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DIFFUSION LIMIT OF FOKKER−PLANCK EQUATION WITH HEAVY TAIL
EQUILIBRIA ∗

Elissar Nasreddine1 and Marjolaine Puel2

Abstract. This paper is devoted to the diffusion limit of the Fokker−Planck equation of plasma
physics, in which the equilibrium function decays towards zero at infinity like a negative power function.
We prove that for an appropriate time scale, in a suitable weighted Sobolev space, the small mean free
path limit gives rise to a diffusion equation.
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1. Introduction

We consider a collisonal kinetic equation given by{
∂tf + v · ∇xf = Q(f) in [0,∞) × R

d × R
d

f(0, x, v) = f0(x, v) in R
d × R

d.
(1.1)

Such a problem naturally arises when modeling the behaviour of a cloud of particles. The unknown f(t, x, v) ≥ 0
can be interpreted as the density of particles occupying at time t ≥ 0, the position x ∈ R

d with a physical state
described by the variable v ∈ R

d. This variable v represents the velocity of the particles.
We focus in this paper on the Fokker−Planck equation when the collisional operator Q has a diffusive form:

Q(f) := ∇v ·
(

1
ω

∇v (f ω)
)

(1.2)

and where the equilibria are characterised by the choice of ω (Indeed, this operator has one dimensional kernel
spanned by the function F (v) = K

ω where K is a normalizing constant). In this equation, the scattering in
velocity is modeled by a diffusion phenomena coming from a deterministic formulation of a Brownian motion.
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Another classical example of collision operator is given by the linear (semiconductor) Boltzmann equation
where Q is given by an integral operator

Q(f) =
∫

Rd

σ(v, v′) [f(v′) F (v) − f(v) F (v′)] dv′, with σ(v, v′) = σ(v′, v), (1.3)

where F (v) denotes the equilibrium, σ is the scattering function and σ(v, v′) F (v) models the probability of a
particle to pass from a velocity v′ before the collision to velocity v after the collision.

For both problems, when the scattering phenomena is much stronger than the advection phenomena, it
is possible to approximate the solution of (1.1) by a density depending only on the time and space variable
multipied by a velocity profile given by the thermodynamical equilibrium. For example, when the equilibria are
given by Maxwellian (or Gaussian) distribution functions, the density is proved to satisfy a diffusion equation.
This process is known as the diffusion approximation and has been investigated for a long time, starting with
Bensoussan et al. [4] and Larsen and Keller [12] and it has been the topic of many papers since then (see in
particular Bardos et al. [1] and Degond et al. [10] and references therein or Lions and Toscani [18] who obtain
non linear diffusion equation). In the case of the linear Boltzmann problem, (see Ben Abdallah et al. [2, 3],
Mellet et al. [16] Mellet [17]) similar asymptotic analysis are performed when the equilibrium function is not
a Maxwellian distribution, but rather a heavy tail function. Depending on the power of the tail, the diffusion
coefficient involved in the equation satisfied by the density is well defined or not. When it is not well defined,
we talk about anomalous diffusion and after an ad hoc rescaling, the density satisfies a non local equation such
as a fractional diffusion equation.

In the present paper, we also consider heavy tail equilibria F (v) = K
ω corresponding to ω = (1 + ||v||2)β

2 for
β > d, and we obtain a classical diffusion equation in the case where the diffusion coefficient is well defined.
In the Fokker Planck context, the heavy tail functions also called Cauchy distribution family are considered as
equilibria in the case where Fokker Plank is slightly modified by taking fractional Fokker Planck ([6]) but also
as target for the usual Fokker Planck equation. For instance, those profile appear as equilibria for the Fokker
Planck equation satisfied by Wigner function in the anomalous quantum transport in optical lattice (for physical
references, see [11, 14, 15]).The main difference with Boltzmann is the functional setting, and this difficulty is
the reason why the case of anomalous diffusion is still not clear.

Mathematically speaking, we introduce a small parameter ε � 1 which describes the mean free path of the
particles, then we consider the following rescaling

x′ = εx and t′ = θ(ε) t, with θ(ε) → 0.

Typically, it means that we assume that the mean free path is very small and the time scale is very large.
Then, we rescale the distribution function

fε(t′, x′, v) = f(t, x, v).

The function fε is now solution of (we skipped the primes)

θ(ε) ∂tf
ε + ε v · ∇xf

ε = Q(fε),

fε(0, x, v) = f0(x, v).
(1.4)

The goal is then to study the behaviour of the solution as ε→ 0.
The usual diffusion limit correspond to θ(ε) = ε2. It may be formally studied using the so-called Hilbert

expansion method (see [8, 9]), which is based on a formal expansion of the solution in the form

fε = f0 + ε f1 + ε2 f2.

Inserting this expansion in (1.4) and identifying the term of same order in ε yields to a diffusion equation verified
by ρ(t, x) =

∫
f0 dv, see Section 3.
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To make the formal proof rigorous, we thus propose a different method, the moment method classically used
to obtain weak convergence in the study of limits of kinetic equations under weaker assumptions on the initial
data. This method relies on the introduction of an appropriate auxiliary problem and a weak formulation of (1.4)
and (1.2). More precisely, the corner stone of the proof is to multiply equation (1.4) by a test function that will
give us an equation for the density. We will see that an ad hoc choice is given by φ(t, x) F (v) + ε ψ(t, x, v),
where the correction ψ is the solution of the auxiliary equation

Q(ψ) = −F (v) v · ∇xφ,

where φ is a smooth test function. Note the presence of F (v) due to the fact that we use weighted Sobolev spaces
with a duality product involving the factor 1

F (v) . Thanks to the moment method, we prove that for θ(ε) = ε2,
the function fε(t, x, v) converges weakly, when ε goes to zero, to a function of the form ρ F (v) where the density
ρ(t, x) solves the diffusion equation:

∂tρ−∇x · (D ∇xρ) = 0. (1.5)

This convergence is proved under some assumptions on F that guarantee that the diffusion tensor D, which
depends on F , is finite, namely β > d+ 4, see Theorem 2.2 below.

