
ESAIM: M2AN 49 (2015) 257–273 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2014029 www.esaim-m2an.org

AN ANALYSIS OF FENG’S AND OTHER SYMMETRIC LOCAL ABSORBING
BOUNDARY CONDITIONS
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Abstract. With symmetric local absorbing boundary conditions for the Helmholtz equation scattering
problems can be solved on a truncated domain, where the outgoing radiation condition is approximated
by a Dirichlet-to-Neumann map with higher tangential derivatives on its outer boundary. Feng’s condi-
tions are symmetric local absorbing boundary conditions, which are based on an asymptotic expansion
of the coefficients of the exact Dirichlet-to-Neumann map for large radia of the circular outer boundary.
In this article we analyse the well-posedness of variational formulations with symmetric local absorbing
boundary conditions in general and show how the modelling error introduced by Feng’s conditions
depends on the radius of the truncated domain.
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1. Introduction

We consider the scattering of an incoming time-harmonic wave (time convention e−iωt) in two dimensions
by a bounded object, which is modelled by the Helmholtz equation with Sommerfeld radiation condition (see
e.g., [21] Chap. 1, [17] Chap. 3)

−Δu(x) − κ2(x)u(x) = 0, in R2\Ωc

∂nu(x) = 0, on ∂Ωc,

usc := u − uinc is outgoing,

(1.1)

where Ωc is a bounded subdomain corresponding to a rigid body in acoustic scattering, to a perfectly electric
conductor for the transverse magnetic (TM) mode and a perfectly magnetic conductor for the transverse electric
(TE) mode in electromagnetic scattering. Furthermore, the possibly complex wave-number κ ∈ L∞

loc(R
2) has a

real constant value k > 0 outside a disk of radius RC > 0, i.e., κ(x) = k for |x| > RC , and uinc ∈ C∞(R2). The
case that Ωc is empty corresponds to the electromagnetic scattering by dielectric or plasmonic objects, which is
the bounded subdomain where κ �= k. We choose the Neumann boundary condition on ∂Ωc only for simplicity,
the analysis in this article can be simply extended to other boundary conditions including impedance boundary
conditions.
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Several local absorbing boundary conditions (ABCs) have been proposed, that are applied on the outer
boundary Γ of a truncated domain Ω, which covers fully the scattering object. The ABCs applied to the scattered
field usc on Γ shall be mainly transparent only to an outwards radiation, why they are called transparent
boundary conditions, and shall have almost no spurious reflection, why they are synonymously called non-
reflecting boundary conditions. See e.g., Givoli [16] for an overview of ABCs. In general, these local ABCs are
derived using an ansatz with separation of variables in a local coordinate system, which makes it necessary to
use simple shapes like circles or ellipses for the artificial boundary Γ . Using the (outwards) normal derivative
∂n and tangential derivatives ∂τ on Γ the symmetric local absorbing boundary conditions were introduced in
equation 3.14 of [19] as

(∂nusc
J )(x) +

J∑
j=0

(−1)jaj(k) (∂2j
τ usc

J )(x) = 0, on Γ, (1.2)

where J ∈ N0 corresponds to the order of the highest tangential derivative and aj(k) are coefficients depending
on the choice of the boundary condition. The following ABCs belong to the class of symmetric local ABCs:
Feng’s conditions to any order [13], those by Givoli, Patlashenko and Keller [19] to any order as well as the first
two Bayliss–Gunzburger–Turkel (BGT) conditions [5] and the first two Engquist−Majda conditions [10]. For
J = 1 these conditions are also known as Wentzell conditions [3, 9, 11, 12, 29, 30], see also [6] for the Laplacian
and a1 < 0. The above mentioned local ABC are constructed to have a convergence of the modelling error, i.e.,
the difference to the solution with exact Sommerfeld radiation condition, either in the order J , in the radius R
or in both. Those convergence results have been mostly observed only numerically. There is a rigorous proof for
the convergence in R for the Poisson problem in 2D (κ = 0) and Dirichlet boundary condition on ∂Ωc by Bao
and Han [4] (see also [20]). To our knowledge there is no rigorous proof for convergence in R for any ABC for
the Helmholtz equations.

Symmetric local ABCs are well suited to be incorporated into a variational formulation, where auxiliary
unknowns are not needed. In contrast to the symmetric local ABCs, the BGT conditions and Engquist−Majda
conditions of order three and higher involve the inverse of a partial differential operator. In [19] the possibility
that the formulation for the indefinite Helmholtz equation with symmetric local ABCs might be instable was
noted, but it was not analysed further.

As the symmetric local ABCs involve high-order operators on the boundary Γ , the variational formulation
requires more regularity of the trace of trial and test functions on Γ than classical formulations used to solve
Helmholtz equations. Together with a classical C0 continuous finite element (FEM) discretisation [7] these
local ABCs can be used directly with an approach adopted from discontinuous Galerkin FEM, see [27], or by
using trial and test functions with C(J−1)-continuity along Γ [18, 19] (for the latter see a combined proof of
discretisation and modelling error in [4]).

Feng’s conditions are derived for a circular boundary Γ of radius R, where the coefficients aj arise from
an asymptotic expansion of the coefficients of the exact Dirichlet-to-Neumann boundary conditions ([21],
Eq. (3.2.4)) for large R. This article is dedicated to the analysis of the well-posedness of the symmetric lo-
cal ABCs, the regularity of the solution (both in Sect. 2) as well as the modelling error for Feng’s conditions in
dependence of R (Sect. 3). Numerical experiments in Section 4 confirm that the bounds on the error are sharp.

2. Symmetric local absorbing boundary conditions

In this section, we recall the expression of Feng local absorbing boundary conditions in terms of differential
operators acting on the outer boundary Γ of the computational domain Ω (see Fig. 1). The outer boundary Γ
is assumed to be C∞ such that continuous (outer) normal and tangential unit vectors en can be defined. Then,
we define the normal and tangential derivatives as

(∂nv)(x) := ∇v(x) · en(x), (∂τv)(x) := ∇v(x) · eτ (x),
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Figure 1. The geometrical setting for the (a) acoustic scattering on a rigid cylinder of radius
RD = 1, and (b) for the electromagnetic scatting on two cylinders with equilateral triangles as
cross-section of length a = 1.05 and distance d = 0.25. The error is measured in Ω0, the (a)
ring or (b) disk of fixed outer radius R0 (blue), while the (outer) radius R of Ω varies for the
convergence analysis of the modelling error of the local DtN boundary conditions.

where for a circle of radius R > RC with origin as mid-point we have en(x) = x/|x| and eτ (x) = (−x2, x1)�/|x|
and (∂nv)(x) = ∂rv(x(r, θ)), (∂τv)(x) = R−1 ∂θv(x(r, θ)).

