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ERROR ESTIMATE FOR A FINITE VOLUME SCHEME IN A GEOMETRICAL
MULTI-SCALE DOMAIN

Marie-Claude Viallon
1

Abstract. We study a finite volume scheme, introduced in a previous paper [G.P. Panasenko and
M.-C. Viallon, Math. Meth. Appl. Sci. 36 (2013) 1892–1917], to solve an elliptic linear partial differential
equation in a rod structure. The rod-structure is two-dimensional (2D) and consists of a central node
and several outgoing branches. The branches are assumed to be one-dimensional (1D). So the domain is
partially 1D, and partially 2D. We call such a structure a geometrical multi-scale domain. We establish
a discrete Poincaré inequality in terms of a specific H1 norm defined on this geometrical multi-scale
1D-2D domain, that is valid for functions that satisfy a Dirichlet condition on the boundary of the
1D part of the domain and a Neumann condition on the boundary of the 2D part of the domain.
We derive an L2 error estimate between the solution of the equation and its numerical finite volume
approximation.
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1. Introduction

This paper is concerned with a finite volume scheme for a geometrical multi-scale domain. We obtain a specific
discrete Poincaré inequality for that type of structure. This inequality is then used to improve from O(

√
h) to

O(h) a first error estimate obtained in [36] for a simple model problem.
The plan is as follows. In Section 1.1, we present the background in which the dimensionally-heterogeneous

modelling takes place. Then, in Section 1.2, we describe in detail the geometrical multi-scale 1D-2D domain on
which our problem is set (see Fig. 1). The parameter ε is related to the width of the branches. In the following
section we define our model problem (1.1). Then in Section 1.4, the main result of the paper, that is error
estimates in specific H1 and L2 norms using the finite volume scheme introduced in [36], is discussed. These
results improve a previous estimate that is reminded in Section 1.5. Section 1.6 is devoted to the review of
different ways to state interface conditions between domains of different dimensions, Section 1.7 to the review of
discrete Poincaré inequalities, especially for functions that vanish only on a part of the boundary. In Section 1.8,
from a numerical standpoint, we compare the dimension reduction of the domain to the use of non-matching
grids, taking a row of big cells. Then some remarks on the domain decomposition approach end Section 1.
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In Section 2, we present our hybrid scheme to solve (1.1). We prove that the scheme gives a unique discrete
solution. In Section 3, following [19], we define a H1 discrete norm and we establish a discrete Poincaré inequality.
Last in Section 4, we derive the error estimates previously announced in Section 1.4.

1.1. The dimensionally-heterogeneous modelling

This paper deals with the resolution of a model problem set in a finite rod structure. A finite rod structure is a
connected finite union of cylinders (rectangles in the two-dimensional case). Arterial trees in the cardiovascular
system, systems of pipes in industrial installations, or canal systems, are classical examples of rod structures.
Since the direct numerical solution of partial differential equations in such domains implies high computational
costs, we use an alternative approach: we reduce the costs by considering the rods as one-dimensional domains,
yet keeping the junctions as two or three-dimensional domains. This therefore leads to work in a geometrical
multi-scale domain (a single numerical model with different space scales). The usefulness of the coupling of
models of different dimensions has been shown for instance in [6,9,22,23,41]. The main application area is com-
putational hemodynamics. Dimensionally-heterogeneous modelling has been applied to describe the relationship
between the local blood flow patterns and the global hemodynamic environments for instance in [9,23,41]. In [38],
the authors present a model where a 1D description of the circle of Willis (cerebral vasculature) is coupled to a
fully three-dimensional (3D) model of a carotid artery. The 3D model is well suited for investigating the effects
of the geometry on the blood flow on a space scale of a few centimeters. By exploiting the cylindrical geometry
of vessels, it is possible to resort to 1D models, by reducing the space dependence to the vessel’s axial coordinate
only. The 1D models are convenient when the interest is in obtaining the pressure dynamics in a large part of
the vascular tree at a reasonable computational cost. This geometrical multi-scale approach has been proposed
in [22], some difficulties arising from the coupling have been discussed in [24]. In [38], the authors point out that
their approach can be extended to hydraulic networks featuring pipes. Rather, in [33], the authors deal with
dimensionally-heterogeneous hydraulic networks. Yet, the coupling of partial differential equations is of increas-
ing importance for industrial applications, and namely the geometrical multi-scale problems. Such a coupling
arises for instance in the simulation of the flow in the primary coolant circuit of a pressurized water reactor
in a nuclear power plant: one may use a 1D code to deal with the pipes and a 3D code to model the reactors.
In [2, 10], the authors focused on a coupling condition at the interface among domains that all have the same
geometrical dimension. Though, the coupling of 1D and 2D CFD codes is discussed in [28], where the coupling
of the 1D isentropic Euler system to the 2D one is considered: an associated 1D Riemann problem is solved
at the interface between the two systems. This work has been extended recently in [16] to the coupling of a
density-based 3D Euler code to a 1D version of the code (for instance, an application is the simulation of diesel
injectors).

However, in this paper, we solve a model problem in a simple 2D rod structure. We do not consider a realistic
model such as described above. It is a first step. Extensions to more realistic problems are possible.

1.2. Description of the geometrical multi-scale 1D-2D domain

Before introducing the 1D-2D domain on which our model problem is set, let us look at the following example
of finite rod structures. It consists of one node and n branches. This construction is done in [36] and is discussed
below.

Let ej = [O, Oj ], j = 1, . . . , n, be n closed segments in IR2, having a common end point denoted by O, with
length lj = OOj , j = 1, . . . , n.

Let (x, y) denote the coordinates in the canonical basis of IR2, and (xej , yej ) denote the local coordinates
associated with the segment ej, j = 1, . . . , n. This local system is orthonormal and such that xej is the coordinate
in the direction ej .

Let ε > 0. Let θ1, . . . , θn be positive numbers independent of ε.
Let Bε

j = {(x, y) | xej ∈ (0, lj), yej ∈ (− εθj

2 ,
εθj

2 )}, and β̂ε
j = {(x, y) | xej = lj , yej ∈ (− εθj

2 ,
εθj

2 )}.
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Figure 1. (a) The initial domain Ωε and (b) the geometrical multi-scale domain Dε.

Let ω0 be a bounded domain in IR2 with smooth boundary containing O (see [36]). Let ωε
0 = {(x, y) | (x,y)−O

ε ∈
ω0}. We assume that Bε

j \ ωε
0 ∩ Bε

i \ ωε
0 = ∅, i �= j. The domain ωε

0 (see the dotted line in Fig. 1a) is added in
order to smooth the boundary of the final structure by removing the corners.

Let Ωε = ∪n
j=1B

ε
j ∪ ωε

0. The domain Ωε is thus the 1/ε− homothetic contraction of a fixed domain Ω, as
depicted in Figure 1a with n = 5. The thickness of the branches is the ratio of the diameter to the height, and
is proportional to ε.

Now, let us describe the 1D-2D domain under consideration. Let δ > 0, such that δ < min {lj, j = 1, . . . , n}
and such that ωε

0 is in the ball of center O and radius δ.
Denote B′ε

j = Bε
j ∩ {(x, y) | xej ∈ (0, δ)}, j = 1, . . . , n. Denote Ω′

ε = ∪n
j=1B

′ε
j ∪ ωε

0. So Ω′
ε is a truncated

part of the initial domain Ωε.
Let Sj = {(x, y)|yej = 0, xej ∈ (δ, lj)}, j = 1, . . . , n, be segments such that Sj ⊂ ej .
We denote γ′

j = {(x, y) | xej = δ, yej ∈ (− εθj

2 ,
εθj

2 )}, j = 1, . . . , n, the interfaces between Ω′
ε and Ωε \ Ω′

ε

(for the sake of simplicity, we do not make the dependence on ε of γ′
j).

