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A NITSCHE FINITE ELEMENT METHOD FOR DYNAMIC CONTACT:
1. SPACE SEMI-DISCRETIZATION AND TIME-MARCHING SCHEMES

Franz Chouly1, Patrick Hild2 and Yves Renard3

Abstract. This paper presents a new approximation of elastodynamic frictionless contact problems
based both on the finite element method and on an adaptation of Nitsche’s method which was initially
designed for Dirichlet’s condition. A main interesting characteristic is that this approximation produces
well-posed space semi-discretizations contrary to standard finite element discretizations. This paper is
then mainly devoted to present an analysis of the space semi-discretization in terms of consistency,
well-posedness and energy conservation, and also to study the well-posedness of some time-marching
schemes (θ-scheme, Newmark and a new hybrid scheme). The stability properties of the schemes and
the corresponding numerical experiments can be found in a second paper [F. Chouly, P. Hild and
Y. Renard, A Nitsche finite element method for dynamic contact. 2. Stability analysis and numerical
experiments. ESAIM: M2AN 49 (2015) 503–528.].
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1. Introduction and problem setting

The numerical implementation of contact and impact problems in solid mechanics generally uses the Finite
Element Method (FEM) (see [23, 25, 29, 35, 37, 46, 47]). In this paper we propose an extension to the elastody-
namics framework of the Nitsche-based method introduced previously in [13,14] in the case of unilateral contact
in elastostatics. Although we restrict ourselves to the unilateral contact without friction in this study, it should
be noted that Nitsche’s method can be extended without much difficulty to the case of frictional unilateral
contact (see [12, 43]).

Nitsche’s method [40] aims at treating the boundary or interface conditions in a weak sense, thanks to a con-
sistent penalty term. So it differs from standard penalization techniques which are typically non-consistent [35].
Moreover, unlike mixed methods (see, e.g., [29, 46]), no additional unknown (Lagrange multiplier) is needed.
Nitsche’s method has been widely applied during these last years to problems involving linear conditions on the
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boundary of a domain or in the interface between sub-domains: see, e.g., [44,45] for the Dirichlet problem, [7] for
domain decomposition with non-matching meshes and [27] for a global review. More recently, in [26, 32] it has
been adapted for bilateral (persistent) contact, which still involves linear boundary conditions on the contact
zone. An extension to large strain bilateral contact has been performed in [48].

Concerning time-evolution equations we can make the same observation that only the case of linear bound-
ary/interface conditions has been dealt with. Some works treat in particular the problem of Dirichlet boundary
conditions for parabolic equations [11, 31, 45]. Some other works are focused on interface conditions, in the
context of transient fluid-structure interaction [5, 10, 28] or transient Stokes Darcy coupling [18].

The paper is outlined as follows: in Section 2, we first adapt Nitsche’s concept to the space semi-discretized
problem which is shown to be consistent contrary to the penalty approach. We also show that, when applied
to contact-impact in elastodynamics, Nitsche’s method has the good property of leading to a well-posed space
(semi-)discretization (system of Lipschitz differential equations), which is not the case of standard FEM dis-
cretization which leads to an ill-posed measure differential inclusion (by “standard FEM” we mean a mixed
method with a Lagrange multiplier that stands for the contact stress, see, e.g., [34], see also Remark 2.2 for fur-
ther explanations). Note that this well-posedness characteristic of Nitsche’s method is also shared by the penalty
method and modified mass methods (see [34,42]). We then prove that the symmetric variant of Nitsche’s space
semi-discretization also conserves an augmented energy, as the penalty method. In Section 3, we define some
classical schemes (θ-scheme, Newmark) in the Nitsche context as well as a new hybrid scheme which satisfies
among others some interesting stability properties (see [15]). For any scheme, we then obtain the corresponding
CFL conditions ensuring well-posedness.

A second part [15] concerns the theoretical study of stability and energy conservation properties of the
aforementioned fully discrete schemes. For the θ-scheme and the Newmark scheme, combined to the symmet-
ric variant of Nitsche, the unconditional stability can be guaranteed only for the most dissipative schemes.
Conversely, for the new hybrid scheme, there is no such price to pay for unconditional stability, though small
numerical dissipation occurs during the contact phase. The second part contains also numerical experiments,
to illustrate stability and energy conservation properties, and additionally to study the presence of spurious
oscillations on the solution.

Let us introduce some useful notations. In what follows, bold letters like u,v, indicate vector or tensor valued
quantities, while the capital ones (e.g., V,K . . .) represent functional sets involving vector fields. As usual, we
denote by (Hs(.))d, s ∈ R, d = 1, 2, 3 the Sobolev spaces in one, two or three space dimensions (see [1]). The

usual scalar product of (Hs(D))d is denoted by (·, ·)s,D, and ‖ · ‖s,D = (·, ·)
1
2
s,D denotes the corresponding norm.

We keep the same notation when d = 1 or d > 1. We note C 0(I; V ) the space of continuous functions that
map I ⊂ R into a normed vectorial space V . The letter C stands for a generic constant, independent of the
discretization parameters.

We consider an elastic body Ω in R
d with d = 1, 2, 3. Small strain assumptions are made (as well as plane

strain when d = 2). The boundary ∂Ω of Ω is polygonal (d = 2) or polyhedral (d = 3). The outward unit
normal vector on ∂Ω is denoted n. We suppose that ∂Ω consists in three nonoverlapping parts ΓD, ΓN and
the contact boundary ΓC , with meas (ΓD) > 0 and meas (ΓC) > 0. The contact boundary is supposed to be a
straight line segment when d = 2 or a polygon when d = 3 to simplify. In the reference configuration, the body
is in contact on ΓC with a rigid foundation and we suppose that the unknown contact zone during deformation
is included into ΓC . The body is clamped on ΓD for the sake of simplicity. It is subjected to volume forces f
in Ω and to surface loads g on ΓN .

We consider the unilateral contact problem in linear elastodynamics during a time interval [0, T ), where T > 0
is the final time. We denote by ΩT := (0, T ) × Ω the time-space domain, and similarly ΓDT := (0, T ) × ΓD,
ΓNT := (0, T ) × ΓN and ΓCT := (0, T ) × ΓC . The problem then consists in finding the displacement field
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u : [0, T )× Ω → R
d verifying the equations and conditions (1.1) and (1.2):

ρü− divσ(u) = f in ΩT ,

σ(u) = A ε(u) in ΩT ,

u = 0 on ΓDT ,

σ(u)n = g on ΓNT ,

u(0, ·) = u0 in Ω,

u̇(0, ·) = u̇0 in Ω, (1.1)

where the notation ẋ is used for the time-derivative of a vector field x on ΩT , so that u̇ is the velocity of the
elastic body and ü its acceleration; u0 is the initial displacement and u̇0 is the initial velocity. The density
of the elastic material denoted by ρ is supposed to be constant to simplify (this is not restrictive and the
results can be extended straightforwardly for a variable density). The notation σ = (σij), 1 ≤ i, j ≤ d, stands
for the stress tensor field and div denotes the divergence operator of tensor valued functions. The notation
ε(v) = (∇v+∇v

T

)/2 represents the linearized strain tensor field and A is the fourth order symmetric elasticity
tensor having the usual uniform ellipticity and boundedness property. For any displacement field v and for any
density of surface forces σ(v)n defined on ∂Ω we adopt the following notation:

v = vnn + vt and σ(v)n = σn(v)n + σt(v),

where vt (resp. σt(v)) are the tangential components of v (resp. σ(v)n). The conditions describing unilateral
contact without friction on ΓCT are:

un ≤ 0 (i)

σn(u) ≤ 0 (ii)
σn(u)un = 0 (iii)

σt(u) = 0 (iv) (1.2)

Note additionally that the initial displacement u0 should satisfy the compatibility condition u0n ≤ 0 on ΓC .
We introduce the following Hilbert spaces:

V :=
{
v ∈

(
H1(Ω)

)d
: v = 0 on ΓD

}
,

W :=
{
v ∈ L2(0, T ;V) : v̇ ∈ L2(0, T ;

(
L2(Ω)

)d
)
}

,

which are endowed respectively with the inner products:

(v,w)V := (v,w)1,Ω =
∫

Ω

v · w dΩ +
∫

Ω

∇v : ∇w dΩ ∀v,w ∈ V,

(v,w)W :=
∫ T

0

(v(t),w(t))V dt +
∫ T

0

(∫
Ω

v̇(t) · ẇ(t) dΩ

)
dt ∀v,w ∈ W ,

where we used the notation A : B :=
∑

1≤i,j≤d AijBij for the tensors A = (Aij) and B = (Bij) (about the space
W , the interested reader may refer to, e.g., [19]). We define the convex cone K of admissible displacements
which satisfy the noninterpenetration on the contact zone ΓC :

K := {v ∈ W : vn(t, ·) ≤ 0 a.e. on ΓC for a.e. t ∈ (0, T )} .