2.1. Definition of symmetric local absorbing boundary conditions

We write the Helmholtz equation with symmetric local absorbing boundary conditions on Γ (see e.g. [19],
Eq. (3.14)) as

−ΔuJ(x) − κ2(x)uJ (x) = 0, in Ω (2.1a)

∂nuJ(x) = 0, on ∂Ω\Γ, (2.1b)

uJ(x) − usc
J (x) − uinc(x) = 0, in Ω (2.1c)

(∂ru
sc
J )(x) +

J∑
j=0

(−1)jaj(k, R) (∂2j
τ usc

J )(x) = 0, on Γ. (2.1d)

In a forthcoming article [27] it will be shown, that Feng’s local absorbing boundary conditions can be dis-
cretised without introducing any auxiliary variables. Moreover, the resulting linear system is symmetric, which
limits the computational cost of the inversion step.

For the conditions by Feng of order N ∈ N0, abbreviated by Feng-N , the order of the highest derivative
J = �N/2�, where the coefficients aj(k, R) take the form

aj(k, R) = k1−2jαN
j

(
(kR)−1

)
. (2.2)

Here, αN
j are polynomials of order N − 2j, which are given for N = 0, . . . , 5 in Table 1. Note, that Feng-0 is

also known as the “Sommerfeld-like” condition ([17], Chap. 3) and Feng-1 is equivalent to the BGT-1, the first
condition by Bayliss, Gunzberger and Turkel [5].
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Table 1. Polynomials αN
j in (2.2) for Feng’s conditions for order N = 0, . . . , 5, where y = (kR)−1.

N αN
0 (y) αN

1 (y) αN
2 (y)

0 −i

1 −i +
y

2

2 −i +
y

2
− i

8
y2 i

2

3 −i +
y

2
− i

8
y2 − y3

8

i

2
− y

2

4 −i +
y

2
− i

8
y2 − y3

8
+

25i

128
y4 i

2
− y

2
− 13i

16
y2 i

8

5 −i +
y

2
− i

8
y2 − y3

8
+

25i

128
y4 +

13

32
y5 i

2
− y

2
− 13i

16
y2 − 7

4
y3 i

8
+

y

2

2.2. Variational formulation

For the variational formulation we define the Sobolev spaces

V0 := H1(Ω), VJ := H1(Ω) ∩ HJ(Γ ), J > 0,

where V0 is equipped with the usual H1(Ω)-norm and VJ with the norm defined by

‖v‖2
VJ

:= ‖v‖2
H1(Ω) +

J∑
j=1

|v|2Hj(Γ ).

Then, we can state the variational formulation of (2.1): Seek uJ ∈ VJ such that

aJ(uJ , v) = 〈fJ , v〉 , ∀ v ∈ VJ , (2.3)

where

aJ(u, v) :=
∫

Ω

(∇u · ∇v − κ2uv
)

dx +
J∑

j=0

aj

∫
Γ

∂j
τu ∂j

τv dσ(x),

〈fJ , v〉 :=
∫

Γ

(
∂ru

incv +
J∑

j=0

aj∂
j
τuinc ∂j

τv
)
dσ(x)

Lemma 2.1. Let |Im(aJ)| > 0 or Re(aJ ) > 0. Then, the bilinear form a0,J defined by

a0,J (u, v) :=
∫

Ω

(∇u · ∇v + uv) dx

+
J−1∑
j=0

∫
Γ

∂j
τu∂j

τv dσ(x) + aJ

∫
Γ

∂J
τ u∂J

τ v dσ(x),
(2.4)

is VJ -elliptic.

Proof. By the assumption on aJ there exists a constant θ ∈ (− π
2 , π

2

)
such that aJ = |aJ | e2iθ. Then,

Re
(
e−iθa0,J(v, v)

)
= cos(θ)

(
‖v‖2

VJ−1
+ ‖v‖2

L2(Γ ) + |aJ ||v|2HJ (Γ )

)
≥ γ ‖v‖2

VJ
,

where γ := cos(θ)min(1, |aJ |) > 0 by the assumption on aJ . This is exactly the statement of the lemma.
(see [26], Eq. (2.43)). �
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Corollary 2.2. For Feng’s conditions of order N = 0, . . . , 5 the bilinear forms a0,J , J = �N/2� are VJ -elliptic.

Proof. For any y ∈ R+ it holds ImαN
0 (y) = −1 for N = 0, 1, Im αN

1 (y) = 1
2 for N = 2, 3 and Im αN

2 (y) = 1
8 for

N = 4, 5. Applying Lemma 2.1 completes the proof. �

Theorem 2.3. Let the assumption of Lemma 2.1 be satisfied and let zero be the only solution of (2.3) with
uinc = 0 (and so fJ = 0). Then, for any fJ ∈ V ′

J there exists a unique solution uJ ∈ VJ of (2.3) and a constant
CJ > 0 such that

‖uJ‖VJ ≤ CJ‖fJ‖V ′
J
.

Proof. By Lemma 2.1 the bilinear form a0,J is VJ -elliptic and so the associated operators A0,J are isomorphism
in VJ . We define the Sobolev spaces

W0 := L2(Ω), WJ := L2(Ω) ∩ HJ−1(Γ ), J > 0,

and the Rellich−Kondrachov compactness Theorem ([2], Chap. 6) implies that the embedding VJ ⊂⊂ WJ is
compact. Now, we define the bilinear forms

kJ(u, v) := −
∫

Ω

(κ2 + 1)uv dx +
J−1∑
j=0

(aj − 1)
∫

Γ

∂j
τu∂j

τv dσ(x), J > 0,

and their associated operators KJ are compact perturbations of A0,J . Hence, the operators A0,J +KJ associated
to the bilinear forms aJ = a0,J +kJ are Fredholm with index 0 and by the Fredholm alternative ([26], Sect. 2.1.4)
the uniqueness of a solution of (2.3) implies its existence and continuous dependence on the right hand side. As
uniqueness holds by assumption we assert the statement of the theorem. �

Lemma 2.4. Let infx∈Ω Im(κ2) ≥ 0, Im(a0) < 0 and Im(aj) ≤ 0, 1 ≤ j ≤ J . Then, the variational formula-
tion (2.3) has a unique solution uJ ∈ H1(Ω).