Let us define Dε = Ω′
ε ∪
(
∪n

j=1Sj

)
. The set Dε is what we call a geometrical multi-scale domain. We assume

that ωε
0\∪n

j=1B
ε
j is not too large. More precisely, we assume that m(Ω′

ε) is of the same magnitude as m(∪n
j=1B

′ε
j),

so as to have m(Ω′
ε) = O(εδ), where m is the 2D Lebesgue measure.

In this paper, we consider both the case of a geometrical multi-scale domain where ε and δ are fixed, and the
case where ε tends to zero and δ depends on ε. The two studies are made at the same time, and Theorems 4.1
and 4.4 are stated in Section 4 related to each case.

1.3. The model problem

The boundary value problem in the domain Dε, that we consider in this paper, is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v′′j (xej ) = fj(xej ), xej ∈ (δ, lj), j = 1, . . . , n (a)
vj(lj) = 0, j = 1, . . . , n

	u(x, y) = 0, (x, y) ∈ Ω′
ε (b)

∂u

∂n
(x, y) = 0, (x, y) ∈ ∂Ω′

ε\(∪n
j=1 γ′

j)
u(x, y) = vj(δ), (x, y) ∈ γ′

j , j = 1, . . . , n

v′j(δ) =
1

θjε

∫
γ′

j

∂u

∂n
dγ, j = 1, . . . , n. (c)

(1.1)
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We assume that the functions fj are independent of ε and vanish in some neighborhood of Oj , j = 1, . . . , n.
For the sake of simplicity, as in [36], the right-hand side is taken equal to zero in Ω′

ε, but this condition could be
relaxed. However, it is well known that the error estimates for the convergence rate of the numerical methods
require some regularity of the exact solution. So we assume that the right-hand side is such that u ∈ C2(Ω′

ε)
and vj ∈ C2([δ, lj ]), j = 1, . . . , n.

More precisely, we define a global solution ud of (1.1) by letting

ud(x, y) =

{
u(x, y) if (x, y) ∈ Ω′

ε

vj(xej ) if (x, y) ∈ Bε
j , xej ∈ (δ, lj), j = 1, . . . , n.

(1.2)

The solution ud is defined in Ωε but ud(x, y) does not depend on yej when (x, y) ∈ Bε
j \ B′ε

j . Defining
the solution on Ωε will allow us to use a standard L2 norm in a 2D domain to write the error estimate of
Theorem 4.1.

Problem (1.1) has been introduced in [36] in the framework of the method of asymptotic partial domain
decomposition (MAPDD) (see [35]). The following lemma has been proved in [37] (see estimate (1.6)) and [36].

Lemma 1.1. For any J > 0, there is M , independent of ε, such that if δ = Mε|lnε|, then

‖uε − ud‖H1(Ωε) = O(εJ ),

where uε is the solution of the following elliptic linear model equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
	uε = f, in Ωε

uε = 0, on β̂ε
j , j = 1, . . . , n

∂uε

∂n
= 0, on ∂Ωε\

(
∪n

j=1 β̂ε
j

) (1.3)

where f is a smooth function defined in Ωε such that f(x, y) = fj(xej ), if (x, y) ∈ Bε
j \ B′ε

j , j = 1, . . . , n, and
f(x, y) = 0 if (x, y) ∈ Ω′

ε.

There exists a function uε ∈ C2(Ωε) solution of (1.3), if f is sufficiently smooth [27]. It is proved in [36] that
the following estimates hold.

Lemma 1.2. If δ is of order εlnε then

‖v′j‖∞ = O(1) and ‖v′′j ‖∞ = O(1), j = 1, . . . , n, ‖∇u‖∞ = O(1), ‖∇2u‖∞ = O

(
1
ε

)
·

These bounds will be useful to prove the error estimate of Theorem 4.4.

1.4. Comments on the numerical approximation and the error estimate

An hybrid (in the sense that it solves a problem in a geometrical multi-scale domain) finite volume scheme
is proposed in [36] to solve (1.1). To construct the scheme, the methodology which was proposed in [45] is first
explained. In [45], the authors give a numerical methodology to address the solution of the 3D Navier–Stokes
equations and its coupling with some 1D models (see [6,7,32,33] also). To follow this path to solve (1.1), let us
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remark that (1.1) can be rewritten⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v′′j (xej ) = fj(xej ), xej ∈ (δ, lj), j = 1, . . . , n

vj(lj) = 0, j = 1, . . . , n

vj(δ) = αj , (x, y) ∈ γ′
j , j = 1, . . . , n

v′j(δ) = βj

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

	u(x, y) = 0, (x, y) ∈ Ω′
ε

∂u

∂n
(x, y) = 0, (x, y) ∈ ∂Ω′

ε\(∪n
j=1 γ′

j)

u(x, y) = αj , (x, y) ∈ γ′
j , j = 1, . . . , n

1
θjε

∫
γ′

j

∂u

∂n
dγ = βj .

(1.5)

The basic idea in [45] is to consider the numerical resolution of the 2D problem (1.5’) on one hand, and of the
1D problems (1.4’) on the others hand, as black-boxes which receive the input data (αj , j = 1, . . . , n) and give
back (βj , j = 1, . . . , n) as output data. A system in the interface unknowns (αj , βj , j = 1, . . . , n) is obtained,
which is solved by an iterative method. This technique, which is a domain decomposition approach, will not be
dealt with here. Instead, in the present paper, a direct method is used, and (1.4’) and (1.5’) are not understood
as black-boxes but related by (1.1c) (reminded below for easy reference and guidance):

v′j(δ) =
1

θjε

∫
γ′

j

∂u

∂n
dγ, j = 1, . . . , n. (1.6)

Here, βj, j = 1, . . . , n, are no longer unknowns and only the interface unknowns αj , j = 1, . . . , n, are kept.
We use finite volume schemes to approach (1.4’), (1.5’), and (1.6), where (1.4’) (resp. (1.5’)) is the system (1.4)
(resp. (1.5)) with its last equation removed. The unknowns corresponding with αj , j = 1, . . . , n, are vj,0, j =
1, . . . , n, in the resulting scheme that is recalled in (2.2) in Section 2.2.

The aim of the present paper is to reconsider this scheme to solve (1.1), and in particular to improve the
order of convergence obtained in [36]. In [36], we get an error estimate of order

√
h, where h is the size of the

mesh. In Theorem 4.1 below we get a better estimate O(h). This is one of the main results of the paper. Here
ε and δ are fixed given parameters and we don’t have to express the bound with respect to these parameters.

However, in addition, (1.4’), (1.5’), (1.6) may also be used to solve (1.3). In view of Lemma 1.1, (1.1) is a
reasonable approximation for (1.3) if ε is small and δ of order εlnε. So, a numerical approximation of the solution
of (1.1) is also a numerical approximation of the solution of (1.3). In Section 4, an error estimate between the
solution of (1.3) and its numerical approximation is obtained in Theorem 4.4 in conjunction with Theorem 4.1.
Since both h and ε tend to zero in this case, the error estimate is also expressed in terms of ε. Note that a finite
element implementation of (1.3) is studied in [21] with n = 1, and an error estimate is obtained.

