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REGULARIZED RECURSIVE NEWTON-TYPE METHODS FOR INVERSE
SCATTERING PROBLEMS USING MULTIFREQUENCY MEASUREMENTS ∗, ∗∗
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Abstract. We are concerned with the reconstruction of a sound-soft obstacle using far field measure-
ments of scattered waves associated with incident plane waves sent from one incident direction but at
multiple frequencies. We define, at each frequency, observable shapes as the ones which are described
by finitely many modes and produce far field patterns close to the measured one. Our analysis consists
of two steps. In the first step, we propose a regularized recursive Newton method for the reconstruction
of an observable shape at the highest frequency knowing an estimate of an observable shape at the
lowest frequency. We formulate conditions under which an error estimate in terms of the frequency
step, the number of Newton iterations, and noise level can be proved. In the second step, we design a
multilevel Newton method which has the same accuracy as the one described in the first step but with
weaker assumptions on the quality of the estimate of the observable shape at the lowest frequency and
a small frequency step (or a large number of Newton iterations). The performances of the proposed
algorithms are illustrated with numerical results using simulated data.
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1. Introduction

We consider the problem of reconstructing the shape of a two-dimensional (2-d) sound-soft acoustic obstacle
using far field measurements associated with incident plane waves sent from only one incident direction but at
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multiple frequencies. The forward model can be represented by the following Dirichlet boundary value problem

Δu(x) + k2u(x) = 0, x ∈ R
2 \ D̄, (1.1)

u(x) = 0, x ∈ ∂D, (1.2)

lim
|x|→∞

√
|x|

[
∂us(x)
∂|x| − ikus(x)

]
= 0, (1.3)

where k is the wavenumber, u is the total wave and us := u− ui is the scattered wave. Here, ui is the incident
plane wave given by ui(x) := eikx·d with d ∈ S1 := {x ∈ R2 : |x| = 1} being the direction of incidence. The
well-posedness of the problems (1.1)–(1.3) for each wavenumber k is well-known under the assumption that ∂D
is Lipschitz (see, e.g., [22]). Moreover, we have the following asymptotic behavior of the scattered field us at
infinity

us(x) =
eik|x|√|x|u

∞(x̂) +O(|x|−3/2), |x| → ∞, (1.4)

where x̂ := x/|x| and u∞ is an analytic function on S1 referred to as the far field pattern of the scattered
wave us.

The inverse problem we investigate here is to reconstruct the obstacle D from measured far field patterns
u∞(x̂, k), x̂ ∈ S

1, for one direction of incidence d ∈ S
1 and multiple wavenumbers k in the interval [kl, kh] (0 <

kl < kh). Here we denote the far field pattern by u∞(x̂, k) to emphasize its dependence on the wavenumber k.
Let us recall some known results concerning this inverse problem. It has a unique solution if a band of

wavenumbers [kl, kh] is used, see, e.g., [26]. If the measurements correspond to a finite number of frequencies,
as we consider in this paper, then the uniqueness of the solution is guaranteed if the lowest frequency is small
enough, see, e.g., [11,14]. For local uniqueness at each frequency, we refer to [29]. If more a priori information
about the obstacle’s shape is available, then some global uniqueness results at an arbitrary but fixed frequency
have been published. For example, if the obstacles are polygonal, see [1, 7] and if thes obstacles are nowhere
analytic, see [17]. Regarding the stability issue, loglog stability estimates are given in [18] and an improved
log stability estimate is shown in [27]. In the high frequency regime, a conditional asymptotic Hölder stability
estimate in the part of the boundary ∂D, of a convex obstacle D, illuminated by the incident plane wave ui is
obtained in [28].

The main advantage of using multifrequency data is that it can help to obtain accurate reconstructions
without the need for a good initial guess. Let us explain the reasons why we can expect these two features. The
first reason is that at low frequencies only big features of the obstacle are retrievable due to the instability of
the original problem. Therefore, we should choose a small number of unknown parameters for representing the
obstacle’s shape. This reduces the instability of the reconstruction algorithm. The second one is that at high
frequencies more details of the obstacle can be reconstructed. However, the objective functional may have many
local minima. Using the reconstruction result at a lower frequency helps to avoid getting a false local minimum.

Different reconstruction methods using multifrequency data have been proposed in the last two decades
or so. The first type of method is known as frequency-hopping algorithms which use the reconstruction at
a frequency as an initial guess at a higher frequency. Several numerical results, using either simulated data,
see e.g., [6, 8, 28], or experimental data, see, e.g., [4, 30, 31], have been demonstrated. However, convergence
of this type of algorithms was only investigated in [3, 28] for the so-called recursive linearization algorithm
(RLA) proposed in [6]. Another type of methods using multifrequency/multiwaves data, related to the sampling
methods, can be found in [15, 16, 25].

Inspired by the presentation in [6], we define, for each frequency, finite dimensional observable shapes as
the ones which can be described by a finite number of parameters and produce far field patterns close to the
measured one, see Definition 2.1. Our goal then is to reconstruct an observable shape at the highest available
frequency. The link between this observable shape and the true one relates to the stability issue, see [28] and
Section 4.3 for more explanations. To achieve this goal, we proceed as follows.
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• First, we propose a regularized projected recursive Newton method for solving this inverse problem, see
Section 4. The idea is to use a certain number of Newton iterations at each frequency, starting from the
lowest one, and then the reconstruction is used to linearize the problem at the next higher frequency. We
prove in Section 4.2 that this algorithm is convergent in the sense that if the reconstructed shape at the
lowest frequency is sufficiently close to an observable shape at that frequency, the reconstructed shape at
higher frequencies also approximate well a set of corresponding observable shapes. Moreover, the error of
the reconstruction of the observable shape at the highest frequency is guaranteed to be arbitrarily small for
noise-free data. For noisy data, an additional term of the order δ2/3, where δ is the noise level of the measured
data, appears in the error. Note that an observable shape at a high frequency usually approximates the true
one better than an observable shape at a low frequency, at least in the part illuminated by the incident wave,
see [28]. The result obtained here is a significant improvement compared to the linear convergence rate of
the RLA obtained in [3, 28].

• Second, a multi-level Newton method is proposed and its convergence is also investigated. The main idea of
this method is to divide the whole frequency set into subsets and each of them is treated using the algorithm of
Section 4. The difference between these two methods is that in multi-level Newton method the regularization
parameter associated with different frequency subsets can be chosen to be different whereas in the algorithm
of Section 4 this parameter is fixed at all frequencies. This adaptive choice of the regularization parameter
allows us to obtain the same error estimate as the previous algorithm but with less restrictive requirements
on the accuracy of the reconstruction at the lowest frequency. This topic is discussed in Section 5. Related to
this approach, we cite the work [12] which also investigates a multi-level projected steepest descent method
in Banach spaces in which a discrepancy principle is used for stopping the iterative process at each frequency.

Both of these Newton methods require a good approximation of the observable shape at the lowest frequency.
In this work, this first guess is obtained as follows, see Section 3. Using low frequency asymptotic expansions,
we prove that at a low enough frequency, the modulus of the far field pattern of the unknown obstacle can be
approximated by that of a circle. Then, the radius of this circle is estimated. Using a result of [20], we show that
the determination of the radius is equivalent to finding the unique zero of a monotonically increasing function
of one variable. Moreover, this unique zero lies in a given interval, whose length is inversely proportional to the
frequency. Hence, this zero can be found easily, e.g., by bisection method.

Finally, we show in Section 6 some numerical results using simulated data to demonstrate the performance
of the aforementioned algorithms. Our numerical results are consistent with the theoretical analysis.