Proof. By Theorem 2.3 it is enough to show uniqueness, for which we assume uinc = 0 and so uJ = usc
J in the

following. Then, inserting v = uJ into (2.3) and taking the imaginary part we obtain

0 = −
∫

Ω

Im(κ2)|uJ |2 dx +
J∑

j=0

Im(aj)|uJ |2Hj(Γ ).

By the assumption of the lemma the right hand side is a sum of non-positive terms and the equality holds only
if they vanish all to zero. As the imaginary part of a0 is negative we can assert that ‖uJ‖L2(Γ ) = 0 and so
uJ = 0 on Γ . In view of (2.1d) we have ∂ruJ = 0 on Γ . Now, we can extend uJ in a exterior neighbourhood
of Γ . Let Ω̃ be a Lipschitz domain such that Ω � Ω̃. In Ω̃\Ω we define uJ = 0 such that uJ and ∂ruJ are
continuous over Γ . Furthermore, we let κ = k in Ω̃\Ω. In this way uJ is solution of

−ΔuJ(x) − κ2(x)uJ (x) = 0, in Ω̃.

If Ω̃ is simply connected we can conclude with the unique continuation principle ([23], Chap. 4.3) that uJ = 0 in
Ω as well. If Ω̃ is not simply connected we can find a finite covering of overlapping simply connected panels Ωk,
where the ordering is such that Ω0∩ Ω̃ �= ∅ and Ωk∩Ωk+1 �= ∅ for all k. Then, we apply the unique continuation
principle after each other to Ωk, k = 0, 1, . . . and conclude eventually in uJ = 0 in Ω. This completes the
proof. �

Corollary 2.5. Let infx∈Ω Im(κ2) ≥ 0. Then, the variational formulation (2.3) with Feng’s conditions of order
N = 0, 1 has a unique solution in H1(Ω).

The related eigenvalue problem is a perturbation of a linear one in ω2, and we can use for N > 1 the following.
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Lemma 2.6. Let the assumption of Lemma 2.1 be satisfied, let aj(k), j = 0, 1, . . . , J , J > 0 be analytic
for k ∈ R+, where there exist numbers aj,� ∈ C such that aj(k) = k1−2j

∑2(J−j)
�=0 aj,�k

−�, Re (a0,1) > 0 or
|Im (a0,1)| > 0, and Re (aJ(k)) > 0 or |Im (aJ(k))| > 0 for any k ∈ R+. Furthermore, let c−1 ∈ L∞

loc(R
2) be

fixed with c(x) = c0 > 0 for |x| > RC and κ(x) = ω/c(x) with the frequency ω ∈ R+. Then, (2.3) has a unique
solution except for a possibly infinite set of isolated values ω, the spurious eigenfrequencies, which accumulates
only at infinity.

Proof. We regard the eigenvalue problem related to (2.3) in a fixed point form. For this we define

a0,J(u, v; ω̃) :=
∫

Ω

∇u · ∇v + uv dx +
J−1∑
j=0

∫
Γ

∂j
τu∂j

τv dσ(x) + aJ(ω̃/c0)
∫

Γ

∂J
τ u∂J

τ v dσ(x),

kJ(u, v; ω̃) := −
∫

Ω

(
ω̃2

c2(x)
+ 1

)
uv dx +

J−1∑
j=0

(aj(ω̃/c0) − 1)
∫

Γ

∂J
τ u∂J

τ v dσ(x),

where ω̃ ∈ R+ acts as a parameter. Hence, we can rewrite the eigenvalue problem (2.3) with fJ = 0 as: Find
(uJ , ω) ∈ VJ × R+ such that

a0,J(uJ , v; ω) + kJ(uJ , v; ω) = 0, ∀v ∈ VJ . (2.5)

In its fix-point form

a0,J(uJ , v; ω̃) +
ω2

ω̃2
kJ(uJ , v; ω̃) = 0, (2.6)

it is a linear eigenvalue problem in ω2. The operator valued function A0,J (ω̃) related to a0,J(·, ·; ω̃) is by
assumption on aJ an isomorphism and the operator valued function KJ(ω̃) related to kJ(·, ·; ω̃) is compact,
both for any ω̃ ∈ R+ and in the limit ω̃ → ∞. By the Fredholm–Riesz–Schauder theory ([26], Sect. 2.1.4) we
have for each ω̃ ∈ R+ a countable set of frequencies ωm(ω̃) ∈ C, m ∈ N, which accumulates only at infinity.
As the eigenvalue problem depends for ω̃ > 0 analytically on ω̃, we can find an ordering such that ωm(ω̃) are
analytic functions. The original problem has spurious eigenfrequencies for ω = ω̃, this is where a curve ωm(ω̃)
meets the linear curve ωc(ω̃) = ω̃. Due to its analyticity a curve ωm(ω̃) can only meet ωc(ω̃) in a countable set
of values ω̃ or ωm(ω̃) = ωc(ω̃) for all ω̃ ∈ R+. If the latter would be true, then a (non-trivial) eigenfunction
u = uJ would exists in the limit ω̃ = ω → 0. We will show that this is not true.

Multiplying (2.5) with v = u, and using for a simpler writing the abbreviation k = ω/c0 we find

|u|2H1(Ω) − k2c2
0

〈
c−2u, u

〉
+

J∑
j=0

k1−2j

2(J−j)∑
�=0

aj,�k
−�|u|Hj(Γ ) = 0. (2.7)

We normalise the eigenfunction u, such that ‖u‖VJ = 1, and so all the terms |u|2H1(Ω), c2
0

〈
c−2u, u

〉
, |u|Hj(Γ ),

j = 0, . . . , J are bounded. In (2.7) there are terms with negative powers in k, i.e., these terms may tend to
infinity for k → 0. If u is eigensolution of (2.7) for k → 0, then all terms in k−m, m = 1, . . . , 2J − 1 have to be
zero in sum, i.e., for m = 1, . . . , 2J − 1 it holds

�m+1
2 �∑

j=0

aj,m+1−2j|u|2Hj(Γ ) = 0. (2.8)

We can regard (2.8) as system of (2J − 1) · 2 linear equations (real and complex part) for J + 1 real variables
|u|2Hj(Γ ), j = 0, . . . , J . If this system has no solution except the trivial one, u = 0, then our assumption ‖u‖VJ = 1
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was false. Otherwise, (2.7) simplifies in the limit k → 0 to

|u|2H1(Ω) + a0,1‖u‖2
L2(Γ ) = 0, (2.9)

and with the assumption on a0,1 it follows similarly to the proof of Lemma 2.1 that there is only a trivial
solution u = 0. Hence, we have ωm(ω̃) = ω̃ only for isolated values of ω̃, and the proof is complete. �

In the limit R → ∞ Feng’s conditions of any order N converge to that of order 0, for which the problem is
well-posed for all frequencies except for ω = 0, and so Feng’s conditions provide a unique solution if the domain
is large enough. This is formulated in the following lemma, whose proof will be given in Appendix.