Suppose that u0 ∈ V, with u0n ≤ 0 a.e. on ΓC , and that u̇0 ∈
(
L2(Ω)

)d. Suppose also that f ∈
C 0([0, T ];

(
L2(Ω)

)d) and g ∈ C 0([0, T ];
(
L2(ΓN )

)d), which imply that they belong respectively to
(
L2(ΩT )

)d

and
(
L2(ΓNT )

)d.
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A weak formulation of Problems (1.1) and (1.2) reads as:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find u ∈ K, u(0, ·) = u0, such that :

−
∫

Ω

ρu̇0 · (v(0, ·) − u0)dΩ −
∫

ΩT

ρu̇ · (v̇ − u̇)dΩdt +
∫

ΩT

σ(u) : ε(v − u)dΩdt

≥
∫

ΩT

f · (v − u) dΩdt +
∫

ΓNT

g · (v − u) dΓdt

for all v ∈ K for which there exists ζ > 0 with v = u for t ≥ T − ζ.

(1.3)

To our knowledge, the well-posedness of Problem (1.3) is still an open issue. The few available existence
results concern simplified model problems involving the (scalar) wave equation with Signorini’s conditions (see,
e.g., [17,36,39]) or thin structures like membranes, beams (see [2]) or plates (see [41]). Even in these simplified
cases, obtention of uniqueness and energy conservation still involves difficulties in 2D or 3D. For a review on
some of these results, one can refer to the book [21].

Let us define now the following forms:

a(u,v) :=
∫

Ω

σ(u) : ε(v) dΩ, L(t)(v) :=
∫

Ω

f(t) · v dΩ +
∫

ΓN

g(t) · v dΓ,

for any u and v in V, for all t ∈ [0, T ).

Remark 1.1. The (total) mechanical energy associated with the solution u of the dynamic contact Prob-
lems (1.1) and (1.2) is:

E(t) :=
1
2
ρ‖u̇(t)‖2

0,Ω +
1
2
a(u(t),u(t)), ∀t ∈ [0, T ].

Let us take t ∈ [0, T ]. Formally, we get from (1.1), after multiplication by u̇(t), integration by parts, with the
boundary conditions on ΓDT , ΓNT and the absence of friction:∫

Ω

ü(t) · u̇(t) dΩ +
∫

Ω

σ(u(t)) : ε(u̇(t)) dΩ︸ ︷︷ ︸
d
dt E(t)

−
∫

ΓC

σn(u(t))u̇(t) dΓ = L(t)(u̇(t)).

Moreover, with the persistency condition σn(u(t))u̇(t) = 0 (see, e.g., [4, 30, 38]) we end up with:

d
dt

E(t) = L(t)(u̇(t)). (1.4)

In particular, when L vanishes, we get energy conservation: E(t) = E(0), for all t ∈ [0, T ]. Note that in the 1D
case (elastic bar), the energy conservation can be established rigorously (see [17], Lem. 2.5).

2. Semi-discretization in space with a Nitsche-based finite element method

In this section we introduce our Nitsche-based FEM and carry out the well-posedness and stability analysis
of the resulting space (semi-)discretization.

2.1. Definition and preliminary results

Let Vh ⊂ V be a family of finite dimensional vector spaces (see [16]) indexed by h coming from a family T h

of triangulations of the domain Ω (h = maxK∈T h hK where hK is the diameter of the triangle K). The family
of triangulations is supposed:

• regular, i.e., there exists σ > 0 such that ∀K ∈ T h, hK/ρK ≤ σ where ρK denotes the radius of the inscribed
ball in K,
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• conformal to the subdivision of the boundary into ΓD, ΓN and ΓC , which means that a face of an element K ∈
T h is not allowed to have simultaneous non-empty intersection with more than one part of the subdivision,

• quasi-uniform, i.e., there exists c > 0, such that, ∀h > 0, ∀K ∈ T h, hK ≥ ch.

To fix ideas, we choose a standard Lagrange finite element method of degree k with k = 1 or k = 2, i.e.:

Vh =
{
vh ∈ (C 0(Ω))d : vh

|K ∈ (Pk(K))d, ∀K ∈ T h,vh = 0 on ΓD

}
.

However, the analysis would be similar for any C 0-conforming finite element method.
Let us introduce the notation [·]+ for the positive part of a scalar quantity a ∈ R:

[a]+ =
{

a if a > 0,
0 otherwise.

The positive part has the following properties:

a ≤ [a]+, a[a]+ = [a]2+, ∀a ∈ R. (2.1)

Using (2.1), we recover a classical and useful property of the projection onto a closed convex set, i.e., for all
a, b ∈ R:

([a]+ − [b]+)(a − b) = a[a]+ + b[b]+ − b[a]+ − a[b]+
≥ [a]2+ + [b]2+ − 2[a]+[b]+
= ([a]+ − [b]+)2 ≥ 0. (2.2)

The Heaviside function will be noted H(·). We recall it can be defined as follows, for a ∈ R:

H(a) =

⎧⎨
⎩

1 if a > 0,
1
2 if a = 0,
0 if a < 0.

In fact it is a multivalued function for 0, but we adopt the convention H(0) = 1
2 to allow the property:

H(a) + H(−a) = 1, ∀a ∈ R. (2.3)

Note that conditions (2.1)–(2.3) can be straightforwardly extended to real valued functions. The derivation
of a Nitsche-based method comes from a classical reformulation (see for instance [3]) of the contact condi-
tions (1.2i)–(1.2iii):

σn(u) = − 1
γ

[un − γσn(u)]+, (2.4)

for any positive function γ defined on ΓC .
We consider in what follows that γ = γh is a positive piecewise constant function on the contact interface ΓC

which satisfies
γh|K∩ΓC = γ0hK , (2.5)

for every K that has a non-empty intersection of dimension d − 1 with ΓC , and where γ0 is a positive given
constant. Note that the value of γh on element intersections has no influence.

Let us introduce the discrete linear operator

Pγh
: Vh → L2(ΓC)

vh 
→ vh
n − γh σn(vh) ,
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and also the bilinear form:

AΘγh
(uh,vh) = a(uh,vh) −

∫
ΓC

Θγh σn(uh)σn(vh) dΓ,

with Θ ∈ R a fixed parameter.
Our space semi-discretized Nitsche-based method for unilateral contact problems in elastodynamics then

reads: ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find uh : [0, T ] → Vh such that for t ∈ [0, T ] :〈
ρüh(t),vh

〉
+ AΘγh

(uh(t),vh) +
∫

ΓC

1
γh

[Pγh
(uh(t))]+PΘγh

(vh) dΓ = L(t)(vh),

∀ vh ∈ Vh,

uh(0, ·) = uh
0 , u̇h(0, ·) = u̇h

0 ,

(2.6)

with PΘγh
(vh) := vh

n−Θγhσn(vh) and where uh
0 (resp. u̇h

0 ) is an approximation in Vh of the initial displacement
u0 (resp. the initial velocity u̇0), for instance the Lagrange interpolant or the L2(Ω) projection of u0 (resp. u̇0).
The notation 〈·, ·〉 stands for the L2(Ω) inner product.

Remark 2.1. Note that the parameter γ0 in (2.5) is the inverse of the one generally used in the literature on
Nitsche’s method (see, e.g., [27, 45]). This current choice is partly motivated by the analogy between Nitsche
and the stabilized method of Barbosa and Hughes, in which γ0 is the (small) stabilization parameter (see [44]
and [13]).