2. Boundary-to-far-field operator and observable shapes

In this work, we consider the case of star-shaped obstacles whose boundary ∂D can be represented by

∂D = {x(t) ∈ R
2 : x(t) = x0 + r(t)(cos t, sin t), t ∈ [0, 2π]}, (2.1)

where x0 is a given internal point of D in R2 and the radial function r is positive in [0, 2π] with r(0) = r(2π).
In the following, we write D(r) to indicate the dependence of the obstacle on its radial function r.

For each wavenumber k, we define the boundary-to-far field operator (or far field operator, for short) F (·, k)
which maps each radial function r to the far field pattern u∞(·, k, r) of the forward scattering problems (1.1)–
(1.3) with D = D(r). In this paper, we assume that the shape is of class C3, i.e., the 2π-periodic extension
of the radial function r from [0, 2π] to R belongs to C3(R). This smoothness guarantees the regularity of the
derivatives of the far field operator used in Section 4.2. We denote by Xad the set of radial functions of C3-class
starlike shapes. This set is considered as the admissible set in our algorithm.
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We denote by ∂rF (r, k) the Fréchet derivative of F with respect to the radial function. It was proved in [19,24]
that ∂rF (r, k)a = ũ∞ for a ∈ C1[0, 2π], where ũ∞ is the far field pattern of the following problem

Δũ(x) + k2ũ(x) = 0, x ∈ R
2 \ D̄, (2.2)

ũ(x(t)) = −a(t)(cos t, sin t) · ν(x(t))∂u(x(t))
∂ν

, x(t) ∈ ∂D, t ∈ [0, 2π], (2.3)

lim
|x|→∞

√
|x|

[
∂ũ(x)
∂|x| − ikũ(x)

]
= 0, (2.4)

with ν(x) being the outward unit normal vector at x ∈ ∂D.
Let X be a Hilbert space such that Xad ⊂ X and the Fréchet derivative operator ∂rF (r, k)a is well-defined

for all a ∈ X . Since problems (2.2)–(2.4) has a solution even when a ∈ L2[0, 2π]), ∂rF (r, k) can be extended
to L2(S1), see [10]. Therefore, we can choose the space X to be L2[0, 2π]. However, other Hilbert spaces can
be used as well. For generality, in the following we use the notation X instead of L2. Note that ∂rF (r, k) is an
injective linear operator from X to L2(S1) for r ∈ Xad, see [10, 19].

In the following Sections, we denote by u∞,δ
m (·, k) ∈ L2(S1) the noisy measured far field pattern at the

wavenumber k with additive random noise of magnitude (noise level) δ ≥ 0. We define the operator F̃δ from
Xad to L2(S1) by F̃δ(r, k) := F (r, k) − u∞,δ

m (·, k). The norms in X and L2(S1) are denoted by ‖ · ‖X and ‖ · ‖2,
respectively.

Since the radial function r(t) is 2π-periodic, it can be represented by the following Fourier series

r(t) = β0 +
∞∑

m=1

(βm cosmt+ γm sinmt). (2.5)

We note that the Fourier coefficients βm and γm converge to zero as m → ∞. Their convergence rate depends
on the smoothness of the function r(t), see [13]. For each number M ∈ N, we define the cut-off approximation
r̄M (t) of r(t) by

r̄M (t) := β0 +
M∑

m=1

(βm cosmt+ γm sinmt). (2.6)

We denote by X̄M the subspace of X spanned by the basis {1, cos t, sin t, . . . , cosMt, sinMt} for M ∈ N. We
also denote by X̄+

M := {ϕ ∈ X̄M : ϕ(t) > 0, ∀t ∈ [0, 2π]}. Clearly, X̄+
M ⊂ Xad.

Let us recall the concept of finite dimensional observable shapes which was defined in [28], see also [6] for a
similar concept for penetrable obstacles. For this purpose, we note that for a given wavenumber k and a number
τ > 1, there exists a number M0(k) ∈ N depending on k such that ‖F (r̄M , k) − F (r, k)‖2 ≤ (τ − 1)δ for all
M ≥M0(k). Consequently, ‖F (r̄M , k) − u∞,δ

m (·, k)‖2 ≤ τδ for M ≥M0(k). Note that M0(k) also depends on τ
and δ, but we ignore these parameters since they are fixed throughout the paper.

Definition 2.1. For each wavenumber k and a given value τ > 1, a finite dimensional observable shape (or,
for short, observable shape), denoted by D(r̃(k)), is defined as a start-like shape whose radial function r̃(k)
contains only a finite number of Fourier modes and the corresponding far field pattern F (r̃(k), k) satisfies the
condition ‖F (r̃(k), k) − u∞,δ

m (·, k)‖2 ≤ τδ.

By this definition, an observable shape is a shape which basically produces the same measured data as the
true one (up to the noise level) but consists of only a finite number of Fourier modes. As pointed out above, there
always exist observable shapes at each frequency. For example, D(r̄M ) is an observable shape of the obstacle
D for M large enough. Moreover, there are infinitely many observable shapes at each frequency. In addition,
an observable shape may be quite different from the true shape due to the ill-posedness of the inverse problem
under investigation. The question on how these observable shapes approximate the true one relates directly to
the stability of the inverse problem. As discussed in [28], an observable shape, roughly speaking, approximates
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“big” features of the true shape at low frequencies while it is close to the true shape in the part illuminated by
the incident plane wave at high frequencies.

In the last inequality of Definition 2.1 we made use of the value τδ instead of δ because if the latter is used,
the finite dimensional observable shapes might not exist. However, it is possible to choose τ such that it is just
slightly larger than 1 while M0(k) can still be chosen not too large. This can be explained using the Heisenberg’s
uncertainty principle in Physics on the resolution limit of scattering problems. It says that, at a fix frequency,
we cannot observe small details of the scatterer using noisy measurements of the far field pattern, even for a
small noise level. Therefore, choosing many Fourier modes may not help to improve the reconstruction accuracy
but increases the instability of inverse algorithms. Therefore, M0(k) should not be chosen too large. As shown
in [6], this resolution limit is about half of the wavelength for weak penetrable scatterers, see also [2, 3].

In the following, we simplify the inverse problem by determining a set of observable shapes instead of the
true one. By this simplification, the inverse problem becomes finite dimensional.

3. Determining an approximating circle at the lowest frequency

As demonstrated in theoretical analysis in Section 4.2 and numerical results in Section 6, the accuracy of the
reconstructed shape at the highest frequency depends on the accuracy of the reconstruction of an observable
shape at the lowest frequency, which serves as the first guess for the Newton methods.

One way to obtain this first guess is by minimizing a least-squares objective functional at k = k0. If k0 is
chosen small, we can choose a subspace X0 such that it contains only a small number of degrees of freedom and
find an approximation of the shape in this subspace. In this case, the minimization problem is expected to be
stable and its objective functional is usually convex in a large domain. That means, a good initial guess may
not be needed.

In particular, at a sufficiently small wavenumber k0, the modulus of the far field pattern of the unknown
obstacle can be approximated by that of a circle. Indeed, if r(t) = ρr∗(t), t ∈ [0, 2π), where ρ > 0 and r∗ is
a fixed radial function which describes the relative shape B of the obstacle, then in the proof of Theorem 3.1
of [15], it was shown that when k0ρ
 1, the following asymptotic expansion holds:

√
k0u

∞(x̂, k0) =
ieiπ/4CB√
8π ln(k0ρ)

eik0(d−x̂)·x0
+O

(
1

(ln(k0ρ))2

)
, (3.1)

for a constant CB depending on B. In particular, if B is a circle of radius 1, we have CB = 2π/i. On the other
hand, for given ρ and B with k0ρ < 1, there exists a number r0 > 0 such that

2π
| ln(k0r0)| =

|CB |
| ln(k0ρ)| . (3.2)

That is, the modulus of the far field pattern of the circle S(x0, r0) := {x ∈ R2 : |x − x0| = r0} has the same
dominant term as that of the unknown obstacle in the asymptotic expansion (3.1).