Lemma 2.7. Let infx∈Ω Im(κ2) ≥ 0, limR→∞ a0 = −ik, limR→∞ R−2j |Im aj | = 0, j = 1, . . . , J , J > 0. Then,
there exists a number Runique > 0 such that for any R > Runique the variational formulation (2.3) has a unique
solution in H1(Ω).

As the outer boundary Γ is analytic and the coefficients αj are scalar, hence analytic, we can assert the
following

Lemma 2.8. Let uJ ∈ VJ be solution of (2.3). Then, uJ ∈ Hj(Γ ) for any j ∈ N.

Proof. As the incoming field uinc is assumed to be C∞, it is enough to show the regularity statement for the
scattered field usc

J ∈ HJ(Γ ). The proof is by induction in k ∈ N0, in particular we show that usc
J ∈ HJ+k(Γ )

implies usc
J ∈ HJ+k+2(Γ ). By the elliptic regularity theory ([24], Thm. 4.18) we have usc

J ∈ HJ+1/2+k(ΩΓ ) for a
neighbourhood ΩΓ ⊂ Ω of Γ and so ∂ru

sc
J ∈ HJ−1/2+k(Γ ). We rewrite (2.1d) as

(−1)JaJ ∂2J
τ usc

J = ∂ru
sc
J −

J−1∑
j=0

(−1)jaj ∂2j
τ usc

J ∈ H2−J+k(Γ ),

and so by the elliptic shift theorem usc
J ∈ HJ+k+2(Γ ). This completes the proof. �

3. Absorbing boundary conditions by Feng

3.1. Introduction

The absorbing boundary conditions by Feng [13] origins from an asymptotic expansion of the exact Dirichlet-
to-Neumann (DtN) boundary conditions. The exact scattered field usc := u − uinc fulfills

(∂ru
sc)(x) =

∑
n∈Z

λn(k, R) einθ(x)ûsc
n , (3.1)

where ûsc
n = 1

2πR

∫
Γ

usc(x)e−inθ(x) dσ(x) is the nth Fourier component of the Dirichlet trace usc on Γ , and with
the Hankel functions H

(1)
n , see [1], page 363ff, the DtN coefficients are defined by

λn(k, R) := k
H

(1)
n

′(kR)

H
(1)
n (kR)

·

Since the nth Hankel function tends for R → ∞ to
√

2
πkR ei(kR−nπ/2−π/4) the scattered field satisfies the

Sommerfeld radiation condition ([21], Chap. 1). The exact DtN boundary conditions (3.1) are non-local as they
include within ûsc

n integrals of the Dirichlet trace.
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In the following we are going to derive Feng’s conditions for the sake of completeness and write them for the
error analysis in the same form as (3.1), but with different coefficients. We start with the asymptotic expansion
of the Hankel functions for large arguments

H(1)
n (kR) =

√
2

πkR
ei(kR−( n

2 + 1
4 )π)

∞∑
m=0

(
i

2kR

)m
pm(n2)

m!
,

where pm(μ) is the polynomial of degree m in n2 ([1], 9.2.7–10) given by

pm(n2) = (4n2 − 1)(4n2 − 3) . . . (4n2 − 2m − 1)︸ ︷︷ ︸
m terms

.

This asymptotic expansion is used to derive an asymptotic expansion of the coefficient λn(k, R) of the exact
DtN boundary

λn(k, R) ∼ ik
∞∑

m=0

(
i

2kR

)m

am(n2), (3.2)

where “∼” indicates that it may not be a convergent series for m → ∞, but the equality holds asymptotically
for R → ∞. More precisely, for any n there exists a monotonously increasing function Rmin(n) such that for
R > Rmin(n) the series in (3.2) converges to λn(k, R). The functions am in (3.2) are polynomials of degree �m

2 �
which are defined recursively by

a0(n2) = a1(n2) = 1, a2(n2) = 2n2 − 1
2 , ak(n2) = (2k − 2)(n, k − 1) −

k−1∑
�=2

a�(n2)(n, k − �),

where the function (n, k) is given by (n, k) = 1
k!

∏k
�=1

(
n2 − (

2�−1
2

)2
)
.

In the expression of the exact DtN boundary condition (3.1) the coefficient λn(k, R) is multiplied by einθ. As
am are polynomials in n2 we can assert the equality

am

(
n2

)
einθ = am

(−∂2
θ

)
einθ.

Using this equality, inserting the asymptotic expansion (3.2) of λn(k, R) into the exact DtN boundary condi-
tion (3.1) and as am(−∂2

θ ) we obtain

∂ru
sc(x) ∼ ik

∞∑
m=0

(
i

2kR

)m

am

(−∂2
θ

)∑
n∈Z

ûsc
n einθ

∼ ik
∞∑

m=0

(
i

2kR

)m

am

(−∂2
θ

)
usc(x(r, θ)),

∼ ik
∞∑

m=0

(
i

2kR

)m

am

(−R2∂2
τ

)
usc(x). (3.3)

Truncating the sum at m = N we obtain conditions by Feng of order N ,

∂ru
sc
F,N(x) = ik

N∑
m=0

(
i

2kR

)m

am

(−R2∂2
τ

)
usc

F,N(x) =: (FN (R)usc
F,N )(x), (3.4)
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Table 2. The DtN operators FN (R) for Feng’s conditions for N = 0, 1, . . . , 5.