Remark 2.2. We recall that in the case of mixed finite element methods, where a Lagrange multiplier stands
for the contact stress, the space semi-discrete problem is a differential inclusion of the form (see, e.g., [33]):

MÜ + KU = L + BTΛ,

−Λi ∈ ∂I]−∞;0]((BU)i), ∀i = 1, . . . , NC ,

where (U,Λ) are the column vectors associated with the solution (resp. displacement and Lagrange multiplier),
M, resp. K, are the mass, resp. stiffness, matrices, L is the vector of external loads, B is the matrix of the
normal trace operator and NC is the number of contact nodes. The indicator function of ] −∞; 0] is denoted
by I]−∞;0] and its (multivalued) subgradient is ∂I]−∞;0]. The above differential inclusion is ill-posed since it can
admit multiple solutions (see [33], Lem. 8, p. 89). For general references on differential inclusions, we refer the
reader to, e.g., [6, 20].

In contrast with the standard (mixed) finite element semi-discretization, Nitsche’s formulation leads to a
well-posed (Lipschitz) system of differential equations, as it will be shown below. This feature is shared with the
standard penalty method, the difference being that Nitsche’s method remains consistent. Note that the standard
(mixed) finite element semi-discretization is consistent as well as the singular dynamic method introduced in [42].
The mass redistribution method introduced in [34] is asymptotically consistent when h vanishes.

In the rest of this section, we carry out the mathematical analysis of the method (2.6). First are defined
some extra notations and introduced some preliminary results. We then show the consistency of the method in
Section 2.2. The proof of well-posedness of problem (2.6) is carried out in Section 2.3. The energy conservation
properties are studied in Section 2.4.

As usual for Nitsche’s method (see e.g., [7, 44]), we introduce the following mesh- and parameter-dependent
scalar product in Vh: (

vh,wh
)

γh
:=

(
vh,wh

)
1,Ω

+
(
γh

− 1
2 vh

n, γh
− 1

2 wh
n

)
0,ΓC

.

We denote by ‖ · ‖γh
:= (·, ·)

1
2
γh the associated norm.
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We need first the following classical property, proven in [14] (see also [45], Lem. 2.1, p. 24, for the scalar case):

Lemma 2.3. There exists C > 0, independent of the parameter γ0 and of the mesh size h, such that:

‖γh
1
2 σn(vh)‖2

0,ΓC
≤ Cγ0‖vh‖2

1,Ω, (2.7)

for all vh ∈ Vh.

The following inverse inequality will be of constant use, and for the proof, we refer for instance to ([22],
Cor. 1.141, Rem. 1.143):

Lemma 2.4. Suppose that the mesh T h is quasi-uniform, then for all vh ∈ Vh it holds:

‖vh‖1,Ω ≤ Ch−1‖vh‖0,Ω. (2.8)

2.2. Consistency

We show here the consistency of our Nitsche-based formulation (2.6) in the sense that, provided sufficient
regularity conditions on the continuous solution u it is also solution to a space-time reformulation of (2.6). The
space-time formulation is needed to avoid assumptions on the regularity of u that would be too restrictive.

Proposition 2.5. The Nitsche-based method for contact is consistent in the following sense: suppose that the

solution u of (1.3) is in
(
H

3
2+ν(ΩT )

)d

(with 0 < ν < 1
2), then u is also solution of

−
∫

Ω

ρu̇0 · vh(0, ·)dΩ −
∫

ΩT

ρu̇ · v̇hdΩdt +
∫

ΩT

σ(u) : ε(vh)dΩdt

−
∫

ΓCT

Θγhσn(u)σn(vh)dΓdt +
∫

ΓCT

1
γh

[Pγh
(u)]+PΘγh

(vh) dΓdt

=
∫

ΩT

f · vh dΩdt +
∫

ΓNT

g · vh dΓdt ∀ vh ∈ D([0, T )) ⊗ Vh,

where D([0, T ))⊗Vh = L
{
w : ΩT → R

d : w(t, x) = f(t)g(x), f ∈ D([0, T )),g ∈ Vh
}
, the notation L E stand-

ing for all the finite linear combinations of elements in E, and D(I) being the vectorial space of C∞ real functions
with compact support in I.

Remark 2.6. Note the difference between Nitsche’s formulation (2.6), which involves integration on Ω at each
time t, and the equation of the Proposition 2.5, which is a space-time formulation on the whole cylinder ΩT .
The regularity assumptions on u are too weak so that we can substitute to this latter a space formulation

at almost every time t. When u ∈
(
H

3
2+ν(ΩT )

)d

it implies only u(t) ∈
(
H1+ν(Ω)

)d, u̇ ∈
(
H

1
2 +ν(ΩT )

)d

,

u̇(t) ∈ (Hν(Ω))d and σ(u) ∈
(
H

1
2+ν(ΩT )

)d×d

. It has to be compatible with the impact phenomenon, in which

u̇ is expected to be discontinuous in time and ü(t) /∈ L2(Ω).

Proof. Let u be the solution of (1.3). Due to the assumed regularity and Green’s formula it is equivalently
solution of:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫

Ω

ρu̇0 · v(0, ·)dΩ −
∫

ΩT

ρu̇ · v̇dΩdt +
∫

ΩT

σ(u) : ε(v)dΩdt −
∫

ΓCT

σn(u)vndΓdt

=
∫

ΩT

f · v dΩdt +
∫

ΓNT

g · v dΓdt

for all v ∈ W such that v = 0 in a neighborhood of T,

(2.9)
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with contact conditions (1.2i)–(1.2iii) verified a.e. on ΓCT . The regularity assumption u ∈
(
H

3
2+ν(ΩT )

)d

(ν > 0)

yields σn(u) ∈ Hν(ΓCT ) ⊂ L2(ΓCT ) so that in formula (2.9), the integral term on ΓCT is correctly defined, and
the contact conditions hold in L2(ΓCT ).

Take now vh ∈ D([0, T ))⊗Vh, in particular vh ∈ W and vh = 0 in a neighborhood of T . The inner product
σn(u)σn(vh) in L2(ΓCT ) is meaningful, so we can rewrite (2.9) as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
∫

Ω

ρu̇0 · vh(0, ·)dΩ −
∫

ΩT

ρu̇ · v̇hdΩdt +
∫

ΩT

σ(u) : ε(vh)dΩdt −
∫

ΓCT

Θγhσn(u)σn(vh)dΓdt

−
∫

ΓCT

σn(u)(vn − Θγhσn(vh))dΓdt =
∫

ΩT

f · vh dΩdt +
∫

ΓNT

g · vh dΓdt

for all vh ∈ D([0, T )) ⊗ Vh.

With the reformulation of contact conditions (2.4), which makes sense in L2(ΓCT ), and the definition of Pγh
,

the proof is finished. �

Remark 2.7. The regularity u ∈
(
H

3
2+ν(ΩT )

)d

in the consistency result could probably be weakened to

σn(u) ∈ L2(ΓCT ) since the condition f ∈ C 0([0, T ];
(
L2(Ω)

)d) is sufficient to give a sense to a Green-like
formula on ΩT .

2.3. Well-posedness

In order to prove well-posedness we reformulate (2.6) as a system of (non-linear) second-order differential
equations. To this purpose, using Riesz’s representation theorem in (Vh, (·, ·)γh

) we first introduce the mass
operator Mh : Vh → Vh, which is defined for all vh,wh ∈ Vh by

(Mhvh,wh)γh
=

〈
ρvh,wh

〉
Still using Riesz’s representation theorem, we define the (non-linear) operator Bh : Vh → Vh, by means of the
formula

(Bhvh,wh)γh
= AΘγh

(vh,wh) +
∫

ΓC

1
γh

[Pγh
(vh)]+PΘγh

(wh) dΓ,

for all vh,wh ∈ Vh. Finally, we denote by Lh(t) the vector in Vh such that, for all t ∈ [0, T ] and for every wh

in Vh:
(Lh(t),wh)γh

= L(t)(wh).

Remark that, due to the assumptions on f and g, Lh is continuous from [0, T ] onto (Vh, ‖ · ‖γh
).

With the above notation, problem (2.6) reads:
⎧⎪⎨
⎪⎩

Find uh : [0, T ] → Vh such that for t ∈ [0, T ] :

Mhüh(t) + Bhuh(t) = Lh(t),

uh(0, ·) = uh
0 , u̇h(0, ·) = u̇h

0 .