We obtain a better error estimate than in [36] because (1.1) is really considered as a geometrical multi-scale
problem. We define discrete L2 and H1 norms for functions on Dε. A H1 discrete norm has been introduced
in [42], in the case of a structure with a single branch. Here, we propose a generalization to structures with
n branches. It involves the convex combination of the values of the functions on both sides of each interface
γ′

j , j = 1, . . . , n. To the best of our knowledge, there is no error estimate in the literature when using a geometrical
multi-scale finite volume scheme. Moreover, the problem (1.1) is such that Neumann boundary conditions are
imposed on the 2D part of the domain, and Dirichlet boundary conditions are imposed on the boundary of the
1D part of the domain. As no classical Poincaré inequality is directly applicable on an issue of this nature, it
has been necessary to establish a discrete Poincaré inequality in Dε.
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1.5. About the estimate in [36]

We recall here how the estimate O(
√

h) is obtained in [36]. Let vj , ṽj , ũj, j = 1, . . . , n, be the solutions of the
following independent sub-problems, some of them being 1D, and the others being 2D

{
v′′j = fj , on Sj

vj(δ) = 0

{
ṽ′′j = 0, on Sj

ṽj(δ) = 1

⎧⎪⎨⎪⎩
	ũj = 0, on Ω′

ε

ũj |γ′
j

= 1,

ũj |γ′
k

= 0, if k �= j, k = 1, . . . , n.

(1.7)

The solution of (1.1) can then be written{
vj = vj + αj ṽj , j = 1, . . . , n

u =
∑n

j=1 αj ũj.
(1.8)

The auxiliary variables αj , j = 1, . . . , n, are then defined by

1
θjε

n∑
k=1

αk

∫
γ′

j

∂ũk

∂n
dγ − αj ṽ

′
j(δ) = v′j(δ), j = 1, . . . , n (1.9)

so that the interface conditions (1.1-c) are satisfied.
We remark that αj = uj|γ′

j
= vj(δ), j = 1, . . . , n, are the values of the solution on the interfaces γ′

j . Thanks
to the linearity of (1.1), the problem has been completely split in [36]. The authors first derived the errors
for each linear sub-problems (1.7) separately by using classical techniques for finite volume schemes, on one
hand on the domains Sj , j = 1, . . . , n, and on the other hand on the domain Ω′

ε. They then deduced the error
on the reconstructed solution (1.8). This is not optimal because the approximation of αj , j = 1, . . . , n, is not.

Ultimately, under the assumptions of Lemmas 1.1 and 1.2, they get an error estimate O(
√

hδ
ε )+O(εJ ) between

the solution of (1.3) and its approximation. To control the errors on the interfaces, the authors need to assume
that h | lnε |/ε tends to zero when h and ε tend to zero, and some regularity for the mesh.

The error estimate for (1.1) is not clearly given in [36]. However, the approximation of (1.1) is a necessary
step to get the one of (1.3), then it is easy to deduce from [36] an error estimate O(

√
h) between the solution

of (1.1) and its approximation (in this case ε and δ are fixed constants). The estimate is obtained under some
regularity for the mesh.

So the present case is quite different since we do not need to estimate the error between αj , j = 1, . . . , n, and
their approximations.

1.6. Some remarks about the interface conditions

In the present work, the interface conditions on γ′
j , j = 1, . . . , n, in (1.1) are those induced by the MAPDD

(see [35]). But the application of this method to complex problems is not yet available. Often the geometrical
multi-scale modelling is achieved with the scope of delimiting the computational domain at hand in order to
reduce the computational costs (see the references below). Firstly, the location of the interfaces is arbitrary.
Secondly, it is difficult to determine which conditions may be assumed on the interfaces. In [30], the authors
propose different artificial boundary conditions to preserve the well posedness of the Navier–Stokes problem.
In [23], in the area of computational hemodynamics, the authors have treated the coupling of 3D models based on
the Navier–Stokes equations with reduced 1D models, and the continuity of the cross sectional area is prescribed:
numerical spurious reflections at the coupling interfaces are observed. However, the area of the vessel at both
sides may differ from each other (when using elastic models), which led the authors in [41] to relax this condition,
and to formulate in [6] an extended variational principle for problems where fields can become discontinuous
at the coupling interfaces. The influence of the proposed interface conditions on the amplitude of the spurious
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reflections is studied in [34]. In [6], the authors point out that no reliable solutions must be expected in the
regions near the coupling interfaces. In [28], the coupling of the 1D and the 2D (3D in [16]) Euler systems is
done by defining admissible coupling boundary, which yields a conservative admissible interface model.

1.7. About Poincaré inequalities

Error estimates for numerical methods are obtained thanks to functional analysis tools, such as discrete
Sobolev inequalities. Concerning the finite volume framework, and the two-dimensional case, a first discrete
Poincaré inequality for piecewise constant functions has been achieved for Dirichlet boundary conditions in [13],
following [29], in a polygonal convex domain. In [19], the authors generalize this inequality in a polygonal
domain. Discrete Sobolev inequalities (estimating the Lp norm) are presented in [14, 17–19]. In [19, 25], the
authors establish a “mean Poincaré” (Poincaré–Wirtinger) inequality (estimating the L2 norm) for Neumann
boundary conditions in a polygonal domain. A discrete “mean Poincaré” inequality (estimating the Lp norm)
is obtained in [12, 26] on Voronoi finite volume meshes. A Sobolev–Poincaré inequality (embedding of W 1,q

into Lp) was stated using a proof based on the space of functions of bounded variation in [5, 20] (also in [18]
for the zero boundary value case). The previous results were mostly presented in the framework of admissible
meshes which satisfy the following orthogonality property: there exists a point associated with each element
of the mesh such that the straight line connecting these points for two neighboring cells is orthogonal to the
common side of these two cells (see the definition in [19] and (2.1) below), but more general meshes are possible
(see [19]). In [43] the author presents both discrete Poincaré and “mean Poincaré” inequalities for functions
defined on a mesh where the orthogonality property is not necessarily satisfied (other references in the finite
element framework are given therein), as well as in [3] and [31] in the discrete duality finite volume context.
Previously a discrete Poincaré inequality on non-matching grids has been established in [11]. In all the papers
listed above dealing with nonconforming meshes, it is necessary to define a specific H1 norm that is appropriate
for the mesh.

In the present work, we use an admissible mesh in Ω′
ε, but the global mesh of Dε is in some ways “noncon-

forming”. We actually define a specific H1 norm for functions defined on Dε (see Sect. 1.4). In (1.1), we impose
zero boundary value on the 1D part of the domain and there is a Neumann boundary condition on the 2D part
of the domain, so we need to state first a discrete “mean boundary Poincaré” inequality (inequality that involves
a mean value on a part of the boundary), and then to deduce a Poincaré inequality for functions with zero value
on a part of the boundary. Such an inequality is obtained in [19,43], and in [5] for a convex domain. A discrete
Sobolev–Poincaré inequality (estimating the Lp norm) is established for functions with nonzero boundary values
in [4]. But, these results cannot be applied to a dimensionally-heterogeneous domain. In Section 3, we follow the
proof in [19], evaluating precisely the constant bounds as in [43], to get the suitable discrete Poincaré inequality
that is used in Section 4 to deduce the L2 error estimates.