Now we propose a method for obtaining an approximation of this radius by solving a simple 1-d minimization
problem. For this purpose, we consider a single datum at only one observation direction x̂ = d. Denote by
u∞c (·, a, k0) the far field pattern of the a circle of radius a at wavenumber k0. Note that the modulus of a circle
does not depend on its location. Consequently, we can choose the center of this circle at the origin. Then, the
far field pattern is given by (see e.g., [9, 21])

u∞c (ϕ, a, k0) = e−iπ/4

√
2
πk0

∞∑
n=−∞

Jn(k0a)

H
(1)
n (k0a)

ein(ϕ−θ), (3.3)

where Jn is the Bessel function of order n, H(1)
n is the Hankel function of the first kind of order n, and ϕ and

θ are respectively the observation and incident angles. The radius r0 is then approximated by a zero of the
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following function
F1(a) :=

√
k0

[|u∞c (d, a, k0)| − |u∞,δ
m (d, k0)|

]
. (3.4)

It was proved in [20] that |u∞c (d, a, k0)| is monotonically increasing with respect to a in the interval (0, C/k0),
where C ≈ 0.2303. Therefore, F1 has at most one zero in this interval. Furthermore, assume that the unknown
obstacle D and the approximating circle lie in the disk B(x0, R) := {x ∈ R2 : |x− x0| ≤ R}, for a given R > 0.
Then, we can choose a small k0 so that C/k0 > R. Then if a zero of F1 exists in (0, C/k0), it should approximate
the radius r0 of the approximating circle S(x0, r0) for k0 small enough since |u∞,δ

m (d, k0)| is approximately equal
to |u∞,δ

c (d, r0, k0)| for k0 small.
Now we show that there exists a unique zero of F1 in (0, C/k0). Indeed, (3.1) implies that for a given obstacle,√
k0u

∞(d, k0) → 0 as k0 → 0. On the other hand, it follows from (3.3) that
√
k0u

∞
c (d, C/k0, k0) is a constant

independent of k0. From these properties, we deduce that for a given δ, there exist a small enough wavenumber
k0 such that √

k0|u∞,δ
m (d, k0)| ≤

√
k0|u∞c (d, C/k0, k0)|, (3.5)

It also follows from (3.1) that for a given small k0,
√
k0u

∞
c (d, a, k0) → 0 as a → 0. Hence, there exists al > 0

depending on k0 such that √
k0|u∞c (d, al, k0)| ≤

√
k0|u∞,δ

m (d, k0)|. (3.6)

From (3.5) and (3.6) it is clear that F1(a) has a unique zero in the interval (al, C/k0). We denote this again by
r0. This radius is considered as the first guess in Algorithms 4.1 and 5.1.

The determination of this unique zero is simple. For example, we can use the bisection method since we know
its lower and upper bounds. Note that no initial guess is required.

4. A regularized projected recursive Newton method

4.1. Description of the algorithm

Suppose that the far field pattern is measured at a set of wavenumbers kn := kl + nΔk, n = 0, 1, . . . , N, with
Δk = kh−kl

N . Consider a set of increasing finite dimensional subspaces X0 ⊆ X1 ⊆ · · · ⊆ XN of X . Since elements
of XN are smooth, it is clear that X+

N ⊂ Xad. Note that, for generality, these subspaces may be different from
the subspaces X̄M defined in the previous Section. Assume that we have already obtained an approximation
r0 ∈ X+

0 of the radial function at the lowest wavenumber k0 = kl, see Section 3. Given an integer J > 0 and
an approximation rn ∈ X+

n of the radial function at wavenumber kn, we denote by r0n+1 := rn and consider J
Newton iterations at wavenumber kn+1 as follows: rj+1

n+1 := rj
n+1 +Δrj

n+1, j = 0, . . . , J − 1, with Δrj
n+1 ∈ Xn+1

being the solution of the regularized least-squares minimization problem

Δrj
n+1 := argminΔr∈Xn+1

{
1
2
‖F̃δ(r

j
n+1, kn+1) +Aj

n+1Δr‖2
2 +

1
2
α‖Δr‖2

Xn+1

}
(4.1)

where Aj
n+1 is the restriction of ∂rF (rj

n+1, kn+1) on the subspace Xn+1, i.e., Aj
n+1 := ∂rF (rj

n+1, kn+1)
∣∣
Xn+1

and α > 0. The solution to (4.1) is given by

Δrj
n+1 = −Rj

n+1F̃δ(r
j
n+1, kn+1),

where Rj
n+1 := [αI + (Aj

n+1)
∗Aj

n+1]
−1(Aj

n+1)
∗ and (Aj

n+1)
∗ is the adjoint operator of Aj

n+1. Hence,

rj+1
n+1 := rj

n+1 −Rj
n+1F̃δ(r

j
n+1, kn+1), j = 0, . . . , J − 1, (4.2)

Since r0n+1 = rn ∈ X+
n ⊆ X+

n+1, the approximations rj
n+1 also belong to the subspace Xn+1 for j = 1, . . . , J .

In Theorems 4.5 and 4.6 below we will prove that rj
n+1 ∈ X+

n+1. We choose rn+1 := rJ
n+1 ∈ X+

n+1 as the
reconstruction at the wavenumber kn+1. This process is repeated until the highest wavenumber kN = kh. The
algorithm is summarized as follows.
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Algorithm 4.1.

• Given measured data u∞,δ
m (·, kn) at the wavenumbers kn, n = 0, . . . , N , and the parameter α > 0.

• Step 1: At the lowest wavenumber k = k0, choose a subspace X0 of X and find an approximation r0 ∈ X+
0 .

• Step 2 (recurrence) For n = 0, . . . , N − 1
– Choose a subspace Xn+1 such that Xn ⊆ Xn+1.
– Set r0n+1 := rn.

– Compute rj+1
n+1 := rj

n+1 −Rj
n+1F̃δ(r

j
n+1, kn+1) for j = 0, . . . , J − 1.

– Set rn+1 := rJ
n+1.

End (for n).

Remark 4.2.

1. In the recursive linearization algorithm, as discussed in [3, 6, 28], only one Newton step is used at each
frequency. In other words, the reconstruction at kn+1 is chosen by rn+1 := r1n+1.

2. The stopping criterion for Algorithm 4.1 relates to a trade-off between the frequency step Δk (or the number
of frequencies N) and the number of Newton iterations J to achieve a final error of the order O(δ

2
3 ), see

Remark 4.7.

Remark 4.3. In order to make Algorithm 4.1 stable, the subspaces Xn, n = 0, . . . , N, should be chosen such
that they are gradually increasing. Indeed, as we mentioned at the end of Section 2, for a small kn we should
not expect to reconstruct more than a few number of Fourier modes. That is, the singular values of ∂rF (r, kn)
are small except the first few ones, see also [28] for a numerical demonstration. As a result, the subspace Xn

should not be chosen too large since otherwise the inversion procedure will be unstable. Moreover, choosing a
large number of Fourier modes may not help to increase the accuracy anyhow. The higher the frequency, the
more number of Fourier modes can be expected to be stably reconstructed. That means, the larger the subspace
can be chosen.

The effect of the choice of the subspaces Xn can also be seen in our convergence analysis in Theorems 4.5
and 4.6. Indeed, the regularization parameter α should be bounded above by the smallest singular value σ,
see (4.5) and (4.13). This singular value σ again depends on the dimensions of the subspaces Xn, n = 0, . . . , N .