(2.10)

We then show that problem (2.6) (or equivalently problem (2.10)) is well-posed.

Theorem 2.8. The operator Bh is Lipschitz-continuous in the following sense: there exists a constant C > 0,
independent of h, Θ and γ0 such that, for all vh

1 ,vh
2 ∈ Vh:∥∥Bhvh

1 − Bhvh
2

∥∥
γh

≤ C(1 + γ0)(1 + |Θ|)
∥∥vh

1 − vh
2

∥∥
γh

. (2.11)

As a consequence, for every value of Θ ∈ R and γ0 > 0, problem (2.6) admits one unique solution uh ∈
C 2([0, T ],Vh).
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Proof. Let us pick vh
1 ,vh

2 ,wh ∈ Vh, then:∣∣∣(Bhvh
1 − Bhvh

2 ,wh
)
γh

∣∣∣
=

∣∣∣∣AΘγh

(
vh

1 − vh
2 ,wh

)
+

∫
ΓC

1
γh

(
[Pγh

(vh
1 )]+ − [Pγh

(vh
2 )]+

)
PΘγh

(wh) dΓ

∣∣∣∣
≤ C(1 + |Θ|γ0)‖vh

1 − vh
2‖1,Ω‖wh‖1,Ω +

∫
ΓC

1
γh

∣∣[Pγh
(vh

1 )]+ − [Pγh
(vh

2 )]+
∣∣ |PΘγh

(wh)| dΓ,

as the estimate (2.7) yields ‖AΘγh
‖ ≤ C(1 + |Θ|γ0).

With the inequality |[a]+ − [b]+| ≤ |a − b|, for all a, b ∈ R, and using the linearity of Pγh
, we remark that:

∫
ΓC

1
γh

∣∣[Pγh
(vh

1 )]+ − [Pγh
(vh

2 )]+
∣∣ |PΘγh

(wh)| dΓ

≤
∫

ΓC

1
γh

|Pγh
(vh

1 − vh
2 )||PΘγh

(wh)| dΓ

≤ ‖γh
− 1

2 Pγh
(vh

1 − vh
2 )‖0,ΓC‖γh

− 1
2 PΘγh

(wh)‖0,ΓC

≤
(
‖γh

− 1
2 (vh

1,n − vh
2,n)‖0,ΓC + ‖γh

1
2 σn(vh

1 − vh
2 )‖0,ΓC

)(
‖γh

− 1
2 wh

n‖0,ΓC + |Θ|‖γh
1
2 σn(wh)‖0,ΓC

)
≤

(
‖γh

− 1
2 (vh

1,n − vh
2,n)‖0,ΓC + Cγ

1
2
0 ‖vh

1 − vh
2‖1,Ω

)(
‖γh

− 1
2 wh

n‖0,ΓC + C|Θ|γ
1
2
0 ‖wh‖1,Ω

)
.

In the last lines, we used the Cauchy–Schwarz inequality, the triangular inequality and the estimate (2.7). Taking
this bound into account, we now combine the above estimations to obtain:∣∣(Bhvh

1 − Bhvh
2 ,wh)γh

∣∣
≤ C(1 + |Θ|γ0)‖vh

1 − vh
2‖1,Ω‖wh‖1,Ω

+
(
Cγ

1
2
0 ‖vh

1 − vh
2‖1,Ω + ‖γh

− 1
2 (vh

1,n − vh
2,n)‖0,ΓC

)(
C|Θ|γ

1
2
0 ‖wh‖1,Ω + ‖γh

− 1
2 wh

n‖0,ΓC

)
≤ C(1 + |Θ|γ0)‖vh

1 − vh
2‖1,Ω‖wh‖1,Ω

+C(1 + γ
1
2
0 )(1 + |Θ|γ

1
2
0 )

(
‖vh

1 − vh
2‖1,Ω + ‖γh

− 1
2 (vh

1,n − vh
2,n)‖0,ΓC

)(
‖wh‖1,Ω + ‖γh

− 1
2 wh

n‖0,ΓC

)

≤ C(1 + γ0)(1 + |Θ|)
(
‖vh

1 − vh
2‖2

1,Ω + ‖γh
− 1

2 (vh
1,n − vh

2,n)‖2
0,ΓC

) 1
2

︸ ︷︷ ︸
‖vh

1−vh
2 ‖γh

(
‖wh‖2

1,Ω + ‖γh
− 1

2 wh
n‖2

0,ΓC

) 1
2

︸ ︷︷ ︸
‖wh‖γh

.

It results that

‖Bhvh
1 − Bhvh

2‖γh
= sup

wh∈Vh

|(Bhvh
1 − Bhvh

2 ,wh)γh
|

‖wh‖γh

≤ C(1 + γ0)(1 + |Θ|)‖vh
1 − vh

2‖γh
.

This proves the first assertion of the theorem.
Then we recast (2.10) in the canonical form of a first-order system:

d
dt

xh(t) = Fh(t,xh(t)), xh(0) = xh
0 ,

where:

xh(t) :=
[
u̇h

uh

]
(t), xh

0 :=
[

u̇h
0

uh
0 ,

]
, Fh(t,xh(t)) :=

[
(Mh)−1(Lh(t) − Bhuh(t))

u̇h(t)

]
.
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It holds for arbitrary t ∈ [0, T ] and xh
1 ,xh

2 ∈ (Vh)2:

‖Fh(t,xh
1 ) − Fh(t,xh

2 )‖2
γh×γh

= ‖(Mh)−1(Bhuh
2 − Bhuh

1 )‖2
γh

+ ‖u̇h
1 − u̇h

2‖2
γh

,

where ‖ · ‖γh×γh
denotes the product norm on (Vh)2.

From the estimates (A.1) (see Appendix A), (2.11) and re-arranging the terms we get:

‖(Mh)−1(Bhuh
2 − Bhuh

1 )‖γh
≤ ‖(Mh)−1‖γh

‖Bhuh
2 − Bhuh

1‖γh

≤ Cρ−1(1 + γ−1
0 )h−2(1 + γ0)(1 + |Θ|)‖uh

2 − uh
1‖γh

≤ Cρ−1h−2(1 + |Θ|)(1 + γ0 + γ−1
0 )‖uh

2 − uh
1‖γh

.

The second assertion of the theorem is a consequence of the Lipschitz-continuity of Fh and of the
Cauchy–Lipschitz (Picard–Lindelöf) theorem. �

Remark 2.9. Note that, conversely to the static case (see [12–14]) and the fully-discrete case (see Sect. 3.2),
there is no condition on γ0 for the space (semi-)discretization, which remains well-posed even if γ0 is large.

2.4. Energy estimates and stability

This section is devoted to energy estimates which are counterparts of the equation (1.4), in the semi-discretized
case. Let us define the discrete energy as follows:

Eh(t) :=
1
2
ρ‖u̇h(t)‖2

0,Ω +
1
2
a(uh(t),uh(t)),

which is associated to the solution uh(t) to Problem (2.6). Note that this is the direct transposition of the
mechanical energy E(t) for the continuous system. Set also

Eh
Θ(t) := Eh(t) − Θ

2

[
‖γh

1
2 σn(uh(t))‖2

0,ΓC
− ‖γh

− 1
2 [Pγh

(uh(t))]+‖2
0,ΓC

]
:= Eh(t) − ΘRh(t),

which corresponds to a modified energy in which a consistent term is added. This term denoted Rh(t) represents,
roughly speaking, the nonfulfillment of the contact condition (2.4) by uh.

Theorem 2.10. Suppose that the system associated to (1.3) is conservative, i.e., that L(t) ≡ 0 for all t ∈ [0, T ].
The solution uh of (2.6) then satisfies the following identity:

d
dt

Eh
Θ(t) = (Θ − 1)

∫
ΓC

1
γh

[
Pγh

(uh(t))
]
+

u̇h
n(t) dΓ.

In particular, when Θ = 1, we get for any t ∈ [0, T ]: Eh
1 (t) = Eh

1 (0).

Corollary 2.11. With the same assumptions as in the previous theorem, the variation of the discrete elastic
energy Eh(t) only comes from the non fulfillment of the exact contact conditions at the discrete level. More
precisely:

Eh(t) = Eh(0) + Θ(Rh(t) − Rh(0)) + (Θ − 1)
∫ t

0

∫
ΓC

1
γh

[Pγh
(uh(s))]+u̇h

n(s) dΓds.