The case β = d + 4, is critical in the sense that the diffusion coefficient obtained in this paper is no more
defined. Even though, we may obtain an asymptotic by changing the scaling as in the Boltzmann case. Indeed,
we proved in collaboration with Cattiaux [5] that with the time scale θ(ε) = ε2 | ln ε| will still obtain a diffusion
equation. We can’t say what happens for β < d+ 4, the asymptotic may lead to a different phenomena or not.

From now on, we assume that

Q(f) := ∇v ·
(

1
ω

∇v (f ω)
)

where ω = (1 + ||v||2)β
2 and β > d and we denote K > 0 the constant renormalizing the equilibrium; i.e.

satisfying
∫

Rd
K
ω dv = 1.

2. Main results

We start with an existence result. For that purpose, let us define the functional spaces Y p
ω

(
R

2d
)

=
Lp
(
R

d, Hp(Rd)
)
, where

Hp(Rd) =
{
f : R

d → R,

∫
Rd

|f |p ωp−1 dv <∞
}
, (2.1)

where ω = (1 + ||v||2)β
2 and

V =
{
f : R

d → R,

∫
Rd

|f |2 ω dv <∞ and
∫

Rd

|∇v(f ω)|2
ω

dv <∞
}
, (2.2)

V ′ being its dual. Thanks to Lions’s theorem [13] we obtain the following theorem

Theorem 2.1. Assume that f0 ∈ Y 2
ω (Rd), the system (1.1) has a unique solution f in the class of functions Y

defined by:
Y =

{
f ∈ L2

(
[0, T ]× R

d, V
)
, ∂tf + v · ∇xf ∈ L2

(
[0, T ]× R

d, V ′)} .
As we said, passing from the microscopic to the macroscopic scales relies on a rescaling of (1.1) involving the
small parameter ε� 1. The study of the behaviour of the solution as ε→ 0 is the object of our main result:

Theorem 2.2. Assume that f0 is a nonnegative function in Y 2
ω ∩ Y p

ω with p > 2 and β > d+ 4. Let fε be the
solution of (1.4) in Y with initial data f0, when θ(ε) = ε2.
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Then, fε converges weakly star in L∞ ([0, T ], Y p
ω (R2d)

)
towards ρ(t, x) K

ω where ρ(t, x) is the unique solution
of the system

∂tρ+ ∇x · j = 0 (2.3)

j = −D ∇xρ, (2.4)

where the initial datum is given by ρ0(x) =
∫

Rd f0 dv, and the diffusion tensor D is given by

D =
∫

Rd

v ⊗ χ dv, (2.5)

where χ is the unique solution of the cell equation Q(χ) = −K v
ω with

∫
Rd χ dv = 0.

Remark 2.3.

1. We can remark that the diffusion tensor D in (2.5) has the same form of Boltzmann coefficient,

D =
∫

Rd

v ⊗ χ dv, Q(χ) =
−K v

ω
,

but here, χ can be substituted by its explicit form (5.2).
2. The most difficult point in this problem is the introduction of weighted functional spaces in the proof of the

convergence result. Indeed, it involves duality products that degenerate in the critical case where β = d+ 4
which leads to an additional difficulty in the study of the anomalous diffusion.

The paper is organized as follows: in Section 3, we prove existence and uniqueness for equations (1.1). Then,
in Section 4, we derive formally the diffusion equation satisfied by the limiting density using Hilbert expansion.
Section 5 is devoted to the study of the auxiliary problem leading to χ and of the diffusion coefficient D. The
final step is the obtention of the convergence via moment method and is performed in Section 6.

3. Functional setting and existence result

3.1. Properties of the collision operator and adapted functional setting

The following proposition gives some properties of the collision operator Q.

Proposition 3.1. Let f and g be smooth functions in V defined in (2.2). The following assertions hold true:

1. The operator Q is conservative, thus equation (1.4) preserves the total mass of the distribution∫
Rd

Q(f) dv = 0, for all f ∈ V.

2. The operator Q is self-adjoint with respect to the measure ω dv:∫
Rd

Q(f) g ω dv = −
∫

Rd

∇v(f ω) · ∇v(g ω)
ω

dv =
∫

Rd

f Q(g) ω dv, (3.1)

3. The operator Q is dissipative: ∫
Rd

Q(f) f ω dv = −
∫

Rd

|∇v(f ω)|2
ω

dv ≤ 0. (3.2)

4. The kernel of Q is one-dimensional and spanned by F (v) = K
ω (K being a normalizing constant).

5. The operator Q is continuous from V −→ V ′.
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Proof. In this proof we show 4 and 5.

