problem, affecting in
particular (i) the storing of RB structures related to nonlinear terms; (ii) the efficient calculation of the dual
norms of residuals; (iii) the SCM algorithm for the lower bound of stability factors. In all these cases, larger
values of Qa +Qb +Qc might have a great impact on the efficiency of the Offline/Online splitting.

In all the three cases, we remark the very small dimension N of the RB approximation problems with respect
to the FE approximation space dimension N , which leads to effective computational savings, mandatory when
dealing with numerical simulations in real-time and many-query contexts. The reduction of linear systems
dimension ranges between 357 and 699 times; nevertheless, this leads to very small RB approximation errors,
of order 10−3 ÷ 10−5. Computational speedup is of order 102, varying from 100 to 564. CPU time for each RB
Online evaluation is of order 1 s and is almost constant, also when dealing with the Reynolds number as a
parameter. On the other hand, FE solutions require increasing CPU times6 (and fixed-point iterations) when
dealing with larger Reynolds numbers, ranging from about 30 s to 300 s, e.g. in case 1. Moreover, with the
same tolerance εRB

tol of case 2, we would obtain an even smaller RB space in case 1, of dimension Nmax = 8,
and a larger speedup (about 150) due to an even faster Online evaluation time. On the other hand, the higher
speedup of case 2 is also due to the larger FE evaluation time. In this case, a finer computational mesh, and a
higher intrinsic difficulty of the problem, play an important role. For both FE and RB solutions of nonlinear
problems we use a fixed-point iteration with tolerance εNS

tol = 10−5.

6Computations have been run on a PC with 2× 2 GHz Dual Core AMD Opteron (tm) processors 2214 HE and 16 GB of RAM.
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Table 1. Numerical details for the test cases presented; tonline
RB is the time of an Online RB

computation, while tonline
FE is the time for a FE computation, once FE linear operators are built.

Approximation data Case 1 Case 2 Case 3
Number of parameters P 1 2 4
Affine op. components Qa + Qb + Qc 9 18 77
Affine rhs components QF + QG 9 13 67
FE space dim. N 23 077 31 093 32 538
RB space dim. Nmax 12 31 17

FE evaluation tonline
FE (s) 137.47 2070.25 460.28

RB evaluation tonline
RB (s) 1.3707 3.667 1.2201

Computational speedup 100 564 377

FE stability factor evaluation toffline
stab (s) 1436 51 644 688

RB space construction toffline
space (s) 5303 73 028 12 984

Break-even point QBE 49 60 29

Finally, we take into account also the time spent for the Offline construction and storage; this allows to
determine the break-even point, given by QBE = (toffline

stab + toffline
space )/tonline

FE . In particular, we obtain a break-even
point smaller than 102 in all the three cases.

We point out that the SCM algorithm require very large CPU times, ranging from 1436 s (case 1) to 51644 s
(case 2); this corresponds, respectively, to 21% and 41% of the whole Offline stage. Instead, evaluating the
(constant) lower bound through a numerical optimization procedure takes just the 5% of the whole Offline CPU
time in case 3. An additional computational cost is entailed, in this latter case, by the EIM procedure used to
recover the affine parameter dependence. If the same SCM was used to generate a variable lower bound βLB

N (μ)
instead of using a constant, the required CPU time would have been considerably larger (at least as large as in
case 2). This is due to the number of parameter components and to the (considerably) larger number of affine
components, and would lead to a break-even point of about QBE ≈ 150. See also [18] for further comparisons
between the SCM algorithm and some heuristic procedures to obtain reliable surrogates of stability factors.

10. Remarks and conclusions

In this paper we have presented a self-contained mathematical framework for the set up of the reduced basis
approximation and a posteriori estimation in the case of steady incompressible parametrized Navier–Stokes
equations. We have considered a mixed formulation for velocity and pressure fields, with (both affine and non-
affine) physical and geometrical parametrizations; we have taken advantage of a recent extension [18] of the
natural norm SCM algorithm to nonlinear operators; we have developed a suitable Offline/Online computational
splitting. In this way, we have managed to fully decouple the estimation of stability factors and the construction
of a reduced space through a greedy selection of velocity-pressure snapshots. In particular, the greedy algorithm
enables to build reduced spaces of limited dimension also in the case of parametrized steady NS problems, thus
yielding a remarkable computational speedup with respect to full-order FE approximations. Several numerical
tests have proved the computational efficiency and the reliability of the proposed methodology. Other applica-
tions have already been presented e.g. in [15, 19]. Further developments will be devoted to the application of
this framework to optimal control problems for fluid flows.
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Appendix A. Computational details and proofs

In this Appendix we report the proofs of the results stated in Sections 6 and 8, as well as some computational
details related to the Offline/Online strategy to deal with the efficient construction of RB structures.