Proof. Let us suppose that L(t) ≡ 0 for all t ∈ [0, T ]. We take vh = u̇h(t) ∈ Vh as a test function in (2.6). So
we obtain (to lighten the notations we write uh instead of uh(t)):

ρ
〈
üh, u̇h

〉
+ a(uh, u̇h) −

∫
ΓC

Θγhσn(uh)σn(u̇h)dΓ +
∫

ΓC

1
γh

[Pγh
(uh)]+PΘγh

(u̇h) dΓ = 0.
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For the first two terms:
ρ
〈
üh, u̇h

〉
+ a(uh, u̇h) =

d
dt

Eh(t).

By using the definition of PΘγh
and re-arranging the terms, we get:

d
dt

Eh(t) = Θ

∫
ΓC

γhσn(uh)σn(u̇h)dΓ − Θ

∫
ΓC

1
γh

[Pγh
(uh)]+Pγh

(u̇h) dΓ − (1 − Θ)
∫

ΓC

1
γh

[Pγh
(uh)]+u̇h

n dΓ

=
Θ

2
d
dt

‖γh
1
2 σn(uh)‖2

0,ΓC
− Θ

2
d
dt

‖γh
− 1

2 [Pγh
(uh)]+‖2

0,ΓC
− (1 − Θ)

∫
ΓC

1
γh

[Pγh
(uh)]+u̇h

n dΓ.

In the last line, we made use of the following formula, for φ : R → R:

1
2

d
dt

[φ(t)]2+ = [φ(t)]+
d
dt

[φ(t)]+ = [φ(t)]+H(φ(t))
d
dt

φ(t) = [φ(t)]+
d
dt

φ(t),

with the property [a]+H(a) = [a]+ (a ∈ R). That concludes the proof of the theorem. The proof of the corollary
is straightforward. �

Remark 2.12. The mechanical energy Eh(t) can fluctuate whenever the discrete persistency condition
[Pγh

(uh(t))]+u̇h
n(t) = 0 or the discrete contact condition σn(uh(t)) + γh

−1[Pγh
(uh(t))]+ = 0 are not satisfied.

3. Fully discrete formulations

In this section we fully discretize the dynamic contact problem by combining Nitsche’s method with some
classical schemes (θ-scheme, Newmark) as well as a new hybrid scheme. We study the well-posedness of the
schemes.

Let τ > 0 be the time-step, and consider a uniform discretization of the time interval [0, T ]: (t0, . . . , tN), with
tn = nτ , n = 0, . . . , N . Let θ ∈ [0, 1], we use the notation:

xh,n+θ = (1 − θ)xh,n + θxh,n+1

for arbitrary quantities xh,n,xh,n+1 ∈ Vh. Hereafter we denote by uh,n (resp. u̇h,n and üh,n) the resulting
discretized displacement (resp. velocity and acceleration) at time-step tn.

3.1. Proposed time-marching schemes

3.1.1. A θ-scheme

We semi-discretize in time problem (2.6) using a θ-scheme, which parameter is θ ∈ [0, 1]. For n ≥ 0, the fully
discretized problem reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τ u̇h,n+θ,

u̇h,n+1 = u̇h,n + τ üh,n+θ,〈
ρüh,n+1,vh

〉
+ AΘγh

(uh,n+1,vh) +
∫

ΓC

1
γh

[
Pγh

(uh,n+1)
]
+

PΘγh
(vh) dΓ = Ln+1(vh),

∀ vh ∈ Vh,

(3.1)

with initial conditions uh,0 = uh
0 , u̇h,0 = u̇h

0 , üh,0 = üh
0 (see Rem. 3.2 below), and where Ln+1(·) = L(tn+1)(·).

Remark 3.1. This scheme is first order consistent in τ if θ �= 1
2 and second order if θ = 1

2 .
For linear elastodynamics (without unilateral contact), it is also known to be unconditionally stable for θ ≥ 1

2

and conditionally stable when θ < 1
2 . It is fully explicit when θ = 0. It is dissipative when θ > 1

2 and conserves
the energy when θ = 1

2 .
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Remark 3.2. The initial condition üh,0 is determined in fact through:

〈
ρüh

0 ,vh
〉

= L0(vh) − AΘγh
(uh

0 ,vh) −
∫

ΓC

1
γh

[
Pγh

(uh
0 )

]
+

PΘγh
(vh) dΓ ∀ vh ∈ Vh.

Thus üh
0 is obtained from uh

0 by inversion of the mass matrix Mh.

3.1.2. A Newmark scheme

We semi-discretize in time problem (2.6) using a Newmark scheme, which parameters are β ∈ [0, 1/2],
γ ∈ [0, 1]. For n ≥ 0, the fully discretized problem reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τ u̇h,n +
τ2

2
üh,n+2β ,

u̇h,n+1 = u̇h,n + τ üh,n+γ ,〈
ρüh,n+1,vh

〉
+ AΘγh

(uh,n+1,vh) +
∫

ΓC

1
γh

[
Pγh

(uh,n+1)
]
+

PΘγh
(vh) dΓ = Ln+1(vh),

∀ vh ∈ Vh,

(3.2)

with initial conditions uh,0 = uh
0 , u̇h,0 = u̇h

0 , üh,0 = üh
0 (see Rem. 3.2).

Remark 3.3. This scheme is first order consistent in τ when γ �= 1
2 , second order when γ = 1

2 and β �= 1
12 ,

and fourth order when γ = 1
2 and β = 1

12 . When applied to linear elastodynamics (without unilateral contact),
it is not stable when γ < 1

2 , unconditionally stable when γ ≥ 1
2 and γ

2 ≤ β ≤ 1
2 , and conditionally stable when

γ ≥ 1
2 and 0 ≤ β ≤ γ

2 .

3.1.3. A new hybrid scheme

We introduce a new time-marching scheme for problem (2.6). Inspired by the works of Gonzalez [24] and
Hauret and Le Tallec [30], the idea is to propose an hybrid discretization of the Nitsche-based contact term: the
linear part of problem (2.6) is treated with a conservative Crank–Nicolson scheme, whereas the non-linear part
arising from contact is discretized with a linear combination of Crank–Nicolson and Midpoint schemes. This
strategy is of interest since the resulting scheme is unconditionally stable in the symmetric case and still second
order consistent in time, as it will be shown in a forthcoming work (see [15]).

For n ≥ 0, the fully discretized problem reads:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τ u̇h,n+ 1
2 ,

u̇h,n+1 = u̇h,n + τ üh,n+ 1
2 ,〈

ρüh,n+ 1
2 ,vh

〉
+ AΘγh

(uh,n+ 1
2 ,vh) +

∫
ΓC

1
γh

Φ(uh,n,uh,n+1)PΘγh
(vh) dΓ = Ln+ 1

2 (vh),

∀ vh ∈ Vh,

(3.3)

with the initial conditions uh,0 = uh
0 , u̇h,0 = u̇h

0 , üh,0 = üh
0 (see Rem. 3.2) and with the following expression

for Φ(uh,n,uh,n+1):

Φ(uh,n,uh,n+1) := H(Pγh
(uh,n))[Pγh

(uh,n+ 1
2 )]+ + H(−Pγh

(uh,n))[Pγh
(uh)]n+ 1

2
+ .

Remark that [Pγh
(uh)]n+ 1

2
+ = 1

2 ([Pγh
(uh,n)]+ + [Pγh

(uh,n+1)]+) represents the Crank–Nicolson part, whereas
[Pγh

(uh,n+ 1
2 )]+ = [12 (Pγh

(uh,n) + Pγh
(uh,n+1))]+ stands for the Midpoint part. So, when Pγh

(uh,n) > 0, the
Midpoint scheme is applied, and when Pγh

(uh,n) < 0, the Crank–Nicolson scheme is applied instead. When
Pγh

(uh,n) = 0 both schemes coincide.
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3.2. Well-posedness of the fully discrete formulations

Except for their explicit variants, that are obtained for θ = 0 (θ-scheme) and β = 0 (Newmark), all the fully
discrete formulations involve solving a non-linear problem at each time-step n. We study here conditions on
numerical parameters upon which this non-linear problem admits a unique solution. We can apply each time an
analogous argument as in [14]. One interesting consequence, as it will be shown, is that reducing the time-step
τ weakens the condition γ0 small whenever Θ �= −1.