4.2. Convergence of Algorithm 4.1 and error estimates

In order to prove that the reconstructed shapes obtained by Algorithm 4.1 are good approximations of the
corresponding observable shapes, we consider a particular set of the subspaces Xn, n = 0, . . . , N . More precisely,
at each wavenumber kn there exists a number Mn ∈ N such that the subspace X̄Mn defined in Section 2 contains
at least one observable shape. In this Section, we assume that Xn, n = 0, . . . , N, in Algorithm 4.1 are chosen
such that Xn = X̄Mn .

For this set of the subspacesXn, we assume that there exists a set of observable shapesD(r̃(kn)), n = 0, . . . , N,
whose radial functions r̃(kn) satisfy the following assumptions.

Assumption 1: The radial functions r̃(kn), n = 0, . . . , N, are bounded from below, i.e., there exists a constant
c̃ > 0 such that

c̃ ≤ ‖r̃(kn)‖, for all n, (4.3)

where ‖ · ‖ represents the maximum norm. Since the observable shapes, roughly speaking, are approximations
of the true one, this assumption requires that the size of the true obstacle is not too small. As indicated in
Theorem 4.5, this lower bound c̃ can be chosen comparable to the regularization parameter α, see (4.14), which
is reasonably small. That means, this assumption is not very restrictive.

Assumption 2: There exists a constant d0 ≥ 1 such that

‖r̃(kn+1) − r̃(kn)‖X ≤ d0|kn+1 − kn|, ∀n = 0, . . . , N − 1. (4.4)



466 M. SINI AND N.T. THÀNH

Roughly speaking, this assumption says that there exists a set of observable shapes such that the corresponding
radial functions r̃(kn) are close for two close wavenumbers. In general, this assumption should not hold for an
arbitrary set of observable shapes due to the instable nature of the inverse problem. Moreover, the constant
d0 may depend on the frequency step. However, by assuming that (4.7) holds, we keep in mind that what we
can expect to reconstruct using Algorithm 4.1 is a set of observable shapes which is stably varying from one
frequency to the next one. Moreover, the error estimates depend on d0. For more detail about the validity of
Assumption 2, see Remark 4 of [28].

We denote by Ãn := ∂rF (r̃(kn), kn)|Xn , n = 0, 1, . . . , N and σn the smallest singular value of Ãn, n =
0, . . . , N − 1. Since these operators are injective, we have σn > 0, n = 0, . . . , N − 1. Finally we define

σ := min{σ0, . . . , σN−1}. (4.5)

For the radial functions r̃(k), k ∈ [kl, kh], associated with a given set of observable shapes of r, we write the
operator F̃δ as

F̃δ(r, k) = F̃ (r, k) + f δ(r̃(k), k) (4.6)

with F̃ (r, k) := F (r, k)− F (r̃(k), k) and f δ(r̃(k), k) := F (r̃(k), k)− u∞,δ
m (·, k). Note that ‖f δ(r̃(k), k)‖2 ≤ τδ. It

is obvious that
F̃ (r̃(k), k) = 0, ∀k ∈ [kl, kh]. (4.7)

Note that F (r, k) is twice continuously differentiable (see Remark 1 of [28]). Therefore, there exist some positive
constants di, i = 1, . . . , 4, such that for all ‖r‖ ≤ 2R, with R defined in Section 3, and k ∈ [kl, kh], we have

‖∂rF̃ (r, k)‖L(X,Y ) ≤ d1, ‖∂kF̃ (r, k)‖2 ≤ d2,

‖∂2
rrF̃ (r, k)‖L(X×X,Y ) ≤ d3, ‖∂2

krF̃ (r, k)‖L(X,Y ) ≤ d4. (4.8)

In this Section, we need the following estimates concerning compact linear operators.

Lemma 4.4. Let A be a compact linear operator from a Hilbert space X to a Hilbert space Y and Rα(A) :=
(αI +A∗A)−1A∗ with α > 0. Then

‖(αI +A∗A)−1‖L(X,X) ≤ 1
α
, (4.9)

‖Rα(A)‖L(Y,X) ≤ 1
2
√
α
, (4.10)

‖Rα(A)A‖L(X,X) ≤ 1. (4.11)

Moreover, if Ã is also a compact linear operator from X to Y , we have

‖Rα(A) −Rα(Ã)‖L(Y,X) ≤ 9
4α

‖A− Ã‖L(X,Y ). (4.12)

We first prove the following result for the case of noiseless data.

Theorem 4.5. Assume that the radial functions r̃(kn), n = 0, . . . , N, of the observable shapes satisfy
Assumptions 1 and 2. Let Xn, n = 0, . . . , N, be the subspaces X̄Mn of X containing these radial functions.
Let rn, n = 0, . . . , N, be given by Algorithm 4.1 with F̃δ being replaced by F̃ . Then for a fixed positive real
number ε, 0 < ε < 3/(2 + d0), and for the regularization parameter α satisfying

α ≤ εσ2

3 − ε
, (4.13)

there exists an integer N0 depending on ε and α such that if

‖r̃(kl) − r0‖X0 ≤ d0c0α < c̃, (4.14)
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with
c0 :=

4ε
3d3(9d1 +

√
α)
, (4.15)

then we have rn(t) > 0 ∀t ∈ [0, 2π] and the following error estimate holds true

‖r̃(kh) − rN‖X = ‖r̃(kh) − rN‖XN ≤ C1

(
ε(1 + d0)

3

)J−1 √
Δk, ∀N ≥ N0, (4.16)

where C1 is a constant independent of α and N .

Proof. For n = 0, . . . , N and j = 0, . . . , J , we define en := r̃(kn) − rn and R̃n := (αI + Ã∗
nÃn)−1Ã∗

n. We also
define ej

n+1 := r̃(kn+1) − rj
n+1 for j = 1, . . . , J ;n = 1, . . . , N .

We first estimate e1
n+1. Here we repeat some arguments of [3, 28]. It follows from (4.2) that

e1n+1 = r̃(kn+1) − r0n+1 +R0
n+1F̃ (r0n+1, kn+1)

= r̃(kn+1) − r̃(kn) + en − R̃nÃnen + R̃nÃnen +R0
n+1F̃ (r0n+1, kn+1).

Hence,

‖e1
n+1‖Xn+1 ≤ ‖r̃(kn+1) − r̃(kn)‖Xn+1 + ‖en − R̃nÃnen‖Xn+1

+ ‖R̃nÃnen +R0
n+1F̃ (r0n+1, kn+1)‖Xn+1 . (4.17)

We recall that r0n+1 = rn. Let us evaluate the right hand side. Firstly, (4.4) implies that

‖r̃(kn+1) − r̃(kn)‖Xn+1 ≤ d0Δk. (4.18)

Secondly, from the spectral theory, with the note that en ∈ Xn, we obtain

‖en − R̃nÃnen‖Xn+1 = ‖en − R̃nÃnen‖Xn ≤ α

α+ σ2
‖en‖Xn . (4.19)

Thirdly,

R̃nÃnen + R0
n+1F̃ (r0n+1, kn+1) = R̃n[Ãnen + F̃ (rn, kn)] − (R̃n −R0

n+1)F̃ (rn, kn)

+R0
n+1[F̃ (rn, kn+1) − F̃ (rn, kn)]. (4.20)

Since en ∈ Xn, we have Ãnen = ∂rF (r̃(kn), kn)en. Using the second order Taylor expansion of F̃ (rn, kn) at
r̃(kn), (4.10) and (4.7)–(4.8), we obtain

‖R̃n[Ãnen + F̃ (rn, kn)]‖Xn+1 ≤ d3

4
√
α
‖en‖2

Xn+1
=

d3

4
√
α
‖en‖2

Xn
. (4.21)

On the other hand, it follows from Lemma 4.4 and (4.7)–(4.8) that

‖(R̃n −R0
n+1)F̃ (rn, kn)‖Xn+1 ≤ 9

4α
‖A0

n+1 − Ãn‖L(Xn+1,Y )‖F̃ (rn, kn) − F̃ (r̃(kn), kn)‖2

≤ 9d1

4α
‖A0

n+1 − Ãn‖L(Xn+1,Y )‖en‖Xn .