F0(R) := ik,

F1(R) := ik − 1

2R
,

F2(R) :=

(
ik − 1

2R
+

i

8kR2

)
+

i

2k
∂2

τ ,

F3(R) :=

(
ik − 1

2R
+

i

8kR2
+

1

8k2R3

)
+

(
i

2k
− 1

2k2R

)
∂2

τ ,

F4(R) := F3(R) − 25i

128k3R4
− 13i

16k3R2
∂2

τ − i

8k3
∂4

τ ,

F5(R) := F4(R) − 13

32k4R5
− 7

4k4R3
∂2

τ − 1

2k4R
∂4

τ .

which compromise tangential derivatives of degree 2, 4, . . . , 2�N/2�, but no integrals like in (3.1), and are, hence,
local. The operators FN (R) for Feng’s conditions up to order 5 are given in Table 2. For the analysis we will
need an equivalent expression for (3.4)

∂ru
sc
F,N(x) =

∑
n∈Z

λN
n (k, R) einθ(x)ûsc

F,N(x), (3.5)

with

λN
n (k, R) := ik

N∑
m=0

(
i

2kR

)m

am(n2).

Comparing the definition of the exact and the approximative DtN coefficients we find that asymptotically for
kR → ∞ ∣∣λN

n (k, R) − λn(k, R)
∣∣ ≤ CN (n) k(kR)−(N+1), (3.6)

where the constants CN (n) = On→∞(n2�N/2�) do not depend on R or k.

3.2. Approximative “no reflection”

Whenever an absorbing boundary condition, often alternatively called non-reflecting, is introduced, which
approximate the exact outgoing behaviour of the solution, the approximative solution has an inwards radiating
contribution, which can be interpreted as reflection on the artificial boundary Γ .

Therefore, the approximative solution in the part of Ω with homogeneous material, i.e., for RC < r ≤ R, can
be written as sum of outwards and inwards radiating Hankel functions H

(1)
n and H

(2)
n , respectively,

usc
F,N(x) =

∑
n∈Z

(
aN

n H(1)
n (kr(x)) + bN

n H(2)
n (kr(x))

)
einθ(x).

The coefficients bN
n correspond to the “reflected” contribution, and we may ask ourself when the ratio bN

n /aN
n

of the coefficients of the inwards and the outwards radiating contribution gets smaller.
Now, taking the normal derivative on Γ and using the equality (3.5) we obtain

∂ru
sc
F,N(x) =

∑
n∈Z

k
(
aN

n H(1)
n

′(kR) + bN
n H(2)

n
′(kR)

)
einθ(x) (3.7)

=
∑
n∈Z

λN
n (k, R)

(
aN

n H(1)
n (kR) + bN

n H(2)
n (kR)

)
einθ(x), (3.8)
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which is a condition to relate aN
n and bN

n

aN
n

(
kH(1)

n
′(kR) − λN

n (k, R)H(1)
n (kR)

)
= −bN

n

(
kH(2)

n
′(kR) − λN

n (k, R)H(2)
n (kR)

)
.

Hence, we find that the ratio between the inwards and the outwards radiating contributions

bN
n

aN
n

= −kH
(1)
n

′(kR) − λN
n (k, R)H(1)

n (kR)

kH
(2)
n

′(kR) − λN
n (k, R)H(2)

n (kR)

=
λN

n (k, R) − λn(k, R)

(H(1)
n (kR))−1

(
kH

(2)
n

′(kR) − λN
n (k, R)H(2)

n (kR)
) := −EN

n (k, R) (3.9)

gets the smaller the better λN
n (k, R) approximates λn(k, R). The term kH

(2)
n

′(kR) − λN
n (k, R)H(2)

n (kR) in the
denominator in the expression of the “non-reflectance efficiency” EN

n (k, R) in (3.9) would tend to zero for
R → ∞ if Feng’s conditions would be approximations to an exact “inwards radiation condition”, which they
are simply not. Therefore, the denominator tends to a constant expresses how accurate inwards radiating waves
satisfy Feng’s conditions. Hence, using (3.6) we can bound the “non-reflectance efficiency” asymptotically for
R → ∞ by

|EN
n (k, R)| ≤ CN (n) (kR)−(N+1), (3.10)

where CN (n) are constants independent of R and k. As limn→∞ |EN
n (k, R)| = 1 we have CN (n) = On→∞(1).

3.3. Error analysis

By the truncation of the asymptotic expansion (3.3) of the exact DtN boundary condition at order N we
introduce on its right hand side an error of RN+1. It is not straightforward to deduce what is the order of the
error in R of the scattered field inside the computational domain Ω, i.e., with a constant which does not depend
on R. The reason is that R is not only a parameter in the asymptotic expansion (3.2) of the coefficient of the
exact DtN boundary condition, but it is also the radius of Ω. To overcome this problem we will study the error
in the subdomain Ω0 of constant radius R0 and with outer boundary Γ0.

Note, that we cannot rely on the Lax–Milgram lemma and continuity and ellipticity constants of the bilinear
form, which are independent of R, like in error analysis in [4] for the Poisson problem with Dirichlet boundary
conditions on ∂Ωc. The idea of our proof, where as a key element the ABC is formulated on a a subdomain Ω0,
may used to obtain rigorous proofs for other type of ABCs.

The normal derivative of the solution usc
F,N due to Feng’s conditions on Γ0 can be expressed using the

representation (3.7) and EN
n (k, R) defined in (3.9) as

∂ru
sc
F,N (x)

∣∣
Γ0

=
∑
n∈Z

kaN
n

(
H(1)′(kR0) − EN

n (k, R)H(2)
n

′(kR0)
)

einθ(x),

=
∑
n∈Z

λN
n (k, R0, R) einθ(x)ûsc

F,N,n(R0) =: (FN (R0, R)usc
F,N)(x) , (3.11)

where the coefficients of the DtN operator FN (R0, R)

λN
n (k, R0, R) := k

H
(1)
n

′(kR0) − EN
n (k, R)H(2)

n
′(kR0)

H
(1)
n (kR0) − EN

n (k, R)H(2)
n (kR0)

= λn(k, R0)

1 − EN
n (k, R)

H
(2)
n

′(kR0)

H
(1)
n

′(kR0)

1 − EN
n (k, R)

H
(2)
n (kR0)

H
(1)
n (kR0)

(3.12)
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tends to the exact DtN coefficients λn(k, R0) if EN
n (k, R) → 0, hence, if R → ∞. The solution usc

F,N due to
Feng’s conditions on the outer boundary Γ of the domain of radius R can be written as solution of the same
Helmholtz equation in Ω0 with the DtN boundary condition (3.11) on its outer boundary Γ0 at r = R0. The
problem in Ω0 is related to a Fredholm operator.