1. It is clear that R

ω ⊂ Ker(Q).
For f ∈ V such that Q(f) = 0 then for any ϕ ∈ D(Rd) we have:

∫
Rd

∇v · ( 1
ω
∇v(fω))ϕdv = 0,

therefore ∫
Rd

∇v(f ω) · ∇v(ϕ ω)
ω

dv = 0.

Since D(Rd) is dense in V , then
∫

Rd

|∇v(f ω)|2
ω dv = 0 and there exists a constant ρ ∈ R such that f = ρ

ω

and we obtain Ker Q ⊂ R

ω .
2. Using Cauchy–Schwarz inequality we obtain that for a test function φ ∈ D(Rd) and f ∈ V ,

∣∣∣∣
∫

Rd

Q(f)φdv
∣∣∣∣ ≤

∫
Rd

∣∣∣∣∇v(f ω) · ∇v(φ ω)
ω

∣∣∣∣ dv
≤
∣∣∣∣
∣∣∣∣∇v(f ω)

ω
1
2

∣∣∣∣
∣∣∣∣
2

∣∣∣∣
∣∣∣∣∇v(φ ω)

ω
1
2

∣∣∣∣
∣∣∣∣
2

≤ ||f ||V ||φ||V .

Therefore

||Q(f)||V ′ ≤ ||f ||V

hence the continuity holds. �

Proposition 3.1 shows that the natural L2 norm associated with this operator has a weight ω and that the H1

semi norm is given by the right-hand side of (3.2). This motivates the introduction of the following functional
spaces, endowed with their naturally associated norms:

H =
{
f : R

d → R;
∫

Rd

|f |2 ω dv <∞
}
, and 〈·, ·〉Hthe associated scalar product (3.3)

V =
{
f : R

d → R;
∫

Rd

|f |2 ω dv <∞ and
∫

Rd

|∇v(f ω)|2
ω

dv <∞
}
, (3.4)

Hp =
{
f : R

d → R;
∫

Rd

|f |p ωp−1 dv <∞
}
, (3.5)

Vp =
{
f ∈ Hp;

∫
Rd

|∇v(f ω)|p ω−p+1 dv <∞
}
, (3.6)

X = L2([0, T ]× R
d
x, V ); Y p

ω (R2d) = Lp(Rd
x, Hp); Xp = L2([0, T ]× R

d
x, Vp). (3.7)

Now, we are in a position to define the dual space of Y p
ω (R2d).
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Lemma 3.2. For p ∈ [1,∞[, define p′ by 1
p + 1

p′ = 1. Then Y p′
ω (R2d) is the dual space of Y p

ω (R2d).

Proof. Let us consider that f ∈ Y p
ω (R2d) and g ∈ Y p′

ω (R2d), then Hölder inequality gives that:

∣∣∣∣
∫

R2d

f g ω dvdx
∣∣∣∣ ≤

∫
R2d

(
|f | ω p−1

p

) (
|g| ω−(p−1)

p ω
)

dv dx,

≤
∫

R2d

(
|f | ω p−1

p

) (
|g| ω p′−1

p′
)

dvdx

≤
(∫

R2d

|f |p ωp−1 dvdx
) 1

p
(∫

R2d

|g|p′
ωp′−1 dvdx

) 1
p′

= ||f ||Y p
ω
||g||

Y p′
ω
,

which gives the result. �

3.2. Existence and uniqueness

In this section we prove the theorem establishing the existence and uniqueness of a solution to (1.1). The
proof relies to Lions theorem see [7, 13].

Proof of Theorem 2.1. For any λ > 0, the change of unknown:

fλ(x, v, t) = e−λtf(t, x, v)

leads to the equation: {
∂tfλ + v.∇xfλ + λfλ = ∇v · ( 1

ω ∇v(fλω))

fλ(0, x, v) = f0(x, v).
(3.8)

We will prove existence and uniqueness for fλ.
Let

X = L2
(
[0, T ]× R

d, V
)
, and ||ϕ||2X =

∫ T

0

∫
Rd

∫
Rd

|ϕ(t, x, v)|2 ω dvdxdt.

and S be the space ]0, T [×R
d×R

d) of infinitely differentiable functions, with compact support in ]0, T [×R
d×R

d,
provided with Hilbertian norm:

||ϕ||2S = ||ϕ||2X +
1
2

∫
Rd

∫
Rd

ω |ϕ(0, x, v)|2 dvdx, ∀ϕ ∈ S.

The bilinear form E, and the linear form L, are defined by:

E(fλ, ϕ) =
∫ T

0

∫
Rd

∫
Rd

[
fλ ω

(
−∂ϕ
∂t

− v · ∇xϕ+ λϕ) +
1
ω

∇v(ϕ ω

)
· ∇ (fλ ω)

]
dvdxdt

L(ϕ) =
∫

Rd

∫
Rd

f0(x, v) ϕ(0, x, v) ω dvdx.
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The bilinear form E is coercive since

E(ϕ,ϕ) =
∫ T

0

∫
Rd

∫
Rd

[
ϕ ω(−∂tϕ− v · ∇xϕ+ λϕ) +

1
ω

∇v(ϕ ω) · ∇(ϕ ω)
]

dvdxdt

= λ

∫ T

0

∫
Rd

∫
Rd

ω |ϕ|2 dvdxdt +
1
2

∫
Rd

∫
Rd

ω |ϕ(0, x, v)|2dvdx

+
∫ T

0

∫
Rd

∫
Rd

|∇v(ϕ ω)|2
ω

dvdxdt

≥ min(λ, 1) ||ϕ||2X +
1
2

∫
Rd

∫
Rd

ω |ϕ(0, x, v)|2 dvdx

≥ min(λ, 1) ||ϕ||2S (3.9)

Then Lions’s theorem applies and the variational equation E(fλ, ϕ) = L(ϕ) admits a solution fλ in X . Then
fλ satisfies (1.1) in the sense of distributions, and in particular, we deduce that:

∂fλ

∂t
+ v · ∇xfλ = ∇v ·

(
1
ω
∇v(fλω)

)
− λ fλ ∈ L2

(
[0, T ]× R

d
x, V

′)
so that fλ and then f belong to Y .