From the definition of A0
n+1 and Ãn we have

‖A0
n+1 − Ãn‖L(Xn+1,Y ) ≤ ‖∂rF̃ (rn, kn+1) − ∂rF̃ (rn, kn)‖L(Xn+1,Y )

+ ‖∂rF̃ (rn, kn) − ∂rF̃ (r̃(kn), kn)‖L(Xn+1,Y )

≤ Δkd4 + d3‖en‖Xn .
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Replacing this estimate into the above inequality we obtain

‖(R̃n −R0
n+1)F̃ (rn, kn)‖Xn+1 ≤ 9d1

4α
(Δkd4 + d3‖en‖Xn) ‖en‖Xn+1 . (4.22)

It follows from (4.8) that

‖R0
n+1[F̃ (rn, kn+1) − F̃ (rn, kn)]‖Xn+1 ≤ d2

2
√
α
Δk. (4.23)

Substituting (4.21)–(4.23) into (4.20), we obtain

‖R̃nÃnen +R0
n+1F̃ (rn, kn+1)‖Xn+1 ≤ d2

2
√
α
Δk +

(
9d1d3

4α
+

d3

4
√
α

)
‖en‖2

Xn
. (4.24)

From (4.17)–(4.19) and (4.24) we have

‖e1
n+1‖Xn+1 ≤ Δk

(
d0 +

d2

2
√
α

)
+

α

α+ σ2
‖en‖Xn

+
9d1d4

4α
Δk‖en‖Xn +

(
9d1d3

4α
+

d3

4
√
α

)
‖en‖2

Xn
. (4.25)

Let us estimate the right hand side of (4.25). First, it follows from (4.13) that

α

α+ σ2
≤ ε

3
, (4.26)

Next, if ‖en‖Xn ≤ d0c0α, from (4.15) we have
(

9d1d3

4α
+

d3

4
√
α

)
‖en‖Xn =

ε

3c0α
‖en‖Xn ≤ d0ε

3
. (4.27)

For the chosen α, we can also choose a number N0 = N0(α) such that for all N ≥ N0, we have

9d1d4

4α
Δk ≤ ε

3
(4.28)

and

Δk

(
1 +

d2

2d0
√
α

)
≤

[
1 − ε

3
(2 + d0)

]
c0α. (4.29)

Note that the right hand side is positive. It follows from (4.25)–(4.29) that

‖e1
n+1‖Xn+1 ≤

[
1 − ε

3
(2 + d0)

]
d0c0α+

ε

3
(2 + d0)‖en‖Xn ≤ d0c0α.

Next, we estimate ej+1
n+1 for j = 1, . . . , J − 1. We rewrite them in the form

ej+1
n+1 = r̃(kn+1) − rj

n+1 +Rj
n+1F̃ (rj

n+1, kn+1)

= ej
n+1 − R̃j

n+1Ãn+1e
j
n+1 + R̃j

n+1Ãn+1e
j
n+1 + Rj

n+1F̃ (rj
n+1, kn+1). (4.30)

By the same arguments as above, we obtain

‖ej+1
n+1‖Xn+1 ≤ α

α+ σ2
‖ej

n+1‖Xn+1 +
(

9d1d3

4α
+

d3

4
√
α

)
‖ej

n+1‖2
Xn+1

.
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Hence, under the same conditions (4.26) and (4.27)

‖ej+1
n+1‖Xn+1 ≤ ε

3
(1 + d0)‖ej

n+1‖Xn+1 < ‖ej
n+1‖Xn+1 , j = 1, . . . , J − 1. (4.31)

Therefore, if ‖e0‖X0 ≤ d0c0α, we can prove by recurrence that ‖ej
n‖Xn ≤ d0c0α for j = 1, . . . , J and n = 1, . . . , N .

From this it is clear that

rj
n(t) ≥ r̃(kn, t) − ej

n(t) ≥ c̃− d0c0α > 0 for all j and n.

Hence, rn(t) > 0 for all n. Moreover,

‖en+1‖Xn+1 ≤
(
ε(1 + d0)

3

)J−1 [
Δk

(
d0 +

d2

2
√
α

)
+
ε(2 + d0)

3
‖en‖Xn

]
, ∀n = 0, . . . , N − 1.

Consequently,

‖eN‖XN ≤
(
ε(1 + d0)

3

)J−1

Δk

(
d0 +

d2

2
√
α

)
1

1 −
(

ε(1+d0)
3

)J−1
ε(2+d0)

3

+
(
ε(1 + d0)

3

)(J−1)N (
ε(2 + d0)

3

)N

‖e0‖X0

≤
(
ε(1 + d0)

3

)J−1
Δk√
α

⎧⎪⎨
⎪⎩

(
d0

√
εσ√

3 − ε
+
d2

2

)
1

1 −
(

ε(1+d0)
3

)J−1
ε(2+d0)

3

+
(
ε(1 + d0)

3

)(J−1)(N−1) N
(

ε(2+d0)
3

)N

kh − kl
d0c0

( √
εσ√

3 − ε

)3

⎫⎪⎬
⎪⎭ . (4.32)

From (4.15) we can see that c0 is bounded from above by

c0 ≤ 4ε
27d1d3

. (4.33)

Moreover, for a fixed frequency interval [kl, kh], NεN is bounded in terms ofN . Therefore, there exists a constant
C∗ > 0 independent of N and α such that

(
d0

√
εσ√

3 − ε
+
d2

2

)
1

1 −
(

ε(1+d0)
3

)J−1
ε(2+d0)

3

+
(
ε(1 + d0)

3

)(J−1)(N−1) N
(

ε(2+d0)
3

)N

kh − kl
d0c0

( √
εσ√

3 − ε

)3

≤ C∗.

(4.34)

On the other hand, it follows from (4.28) that
√

Δk
α ≤

√
4ε

27d1d4
. Replacing these inequalities into (4.32) we

obtain (4.16) with C1 = C∗
√

4ε
27d1d4

. �

In the case of noisy data, we have the following result.

Theorem 4.6. Assume that the radial functions r̃(kn) and the subspaces Xn, n = 0, . . . , N, are as in
Theorem 4.5. Let rn, n = 0, . . . , N, be given by Algorithm 4.1. For fixed positive real numbers ε, ξ,



470 M. SINI AND N.T. THÀNH

0 < ε < 3/(2 + d0), 0 < ξ < 1, and for the parameters α and c0 satisfying (4.13) and (4.15) respectively,
we define the positive parameter δ0 by

δ0 :=
2ξ
τ

[
1 − ε(2 + d0)

3

]
d0c0α

3/2. (4.35)

Then there exists an integer N0 independent of δ such that if (4.14) is satisfied, we have rn(t) > 0 ∀t ∈ [0, 2π]
and the following error estimate holds true

‖r̃(kh) − rN‖XN ≤ C2δ
2/3 +

(
ε(1 + d0)

3

)J−1

C1

√
Δk, ∀N ≥ N0 (4.36)

for every δ ≤ δ0, where C1 is as in Theorem 4.5 and C2 is a constant independent of δ, α and N .