Using the problem in Ω0 we can compare the solution for different radia R of the computational domain Ω
on the sub-domain Ω0. The dependence of the solution on R is expressed in the DtN coefficients λN

n (k, R0, R).
We can write

λn(k, R0) − λN
n (k, R0, R) = λn(k, R0)

⎛
⎜⎜⎜⎜⎝1 −

1 − EN
n (k, R)

H
(2)
n

′(kR0)

H
(1)
n

′(kR0)

1 − EN
n (k, R)

H
(2)
n (kR0)

H
(1)
n (kR0)

⎞
⎟⎟⎟⎟⎠

= EN
n (k, R)λn(k, R0)

H
(2)
n (kR0)

H
(1)
n (kR0)

− H
(2)
n

′(kR0)

H
(1)
n

′(kR0)

1 − EN
n (k, R)

H
(2)
n (kR0)

H
(1)
n (kR0)

· (3.13)

Note, that due to |H(2)
n (kR0)| = |H(1)

n (kR0)| the denominator in (3.13) cannot become zero if |EN
n (k, R)| < 1,

which is fulfilled if R is large enough, EN
n (k, R) → 0 for R → ∞ as uniformly in n. The nominator in (3.13) can

also not become zero, as H
(2)
n (kR0)H

(1)
n

′(kR0) − H
(2)
n

′(kR0)H
(1)
n (kR0) = 4i/(πR0) �= 0 (see [1], 9.1.16, 9.1.27).

Hence, as the EN
n (k, R) → 0 for R → ∞, we have in view of (3.10) asymptotically for R → ∞ the estimate

|λn(k, R0) − λN
n (k, R0, R)| ≤ CN (n, R0) k(kR)−(N+1), (3.14)

where the constants CN (n, R0) do not depend on R or k. The behaviour of CN (n, R0) for n → ∞, and so
to follow the mapping property of the difference of the exact DtN operator F∞(R0) and FN (R0, R) on Γ0, is
not straightforward to see. We will see, however, that these mapping property is not essential to prove the
convergence of the modelling error. This is the main result of the error analysis, which we state in the following
theorem. As we aim in explicit dependence of R, but not of k, all constants depend in the following on k except
where otherwise specified.

Theorem 3.1. Let uF,N := usc
F,N + uinc the unique solution of (2.1) in Ω with Feng’s conditions of order N

on Γ and let eF,N := uF,N − u = usc
F,N − usc. Then, for any R0 > RC fixed and S0 := BR0\BRC it holds with a

constant CN = CN (k, R0) independent of R that

‖eF,N‖H1(Ω0) ≤ CN R−(N+1)‖uinc‖H1(S0).

The constant CN is not bounded for N → ∞ due to the fact that the local ABCs by Feng are based on
an asymptotic expansion of the Hankel functions. This asymptotic expansion is not convergent for fixed R and
N → ∞. Increasing the order from N to N + 1 results in a reduction of the modelling error only if the domain
radius R is large enough (cf. the results of numerical experiments in Sect. 4).

For the proof of Theorem 3.1 we need the following.

Lemma 3.2. Let uF,N := usc
F,N + uinc the unique solution of (2.1) in Ω with Feng’s conditions of order N on

Γ . Then, for any R0 > RC fixed it holds with a constant CN = CN (k, R0) independent of R that

‖∂ru
sc
F,N‖H−1/2(Γ0) + ‖usc

F,N‖H1/2(Γ0) ≤ CN (R0)‖uinc‖H1(S0).
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Proof of Theorem 3.1. It is easy to see that the exact solution u is solution of the Helmholtz equation in Ω0

with exact DtN boundary conditions (3.1) on r = R0, where R is replaced by R0,

∂ru
sc(x)

∣∣
Γ0

=
∑
n∈Z

λn(k, R0) einθûsc
n (R0) =: (F∞(R0)usc)(x) , (3.15)

and where ûsc
n (R0) = (2πR0)−1

∫
Γ0

usc(x)e−inθ(x) dσ(x). Here, we denote F∞(R0) the exact DtN operator on
r = R0.

As uF,N is solution of the Helmholtz equation in Ω0 with (3.11) on r = R0, the modelling error eF,N satisfies

−ΔeF,N(x) − κ2(x)eF,N = 0, in Ω0,

∂neF,N(x) = 0, on ∂Ω0\Γ0,

(∂reF,N)(x) − (F∞(R0)eF,N )(x) = (FN (R0, R) − F∞(R0))usc
F,N on Γ0.

(3.16)

The system (3.16) is with exact DtN boundary conditions at Γ0 and admits a unique solution. Since (3.16) is
stated on a fixed domain Ω0 and only the left hand side of the boundary condition does not depend on R we
can assert

‖eF,N‖H1(Ω0) ≤ CN (R0) ‖(FN (R0, R) − F∞(R0))usc
F,N )‖H−1/2(Γ0)

≤ CN (R0) ‖∂ru
sc
F,N − F∞(R0)usc

F,N )‖H−1/2(Γ0) ≤ CN (R0)‖uinc‖H1(S0).

where we used the definition of FN (R0, R), that F∞(R0) is continuous from H
1/2(Γ0) to H−1/2(Γ0), the

triangle inequality and Lemma 3.2. In this estimate we applied FN (R0, R) − F∞(R0) only to the function
usc

F,N , which possess some higher regularity. The estimate is an upper bound in terms of R. As the coefficients
λN

n (k, R0, R) − λn(k, R0) of FN (R0, R) − F∞(R0) are bounded by R−(N+1), see (3.14), for any n ∈ Z, the
statement of the theorem follows. �

It remains to show that the Dirichlet and Neumann traces of usc
F,N on Γ0 are bounded independently of R.