In order to give a meaning to the initial condition, and to show uniqueness, we have to prove a trace theorem,
and a Green formula for the functions of Y . Consequently, we admit the following lemma whose proof is a
straightforward adaptation of [7] in the weighted Sobolev spaces. And for this reason, the proof is omitted.

Notations: In the following 〈·, ·〉X′X denotes the duality bracket between the space X and its dual.

Lemma 3.3. (i) If f ∈ Y , f admits (continuous) trace value f(0, x, v) in Y 2
ω (R2d).

(ii) For f1 and f2 in Y , we have:〈
∂f1
∂t

+ v · ∇xf1, f2

〉
X′X

+
〈
∂f2
∂t

+ v · ∇xf2, f1

〉
X′X

= −
∫ ∫

f1(0, x, v) f2(0, x, v) ω dvdx. (3.10)

So, using equation (3.8) and the Green formula (3.10), we deduce that the solution f satisfies:∫
Rd

∫
Rd

[f(0, x, v) − f0(x, v)] ϕ(0, x, v) ω dvdx = 0, ∀ϕ ∈ S.

Consequently, the initial condition is satisfied in Y 2
ω (R2d).

Now, for uniqueness, we suppose that f1 and f2 are two differents solutions of (3.8). Then we get that
f = f1 − f2 is a solution of (3.8) with f0 = 0, which belongs to Y . Applying (3.10) we obtain:

0 =
〈
∂f

∂t
+ v · ∇xf, f

〉
X′X

−
〈
∇v ·

(
1
ω
∇v(fω)

)
, f

〉
X′X

+ λ 〈f, f〉X′X

≥ λ

∫ T

0

∫
R2d

|f |2 ω dvdxdt.

Which proves that f is equal to zero almost everywhere. �

4. Formal asymptotics

In this section we give a formal heuristic of Theorem 2.2. Recall that we investigate the asymptotic behaviour
as ε goes to zero of the solution of equation (1.4), when β > d+ 4 and θ(ε) = ε2.

The formal limit ε→ 0 can be seen following two points of view.
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We can perform the Hilbert expansion (see e.g. [8] for the general theory or [9] for an application in the
context of Fokker−Planck equations)

fε = f0 + εf1 + ε2f2,

with fk being independent of ε. Inserting it into (1.4) and identifying terms having the same power of ε, we
obtain the following set of equations, in which the x variable is a parameter:

Q(f0) = 0, (4.1)

Q
(
f1
)

= v · ∇xf
0, (4.2)

Q
(
f2
)

= ∂tf
0 + v · ∇xf

1. (4.3)

Equation (4.1) means that f0 lies in the Kernel of Q, and by Proposition 3.1

f0 =
ρ(t, x) K

(1 + ||v||2)β
2

,

where ρ(t, x) is a function still to be determined.
Since f0 is even with respect to v, the Fredholm alternative says that equation (4.2) leads to

f1 = −χ · ∇xρ where χ = Q−1

(
−vK

(1 + ||v||2)β
2

)
· (4.4)

In order to determine ρ, we integrate (4.3) with respect to v ∈ R
d and use that

∫
Rd Q(f) dv = 0.

We get

∂tρ+ ∇x ·
(∫

Rd

vf1dv
)

= 0

that is system (2.3), (2.4).
We can also define the density ρε(t, x) and the current jε(t, x) by

ρε(t, x) =
∫

Rd

fε dv, jε(t, x) =
1
ε

∫
Rd

v fε dv. (4.5)

By integrating equation (1.4), we find
∂tρ

ε + ∇x · jε = 0. (4.6)

Note that this equation is valid for all values of ε. Then we write the formal expansion fε = f0 + εf1.
Integrating it with respect to v, letting ε→ 0, we formally have ρε → ρ since

∫
Rd

K

(1+||v||2) β
2

dv = 1. Moreover,

we have

jε =
1
ε

∫
Rd

f0v dv +
∫

Rd

f1v dv +O(ε) (4.7)

= 0 +
∫

Rd

f1v dv +O(ε),

because f0 is even in v. Therefore jε has a limit when ε→ 0, and this limit is given by

j(t, x) =
∫

Rd

f1 v dv =
∫

Rd

−v χ · ∇xρ dv. (4.8)

To make this proof rigorous, we need to justify all the formal convergence. That is what we are going to do
using the moment method which consists in integrating the equation against suitable test functions.
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5. Preliminary computations

5.1. Study of auxiliary equation

We first compute χ, the solution of the auxiliary problem satisfying

Q(χ) = −v F (v).

Then we give some properties of χ.