3.2.1. Well-posedness of the θ-scheme

The well-posedness of the θ-scheme (3.1) is stated below:

Proposition 3.4.

1. If θ = 0, existence and uniqueness of (3.1) always holds since the scheme is fully explicit.
2. Let θ > 0. If

(1 + Θ)2 γ0 ≤ C

(
1 +

ρh2

τ2θ2

)

where C is a positive constant, then at each time-step n, problem (3.1) admits one unique solution.

Proof. When θ > 0, expressing üh,n+1 as a function of uh,n+1, üh,n, u̇h,n,uh,n, the θ-scheme (3.1) can be written
as follows: for n ≥ 0 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τ u̇h,n+θ,

u̇h,n+1 = u̇h,n + τ üh,n+θ,〈 ρ

τ2θ2
uh,n+1,vh

〉
+ AΘγh

(uh,n+1,vh) +
∫

ΓC

1
γh

[Pγh
(uh,n+1)]+PΘγh

(vh) dΓ

= Ln+1(vh) +
〈

ρ(1 − θ)
θ

üh,n +
ρ

τθ2
u̇h,n +

ρ

τ2θ2
uh,n,vh

〉
, ∀ vh ∈ Vh.

Using the Riesz representation theorem, we define a non-linear operator Bh
θ : Vh → Vh, by means of the

formula:

(Bh
θv

h,wh)1,Ω :=
〈 ρ

τ2θ2
vh,wh

〉
+ AΘγh

(vh,wh) +
∫

ΓC

1
γh

[Pγh
(vh)]+PΘγh

(wh) dΓ,

for all vh,wh ∈ Vh, and where (·, ·)1,Ω stands for the scalar product in (H1(Ω))d. Note that problem (2.6) is
well-posed if and only if Bh

θ is a one-to-one operator. Let vh,wh ∈ Vh. We have:

(Bh
θv

h − Bh
θw

h,vh − wh)1,Ω =
〈 ρ

τ2θ2
(vh − wh),vh − wh

〉
+ a(vh − wh,vh − wh) − Θ‖γh

1
2 σn(vh−wh)‖2

0,ΓC

+
∫

ΓC

1
γh

([Pγh
(vh)]+ − [Pγh

(wh)]+)(vh
n − wh

n − Θγhσn(vh − wh)) dΓ

=
ρ

τ2θ2
‖vh − wh‖2

0,Ω + a(vh − wh,vh − wh) − Θ‖γh
1
2 σn(vh − wh)‖2

0,ΓC

+
∫

ΓC

1
γh

([Pγh
(vh)]+ − [Pγh

(wh)]+)Pγh
(vh − wh) dΓ

+ (1 − Θ)
∫

ΓC

1
γh

([Pγh
(vh)]+ − [Pγh

(wh)]+)γhσn(vh − wh) dΓ. (3.4)



494 FRANZ CHOULY ET AL.

Using the inequality (2.2) in (3.4), Cauchy–Schwarz inequality and the inverse inequality (2.8), we get

(Bh
θv

h − Bh
θw

h,vh − wh)1,Ω ≥ Cρh2

τ2θ2
‖vh − wh‖2

1,Ω + a(vh − wh,vh − wh) − Θ‖γh
1
2 σn(vh − wh)‖2

0,ΓC

+ ‖γh
− 1

2 ([Pγh
(vh)]+ − [Pγh

(wh)]+)‖2
0,ΓC

− |1 − Θ| ‖γh
− 1

2 ([Pγh
(vh)]+ − [Pγh

(wh)]+)‖0,ΓC‖γh
1
2 σn(vh − wh)‖0,ΓC .

(3.5)

If Θ = 1, we use the coercivity of a(·, ·) and the property (2.7) in the previous expression (3.5). Therefore there
exists positive constants C, C′ such that:

(Bh
θv

h − Bh
θw

h,vh − wh)1,Ω ≥
(

C +
Cρh2

τ2θ2
− C′γ0

)
‖vh − wh‖2

1,Ω. (3.6)

We now suppose that Θ �= 1. Let β > 0. Applying Young’s inequality in (3.5) yields:

(Bh
θv

h − Bh
θw

h,vh − wh)1,Ω

≥ Cρh2

τ2θ2
‖vh − wh‖2

1,Ω + a(vh − wh,vh − wh) − Θ‖γh
1
2 σn(vh − wh)‖2

0,ΓC

+ ‖γh
− 1

2 ([Pγh
(vh)]+ − [Pγh

(wh)]+)‖2
0,ΓC

− |1 − Θ|
2β

‖γh
− 1

2 ([Pγh
(vh)]+ − [Pγh

(wh)]+)‖2
0,ΓC

− |1 − Θ|β
2

‖γh
1
2 σn(vh − wh)‖2

0,ΓC

=
Cρh2

τ2θ2
‖vh − wh‖2

1,Ω + a(vh − wh,vh − wh) −
(

Θ +
|1 − Θ|β

2

)
‖γh

1
2 σn(vh − wh)‖2

0,ΓC

+
(

1 − |1 − Θ|
2β

)
‖γh

− 1
2 ([Pγh

(vh)]+ − [Pγh
(wh)]+)‖2

0,ΓC
. (3.7)

Choosing β = |1 − Θ|/2 in (3.7), we get:

(Bh
θv

h − Bh
θw

h,vh − wh)1,Ω

≥ Cρh2

τ2θ2
‖vh − wh‖2

1,Ω + a(vh − wh,vh − wh) − 1
4

(1 + Θ)2 ‖γh
1
2 σn(vh − wh)‖2

0,ΓC

≥
(

C +
Cρh2

τ2θ2
− C′ (1 + Θ)2 γ0

)
‖vh − wh‖2

1,Ω, (3.8)

where C, C′ are positive constants.
Next, let us show that Bh

θ is also hemicontinuous. Since Vh is a vector space, it is sufficient to show that

[0, 1] � t 
→ ϕ(t) := (Bh
θ (vh − twh),wh)1,Ω ∈ R

is a continuous real function, for all vh,wh ∈ Vh. Let s, t ∈ [0, 1], we have:

|ϕ(t) − ϕ(s)| = |(Bh
θ (vh − twh) − Bh

θ (vh − swh),wh)1,Ω|

=
∣∣∣(s − t)

( ρ

τ2θ2
‖wh‖2

0,Ω + AΘγh
(wh,wh)

)

+
∫

ΓC

1
γh

(
[Pγh

(vh − twh)]+ − [Pγh
(vh − swh)]+

)
PΘγh

(wh) dΓ

∣∣∣∣
≤ |s − t|

( ρ

τ2θ2
‖wh‖2

0,Ω +
∣∣AΘγh

(wh,wh)
∣∣)

+
∫

ΓC

1
γh

∣∣[Pγh
(vh − twh)]+ − [Pγh

(vh − swh)]+
∣∣ |PΘγh

(wh)| dΓ.
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With help of the bound |[a]+ − [b]+| ≤ |a− b|, for all a, b ∈ R, and using the linearity of Pγh
, we deduce that:∫

ΓC

1
γh

∣∣[Pγh
(vh − twh)]+ − [Pγh

(vh − swh)]+
∣∣ |PΘγh

(wh)| dΓ

≤
∫

ΓC

1
γh

∣∣Pγh
(vh − twh) − Pγh

(vh − swh)
∣∣ |PΘγh

(wh)| dΓ

=
∫

ΓC

1
γh

|(s − t)Pγh
(wh)||PΘγh

(wh)| dΓ.