Proof. Using (4.6) we can rewrite the error as

ej+1
n+1 = r̃(kn+1) − rj

n+1 +Rj
n+1F̃ (rj

n+1, kn+1) +Rj
n+1f

δ(r̃(kn+1), kn+1) (4.37)

for j = 0, . . . , J − 1. It follows from Lemma 4.4 that

‖Rj
n+1f

δ(r̃(kn+1), kn+1)‖Xn+1 ≤ τδ

2
√
α
. (4.38)

Using the estimates (4.25) and (4.31) for the noiseless case, from (4.37)–(4.38) we have

‖e1
n+1‖Xn+1 ≤ Δk

(
d0 +

d2

2
√
α

)
+

τδ

2
√
α

+
α

α+ σ2
‖en‖Xn

+
9d1d4

4α
Δk‖en‖Xn +

(
9d1d3

4α
+

d3

4
√
α

)
‖en‖2

Xn
. (4.39)

And for j = 1, . . . , J − 1, we obtain

‖ej+1
n+1‖Xn+1 ≤ τδ

2
√
α

+
α

α+ σ2
‖ej

n+1‖Xn+1 +
(

9d1d3

4α
+

d3

4
√
α

)
‖ej

n+1‖2
Xn+1

. (4.40)

For δ ≤ δ0, we have from (4.13) and (4.35) that
⎛
⎝ τδ

2ξ
[
1 − ε(2+d0)

3

]
d0c0

⎞
⎠

2/3

≤ α ≤ ε

3 − ε
σ2.

Or, equivalently, α satisfies (4.26) and the following inequality

τδ

2
√
α

≤ ξ

[
1 − ε(2 + d0)

3

]
d0c0α. (4.41)

On the other hand, there exists N0 such that condition (4.28) is satisfied for all N > N0 and

Δk

(
d0 +

d2

2
√
α

)
≤ (1 − ξ)

[
1 − ε(2 + d0)

3

]
d0c0α, (4.42)

Now using the same arguments as in the proof of Theorem 4.5, we can show that ‖ej
n‖Xn ≤ d0c0α for all

j = 0, . . . , J ;n = 1, . . . , N , if (4.14) is satisfied. This implies the positivity of rn as in Theorem 4.5. Moreover,

‖e1
n+1‖Xn+1 ≤ Δk

(
d0 +

d2

2
√
α

)
+

τδ

2
√
α

+
ε(2 + d0)

3
‖en‖Xn ,

‖ej+1
n+1‖Xn+1 ≤ τδ

2
√
α

+
ε(1 + d0)

3
‖ej

n+1‖Xn+1, j = 1, . . . , J − 1. (4.43)
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Consequently, for n = 0, . . . , N − 1, we have

‖en+1‖Xn+1 ≤ τδ

2
√
α

1

1 − ε(1+d0)
3

+
(
ε(1 + d0)

3

)J−1 [
Δk

(
d0 +

d2

2
√
α

)
+
ε(2 + d0)

3
‖en‖Xn

]
. (4.44)

Hence,

‖eN‖XN ≤ τδ

2
√
α

[
1 − ε(1+d0)

3

] [
1 −

(
ε(1+d0)

3

)J−1
ε(2+d0)

3

]

+
(
ε(1 + d0)

3

)J−1

C1

√
Δk. (4.45)

Here the constant C is the same as in Theorem 4.5. Finally, taking into account the condition (4.41) we
obtain (4.36) with the constant C2 given by

C2 =
τ2/3(ξd0

4ε
27d1d3

)1/3

[
2

(
1 − ε(1+d0)

3

)]2/3
[
1 −

(
ε(1+d0)

3

)J−1
ε(2+d0)

3

] .

The proof is complete. �

Remark 4.7. To obtain the Hölder type error estimate of the form ‖eN‖Xn+1 = O(δ2/3), we require that(
ε(1+d0)

3

)J−1 √
Δk = O(δ2/3). That means, if Δk is small, we do not need to use many Newton iterations

and vice versa. In other words, there is a trade-off between the frequency step Δk and the number of Newton
iterations for a given accuracy.

4.3. Discussion on the link between the true shape and the observable shapes

Theorems 4.5 and 4.6 show the accuracy of the reconstruction of the observable shapes. The final accuracy
of the algorithm with respect to the true shape depends on the stability of the reconstruction problem under
investigation and the dependency of the constants C1 and C2 in the error estimates of Theorems 4.5 and 4.6 on
the frequency interval. Concerning the first point, at low or moderate frequencies, the stability of the inverse
problem is of log type, see, e.g., [18, 27]; when the final frequency kh is very high and the obstacle is convex, a
Hölder type stability estimate was proved in [28] for the part of the boundary illuminated by the incident wave.
Concerning the second point, a rigorous answer is still open. Below we give a heuristic, non-rigorous explanation
about which factors could affect the error estimates when kh increases. For simplicity, we assume that the lowest
frequency is fixed and the same frequency step is used in all frequency intervals.

First of all, we know that the higher the frequency, the better the stability of the reconstruction problem.
Therefore the observable shapes should become closer and closer. As a result, the constant d0 in Assumption 2
should not increase when kh is increased. Second, we can see from (4.8) that d1, d2 and d3 are non-decreasing.
Moreover, since c0 can be bounded from above by a constant which is not increased when kh increases, see (4.33),
the constant C2 is non-increasing.

Concerning the constant C1, from (4.34) it follows that the second term is non-increasing. Indeed, for a given
frequency step Δk, we have

N
(

ε(2+d0)
3

)N

kh − kl
=

(
ε(2+d0)

3

)N

Δk
.

That means, it is non-increasing when kh increases if the frequency step is kept fixed. The other factors of the
second term of (4.34) are clearly non-increasing. Hence, the only factor which could cause the constant C1 to
increase is d2 in the first term of (4.34).
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The question on how this factor d2 depends on the frequency is still open to us. Note however that, based
on integral equation methods, precisely the explicit dependence of the norms of the corresponding boundary
integral operators in terms of the frequencies, see [5,23] for instance, we infer that d2 increases as kh increases,
but at a moderate rate, i.e., polynomially. Then we can eliminate its effect on the constant C1 by increasing
the number of Newton steps at each frequency. We will investigate this question in a future work.

5. Multi-level Newton method

In this Section, we discuss how to obtain the comparable error estimates as in the previous Section but with
a less restrictive condition than (4.14) concerning the reconstruction at the lowest frequency. For this purpose,
we use a multi-level Newton method which is described hereafter.

We recall that the error estimate (4.36) was obtained under the conditions (4.26), (4.28), (4.41) and (4.42).
In this Section, we choose ξ = 1/2 for simplicity. To make the analysis easier to follow, we rewrite the above
conditions here

α ≤ εσ2

3 − ε
, (5.1)

9d1d4

4α
Δk ≤ ε

3
, (5.2)

Δk

(
d0 +

d2

2
√
α

)
≤ 1

2

[
1 − ε(2 + d0)

3

]
d0c0α, (5.3)

τδ

2
√
α

≤ 1
2

[
1 − ε(2 + d0)

3

]
d0c0α, (5.4)

with the constant c0 being given by (4.15) which depends on α. Therefore, in the following, we denote by c0(α)
to indicate this dependence. We reserve the notations c0 and α for the constants in the previous Section, i.e.,
these constants associate with the full frequency set. So Theorem 4.6 says that if the conditions (5.1)–(5.4) are
satisfied, and if the solution r0 at the lowest wavenumber k0 satisfies (4.14), i.e.,

‖r̃(kl) − r0‖X ≤ d0c0α < c̃, (5.5)

then the final error estimate (4.36) holds true.
We remark that the regularization parameter α depends on the smallest singular value σ of the domain

derivative Ãn, n = 0, 1, . . . , N . Clearly, the more frequencies used, the smaller this singular value σ is. Therefore,
by subdividing the original interval of frequencies into sub-intervals and choosing this regularization parameter
depending on the smallest singular value in different frequency sub-intervals, we may not need to choose a
small regularization parameter (in other words, with a less restrictive condition on the initial guess) at the first
sub-interval but still obtain a comparable error estimate as (4.36).