1.8. To choose a coarse grid instead of reducing the dimension?

From the numerical standpoint, one may wonder why not to keep a fully 2D (or 3D in the general case)
domain, and choose a coarse grid made of rectangular cells (or rectangular parallelepiped) in areas where the
calculation of the solution does not require a great accuracy, rather than to reduce the dimension. This falls
within the classical problems arising in domain decomposition: what are the interface conditions on the non-
matching grids? There is a wide literature on this topic, and even, more specifically, using finite volume schemes
(see for instance [1, 11, 40]). A comparison between an hybrid scheme used on a dimensionally-heterogeneous
(1D-2D) domain and the so-called TPFA scheme (defined in [19]) used on a full 2D non matching finite volume
mesh, solving the Poisson equation in a rod structure with a single node and a single branch, can be found
in [42]. The branch is of thickness ε, and meshed with a row of rectangular cells ε high by h wide, where h is the
size of the mesh of the remaining part of the domain (corresponding to the node). The a priori estimate on the
error which is achieved in [42] for the TPFA scheme, following [11], depends on ε for several reasons: the size of
the global mesh depends on the size of the rectangles, the sum of the length of the atypical edges is equal to ε,
and the second derivative of the solution is of the order 1/ε (see Lem. 1.2). Under the assumption that h < ε,
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the most significant term is O(
√

ε), and it is impossible to get a bound with respect to h. Quite the contrary,
the error estimate obtained in [42] for the hybrid scheme can be expressed as a function of h (this result is
generalized in this paper, see Thms. 4.1 and 4.4), as well as a function of ε. This is a main advantage of the
geometrical multi-scale domain. Though, the numerical experiments in [42] show that the two schemes provide
similar performances. On the other hand, a discrete Poincaré inequality for non-matching grids is obtained, for
instance in [11], under the assumption of quasi-uniformness of the mesh. A discrete Poincaré inequality is used
in [42] which does not require any restrictive assumption on the mesh. The proof of this inequality is not given
in [42], it is a particular case of the one that is provided in the present paper (see Lem. 3.3).

1.9. The domain decomposition approach

In [6], the authors introduce a specialized vocabulary to name the scheme that discretizes (1.4’), (1.5’), (1.6):
the monolithic scheme. Alternately, a decoupled numerical scheme may be devised in case of working with stand-
alone 1D and 2D (or 3D) codes, such as black boxes. In this case we can split the computations by performing
iterations between the 1D and 2D (or 3D) sub-problems. In [6], the authors called theses schemes: the segregated
coupling schemes. Due to the heterogeneous feature of the geometrical multi-scale problems, the monolithic
scheme gives a linear system that is ill conditioned. For this reason, many authors adopt an iterative approach
by solving separately the sub-problems. For instance, the technique presented in [32,33] can be understood as a
domain decomposition approach where the partitioning takes place at the coupling interfaces among models of
different dimensions. This allows to parallelize the computations into the sub-domains. However, this splitting
strategy, in which the sub-models are solved separately and iteratively, will not be covered here. The monolithic
scheme is hereby explored.

2. Numerical scheme

2.1. The mesh

Let us define a mesh of the intervals (δ, lj) on the axis Oxej , j = 1, . . . , n. For each value of j, we choose
Nj ∈ IN∗, and Nj + 1 distinct and increasing values x

ej

i+1/2, i = 0, . . . , Nj, such that x
ej

1/2 = δ, x
ej

Nj+1/2 = lj .
Denote I

ej

i = (xej

i−1/2, x
ej

i+1/2), and h
ej

i = x
ej

i+1/2 − x
ej

i−1/2, i = 1, . . . , Nj .
Set hej = max{hej

i , i = 1, . . . , Nj} the size of the mesh of the interval (δ, lj).
Then we choose Nj points x

ej

i , i = 1, . . . , Nj, such that x
ej

i ∈ I
ej

i . Set x
ej

0 = δ, x
ej

Nj+1 = lj, and h
ej

i+1/2 =
x

ej

i+1 − x
ej

i , i = 0, . . . , Nj .
Let us construct an admissible mesh over Ω′

ε denoted by T . We assume in the following that Ω′
ε is polygonal.

We remind (see the definition in [19]) that such a mesh consists in a family of open polygonal convex subsets K
of Ω′

ε (with positive measures) called control volumes, a family of edges σ (with strictly positive measures) of
the control volumes denoted by E , and a family of points xK chosen in each control volume K denoted by P .
The mesh T satisfies the following properties:

(1) The closure of the union of all the control volumes is Ω′
ε.

(2) For any K ∈ T , there is a subset EK of E such that ∂K =
⋃

σ∈EK

σ, and
⋃

K∈T
EK = E .

(3) For any (K, L) ∈ T 2, K �= L, one of three following assertions holds:
either K ∩ L = ∅, or K ∩ L is a common vertex of K and L,
or K ∩ L = σ, σ being a common edge of K and L denoted by σK/L.

(4) The family P = (xK)K∈T is such that for any K ∈ T , xK ∈ K.
For any (K, L) ∈ T 2, K �= L, it is assumed that xK �= xL and that the straight line going
through xK and xL is orthogonal to σK/L.

(5) For any σ ∈ E , if σ ⊂ ∂Ω′
ε, σ ∈ EK and xK /∈ σ, the orthogonal

projection of xK on the straight line containing the edge σ, belongs to σ.

(2.1)
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Let Eint = {σ ∈ E , σ �⊂ ∂Ω′
ε}.

For any (K, L) ∈ T 2, K �= L, if σ = σK/L, let dσ be the distance between xK and xL. For any K ∈ T , if
σ ∈ EK and if σ ⊂ ∂Ω′

ε, let dσ be the distance between xK and σ.
We assume that for any σ ∈ E , dσ �= 0.
For any K ∈ T , let m(K) be the area of K. For any σ ∈ E , let m(σ) be the length of σ. Let h0 be the size

of the mesh T , h0 = max{diam(K), K ∈ T }, where diam is the abbreviation for diameter.
We denote by T S the global 1D-2D mesh of Dε. Let h be the size of the 1D-2D mesh of Dε: h =

max{h0, h
ej , j = 1, . . . , n}.

2.2. The hybrid scheme

The scheme is obtained by integrating v′′j = fj on each cell I
ej

i , i = 1, . . . , Nj , and 	u = 0 over each control
volume K ∈ T . The numerical flux Fj,i+1/2 is an approximation of v′j(x

ej

i+1/2) of finite difference type; vj,i is an
approximation of vj(x

ej

i ), i = 0, . . . , Nj + 1. The flux FK,σ through the edge σ of the cell K is approximated by
a differential quotient. Last uK is an approximation of u(xK), K ∈ T . See [36] for details.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fj,i+1/2 − Fj,i−1/2 = h
ej

i f
ej

i , i = 1, . . . , Nj , j = 1, . . . , n (a)

Fj,i+1/2 =
vj,i+1 − vj,i

h
ej

i+1/2

, i = 0, . . . , Nj , j = 1, . . . , n

f
ej

i =
1

h
ej

i

∫ x
ej
i+1/2

x
ej
i−1/2

fj(x)dx, i = 1, . . . , Nj , j = 1, . . . , n

vj,Nj+1 = 0, j = 1, . . . , n∑
σ∈EK

FK,σ = 0, ∀K ∈ T (b)

FK,σ =

⎧⎪⎪⎨⎪⎪⎩
m(σ)
dσ

(uL − uK) , ∀σ ∈ Eint , if σ = σK/L

m(σ)
dσ

(vj,0 − uK) , ∀σ ⊂ γ′
j , σ ∈ EK , j = 1, . . . , n

0 , ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j)

vj,1 − vj,0

h
ej

1/2

=
1

θjε

∑
σ∈EK ,σ⊂γ′

j

m(σ)
dσ

(vj,0 − uK), j = 1, . . . , n (c).