Proof of Lemma 3.2. First, we are going to derive an alternative formulation in Ω. In the original variational
formulation (2.3) the incoming wave appears in an integral on Γ , whose locus depends on R. To obtain an
estimate which is independent on R we use an equivalent formulation for a linear combination uaux

F,N of the total
and the scattered field. More precisely, we define

uaux
F,N (x) := uF,N(x) − (1 − χ(x))uinc(x) = usc

F,N(x) + χ(x)uinc(x),

where χ(x) is a smooth and monotone cut-off function, which is 1 for |x| < RC + δ and 0 for |x| > R0 − δ for
some δ > 0. Hence, uaux

F,N(x) = uF,N (x) for |x| < RC + δ, which fulfills the Helmholtz equation in Ω ∩ BRC+δ.
For |x| ≥ RC + δ the total, the incoming and the scattered field satisfy the Helmholt equation with κ(x) = k,
and so uaux

F,N . Furthermore, uaux
F,N(x) = usc

F,N(x) for r > R0 − δ, so Feng’s condition on Γ applies directly to uaux
F,N .

Now, the variational formulation reads: Seek uaux
F,N ∈ V�N/2� such that

a�N/2�(uaux
F,N , v) =

∫
S0

(∇(χuinc) · ∇v − k2χuincv
)

dσ(x), ∀v ∈ V�N/2�,

where the coefficients in a�N/2� are those from Feng’s conditions. The variational formulation has a unique
solution for R large enough by Lemma 2.7. Now, by assuming ∇χ ∈ L∞(S0) we can assert that

‖uaux
F,N‖H1(Ω) ≤ ‖uaux

F,N‖V�N/2� ≤ CN (R)‖uinc‖H1(S0),
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where the constants CN (R) depend on R. In the neighbourhood of Γ0 we have uaux
F,N = usc

F,N and so using the
trace theorems and the fact that Δuaux

F,N + k2uaux
F,N = 0 in S0,

‖usc
F,N‖H1/2(Γ0) ≤ C(R0)‖uaux

F,N‖H1(S0) ≤ CN (R, R0)‖uinc‖H1(S0),

‖∂ru
sc
F,N‖H−1/2(Γ0) ≤ C(R0)

(‖uaux
F,N‖H1(S0) + ‖Δuaux

F,N‖L2(S0)

)
= C(R0)

(‖uaux
F,N‖H1(S0) + k2‖uaux

F,N‖L2(S0)

)
≤ CN (R, R0)‖uinc‖H1(S0).

It remains to show that we can find constants CN (R0) such that CN (R, R0) ≤ CN (R0). As the coefficients
in the bilinear forms a�N/2� depend continuously on R the same holds for uaux

F,N and so CN (R, R0). Therefore,
we have only to show that CN (R, R0) tend to constants CN,∞(R0) for R → ∞.

With limR→∞ λN
k = ik, limR→∞ EN

n (k, R) → 0 we have limR→∞ λN
n (k, R0, R) = λn(k, R0). Hence, usc

F,N →
usc and so uaux

F,N → uaux := u− (1 − χ)uinc which solves in Ω0 the variational formulation: Seek uaux ∈ H1(Ω0)
such that ∫

Ω0

(∇uaux · ∇v − κ2uauxv
)

dx −
∑
n∈Z

λn(k, R0)
∫

Γ0

uauxe−inθ(x) dσ(x)
∫

Γ0

veinθ(x) dσ(x)

=
∫

S0

(∇(χuinc) · ∇v − k2χuincv
)

dσ(x), ∀v ∈ H1(Ω0).

This problem stated in a fixed domain with exact DtN boundary conditions is well-posed. So, we have with
constants C(R0) independent of R that

‖uaux‖H1(Ω0) ≤ C(R0)‖uinc‖H1(S0).

We can bound ‖usc‖H1/2(Γ0) and ‖∂ru
sc‖H−1/2(Γ0) by ‖uaux‖H1(Ω0), which implies the existence of CN,∞(R0) as

limit of CN (R, R0) for R → ∞.
This finishes the proof. �

4. Numerical experiments

We have implemented the discontinuous Galerkin formulation introduced in Schmidt, Diaz and Heier [27] for
the Feng-4 and Feng-5 conditions in the numerical C++ library Concepts [8,14,28], as well as Feng-0 till Feng-3
with the usual continuous formulations (compare [31] for implementational details related to BGT absorbing
boundary conditions). The hp-FEM part of Concepts is based on quadrilateral, curved cells in 2D where the
polynomial degree can be set independently in each cell and even anisotropically. With cells having circular
edges the circular boundary can be exactly resolved (see Fig. 2), where a geometry error appears only in the
numerical quadrature of the integrals.
For the numerical experiments we study two model problems:

A. the acoustic scattering on a rigid cylinder with circular cross-section, where the computational domain Ω is
the disk of radius R without the disk of radius RD = 1 (see Fig. 1a) and k = 1, and

B. the electromagnetic scattering on two dielectric cylinders, whose cross-section are equilateral triangles of
length a = 1.05 and distance d = 0.25 (see [22] and Fig. 1b). We have κ2(x) = ε(x)ω2 with the angular
frequency ω and the (relative) dielectricity ε(x), which is −40.2741 + 2.794i inside the cylinders and 1
outside, hence k = ω. We choose as frequency ω = 0.638 corresponding to a wave-length in the exterior
λ = 2π/k = 9.84.

For both model problems the incident wave is a plane wave in direction (1, 0)� (from left). For model problem
B the quadrilateral mesh is generated with gmsh 2.6.2 [15,25] where we use a local refinement close to the nodes
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Figure 2. Curvilinear, quadrilateral meshes for the scattering on a circular disk (model prob-
lem A.) and on plasmonic triangles (model problem B.) in Concepts.

of the triangles (see Fig. 2). We computed for both problems the error in a fixed domain Ω0 := Ω ∩ BR0 for
some R0, which we will specify for each experiment.

First we study the modelling error of Feng’s conditions up to order 5 on the model problem A. For this
we use a coarse mesh with a uniform polynomial degree up to 20 for the largest domain radius, such that a
discretisation error is negligible to the modelling error. An approximation to the exact solution is obtained by
using the truncated exact DtN boundary conditions with up to 20 terms and a polynomial degree up to 20 such
that both, the modelling and the discretisation error are negligible to the those of the experiments with Feng’s
conditions. While changing the domain radius R the error is computed on the fixed domain Ω0 with R0 = 2.
The results of the convergence analysis for Feng’s conditions are shown in Figure 3. We obtain convergence
orders 1.0 up to 6.0 for Feng-0 up to Feng-5, which confirms that the estimates of the modelling error in R given
in Theorem 3.1 are sharp.