Lemma 5.1. The unique solution of the cell equation

Q(χ) = ∇v ·
(

1
ω

∇v(χ ω)
)

= −v K
ω

with

∫
Rd

χ dv = 0, (5.1)

is given by:

χ =
||v||2 + 3

3β − 2(d+ 2)
K v

ω
· (5.2)

Proof. First, since F (v) = K
ω is even with respect to v, the Fredholm alternative implies that there exists a

solution to (5.1) which is unique as soon as we impose the constraint
∫

Rd

χ dv = 0. In order to compute the

solution of (5.1), we use the following ansatz

χ =
ϕ(||v||2)

ω
v K

where ϕ is a function to determine.
First of all, we write

d
dvj

(
ϕ(||v||2 vi)

)
= vi

d
dvj

ϕ(||v||2) + δijϕ(||v||2)

Then we get

∂

∂vj

(
1
ω

∂

∂vj

(
ϕ
(||v||2 vi

)))
=

∂

∂vj

[
vi

ω

∂

∂vj
ϕ
(||v||2)+

δij
ω

ϕ
(||v||2)]

=
∂

∂vj

(vi

ω

) ∂

∂vj
ϕ
(||v||2)+

vi

ω

∂2

∂2vj
ϕ
(||v||2)

+
δij
ω

∂

∂vj
ϕ
(||v||2)+ δij

∂

∂vj

(
1
ω

)
ϕ
(||v||2)

Assume now that ϕ(||v||2) = a||v||2 + b, we simplify the computation by writing

∂

∂vj

(
1
ω

∂

∂vj

(
ϕ
(||v||2 vi

)))
=

∂

∂vj

(vi

ω

)
(2avj) +

vi

ω
2da+

2avi

ω
+

∂

∂vi

(
1
ω

)(
a||v||2 + b

)
=

4avi + 2advi

ω
+

∂

∂vi

(
1
ω

)(
a||v||2 + b

)
+ 2avivj

∂

∂vj

(
1
ω

)

which leads to a rewriting of equation (5.1)

vi (4a+ 2da)

(1 + ||v||2)β
2

− 2β||v||2 vi a

(1 + ||v||2)β
2 +1

− βvi(a||v||2 + b)

(1 + ||v||2)β
2

=
−vi

(1 + ||v||2)β
2

·
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Then we get by identification

a =
−1

−3β + 2(d+ 2)
and b =

−3
−3β + 2(d+ 2)

·

We finally obtain

χ =
||v||2 + 3

3β − 2(d+ 2)
K v

ω
· �

In the following lemma we study some properties of χ.

Lemma 5.2. Recall that Hq is defined by:

Hq =
{
f : R

d → R;
∫

Rd

|f |q ωq−1 dv <∞
}

1. For q < β−d
3 we have χ ∈ Hq.

2. For q < β−d
4 we have v · χ ∈ Hq.

Proof.

1. Let us rewrite

∫
Rd

|χ|q ωq−1 dv ≤
∫

Rd

(
||v||2 + 3

3β − 2(d+ 2)
K ||v||

(1 + ||v||2)β
2

)q

(1 + ||v||2)β (q−1)
2 dv.

We write r = ||v||, and dv = rd−1 drdσ, where dσ is the measure of the unit sphere Sd−1 in R
d. Then we

get

∫
Rd

|χ|q ωq−1 dv ≤
∫

Sd−1

∫ ∞

0

(
r2 + 3

3β − 2(d+ 2)
K r

(1 + r2)
β
2

)q (
1 + r2

) β (q−1)
2 rd−1 drdσ,

≤ C

∫ ∞

0

rd−1+q (3 + r2)q

(1 + r2)
β
2

dr,

then for q < β−d
3 we have χ ∈ Hq.

2. In the same way, for r = ||v|| we have

∫
Rd

|v χ|q ωq−1 dv ≤
∫

Rd

(
||v||2 + 3

3β − 2(d+ 2)
K ||v||2

(1 + ||v||2)β
2

)q

(1 + ||v||2)β (q−1)
2 dv,

≤ C

∫ ∞

0

(
3 + r2

)q
r2q+d−1

(1 + r2)
β
2

dr,

then for q < β−d
4 , we get that v · χ ∈ Hq. �

5.2. Study of diffusion coefficient D

As a consequence of Lemma 5.1 we can define the tensor D by

D =
∫

Rd

(v ⊗ v)
||v||2 + 3

3β − 2(d+ 2)
K

ω
dv. (5.3)
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Proposition 5.3. The tensor D is symmetric and positive definite.

Proof. Let X ∈ R
d and Y ∈ R

d. Let us denote by 〈·, ·〉 the scalar product in R
d whereas 〈·, ·〉H is the scalar

product associated to the Hilbert space H . We have 〈DX,Y 〉 =
∑

i,j Dij Xi Yj with

Dij =
∫

Rd

K vi

ω
χj ω

dv
K

= −
∫

Rd

Q(χi) χj ω
dv
K

= − 1
K

〈Q(χi), χj〉H

Since Q is selfadjoint in H , we get Dij = Dji. In addition,

〈DX,X〉 =
∑
i,j

DijXiXj = − 1
K

∑
i,j

〈Q(χi), χj〉H Xi Xj

= − 1
K

〈Q(fX), fX〉H =
1
K

∫
Rd

|∇(fX ω)|2
ω

dv

≥ 0

where fX(v) =
∑d

i=1Xiχi(v).
If 〈DX,X〉 = 0 we obtain that fX(v) =

∑d
i=1Xiχi(v) = ρ(t,x)

ω , since Q is linear we have
∑d

i=1Xi Q(χi)(v) =
0 which leads to

∑d
i=1Xi

vi

ω = 0. Since
{

vi

ω

}
1≤i≤d

is linearly independant, then for all i; 1 ≤ i ≤ d we have
Xi = 0 and finally X = 0. �

Lemma 5.4. For β > d+ 4, the diffusion tensor D is finite.