(2.2)

Let us notice that vj,0 is a convex combination of the approximated values of the solution on each side of
γ′

j , j = 1, . . . , n, since

vj,0 =

⎛⎝ vj,1

h
ej

1/2

+
1

θjε

∑
σ∈EK ,σ⊂γ′

j

m(σ)
dσ

uK

⎞⎠⎛⎝ 1
h

ej

1/2

+
1

θjε

∑
σ⊂γ′

j

m(σ)
dσ

⎞⎠−1

· (2.3)

For the sake of simplicity, in (2.2c) and (2.3), the summation is done for σ ⊂ γ′
j , and for each of them, K is

the control volume such that σ ∈ EK .
The approximate solution of (1.1) is defined by

ud
T (x, y) =

{
uT (x, y) , (x, y) ∈ Ω′

ε

vjT (xej ) , (x, y) ∈ Bε
j , xej ∈ (δ, lj), j = 1, . . . , n

with

{
uT (x, y) = uK , (x, y) ∈ K, K ∈ T
vjT (xej ) = vji, x

ej ∈ (xej

i−1/2, x
ej

i+1/2), i = 1, . . . , Nj, j = 1, . . . , n.

(2.4)
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2.3. Existence and uniqueness of the finite volume approximation

The scheme (2.2) leads to a linear system of the form AU = B in which U is the unknown, where UT =
({{vji, i = 1, . . . , Nj}, j = 1, . . . , n}, {uK, K ∈ T }).

Lemma 2.1. There is a unique solution ({{vji, i = 1, . . . , Nj}, j = 1, . . . , n}, {uK , K ∈ T }) to equations (2.2).

Proof. We assume that B = 0. Let us prove that U = 0. We multiply (2.2)a by vj,i and sum over i, then
multiply by θjε and sum over j. We multiply (2.2)b by uK and sum over K. We obtain

n∑
j=1

θjε

Nj∑
i=1

(F j
i+1/2 − F j

i−1/2)vj,i +
∑
K∈T

∑
σ∈EK

FK,σuK = 0.

Reordering the second summation over the set of edges, we get that

n∑
j=1

θjε

⎛⎝ Nj∑
i=1

F j
i+1/2vj,i −

Nj−1∑
i=0

F j
i+1/2vj,i+1

⎞⎠+
∑

σ∈Eint
σ=σK|L

FK,σ(uK − uL) +
n∑

j=1

∑
σ∈EK

σ⊂γ′
j

m(σ)
dσ

(vj,0 − uK)uK = 0.

On the other hand, the definition of the numerical fluxes leads to

n∑
j=1

θjε

⎛⎝ Nj∑
i=1

− (vj,i+1 − vj,i)2

h
ej

i+1/2

− vj,1 − vj,0

h
ej

1/2

vj,1

⎞⎠−
∑

σ∈Eint
σ=σK|L

m(σ)
dσ

(uK − uL)2 +
n∑

j=1

∑
σ∈EK

σ⊂γ′
j

m(σ)
dσ

(vj,0 − uK)uK = 0.

Multiplying (2.2c) by θjεvj,0, summing over j, and adding to the above equality, we get

n∑
j=1

θjε

⎛⎝ Nj∑
i=1

− (vj,i+1 − vj,i)2

h
ej

i+1/2

− (vj,1 − vj,0)2

h
ej

1/2

⎞⎠−
∑

σ∈Eint
σ=σK|L

m(σ)
dσ

(uK − uL)2 −
n∑

j=1

∑
σ∈EK

σ⊂γ′
j

m(σ)
dσ

(vj,0 − uK)2 = 0.

Hence, all the components of U are equal, and since vj,Nj+1 = 0, j = 1, . . . , n, we have U = 0. �

Remark 2.2. The previous line reads −‖sd
T ‖2

1,T = 0 where ‖.‖1,T is defined below (see Def. 3.1), and sd
T is a

function constant over each control volume of the mesh T S which coincides with ud
T . The proof of the existence

and uniqueness of the solution of (2.2) is also done in [36] using another method.

3. The discrete Poincaré inequality

The proof of an L2 error estimate requires a discrete Poincaré inequality. We remind that Dε = Ω′
ε∪
(
∪n

j=1Sj

)
.

We introduce the space of piecewise constant functions associated with the 1D-2D mesh of Dε, and a discrete
H1 norm for this space. The discrete Poincaré inequality, that is established in Lemma 3.3, is expressed in terms
of this discrete H1 norm.

Definition 3.1.

(a) We define X(T ) the set of functions from Ω′
ε to R which are constant over each control volume of T .

(b) We define X(T S) the set of functions from Dε to R which are constant over each control volume of T S.
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(c) Let w ∈ X(T S), such that

w(x, y) =

{
wK , (x, y) ∈ K, K ∈ T
wj,i, (x, y) ∈ Sj , x

ej ∈ (xej

i−1/2, x
ej

i+1/2), i = 1, . . . , Nj, j = 1, . . . , n.

We define and we denote

(i) ‖w‖2,T =

⎛⎝∑
K∈T

m(K)w2
K +

n∑
j=1

θjε

Nj∑
i=1

h
ej

i w2
j,i

⎞⎠1/2

(ii) ‖w‖1,T ,∗ =

(∑
σ∈Eint

m(σ)dσ

(
Dσw

dσ

)2
)1/2

(defined also for w ∈ X(T ))

(iii) ‖w‖1,T =

(∑
σ∈Eint,σ⊂(∪n

j=1γ′
j)

m(σ)dσ

(
Dσw

dσ

)2

+
∑n

j=1 θjε
∑Nj

i=0

(wj,i+1 − wj,i)2

h
ej

i+1/2

)1/2

where Dσw =

{
| wK − wL |, σ ∈ Eint, σ = σK|L

| wK − wj,0 |, σ ⊂ γ′
j , σ ∈ EK , j = 1, . . . , n

wj,Nj+1 = 0, j = 1, . . . , n,

and wj,0 =

⎛⎝wj,1

h
ej

1/2

+
1

θjε

∑
σ∈EK ,σ⊂γ′

j

m(σ)
dσ

wK

⎞⎠⎛⎝ 1
h

ej

1/2

+
1

θjε

∑
σ⊂γ′

j

m(σ)
dσ

⎞⎠−1

·

Remark 3.2. The functions ‖.‖2,T and ‖.‖1,T are norms, and ‖.‖1,T ,∗ is semi-norm, on X(T S). On the other
hand, we can explain ‖w‖2,T and ‖w‖1,T as classical discrete norms of a function w̃ defined a.e. on Ωε and such
that w̃|Dε = w. Let us define w̃ by

w̃(x, y) =

{
wK , (x, y) ∈ K, K ∈ T
wj,i, (x, y) ∈ Bε

j , xej ∈ (xej

i−1/2, x
ej

i+1/2), i = 1, . . . , Nj , j = 1, . . . , n,

then we have ‖w‖2,T = ‖w̃‖L2(Ωε). We can consider a mesh of Ωε including T and a row of rectangular cells
ε high by h wide on Bε

j \ B′ε
j , j = 1, . . . , n. The function w̃ is piecewise constant on this mesh, and ‖w‖1,T is

equal to a 2D classical discrete H1 norm of w̃ on this mesh.

Lemma 3.3. Let w ∈ X(T S), there is a constant c independent of h such that

‖w‖2
2,T ≤ c‖w‖2

1,T .

Proof. Let w ∈ X(T S) such that

w(x, y) =
{

wK , (x, y) ∈ K, K ∈ T
wj,i, (x, y) ∈ Sj , x

ej ∈ (xej

i−1/2, x
ej

i+1/2), i = 1, . . . , Nj, j = 1, . . . , n.