To make the following analysis consistent with the previous Section, we still consider the set of frequencies
k0 = kl, . . . , kN = kh with step size Δk as in Section 4. Suppose that the original frequency interval {k0, . . . , kN}
is divided into M sub-intervals from low to high frequencies. These sub-intervals do not need to have the same
number of frequencies. We denote by σ̃m the smallest singular value in the mth sub-interval. That is,

σ̃m = min{σn, kn belongs to the m-th sub-interval}.
Here σn the smallest singular value of Ãn as in Section 4. Moreover, we choose the sequence of parameters
σ̂m,m = 1, . . . ,M , as follows:

σ̂1 = σ̃1, σ̂m+1 = min{σ̂m, σ̃m+1},m = 1, . . . ,M − 1.

by this choice of the parameters σ̂m, it is clear that

σ̂1 ≥ σ̂2 ≥ · · · ≥ σ̂M ≥ σ. (5.6)
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Associated with these sub-intervals, we choose the set of regularization parameters αm, m = 1, . . . ,M such
that (5.1) is satisfied in each sub-intervals, where σ is replaced by the corresponding parameter σ̂m. That is,

αm ≤ εσ̂2
m

3 − ε
,m = 1, . . . ,M. (5.7)

Moreover, αm are also chosen such that

α1 ≥ α2 ≥ · · · ≥ αM ≥ α. (5.8)

The multi-level Newton algorithm can be summarized as follows.

Algorithm 5.1.

• Given measured data u∞,δ
m (·, k) for k = k0, . . . , kN , and the partition of this frequency interval into M

sub-intervals.
• Step 1: Choose a subspace X0 and find an approximation r0 ∈ X0 at wavenumber k0.
• Step 2: For m = 1, . . . ,M

– Choose αm satisfying (5.7) and (5.8).
– Use Algorithm 4.1 to find an approximation in the m-th frequency sub-interval.

Let us show a similar convergence result as in Theorem 4.6 for this algorithm. From (4.15) and (5.8) it can
be proved using elementary analysis that

c0(α1)α1 ≥ c0(α2)α2 ≥ · · · ≥ c0(αM )αM ≥ c0α. (5.9)

We recall that c0 and α are associated with the whole frequency interval {k0, . . . , kN}. It also follows from (5.8)
and (5.9) that Inequalities (5.2)–(5.4) still hold for the same frequency stepΔk and noise level as in Theorems 4.5
and 4.6 when α is replaced by αm and c0 by c0(αm). That means, all the conditions of these theorems are satisfied
for each sub-interval.

Now we replace the condition (4.14) in Theorems 4.5 and 4.6 by the following one for the first sub-interval:

‖r̃(kl) − r0‖X ≤ d0c0(σ1)α1 < c̃. (5.10)

Hence, from Theorem 4.6 (see (4.45)) we obtain the following error estimate in the first sub-interval

‖r̃(kN1) − rN1‖X ≤ τδ

2
√
α1

[
1 − ε(1+d0)

3

] [
1 −

(
ε(1+d0)

3

)J−1
ε(2+d0)

3

]

+ C̃1

(
ε(1 + d0)

3

)J−1 √
Δk.

≤ τδ

2
√
α

[
1 − ε(1+d0)

3

] [
1 −

(
ε(1+d0)

3

)J−1
ε(2+d0)

3

]

+ C̃1

(
ε(1 + d0)

3

)J−1 √
Δk. (5.11)

for a constant C̃1. This constant can be chosen fixed for all frequency sub-intervals and independent of δ. Here
kN1 is the maximum frequency of the first sub-interval. It follows from (5.3) and (5.11) that

‖r̃(kN1) − rN1‖X ≤ d0c0α

2
[
1 −

(
ε(1+d0)

3

)J−1
ε(2+d0)

3

] + C̃1

(
ε(1 + d0)

3

)J−1 √
Δk. (5.12)
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In the second sub-interval, we use the final approximation rN1 of the first sub-interval as the initial guess, i.e.,
it plays the same role as r0 in Section 4. For the given frequency step Δk, we can choose the number of Newton
iterations J large enough so that the following inequality holds true

‖r̃(kN1) − rN1‖X ≤ d0c0α2. (5.13)

This process can be continued until the last sub-interval. In the last sub-interval, we obtain a similar error
estimate as (4.36). We summarize the above analysis in the following theorem.

Theorem 5.2. Suppose that the frequency set {k0, . . . , kN} is subdivided into M sub-intervals. Denote by Nm

the number of frequencies in the mth sub-interval. Moreover, let ε be a positive real number satisfying 0 <
ε < 3/(2 + d0), and αm, m = 1, . . . ,M , be the regularization parameters satisfying (5.7) and (5.8). We also
suppose that the frequency step is small enough so that the conditions (5.2) and (5.3) are fulfilled for α =
min{αm, m = 1, . . . ,M} and c0 = c0(α) given by (4.15). Then there exists an integer J large enough such that
if the reconstruction at the lowest frequency satisfies (5.10), we have rn(t) > 0 ∀t ∈ [0, 2π] and the following
error estimate holds true

‖r̃(kh) − rN‖X ≤ C2δ
2/3 +

(
ε(1 + d0)

3

)J−1

C̃1

√
Δk, (5.14)

for every δ ≤ δ0, where C2 is as in Theorem 4.6 and C̃1 is a constant independent of δ, αm and N . Here δ0 is
defined as in (4.35).

Remark 5.3. Theorem 5.2 indicates that we still obtain the same error estimate as in Theorem 4.6 with C1

being replaced by C̃1. That means, by using the multi-level algorithm, we can obtain basically the same error
estimate as in Theorem 4.6 with the first guess r0 satisfying the condition (5.10) which is, in general, weaker
than (4.14) due to (5.9). This issue is related to estimating the lower bounds of the singular values σ1. Actually,
at each level m,m = 1, . . . ,M , we take the regularization parameter α satisfying a similar estimate, i.e., (5.7). In
a forthcoming work, we will investigate the lower bound of σm in terms of the wavenumber k and the dimension
of the corresponding subspace Xn+1. With such estimates at hand, the regularization parameter αm can be
chosen depending on the known quantities k and n. Let us finally make some comments on the condition (5.4)
on the noise level. As the frequency becomes high, α becomes small and so for the noise level. However this is
quite natural since at high frequencies we expect to reconstruct small details and this makes sense only if the
measurements at hand are not so noisy.

6. Numerical results

In this Section, we show some numerical results to demonstrate the performance of the proposed algorithms
in the previous Sections. In particular, we analyze the effect of different parameters such as the choice of the
frequencies, the choice of the subspaces, and the number of Newton iterations on the reconstruction accuracy.

To the following numerical examples, we considered flower-shaped obstacles defined by the equation

{x(t) = x0 + c1(1 + c2 cos c3t)(cos t, sin t), t ∈ [0, 2π)}

with positive constants c1, c2 and c3. The first parameter determines the area of the obstacle, the second one
relates to the curvature and the last one determines the number of petals of the ”flower”. The obstacles are
centered at x0. Two obstacles were considered which correspond to two sets of parameters: x0 = (4, 0), c1 = 2,
c2 = 0.3 and c3 = 4 (obstacle 1), and x0 = (3, 0), c1 = 2, c2 = 0.2 and c3 = 9 (obstacle 2).