Proof. Using (5.3) we can see that

|D| ≤
∫

Rd

||v||2 ||v||2 + 3
3β − 2(d+ 2)

K

(1 + ||v||2)β
2

dv,

therefore, for β > d+ 4, D is finite. �

6. Rigorous asymptotics

6.1. Compactness

Our aim in this section is to study the asymptotic behaviour as ε goes to zero of the solution fε of the
rescaled equation (1.4), by proving that fε − K ρε

ω converges weakly to zero. We start with a priori estimate
for fε.

Lemma 6.1. For initial datum f0 ∈ Y p
ω (R2d) where p ≥ 2 and a positive time T .

1. The solution fε of (1.4) is bounded in L∞ ([0, T ]; Y p
ω (R2d)

)
uniformly with respect to ε since it satisfies

||fε(T )||p
Y p

ω
+
p (p− 1)
θ(ε)

∫ T

0

∫
R2d

|∇v(fε ω)|2
ω

(fε)p−2 ωp−2 dvdxdt ≤ ||f0||pY p
ω
. (6.1)

2. The density ρε(t, x) =
∫

Rd f
ε dv is such that

||ρε(t)||pp ≤ 1
Kp−1

||f0||pY p
ω

for all t ∈ [0, T ]. (6.2)

3. Then, up to a subsequence, the density ρε converges weakly star in L∞([0, T ];Lp(Rd)) to ρ.
4. Up to a subsequence, the sequence fε converges weakly star in L∞([0, T ];Y p

ω (R2d)) to f = ρ(t, x)K
ω .
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Proof.

1. Multiplying (1.4) by (fε)p−1 ωp−1 and integrating it with respect to x and v, we obtain∫
R2d

∂tf
ε (fε)p−1 ωp−1 dvdx =

1
θ(ε)

∫
R2d

∇v ·
(

1
ω
∇v(fε ω)

)
(fε)p−1 ωp−1 dvdx.

An integration by parts in v gives:

1
p

d
dt

||fε||p
Y p

ω
= − 1

θ(ε)

∫
R2d

∇v(fεω) · ∇v((fε)p−1 ωp−1)
ω

dvdx

= − 1
θ(ε)

∫
R2d

∇v(fεω) · ∇v(fε ω)
ω

(p− 1) (fε)p−2 ωp−2 dvdx

= − 1
θ(ε)

∫
R2d

|∇v(fε ω)|2
ω

(p− 1) (fε)p−2 ωp−2 dvdx.

An integration in time gives (6.1).
2. The Cauchy−Schwarz inequality implies:

ρε(t, x) =
∫

Rd

fε K
p−1

p ω
p−1

p

K
p−1

p ω
p−1

p

dv ≤
(∫

Rd

(fε)p ωp−1

Kp−1
dv
) 1

p
(∫

Rd

K

ω
dv
) p−1

p

,

then, ∫
Rd

(ρε)pdx ≤
∫

Rd

(∫
Rd

(fε)p ωp−1

Kp−1
dv
)

dx,

and
sup
t>0

∫
(ρε)p dx ≤ 1

Kp−1
sup

t

∫ ∫
(fε)p ωp−1 dvdx.

Using (6.1) we obtain

||ρε(t)||pp ≤ 1
Kp−1

||f0||pY p
ω
, for all t ∈ [0, T ].

3. The previous inequality gives that ρε is bounded in L∞ ([0, T ], Lp(Rd)
)
, and Banach–Alaoglu theorem gives

that there exist ρ ∈ L∞ ([0, T ], Lp(Rd)
)

and a subsequence, still denoted by ρε which converges weakly star
in L∞ ([0, T ];Lp(Rd)

)
to ρ.

4. Using (6.1) we have (fε) is a bounded sequence in L∞ ([0, T ];Y p
ω (R2d)

)
uniformly with respect to ε, since it

satisfies
||fε(T )||Y p

ω
≤ ||f0||Y p

ω
. (6.3)

Therefore, there exists f ∈ L∞ ([0, T ], Y p
ω (R2d)

)
and a subsequence, still denoted by fε satisfying

fε ε→0
⇀ f in L∞ ([0, T ], Y p

ω (R2d)
)

weak star. (6.4)

Furthermore, multiplying (1.4) by a test funcion φ(t, x, v) and integrating it with respect to v we obtain∫
R

∫
Rd

∫
Rd

Q(fε) φ dvdxdt = −θ(ε)
∫

Rd

∫
Rd

f0φdvdx − θ(ε)
∫

R

∫
Rd

∫
Rd

fε∂tφdvdxdt

−ε
∫

R

∫
Rd

∫
Rd

v · ∇xφf
εdvdxdt

(6.5)

using (6.4) we obtain that∫
R

∫
Rd

∫
Rd

Q(fε) φ dvdxdt −→ 0, as ε→ 0, for all φ.
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Therefore, we deduce that f ∈ Ker(Q) and there exist C(t, x) such that f = K C(t,x)
ω . Now, let us prove

that C(t, x) = ρ(t, x).
For p′ satisfying 1

p + 1
p′ = 1 and for all ϕ ∈ C∞

c

(
[0, T ], Y p′

ω (R2d)
)
, by (6.4) we have

∫
R

∫
R2d

fε ϕ ω dvdxdt →
∫

R

∫
R2d

K C(t, x)
ω

ϕ ω dvdxdt. (6.6)

Choosing

ϕ(t, x, v) =
θ(t, x)
ω

, (6.7)

where θ(t, x) ∈ C∞
c ([0, T ], Lp′

(Rd)), we obtain that θ(t,x)
ω ∈ Y p′

ω (R2d).
Substituting (6.7) into (6.6) and using the convergence of ρε we obtain∫

R

∫
R2d

fεϕ ω dvdxdt =
∫

R

∫
Rd

ρεθ dxdt −→
∫

R

∫
Rd

ρ θ dxdt, as ε→ 0.