It results that:

|ϕ(t) − ϕ(s)| ≤ |s − t|
(

ρ

τ2θ2
‖wh‖2

0,Ω +
∣∣AΘγh

(wh,wh)
∣∣ +

∫
ΓC

1
γh

|Pγh
(wh)||PΘγh

(wh)| dΓ

)
,

which means that ϕ is Lipschitz, so that Bh
θ is hemicontinuous. Since properties (3.6) and (3.8) also hold, we

finally apply the Corollary 15 (p. 126) of [9] to conclude that Bh
θ is a one-to-one operator. This ends the proof

when θ > 0.
When θ = 0, we simply carry out the following sequence of computations to go from time-step n to time-step

n + 1:

uh,n+1 = uh,n + τ u̇h,n,

u̇h,n+1 = u̇h,n + τ üh,n,〈
ρüh,n+1,vh

〉
= Ln+1(vh) − AΘγh

(uh,n+1,vh) −
∫

ΓC

1
γh

[Pγh
(uh,n+1)]+PΘγh

(vh) dΓ,

∀ vh ∈ Vh,

and we note that the last step needs only the computation of (Mh)−1, or is explicit if a mass-lumping technique
is used. �

3.2.2. Well-posedness of the Newmark scheme

A similar result holds for the Newmark scheme (3.2). More precisely, we have:

Proposition 3.5.

1. If β = 0, existence and uniqueness of (3.2) always holds since the scheme is fully explicit.
2. Let β > 0. If

(1 + Θ)2 γ0 ≤ C

(
1 +

ρh2

τ2β

)

where C is a positive constant, then at each time-step n, problem (3.2) admits one unique solution.

Proof. The proof is the same than for the θ-scheme. �

3.2.3. Well-posedness of the hybrid scheme

The well-posedness of the fully discrete scheme (3.3) is stated below.

Proposition 3.6. If the condition below is satisfied

(1 + Θ)2 γ0 ≤ C

(
1 +

ρh2

τ2

)

where C is a positive constant, then at each time-step n, problem (3.3) admits one unique solution.
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Proof. Using the expression u̇h,n+1 = u̇h,n + τ üh,n+ 1
2 and then the relationship uh,n+1 = uh,n + τ u̇h,n+ 1

2 , we
obtain that:

üh,n+ 1
2 =

1
τ
(u̇h,n+1 − u̇h,n) =

2
τ2

uh,n+1 − 2
τ2

uh,n − 2
τ
u̇h,n.

Then the scheme (3.3) can be written as follows, for n ≥ 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh,n+1, u̇h,n+1, üh,n+1 ∈ Vh such that:

uh,n+1 = uh,n + τ u̇h,n+ 1
2 ,

u̇h,n+1 = u̇h,n + τ üh,n+ 1
2 ,

〈
4ρ

τ2
uh,n+1,vh

〉
+ AΘγh

(uh,n+1,vh) +
∫

ΓC

2
γh

Φ(uh,n,uh,n+1)PΘγh
(vh) dΓ

= 2Ln+ 1
2 (vh) − AΘγh

(uh,n,vh) +
〈

4ρ

τ
u̇h,n +

4ρ

τ2
uh,n,vh

〉
, ∀ vh ∈ Vh.

Using the Riesz representation theorem, we define a non-linear operator Bh
H : Vh → Vh, by means of the

formula:

(Bh
Hvh,wh)1,Ω :=

〈
4ρ

τ2
vh,wh

〉
+ AΘγh

(vh,wh) +
∫

ΓC

2
γh

Φ(uh,n,vh)PΘγh
(wh) dΓ,

for all vh,wh ∈ Vh, and where (·, ·)1,Ω stands for the scalar product in (H1(Ω))d. Note that problem (2.6) is
well-posed if and only if Bh

H is a one-to-one operator. Let vh,wh ∈ Vh, we have:

(Bh
Hvh − Bh

Hwh,vh − wh)1,Ω

=
〈

4ρ

τ2
(vh − wh),vh − wh

〉

+ a(vh − wh,vh − wh) − Θ‖γh
1
2 σn(vh − wh)‖2

0,ΓC

+
∫

ΓC

2
γh

(Φ(uh,n,vh) − Φ(uh,n,wh))(vh
n − wh

n − Θγhσn(vh − wh)) dΓ

=
4ρ

τ2
‖vh − wh‖2

0,Ω + a(vh − wh,vh − wh) − Θ‖γh
1
2 σn(vh − wh)‖2

0,ΓC

+
∫

ΓC

2
γh

(Φ(uh,n,vh) − Φ(uh,n,wh))Pγh
(vh − wh) dΓ

+ (1 − Θ)
∫

ΓC

2
γh

(Φ(uh,n,vh) − Φ(uh,n,wh))γhσn(vh − wh) dΓ. (3.9)
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We detail the expression of:

∫
ΓC

2
γh

(Φ(uh,n,vh) − Φ(uh,n,wh))Pγh
(vh − wh) dΓ

=
∫

ΓC

2
γh

H(Pγh
(uh,n))([Pγh

(
1
2
(uh,n + vh))]+ − [Pγh

(
1
2
(uh,n + wh))]+)Pγh

(vh − wh) dΓ

+
∫

ΓC

2
γh

H(−Pγh
(uh,n))

(
1
2
([Pγh

(uh,n)]+ + [Pγh
(vh)]+)

−1
2
([Pγh

(uh,n)]+ + [Pγh
(wh)]+)

)
Pγh

(vh − wh) dΓ

=
∫

ΓC

1
γh

H(Pγh
(uh,n))([Pγh

(uh,n + vh)]+ − [Pγh
(uh,n + wh)]+)Pγh

((uh,n + vh) − (uh,n + wh)) dΓ

+
∫

ΓC

1
γh

H(−Pγh
(uh,n))

(
[Pγh

(vh)]+ − [Pγh
(wh)]+

)
Pγh

(vh − wh) dΓ. (3.10)

Then with help of the inequality (2.2) we bound:

∫
ΓC

2
γh

(Φ(uh,n,vh) − Φ(uh,n,wh))Pγh
(vh − wh) dΓ

≥ ‖H 1
2 (Pγh

(uh,n))γh
− 1

2 ([Pγh
(uh,n + vh)]+ − [Pγh

(uh,n + wh)]+)‖2
0,ΓC

+ ‖H 1
2 (−Pγh

(uh,n))γh
− 1

2 ([Pγh
(vh)]+ − [Pγh

(wh)]+)‖2
0,ΓC

.

With Cauchy–Schwarz and Young’s inequalities, we also bound:

(1 − Θ)
∫

ΓC

2
γh

(Φ(uh,n,vh) − Φ(uh,n,wh))γhσn(vh − wh) dΓ

=(1 − Θ)
∫

ΓC

1
γh

H(Pγh
(uh,n))([Pγh

(uh,n + vh)]+ − [Pγh
(uh,n + wh)]+)γhσn(vh − wh) dΓ

+ (1 − Θ)
∫

ΓC

1
γh

H(−Pγh
(uh,n))([Pγh

(vh)]+ − [Pγh
(wh)]+)γhσn(vh − wh) dΓ

≤|1 − Θ|
[

1
2β

(
‖H 1

2 (Pγh
(uh,n))γh

− 1
2 ([Pγh

(uh,n + vh)]+ − [Pγh
(uh,n + wh)]+)‖2

0,ΓC

+‖H 1
2 (−Pγh

(uh,n))γh
− 1

2 ([Pγh
(vh)]+ − [Pγh

(wh)]+)‖2
0,ΓC

)

+
β

2

(
‖H 1

2 (Pγh
(uh,n))γh

1
2 σn(vh − wh)‖2

0,ΓC
+‖H 1

2 (−Pγh
(uh,n))γh

1
2 σn(vh − wh)‖2

0,ΓC

)]
,

with β > 0. With the property (2.3) we get:

(1 − Θ)
∫

ΓC

2
γh

(Φ(uh,n,vh) − Φ(uh,n,wh))γhσn(vh − wh) dΓ

≤|1 − Θ|
[

1
2β

(
‖H 1

2 (Pγh
(uh,n))γh

− 1
2 ([Pγh

(uh,n + vh)]+ − [Pγh
(uh,n + wh)]+)‖2

0,ΓC

+‖H 1
2 (−Pγh

(uh,n))γh
− 1

2 ([Pγh
(vh)]+ − [Pγh

(wh)]+)‖2
0,ΓC

)
+

β

2
‖γh

1
2 σn(vh − wh)‖2

0,ΓC

]
. (3.11)
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Using (3.10) and (3.11) in (3.9) and the inverse inequality (2.8), we obtain:

(Bh
Hvh − Bh

Hwh,vh − wh)1,Ω

≥ 4Cρh2

τ2
‖vh − wh‖2

1,Ω + a(vh − wh,vh − wh) −
(

Θ + |1 − Θ|β
2

)
‖γh

1
2 σn(vh − wh)‖2

0,ΓC

+
(

1 − |1 − Θ|
2β

)(
‖H 1

2 (Pγh
(uh,n))γh

− 1
2 ([Pγh

(uh,n + vh)]+ − [Pγh
(uh,n + wh)]+)‖2

0,ΓC

+ ‖H 1
2 (−Pγh

(uh,n))γh
− 1

2 ([Pγh
(vh)]+ − [Pγh

(wh)]+)‖2
0,ΓC

)
. (3.12)

If Θ = 1, we use the coercivity of a(·, ·) and the property (2.7) in the previous expression (3.12). Therefore there
exists positive constants C, C′ such that:

(Bh
Hvh − Bh

Hwh,vh − wh)1,Ω ≥
(

C +
4Cρh2

τ2
− C′γ0

)
‖vh − wh‖2

1,Ω. (3.13)

We now suppose that Θ �= 1. Choosing β = |1 − Θ|/2 in (3.12), we get:

(Bh
Hvh − Bh

Hwh,vh − wh)1,Ω

≥ 4Cρh2

τ2
‖vh − wh‖2

1,Ω + a(vh − wh,vh − wh) − 1
4

(1 + Θ)2 ‖γh
1
2 σn(vh − wh)‖2

0,ΓC

≥
(

C +
4Cρh2

τ2
− C′ (1 + Θ)2 γ0

)
‖vh − wh‖2

1,Ω, (3.14)

where C, C′ are positive constants.

Next, let us show that Bh
H is also hemicontinuous. Since Vh is a vector space, it is sufficient to show that

[0, 1] � t 
→ ϕ(t) := (Bh
H(vh − twh),wh)1,Ω ∈ R

is a continuous real function, for all vh,wh ∈ Vh. Let s, t ∈ [0, 1], we have:

|ϕ(t) − ϕ(s)| = |(Bh
H(vh − twh) − Bh

H(vh − swh),wh)1,Ω|

=
∣∣∣∣(s − t)

(
4ρ

τ2
‖wh‖2

0,Ω + AΘγh
(wh,wh)

)

+
∫

ΓC

2
γh

(
Φ(uh,n,vh − twh) − Φ(uh,n,vh − swh)

)
PΘγh

(wh) dΓ

∣∣∣∣
≤ |s − t|

(
4ρ

τ2
‖wh‖2

0,Ω +
∣∣AΘγh

(wh,wh)
∣∣)

+
∫

ΓC

2
γh

∣∣Φ(uh,n,vh − twh) − Φ(uh,n,vh − swh)
∣∣ |PΘγh

(wh)| dΓ.
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With help of the bound |[a]+ − [b]+| ≤ |a − b|, for all a, b ∈ R, using the linearity of Pγh
and (2.3) we deduce

that: ∫
ΓC

2
γh

∣∣Φ(uh,n,vh − twh) − Φ(uh,n,vh − swh)
∣∣ |PΘγh

(wh)| dΓ

≤
∫

ΓC

2
γh

H(Pγh
(uh,n))

∣∣∣∣12([Pγh
(uh,n + vh − twh)]+ − [Pγh

(uh,n + vh − swh)]+)
∣∣∣∣ |PΘγh

(wh)| dΓ

+
∫

ΓC

2
γh

H(−Pγh
(uh,n))

∣∣∣∣12([Pγh
(vh − twh)]+ − [Pγh

(vh − swh)]+)
∣∣∣∣ |PΘγh

(wh)| dΓ

≤
∫

ΓC

1
γh

H(Pγh
(uh,n))

∣∣Pγh
(uh,n + vh − twh) − Pγh

(uh,n + vh − swh)
∣∣ |PΘγh

(wh)| dΓ

+
∫

ΓC

1
γh

H(−Pγh
(uh,n))

∣∣Pγh
(vh − twh) − Pγh

(vh − swh)
∣∣ |PΘγh

(wh)| dΓ

=
∫

ΓC

1
γh

∣∣Pγh
(vh − twh) − Pγh

(vh − swh)
∣∣ |PΘγh

(wh)| dΓ

=
∫

ΓC

1
γh

|(s − t)Pγh
(wh)||PΘγh

(wh)| dΓ.

It results that:

|ϕ(t) − ϕ(s)| ≤ |s − t|
(

4ρ

τ2
‖wh‖2

0,Ω +
∣∣AΘγh

(wh,wh)
∣∣ +

∫
ΓC

1
γh

|Pγh
(wh)||PΘγh

(wh)| dΓ

)
,

which means that ϕ is Lipschitz, so that Bh
H is hemicontinuous. Since properties (3.13) and (3.14) also hold,

we finally apply the Corollary 15 (p. 126) of [9] to conclude that Bh
H is a one-to-one operator. This ends the

proof. �

4. Conclusion and perspectives

In this paper dealing with frictionless unilateral contact in the small displacements and deformations frame-
work, we extend to the elastodynamic case the Nitsche-based method previously defined and analyzed in the
elastostatic case. The resulting space (semi-)discretization is shown to be well-posed and we derive some stabil-
ity results. For the symmetric variant of Nitsche’s method, we prove the conservation of an augmented energy.
We then define several time-marching schemes for which we obtain appropriate CFL conditions ensuring well-
posedness.

The stability of the time-marching schemes and the corresponding numerical experiments can be found in
reference [15].

Appendix A. Estimate for the inverse of the discrete mass operator

Lemma A.1. Suppose that the mesh T h is quasi-uniform. Then there exists C > 0 independent of ρ, γ0 and h
such that:

‖(Mh)−1‖γh
≤ Cρ−1(1 + γ−1

0 )h−2, (A.1)

where ‖ · ‖γh
is the operator norm induced by the vector norm ‖ · ‖γh

in Vh.

Proof. We start from the definition of the operator norm, then use the (obvious) invertibility of Mh:

‖(Mh)−1‖γh
= sup

vh∈Vh

‖(Mh)−1vh‖γh

‖vh‖γh

= sup
vh∈Vh

‖vh‖γh

‖Mhvh‖γh

. (A.2)
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Let vh ∈ Vh. We now bound from below the norm ‖Mhvh‖γh
, with first:

‖Mhvh‖γh
= sup

wh∈Vh

(Mhvh,wh)γh

‖wh‖γh

= sup
wh∈Vh

〈
ρvh,wh

〉
‖wh‖γh

≥ ρ

〈
vh,vh

〉
‖vh‖γh

= ρ
‖vh‖2

0,Ω

‖vh‖γh

. (A.3)

From ([8], Thm. 1.6.6) the following trace inequality holds:

‖vh
n‖2

0,ΓC
≤ C‖vh‖0,Ω‖vh‖1,Ω. (A.4)

Then we use the quasi-uniformity of the mesh Th, the trace inequality (A.4) and two times the inverse inequal-
ity (2.8) to obtain:

‖vh‖2
γh

= ‖vh‖2
1,Ω + ‖γh

− 1
2 vh

n‖2
0,ΓC

≤ ‖vh‖2
1,Ω + C(γ0h)−1‖vh

n‖2
0,ΓC

≤ Ch−2‖vh‖2
0,Ω + C(γ0h)−1‖vh‖0,Ω‖vh‖1,Ω

≤ Ch−2‖vh‖2
0,Ω + C(γ0)−1h−2‖vh‖2

0,Ω

≤ C(1 + γ−1
0 )h−2‖vh‖2

0,Ω.

We reinject this estimate into (A.3) to end up with bounding from below ‖Mhvh‖γh
:

‖Mhvh‖γh
≥ Cρ

h2

1 + γ−1
0

‖vh‖γh
.

This last inequality can be rewritten as

‖vh‖γh

‖Mhvh‖γh

≤ Cρ−1(1 + γ−1
0 )h−2.

Combined with (A.2), this ends the proof. �
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groupe, variationnel. Vol. 8. Masson, Paris (1988).

[20] K. Deimling, Multivalued differential equations. In vol. 1 of de Gruyter Series Nonlin. Anal. Appl. Walter de Gruyter & Co.,
Berlin (1992).
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