The measured far field patterns u∞m (·, kj , r), j = 0, . . . , N , used in these tests were simulated as the solution of
the forward problem (1.1)–(1.3) which was solved by the integral equation method [10]. The same method was
also used to calculate the domain derivative of the far field operator. We used Na = 32 observation directions
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Figure 1. Reconstruction of an approximating circle of obstacle 1 at the lowest frequency.
The initial guess for the center was chosen at (−3, 0). The radius of the dashed shape (the left
circle) was obtained by the method of Section 3 without using a first guess.

uniformly distributed on the unit circle, x̂n = (n − 1)π/32, n = 1, . . . , 32. Additive random noise of 5% was
added to the computed far field patterns.

Our numerical tests in [28] have indicated that although the regularization parameter α must satisfy condi-
tions (4.26) and (4.41) in the theoretical analysis, numerical performance seemed to be more optimistic. In our
tests, this parameter could be chosen in a wide range, say, from 10−6 to 10−1 which still provided good recon-
struction results. Therefore, in the following examples, the regularization parameter α was chosen to be 10−2.
We fixed the incident angle at θ = 0, i.e., d = (1, 0).

We first demonstrate the reconstruction at the lowest frequency using the method described in Section 3. We
note that even though the center x0 is assumed to be fixed in the theoretical analysis, in our numerical tests we
also reconstructed this point from the measured data at the lowest wavenumber k0. The reconstruction of x0

was done as follows. We approximated the unknown obstacle by a circle and estimated its radius r0 using the
method of Section 3. Then we measured far field pattern was approximated by

u∞,δ
m (x̂n, k0) ≈ eik0x0·(d−x̂n)u∞c (x̂n, r0, k0), n = 1, . . . , Na. (6.1)

where u∞c (x̂, r0, k0) is the far field pattern of the circle S(0, r0, k0), see (3.3). For small enough wavenumber k0,
we have |u∞c (x̂n, r0, k0)| > C0 > 0 for some fixed constant C0. We divided both sides of (6.1) by u∞c (x̂n, r0, k0)
and took the imaginary part both sides. Then, we found x0 by minimizing the following least-squares function:

F2(x) =
1
2

Na∑
n=1

[sin(k0x · ϕn) − ψn]2, (6.2)

where ϕn = d − x̂n and ψn = Im
[
u∞,δ

m (x̂, k0)/u∞c (x̂, r0, k0)
]
. Here ImZ is the imaginary part of a complex

number Z. We have observed numerically that this objective function provided good and stable approximations
of the center x0 and does not require a good first guess. A theoretical investigation about the uniqueness and
stability of this problem will be presented in an incoming work.

Figure 1 shows the reconstruction of the center of obstacle 1 at k0 = 0.1. The first guess of the center x0 was
chosen to be (−3, 0), which was quite far from the true center. It is clear that the algorithm was able to find
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Figure 2. Reconstruction of an approximating circle of obstacle 2 at the lowest frequency. The
initial guess for the center was chosen at (−3, 0).

the center of the obstacle from a first guess in a large domain. A similar result was obtained for obstacle 2, see
Figure 2.

We should mention that when the lowest wavenumber was chosen to be k0 = 1, the same initial guesss of the
center did not provide good results.

The final reconstruction of the two obstacles using 20 wavenumbers from 0.1 to 8 are shown in Figure 3. Here
the reconstructions at the lowest frequencies were taken as the approximating circle in Figure 1 and 2. Only one
Newton iterations was taken at each frequency and the subspaces were chosen as Xn = X̄2n, n = 0, . . . , 19 (see
Sect. 2 for the definition of X̄M ). As we can see, the illumiated parts of the shapes were accurately reconstructed.
However, the shadowed parts were not significantly improved from the lowest frequency to the highest one.

To see the effect of the number of Newton iterations on the reconstruction accuracy, we show in Figure 4 the
reconstruction of obstacle 1 using only 6 frequencies in the same interval [0.1, 8], starting from the same initial
guess. The subspaces were also chosen the same as in the previous test shown in Figure 3. In Figure 4a only one
Newton iteration was run at each frequency whereas in Figure 4(b) 10 Newton iterations were chosen. Indeed,
we can observe that increasing the number of Newton iterations at each frequency helped significantly increase
the accuracy.

Next, we demonstrate in Figure 5 the effect of the choice of the subspaces Xn on the accuracy of the
reconstruction. The tests were done for obstacle 2 using 10 frequencies between 0.1 and 8. Two choices of the
subspaces were taken. In Figure 5 we chose Xn = X̄2n, n = 0, . . . , 9, which means that we added 2 Fourier
modes from one frequency to the next one. Figure 5(b) shows the result for Xn = X̄3n. The figure indicates
that if the subspaces were chosen too small, the reconstruction accuracy may be deteriorated.

Figure 6 shows that the reconstruction was still accurate for a larger set of subspaces Xn = X̄5n. However, if
the subspaces were chosen to be too large, the result might also be not good, as illustrated in Figure 6 where the
same subspace Xn = X̄25 was chosen at all frequencies, while the other parameters were chosen the same as in
Figure 5. Comparing these two figures we can see the effect of the choice of the subspaces on the reconstruction
accuracy.

Finally, to see the performance of the multi-level method of Section 5, we show in Figure 7 the reconstruction
of the two obstacles. In this test, the reconstruction r0 at the lowest frequency was obtained at the lowest
frequency of k0 = 0.5. By doing so, we expected that this should not be as good as in the previous tests. Here
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Figure 3. Reconstruction of obstacle 1 (a) and obstacle 2 (b) using 20 wavenumbers from 0.1
to 8 and only 1 Newton iteration at each frequency.

1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3

x
1

x 2

 

 

ui

Estimate, κ =8
Estimate, κ =0.1
True shape

(a)

1 2 3 4 5 6 7 8

−3

−2

−1

0

1

2

3

x
1

x 2

 

 

ui

Estimate, κ =8
Estimate, κ =0.1
True shape

(b)

Figure 4. Reconstruction of obstacle 1 using 6 wavenumbers from 0.1 to 8: (a) 1 Newton
iteration at each frequency, (b) 10 Newton iterations at each frequency.
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0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

x
1

x 2

 

 

ui

Estimate, κ =8
Estimate, κ =0.1
True shape

(a)

0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

x
1

x 2

 

 

ui

Estimate, κ =8
Estimate, κ =0.1
True shape

(b)

Figure 5. Reconstruction of obstacle 2 using 10 wavenumbers from 0.1 to 8 for two different
choices of the subspaces Xn: (a) Xn = X̄2n, (b) Xn = X̄3n.
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Figure 6. Reconstruction of obstacle 2 using 10 wavenumbers from 0.1 to 8 and 10 Newton
iterations at each frequency: (a) Xn = X̄5n, (b) Xn = X̄25 for all n.
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Figure 7. Reconstruction using the multi-level Newton method: (a) obstacle 1, (b) obstacle 2.

10 frequencies were chosen between 0.5 and 8. The regularization parameter α at the first frequency step was
chosen to be 0.04 which was 4 times larger than that at the other frequencies. Moreover, 15 iterations were used
at the first step and 10 iterations were used at the other frequencies. We note that since the lowest frequency
was chosen higher than in the previous tests, we chose x0 = (1, 0) for both obstacles and the initial guess of
the center was chosen to be at (−1, 0). As can be seen, the reconstructions were comparable to Figure 3 which
confirmed our theoretical analysis.
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