On another hand, using the convergence of fε we have∫
R

∫
R2d

fεϕ ω dvdxdt −→
∫

R

∫
Rd

K C(t, x)
ω

θ dxdt, as ε→ 0. (6.8)

Since
∫

Rd
K
ω dv = 1, we have

ρ(t, x) =
∫

Rd

K C(t, x)
ω

dv = C(t, x).

Which ends the proof of the Lemma. �

6.2. Study of the current

We recall the definition of the macroscopic current

jε(t, x) =
∫

Rd

v fε

ε
dv. (6.9)

We prove that jε has a weak limit as ε goes to zero.

Lemma 6.2. For β > d+ 2 and fixed ε > 0 the current jε is defined.

Proof. The Cauchy−Schwarz inequality implies:

∣∣∣∣
∫

Rd

vfε dv
∣∣∣∣ ≤

∫
Rd

|v fε| √ω√
ω

dv ≤
(∫

Rd

||v||2
ω

dv
) 1

2
(∫

Rd

|fε|2 ω dv
) 1

2

.

We deduce that for β > d+ 2 the current jε is defined. �

Lemma 6.3. For β > d+ 4, the current jε is bounded uniformly with respect to ε in L2
loc

(
[0, T ]× R

d
)
.

Proof. We remark that v
ω = 1

−β ∇v

(
1

(1+||v||2) β
2 −1

)
, then

jε(t, x) =
1
ε

∫
Rd

v

ω
(fε ω) dv =

1
−β ε

∫
Rd

∇v

(
1

(1 + ||v||2)β
2 −1

)
(fε ω) dv

=
1
β ε

∫
Rd

(
1 + ||v||2)−β

2 +1 √
ω

∇v(fε ω)√
ω

dv.
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Cauchy−Schwarz inequality implies,

|jε| ≤ c

(∫
Rd

(1 + ||v||2)−β+2 (1 + ||v||2)β
2 dv

) 1
2
(∫

Rd

|∇v(fε ω)|2
ε2 ω

dv
) 1

2

.

Using (6.3) with p = 2, there exists a constant C such that

∫ T

0

∫
R2d

|∇v(fε ω)|2
ε2 ω

dvdxdt ≤ C,

then for any bounded domain Ω ⊂ R
d, we have:

∫ T

0

∫
Ω

|jε|2 dxdt ≤
∫ T

0

∫
Ω

∫
Rd

(1 + ||v||2)−β+2 (1 + ||v||2)β
2 dvdxdt

×
∫ T

0

∫
Ω

∫
Rd

|∇v(fε ω)|2
ε2 ω

dvdxdt.

Finally, for β > d+ 4, ∫
Rd

(1 + ||v||2)−β+2 (1 + ||v||2)β
2 dv <∞,

and jε is bounded in L2
loc

(
[0, T ]× R

d
)
, and thus jε converges weakly in L2

loc

(
[0, T ]× R

d
)
. �

It remains to identify the limiting flux j.

6.3. Moment method

Proposition 6.4. Under the assumptions of Theorem 2.2, we identify the limit ρ(t, x) solution to the diffusion
equation (2.3) and we conclude that the whole sequence fε converges weak star in L∞([0, T ];Y p

ω (R2d).

Proof. Take any subsequence still denoted by fε. Let us rewrite a weak formulation of (1.4)

d
dt

∫
R2d

fε ϕ ω dvdx =
∫

R2d

fε

(
∂tϕ+

1
ε
v · ∇xϕ+

1
ε2

Q(ϕ)
)
ω dvdx, (6.10)

for all test function ϕ(t, x, v) in the space C∞
c

(
R × R

d, Hq

)
with q < β−d

3 . In the weak formulation (6.10), to
obtain an equation on the density ρ, we should take a test function with the following shape ϕ(t, x, v) = K φ(t,x)

ω ,
where φ does not depend on v. In equation (6.10) the more singular term vanishes but it still remains a singularity
via the advection term. To handle it, we introduce a correction by writing ϕ(t, x, v) = K φ(t,x)

ω + εψ(t, x, v), and
for the singularities to balance, we take ψ(t, x, v) solution to the auxiliary equation:

Q(ψ) = −K v · ∇xφ(t, x)
ω

,

which means that ψ(t, x, v) = χ · ∇xφ(t, x), where χ = Q−1(−v K
ω ), and φ is a smooth compactly supported

vector test function of (t, x).
Using the expression of jε in (6.9), and since by Lemma 6.2, we can write