Using absorbing boundary conditions of higher order implies a reduction of the modelling error for a given
domain Ω, if its outer radius R is large enough. On the other hand, to obtain a given error level smaller domains
can be used. We have computed the solution of the model problem B with different domain radia R, where we
were searching for the radius R necessary to obtain a relative L2(Ω0)-error of 10−2, 10−4 or 10−6, respectively,
with a tolerance of 10 %. If we are not able to obtain the error levels, that is, if the computations with a domain
with the necessary radius would be to expensive, we have extrapolated the computed error levels. The results
of this study are shown in Table 3. For a relative L2(Ω0)-modelling error of about 10−2 Feng’s conditions of
order 1 (equivalent to the BGT-1 condition) need with R = 3.80 a over 14 times smaller domain radius than
Feng-0. The use of Feng-2 reduce the radius to 2.65 where a further increase of the order N does not lead to
smaller radia. These results illustrate Feng’s conditions are based on an asymptotic expansion in R rather than
a convergent series in N as stated in Theorem 3.1.

For relative L2(Ω0)-modelling error of about 10−4 and 10−6 increasing the order in Feng’s conditions lead
to smaller radia. Using Feng-5 with its additional second tangential derivatives in the variational formulation
instead of Feng-3 leads to a reduction of the radius from 28.2 to 14.1 for the relative error level of 10−6, and in
comparison to Feng-2 the needed radius is more than 4 times smaller.
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Figure 3. Convergence of the modelling error of the absorbing boundary conditions Feng-N
for N = 0, . . . , 5 with respect to the radius R for R = 4, 8, 16, 24, 32 for the scattering on a
circular disk of radius RD = 1. The polynomial order of the finite element discretisation is
chosen that high that the discretisation is negligible.

Table 3. The radia of the computational domains which are necessary to obtain given relative
L2(Ω0)-norm error levels (±10%) for Feng-N for N = 0, . . . , 5 for the model problem B of
electromagnetic scattering on two dielectric cylinders of tringular cross-section (see Fig. 1b).
The values with a star are extrapolated.

modelling error 10−2 modelling error 10−4 modelling error 10−6

N R N R N R

0 55.27* 0 5527* 0 552747*

1 3.80 1 39.0* 1 392*

2 2.65 2 13.6 2 61.0*

3 2.50 3 8.65 3 28.2

4 2.60 4 7.10 4 18.2

5 2.80 5 6.30 5 14.1

5. Conclusion

We analysed symmetric local absorbing boundary conditions for the Helmholtz equation with respect to
their well-posedness. There might be spurious eigenmodes, which vanish for Feng’s conditions if the radius of
the truncated domain is chosen to be large enough. We analysed the modelling error in a fixed subdomain Ω0 in
dependence of the radius of the truncated domain, on which outer boundary the conditions are applied. For this
we formulated non-local Dirichlet-to-Neumann boundary conditions on the outer boundary of Ω0 such that the
solution coincides with that using Feng’s conditions on the outer boundary of Ω. Comparing this Dirichlet-to-
Neumann map with the Dirichlet-to-Neumann map related to the (exact) radiation condition by Sommerfeld,
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we showed that the modelling error behaves like R−(N+1) for Feng’s conditions of order N . Our proofs confirm
that the approximation of the exact Dirichlet-to-Neumann boundary conditions up to R−(N+1) transfer to the
modelling error in a fixed subdomain. The ideas of the proofs might be applied to the more involved BGT
conditions, both in two and three dimensions.

Appendix A.

Proof of Lemma 2.7. We consider the eigenproblem (2.3) (for k fixed) and fJ = 0 for varying domain radia R.
Then, we have to show that the only solution for R → ∞ is the trivial solution u = 0.

To this end we act by contradiction: Assume that there exists a sequence {R�}∞�=1 with R�+1 > R� and
R� → ∞ for � → ∞ such that u� ∈ VJ is a non-trivial solution of (2.3) with fJ = 0 in the domain Ω = Ω� with
radius R = R�. Then, for r > R0 we can write u = u� as

u(x) =
∑
n∈Z

[
b+
n (R)H(1)

n (kr) + b−n (R)H(2)
n (kr)

]
einθ,

where the coefficients b+
n (R) correspond to the outgoing and b−n (R) to the incoming waves. In this case of varying

domain radius we prefer to use as normalisation of the eigenfunctions the condition

− 〈
Im(κ2)u, u

〉
+

�J�∑
j=0

∑
n∈Z

n2j
[|b+

n (R)|2 + |b−n (R)|2] = 1, (A.1)

which does not depend in its evaluation on R (as supp(κ2) ⊂ Ω0), but only through the R dependent eigen-
solution. Due to the assumption on κ all terms on the left hand side of (A.1) and we can assert the following
uniform bounds

| 〈Im(κ2)u, u
〉 | ≤ 1,

∑
n∈Z

n2j |b±n (R)|2 ≤ 1, (A.2)

in R. As by assumption on aj the conditions approach Feng’s conditions of order 0 for R → ∞ we obtain that
b−n (R) → 0 for R → ∞. Hence, in view of the behaviour of H

(1)
n (kR) for large arguments ([21], Chap. 1) we can

write for j = 0, . . . , J

Rj+ 1
2 e−ikR∂j

τu(x) →
√

πk

2

∑
n∈Z

(in)jb+
n (R) e−i( n

2 + 1
4 )π einθ on Γ for R → ∞.

Note, that b+
n (R) = b−n (R) = 0 for all n ∈ Z implies u = 0 in Ω due to the unique continuation principle

([23], Chap. 4.3). Hence, out assumption of the existence of a non-trivial solution u were wrong if and only if
b+
n (R) → 0 for R → ∞.

Now, for v = u taking the imaginary part of (2.3), multiplied by 1/(π2kR), we find that

0 = lim
R→∞

⎡
⎣− 1

π2kR

〈
Im(κ2)u, u

〉
+ Im a0

∑
n∈Z

|b+
n (R)|2 +

J∑
j=1

Im aj

R2j

∑
n∈Z

n2j |b+
n (R)|2

⎤
⎦ = −k lim

R→∞

∑
n∈Z

|b+
n (R)|2,

(A.3)

where we used the fact that the terms | 〈Im(κ2)u, u
〉 | and

∑
n∈Z

n2j |b+
n (R)|2 are bounded by 1, see (A.2). The

equality (A.3) is only true if b+
n (R) → 0 for all n ∈ Z. Hence, our assumption was wrong, and there is only the

trivial solution for R → ∞. This completes the proof. �
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