A.1. Offline-Online computational strategy

Thanks to the affine parametric expansions of Section 3.2, we can write the matrices occurring in the FE
formulation by decoupling the μ-dependent and μ-independent parts: for the linear terms we have

AN (μ) =
Qa∑
q=1

Θq
a(μ)Aq

N , BN (μ) =
Qb∑
q=1

Θq
b (μ)Bq

N , (A.1)

being (Aq
N )ij = aq(φv

j ,φ
v
i ), 1 ≤ q ≤ Qa and (Bq

N )ki = bq(φp
k,φ

v
i ), 1 ≤ q ≤ Qb; for the nonlinear terms, with

1 ≤ q ≤ Qc, we have instead

CN (wN ; μ) =
Qc∑
q=1

Θq
c (μ)Cq

N (wN ), (Cq
N (wN ))ij = cq

(NV∑
k=1

wN
k φv

k ,φ
v
j ,φ

v
i

)
; (A.2)

a similar expansion can be obtained for DN (μ) and the right-hand sides. Thanks to the affine decomposition
in (A.1)–(A.2), we can rewrite the matrices in (5.9) as

AN (μ) =
Qa∑
q=1

Θa
q (μ)Aq

N , A
q
N = VT

N A
q
N VN ,

BN (μ) =
Qb∑
q=1

Θb
q(μ)Bq

N , B
q
N = QT

N B
q
N VN ,

CN

(
ζv

s
; μ
)

=
Qc∑
q=1

Θc
q(μ)Cq

N

(
ζv

s

)
, C

q
N

(
ζv

s

)
= VT

N C
q
N
(
ζv

s

)
VN . (A.3)

In the same way, we can express the RB structures appearing in (5.10).
Thus, in the Offline stage we first compute and store the basis functions {ζv

n}2N
n=1, {ζp

l }N
l=1, and form the RB

structures. In the Online stage, for each new value of μ we use the precomputed RB structures to assemble the
(full) 3N × 3N system (5.7). Hence, Online costs are dependent on Q• and N , but independent of NX + NQ:
since 3N � NX +NQ, we obtain a significant speedup in the Online stage compared to the pure FE approach.
Moreover, we may choose N very large in order to eliminate the error between the exact solution and the FE
approximations without affecting the RB Online efficiency – for instance, when dealing with moderate Reynolds
numbers. In fact, the bigger the underlying FE system and thus N is chosen, the bigger the speedup by the use
of the RB method in the Online stage will be. However, we should keep in mind that the Offline stage is still
N -dependent.

A.2. Proof of Lemma 8.1

Let us recall that

max
v∈V N

(v,v)V =1

(
u2
∗, v

2
)

=
‖u2

∗‖2
2

(u∗, u∗)
2
V

by Cauchy–Schwarz inequality, since (u2∗, v2)2 ≤ ‖u2∗‖2‖v2‖2 and the maximum is reached for an element v = αu∗
where α = 1/(u∗, u∗)V . Thanks to (8.4) and (8.2), we find

λmax (σ(u∗)) = max
v∈V N

∫
Ω

u2
∗v

2

‖u∗‖2
4(v, v)V

= max
v∈V N

(v,v)V =1

∫
Ω

u2
∗v

2

‖u∗‖2
4

=

∫
Ω

u4
∗

‖u∗‖2
4 (u∗, u∗)

2
V

=
‖u∗‖2

4

(u∗, u∗)
2
V

= ρ2, (A.4)
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since (u∗, u∗)V = 1. Since umax(z) is the maximizer of (8.4), i.e. it is such that

umax(z) = arg max
v∈V N

(
1

(v, v)V

∫
Ω

zv2

)
,

from (A.4) and (u∗, u∗)V = 1 we obtain umax(σ(u∗)) = u∗/((u∗, u∗)V ) = u∗.

A.3. Proof of Lemma 8.2

It is clear that umax(z2)− umax(z1) = O(‖z2 − z1‖2) and λmax(z2 − z1) = O(‖z2 − z1‖2). Then, the last term
of (8.5) is at least O(‖z2 − z1‖V ). Then, by definition of the eigenproblem (8.3), we have:∫

Ω

z2umax(z2)(∂u) = λmax(z2)(umax(z2), ∂u)V , (A.5)∫
Ω

z1umax(z1)(∂u) = λmax(z1)(umax(z1), ∂u)V . (A.6)

To simplify these expressions, we exploit the two relationships (valid for any A,B and any inner product)

(A−B,A) =
1
2
(A,A) − 1

2
(B,B) +

1
2
(A−B,A−B),

(B −A,A) =
1
2
(A,A) − 1

2
(B,B) − 1

2
(A−B,A−B), (A.7)

by applying the former to the right-hand side of (A.5) with A = umax(z2), B = umax(z1) and the latter to the
right-hand side (A.6) with A = umax(z1), B = umax(z2), respectively. Since ‖umax(zi)‖V = 1 for i = 1, 2, we
end up with ∫

Ω

z2umax(z2)(umax(z2) − umax(z1)) =
1
2
λmax(z2)‖umax(z2) − umax(z1)‖2

V ,∫
Ω

z1umax(z2)((umax(z2) − umax(z1)) = −1
2
λmax(z1)‖umax(z1) − umax(z2)‖2

V ,

which proves the thesis.
In the same way, (8.7) is positive thanks to (A.7) – with A = σ(umax(z(k−1))) and B = σ(umax(z(k−2))) –

and because ‖σ(umax(z(k−1)))‖2 = ‖σ(umax(z(k−2)))‖2 = 1.
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