We let wj,Nj+1 = 0, j = 1, . . . , n, and

wj,0 =

⎛⎝wj,1

h
ej

1/2

+
1

θjε

∑
σ∈EK ,σ⊂γ′

j

m(σ)
dσ

wK

⎞⎠⎛⎝ 1
h

ej

1/2

+
1

θjε

∑
σ⊂γ′

j

m(σ)
dσ

⎞⎠−1

·
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Noting that

‖w‖2
2,T = ‖w‖2

L2(Ω′
ε) +

n∑
j=1

θjε

Nj∑
i=1

h
ej

i w2
j,i ≤ ‖w‖2

L2(Ω′
ε) +

n∑
j=1

θjε(lj − δ)
Nj∑
i=0

(wj,i+1 − wj,i)2

h
ej

i+1/2

since

|wj,i| ≤
Nj∑
i=0

|wj,i − wj,i+1| ≤

⎛⎝ Nj∑
i=0

(wj,i+1 − wj,i)2

h
ej

i+1/2

⎞⎠1/2⎛⎝ Nj∑
i=0

h
ej

i+1/2

⎞⎠1/2

we deduce that
‖w‖2

2,T ≤ ‖w‖2
L2(Ω′

ε) + (lmax − δ)‖w‖2
1,T (3.1)

where lmax = max{lj, j = 1, . . . , n}.
Though, proving Lemma 3.3 amounts to proving the existence of a constant c independent of h such that

‖w‖2
L2(Ω′

ε) ≤ c‖w‖2
1,T .

Now, we follow the path of (Lem. 10.2 in [19]) to prove a “discrete mean Poincaré inequality”. The authors
assume that the domain, in which the problem is set, is an open bounded polygonal connected subset of R

2:
Ω′

ε satisfies this requirement allowing the results to be used. Then, following the proof in [19], there is a
finite number of disjoint convex polygonal sets, denoted by {Ω1, . . . , Ωp}, such that Ω

′
ε = ∪p

i=1Ωi. Here, it
makes sense to assume that Ω1 = B′ε

1 because B′ε
1 is convex, and γ′

1 ⊂ ∂Ω1 is located on the interface. Let
Iij = Ωi ∩Ωj , i �= j, i, j ∈ {1, . . . , p} as in [19]. Let us remember that only the set of index such that m(Iij) > 0
is considered.

Now, let us define the strictly positives quantities μ and λ:

min
{

m(Iij)
ε

, i, j ∈ {1, . . . , p}
}

= μ min
{

m(Ωi)
m(Ω′

ε)
, i ∈ {1, . . . , p}

}
= λ. (3.2)

Why to introduce ε above to define μ? The domain Ωε has been constructed so that the width of each branch
is the image of a given segment obtained by a 1/ε-homothetic contraction. Indeed, the thickness of Ω1 is equal
to θ1ε. That is the reason why we do not assume that m(Iij) is greater than a strictly positive constant (as
in [19]), but rather that the ratio m(Iij)ε−1 is so.

Now, we continue as in [19], defining m1(w) the mean value of w over Ω1, and mΩ′
ε
(w) the mean value of w

over Ω′
ε, that is

m1(w) =
1

m(Ω1)

∫
Ω1

w(x, y)dxdy, mΩ′
ε
(w) =

1
m(Ω′

ε)

∫
Ω′

ε

w(x, y)dxdy.

Since
‖w‖2

L2(Ω′
ε) ≤ 3‖w − mΩ′

ε
(w)‖2

L2(Ω′
ε) + 3m(Ω′

ε)|mΩ′
ε
(w) − m1(w)|2 + 3m(Ω′

ε)m1(w)2 (3.3)

proving Lemma 3.3 amounts actually to proving the existence of three constants c1, c2, c3, independent of h
such that

a) ‖w − mΩ′
ε
(w)‖2

L2(Ω′
ε) ≤ c1‖w‖2

1,T b) |mΩ′
ε
(w) − m1(w)|2 ≤ c2‖w‖2

1,T c) m1(w)2 ≤ c3‖w‖2
1,T .

(3.4)
The proof of Lemma 10.2 in [19] gives the existence of c1, c2, only depending on Ω′

ε, such that

‖w − mΩ′
ε
(w)‖2

L2(Ω′
ε) ≤ c1‖w‖2

1,T ,∗ |mΩ′
ε
(w) − m1(w)|2 ≤ c2‖w‖2

1,T ,∗.

The proof of (3.4a) and (3.4b) follows since ‖w‖2
1,T ,∗ ≤ ‖w‖2

1,T .
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Let us prove (3.4c). We consider now the second step of Lemma 10.2 in [19], called “estimate with respect
to the mean value on a part of the boundary”, for a convex domain. This result is extended in Lemma 7.2
in [43] to the case of meshes where the orthogonality property (2.1)–(4) is not satisfied. Similarly, Lemma 2.7.2
in [44] gives a result for functions which are null on a part of the boundary, this proof is an alternative to the
second step of Lemma 10.2 in [19] and it is easily applied in the current context. That is why we follow now the
proof in [44], taking Ω1 for the convex domain and γ′

1 ⊂ ∂Ω1 for the part of the boundary with a null Dirichlet
condition. Of course, the function w is not null on γ′

1. It is the difference between the result obtained in [19]
or [44], and Lemma 3.3. Introducing ‖w‖2

1,T instead of ‖w‖2
1,T ∗ allows to overcome this difficulty.

As in [44], we begin the proof of (3.4c) by choosing a vector b1, such that, for each point in Ω1, each line
defined by this point and b1 intersects γ′

1. We take b1 = e1. We need here only one vector, while the author
need a family of vectors in [44]. Now, we adapt this proof to our geometrical multi-scale domain.

For all (x, y) ∈ Ω1, D((x, y), e1) designates the semi-line defined by its origin (x, y) and the vector e1; let
P (x, y) = γ′

1 ∩ D((x, y), e1).
For σ ∈ E , χσ is a function from R

2 × R
2 to {0, 1} such that χσ(r, z) is equal to 1 if σ ∩ [r, z] �= ∅ and equal

to 0 otherwise.
Let K ∈ T such that K ∩ Ω1 �= ∅. Then we have for a.e. (x, y) ∈ K ∩ Ω1:

| wK |≤
∑

σ∈Eint,σ⊂γ′
1

(Dσw) χσ((x, y), P (x, y)) +
N1∑
i=0

| w1,i − w1,i+1 |

since w1,N1+1 = 0. This requirement is essential to ensure the inequality above. Let us remark that there is
σ ⊂ γ′

1 such that P (x, y) ∈ σ, then Dσw = |wL − w1,0| for some L (see Def. 3.1) such that σ ∈ EL. The use of
w1,0 allows to get out of Ω′

ε and join the boundary of the 1D domain S1.
By the Cauchy–Schwarz inequality, we have

w2
K ≤

⎛⎜⎜⎜⎜⎝
∑

σ∈Eint

σ⊂γ′
1

(Dσw)2

dσcσ
χσ((x, y), P (x, y)) +

N1∑
i=0

(w1,i − w1,i+1)2

he1
i+1/2

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
∑

σ∈Eint

σ⊂γ′
1

dσcσ χσ((x, y), P (x, y)) +
N1∑
i=0

h
ej

i+1/2

⎞⎟⎟⎟⎟⎠
(3.5)

where cσ =| e1 · nσ |.
Since e1 is the axis of the first branch (where Ω1 is found), we have∑

σ∈Eint,σ⊂γ′
1

dσcσ χσ((x, y), P (x, y)) ≤ δ.