K

∫
Rd

∫
Rd

1
ε
fε v · ∇xφ dvdx =

∫
Rd

jε · ∇xφ dx = −1
ε

∫
Rd

∫
Rd

fε Q(ψ) ω dvdx, (6.11)
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then, (6.10) becomes

d
dt

∫
Rd

∫
Rd

fε

(
K φ

ω
+ ε ψ

)
ω dvdx =

∫
Rd

∫
Rd

fε K ∂tφ dvdx +
∫

Rd

∫
Rd

fε v · ∇xψ ω dvdx

+ε
∫

Rd

∫
Rd

fε ∂tψ ω dvdx. (6.12)

Integrating the above equation with respect to time, we obtain

−
∫

Rd

∫
Rd

fε(0)
(
K φ(0)
ω

+ ε ψ(0)
)
ω dvdx = ε

∫ ∞

0

∫
Rd

∫
Rd

fε ∂tψ ω dvdxdt

+
∫ ∞

0

∫
Rd

∫
Rd

fε K ∂tφ dvdxdt

+
∫ ∞

0

∫
Rd

∫
Rd

fε v · ∇xψ ω dvdxdt.

The trace at t = 0 has a meaning, thanks to a trace formula for function in Y which is proven in Lemma 3.3.
Which reads

−K

∫
Rd

∫
Rd

fε(0) φ(0) dvdx − K

∫ ∞

0

∫
Rd

∫
Rd

fε ∂tφ dvdxdt

= ε

∫
Rd

∫
Rd

fε(0) ψ(0) ω dvdx+ ε

∫ ∞

0

∫
Rd

∫
Rd

fε ∂tψ ω dvdxdt

+
∫ ∞

0

∫
Rd

∫
Rd

fε v · ∇xψ ω dvdxdt. (6.13)

Using the weak convergence of ρε, we deduce that the left hand side in (6.13) converges, more precisely

K

∫
Rd

∫
Rd

fε(0) φ(0) dvdx = K

∫
Rd

ρε(0)φ(0) dx ε→0−→ K

∫
Rd

ρ(0) φ(0) dx,

and

K

∫ ∞

0

∫
Rd

∫
Rd

fε ∂tφ dvdxdt = K

∫ ∞

0

∫
Rd

ρε ∂tφ dxdt ε→0−→ K

∫ ∞

0

∫
Rd

ρ ∂tφ dxdt.

It remains to pass to the limit ε → 0 in the right hand side in (6.13). We show that the first line in the right
hand side in (6.13) goes to zero when ε → 0. Indeed, by Hölder inequality, we have for p > 1, q > 1 satisfying
1
p + 1

q = 1,

∣∣∣∣ε
∫

Rd

∫
Rd

fε(0) ψ(0) ω dvdx
∣∣∣∣ ≤ ε

∫
Rd

∫
Rd

|fε(0) χ · ∇xφ(0) ω| dvdx

≤ ε ||f0 ω
p−1

p ||p ||χ · ∇xφ(0) ω
q−1

q ||q
≤ ε ||f0||Y p

ω
||χ · ∇xφ(0)||Y q

ω
. (6.14)

Since f0 ∈ Y p
ω (R2d), and since by Lemma 5.2, for 1 < q < β−d

4 , χ ∈ Y q
ω (R2d), we deduce from (6.14) that

ε

∫
Rd

∫
Rd

fε(0) ψ(0) ω dvdx −→ 0, when ε→ 0.
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Similarly for 1 < q < β−d
4 and by Hölder inequality, we obtain for (p, q) satisfying 1

p + 1
q = 1,

∣∣∣∣ε
∫ ∞

0

∫
Rd

∫
Rd

fε ∂tψ ω dvdxdt
∣∣∣∣ ≤ ε

∫ ∞

0

∫
Rd

∫
Rd

|fε ∂tψ ω| dvdxdt

≤ ε

∫ ∞

0

||fε||Y p
ω
||χ · ∇x(∂tφ)||Y q

ω
dt

−→ 0 as ε→ 0.

The last integral in (6.13) becomes∫ ∞

0

∫
Rd

∫
Rd

fε v · ∇xψ ω dvdxdt =
∫ ∞

0

∫
Rd

∫
Rd

fε (v ⊗ χ : D2φ) ω dvdxdt, (6.15)

denoting A : B = tr(ABT ) =
∑d

i,j=1 AijBij for two d× d matrices A and B.
Take 1 < q < β−d

4 , by Lemma 5.2, v ⊗ χ : D2φ ∈ Y q
ω , then for p satisfying 1

p + 1
q = 1,

Iε =
∫ ∞

0

〈fε; v ⊗ χ : D2φ〈Y p
ω ,Y q

ω
dt,

where 〈·, ·〉Y p
ω ,Y q

ω
denotes the duality bracket between Y p

ω and Y q
ω .

By taking the limit ε→ 0 we have

Iε −→
∫ ∞

0

〈
K ρ

ω
; v ⊗ χ : D2φ

〉
Y p

ω ,Y q
ω

dt

Note that this is possible since β > d+ 4 and that this argument degenerates for β = d+ 4.
Finally, combining all this limits we obtain

−K

∫
Rd

ρ(0) φ(0) dx = K

∫ ∞

0

∫
Rd

∂tφ ρ dxdt

+
∫ ∞

0

∫
Rd

∫
Rd

(v ⊗ χ : D2φ) ρ K dvdxdt,

which is nothing but the weak formulation of the drift-diffusion equation satisfied by ρ, with initial datum ρ0.
By uniqueness of the limit, the whole sequence fε converges. This concludes the proof. �
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