Integrating (3.5) over K ∩ Ω1 and summing over all K ∈ T such that K ∩ Ω1 �= ∅ yields

∑
K∈T

w2
K m(K ∩ Ω1) ≤ l1

⎛⎜⎜⎜⎜⎝
∑

σ∈Eint

σ⊂γ′
1

(Dσw)2

dσcσ

(∫
Ω1

χσ((x, y), P (x, y))dxdy

)
+ m(Ω1)

N1∑
i=0

(w1,i − w1,i+1)2

he1
i+1/2

⎞⎟⎟⎟⎟⎠ . (3.6)

Since, following [19], we have ∫
Ω1

χσ((x, y), P (x, y))dxdy ≤ δm(σ)cσ
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then (3.6) implies that

‖w‖2
L2(Ω1) ≤ lmax

⎛⎝δ
∑

σ∈Eint,σ⊂γ′
1

m(σ)dσ

(
Dσw

dσ

)2

+ m(Ω1)
N1∑
i=0

(w1,i − w1,i+1)2

he1
i+1/2

⎞⎠

≤ lmaxδ

⎛⎝ ∑
σ∈Eint,σ⊂γ′

1

m(σ)dσ

(
Dσw

dσ

)2

+ θ1 ε

N1∑
i=0

(w1,i − w1,i+1)2

he1
i+1/2

⎞⎠
≤ lmaxδ‖w‖2

1,T .

As we have
m1(w)2 ≤ 1

m(Ω1)
‖w‖2

L2(Ω1) ≤
lmaxδ

m(Ω1)
‖w‖2

1,T

this proves (3.4c).
With (3.1) and (3.3), we deduce that there is a constant c depending only on Dε such that ‖w‖2

2,T ≤ c‖w‖2
1,T ,

so Lemma 3.3 is proved. This lemma is used to state Theorems 4.1 and 4.4 below. Theorem 4.1 gives an error
estimate for (1.1) assuming ε and δ are fixed. Theorem 4.4 relates to (1.3) assuming ε tends to zero.

If we are just interested in the resolution of (1.1) then a more precise definition of the constant c does not
matter. To get the estimate of Theorem 4.1 it is enough to know that c depends only on Dε.

The estimate of Theorem 4.4 requires precise informations on the dependence of c1, c2, c3 with respect to ε
and δ. Evaluating the constants from the proof of Lemma 10.2 in [19], one has

c1 = O

(
diam(Ω′

ε)
4m(Ωk)

m(Ωi)2
+

diam(Ω′
ε)diam(Ωi)2m(Ωk)
m(Iij)m(Ωi)

+
diam(Ω′

ε)
4

m(Ωi)
, i, j, k ∈ {1, . . . , p}

)
c2 = O

(
diam(Ω′

ε)
4

m(Ωi)2
+

diam(Ω′
ε)diam(Ωi)2

m(Iij)m(Ωi)
, i, j ∈ {1, . . . , p}

)
. (3.7)

We remind that we assume in this case that δ is of order εlnε. With (3.2), we deduce that

c1 = O

(
diam(Ω′

ε)
4

m(Ω′
ε)

+
diam(Ω′

ε)
3

ε

)
= O

(
δ3

ε

)
c2 = O

(
diam(Ω′

ε)
4

m(Ω′
ε)2

+
diam(Ω′

ε)
3

ε m(Ω′
ε)

)
= O

(
δ2

ε2

)
· (3.8)

Last we have

c3 =
lmaxδ

m(Ω1)
= O

(
1
ε

)
· (3.9)

And then, we see from (3.1), (3.3) and (3.4) that there is a constant c, namely

c = 3(c1 + m(Ω′
ε)c2 + m(Ω′

ε)c3) + lmax − δ

such that
‖w‖2

2,T ≤ c‖w‖2
1,T .

Moreover, we conclude with (3.8) and (3.9) that

c = O

(
δ3

ε

)
+ O(δ) + O(1) = O(1)

when ε tends to zero, assuming that δ is of order εln(ε). So, also in this case, the constant c in Lemma 3.3
depends neither on h nor on ε. �
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4. The error estimate

The error estimate between the solution of (1.1) and its finite volume approximation, which is obtained
in [36], uses the linearity of the problem to prevent the coupling between its 1D and its 2D parts. So in [36],
a standard H1 norm on the 1D domains Sj , j = 1, . . . , n, and a standard H1 norm on the 2D domain Ω′

ε are
used. The disadvantage of this method is that the errors between the values αj , j = 1, . . . , n, of the solution on
the interfaces between the domains of different dimensions and the approximate values vj,0, play an important
role in calculating the global error. And these errors are not optimized (see Sect. 1.6).

To overcome this difficulty, we use here the specific discrete H1 norm defined in the previous section on Dε.
Using (2.3), the approximate values vj,0, j = 1, . . . , n, of the solution on the interfaces are related to (convex
combinations of) the other unknowns: the approximate values of the solution on both sides of the interfaces
between the 1D parts and the 2D part. So vj,0, j = 1, . . . , n, may be removed from the scheme (2.2) by expressing
vj,0 in terms of vj,1 and uK such that there is σ ∈ EK , σ ⊂ γ′

j , according to (2.3). In the same way, ‖w‖1,T may
be rewritten without wj,0, j = 1, . . . , n, in Definition 3.1. The global error eT is defined just below, an estimate
of ‖eT ‖1,T is obtained without using any estimate on | αj − vj,0 |, j = 1, . . . , n, that allows to improve the result
obtained in [36].

We remind that the solution of (1.1) is assumed to be regular, that means that u ∈ C2(Ω′
ε) and vj ∈

C2([δ, lj]), j = 1, . . . , n.
We state below the main result of the paper.

Theorem 4.1. If ud
T is the finite volume approximation of (1.1) defined by (2.4), if ud is the solution of (1.1)

defined by (1.2) and is assumed to be regular, and if eT ∈ X(T S) is defined by

eT (x, y) =

{
eK = u(xK) − uK , (x, y) ∈ K, K ∈ T
ej,i = vj(x

ej

i ) − vj,i, (x, y) ∈ Sj, x
ej ∈ (xej

i−1/2, x
ej

i+1/2), i = 1, . . . , Nj , j = 1, . . . , n.

and if we let

ej,0 =

⎛⎝ ej,1

h
ej

1/2

+
1

θjε

∑
σ∈EK ,σ⊂γ′

j

m(σ)
dσ

eK

⎞⎠⎛⎝ 1
h

ej

1/2

+
1

θjε

∑
σ⊂γ′

j

m(σ)
dσ

⎞⎠−1

ej,Nj+1 = 0, j = 1, . . . , n

then, there are two constants c1 and c2 depending only on ud and Dε such that

‖eT ‖1,T ≤ c1h (4.1)

and
‖ud − ud

T ‖L2(Ωε) ≤ c2h (4.2)

with h the size of the mesh of Dε.

Proof. We prove an estimate for ‖eT ‖1,T , and conclude thanks to the Poincaré inequality. This proof is not
classical because of the interface terms relating to the consistency error on the diffusion flux when σ ⊂ γ′

j , j =
1, . . . , n.

We consider first the continuous problem (1.1). We integrate (1.1a) over each 1D cell and (1.1b) over each
K ∈ T . We obtain ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F j,i+1/2 − F j,i−1/2 = h
ej

i f
ej

i , i = 1, . . . , Nj, j = 1, . . . , n

F j,i+1/2 = v′j(x
ej

i+1/2), i = 0, . . . , Nj, j = 1, . . . , n∑
σ∈EK

FK,σ = 0, ∀K ∈ T

FK,σ =
∫

σ
∂u
∂ndγ, ∀σ ∈ EK .

(4.3)
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We define ⎧⎪⎪⎪⎨⎪⎪⎪⎩
F ∗

j,i+1/2 =
vj(x

ej

i+1) − vj(x
ej

i )
h

ej

i+1/2

, i = 1, . . . , Nj , j = 1, . . . , n

F ∗
j,1/2 =

vj(x
ej

1 ) − u∗
j (δ)

h
ej

1/2

, j = 1, . . . , n

(4.4)

with

u∗
j(δ)=

⎛⎝vj(x
ej

1 )
h

ej

1/2

+
1

θjε

∑
σ∈EK ,σ⊂γ′

j

m(σ)
dσ

u(xK)

⎞⎠⎛⎝ 1
h

ej

1/2

+
1

θjε

∑
σ⊂γ′

j

m(σ)
dσ

⎞⎠−1

, j = 1, . . . , n. (4.5)

In the same spirit, we introduce

F ∗
K,σ =

⎧⎪⎪⎨⎪⎪⎩
m(σ)

dσ
(u(xL) − u(xK)), ∀σ ∈ Eint , if σ = σK/L

m(σ)
dσ

(u∗
j (δ) − u(xK)), ∀σ ⊂ γ′

j , σ ∈ EK , j = 1, . . . , n

0, ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j).

(4.6)

The consistency errors are defined by{
Rj,i+1/2 = F ∗

j,i+1/2 − F j,i+1/2, i = 0, . . . , Nj, j = 1, . . . , n

RK,σ = 1
m(σ) (F

∗
K,σ − FK,σ), ∀σ ∈ EK , ∀K ∈ T .

(4.7)

We have ⎧⎪⎨⎪⎩
Rj,i+1/2 = O(h‖v′′j ‖∞), i = 1, . . . , Nj , j = 1, . . . , n

RK,σ = O(h‖∇2u‖∞), ∀σ ∈ EK ∩ Eint, ∀K ∈ T
RK,σ = 0, ∀σ ∈ EK , ∀σ ⊂ ∂Ω′

ε\(∪n
j=1γ

′
j), ∀K ∈ T .

(4.8)

Now, in order to deal with the consistency errors at the interfaces, we define the following quantities for all
j = 1, . . . , n and σ ∈ EK , σ ⊂ γ′

j⎧⎪⎪⎨⎪⎪⎩
R∗

j,1/2 =
vj(δ) − u∗

j (δ)
h

ej

1/2

, R∇
j,1/2 =

vj(x
ej

1 ) − vj(δ)
h

ej

1/2

− v′j(δ)

R∗
K,σ =

u∗
j (δ) − vj(δ)

dσ
, R∇

K,σ =
vj(δ) − u(xK)

dσ
− 1

m(σ)

∫
σ

∂u

∂n
dγ.

(4.9)

We have for all j = 1, . . . , n and σ ∈ EK , σ ⊂ γ′
j

R∇
j,1/2 = O(h‖v′′j ‖∞), R∇

K,σ = O(h‖∇2u‖∞). (4.10)

We let for all j = 1, . . . , n and σ ∈ EK , σ ⊂ γ′
j

Rj,1/2 = R∗
j,1/2 + R∇

j,1/2, RK,σ = R∗
K,σ + R∇

K,σ. (4.11)

Now, we prove the following intermediate lemma

Lemma 4.2.
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ − θjεRj,1/2 = 0, j = 1, . . . , n.
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Proof. The summation above is done for σ ⊂ γ′
j , and for each of them, K is the control volume such that

σ ∈ EK (as in (2.2c) and (2.3)). We have∑
σ∈EK ,σ⊂γ′

j

m(σ)RK,σ − θjεRj,1/2

=
∑

σ∈EK ,σ⊂γ′
j

(
m(σ)
dσ

(u∗
j (δ) − u(xK)) −

∫
σ

∂u

∂n
dγ

)
− θjε

(
vj(x

ej

1 ) − u∗
j(δ)

h
ej

1/2

− v′j(δ)

)

= u∗
j (δ)θjε

⎛⎝ 1
h

ej

1/2

+
1

θjε

∑
σ⊂γ′

j

m(σ)
dσ

⎞⎠− θjε

⎛⎜⎜⎝vj(x
ej

1 )
h

ej

1/2

+
1

θjε

∑
σ∈EK

σ⊂γ′
j

m(σ)
dσ

u(xK)

⎞⎟⎟⎠+ θjεv
′
j(δ) −

∑
σ⊂γ′

j

∫
σ

∂u

∂n
dγ.

We conclude with (1.1c) and (4.5) that∑
σ∈EK ,σ⊂γ′

j

m(σ)RK,σ − θjεRj,1/2 = 0, j = 1, . . . , n. �

Now to continue the proof of Theorem 4.1, we substract equations of (2.2) and (4.3) one by one, and obtain⎧⎪⎨⎪⎩
F j,i+1/2 − Fj,i+1/2 − (F j,i−1/2 − Fj,i−1/2) = 0, i = 1, . . . , Nj , j = 1, . . . , n∑
σ∈EK

(FK,σ − FK,σ) = 0, ∀K ∈ T . (4.12)

Then we introduce the consistency errors. With (4.7) we get⎧⎪⎨⎪⎩
F ∗

j,i+1/2 − Fj,i+1/2 − (F ∗
j,i−1/2 − Fj,i−1/2) − (Rj,i+1/2 − Rj,i−1/2) = 0, i = 1, . . . , Nj, j = 1, . . . , n∑

σ∈EK

(F ∗
K,σ − FK,σ) −

∑
σ∈EK

m(σ)RK,σ = 0, ∀K ∈ T . (4.13)

We remark that ej,0 = u∗
j (δ) − vj,0 (the definition of vj,0 is given in (2.3)).

Since ej,Nj+1 = 0, j = 1, . . . , n, we thus have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F ∗
j,i+1/2 − Fj,i+1/2 =

ej,i+1 − ej,i

h
ej

i+1/2

, i = 1, . . . , Nj, j = 1, . . . , n

F ∗
j,1/2 − Fj,1/2 =

ej,1 − ej,0

h
ej

1/2

, i = 1, . . . , Nj, j = 1, . . . , n

F ∗
K,σ − FK,σ =

⎧⎪⎪⎨⎪⎪⎩
m(σ)

dσ
(eL − eK) , ∀σ ∈ Eint , if σ = σK/L

m(σ)
dσ

(ej,0 − eK) , ∀σ ⊂ γ′
j , σ ∈ EK , j = 1, . . . , n

0 , ∀σ ⊂ ∂Ω′
ε\(∪n

j=1γ
′
j).

Using the above expressions in (4.13), we get⎧⎪⎪⎪⎨⎪⎪⎪⎩
ej,i+1 − ej,i

h
ej

i+1/2

− ej,i − ej,i−1

h
ej

i−1/2

= Rj,i+1/2 − Rj,i−1/2, i = 1, . . . , Nj , j = 1, . . . , n (a)

∑
σ∈EK∩Eint

m(σ)
dσ

(eL − eK) +
∑

σ∈EK

n∑
j=1

∑
σ⊂γ′

j

m(σ)
dσ

(ej,0 − eK) =
∑

σ∈EK

m(σ)RK,σ, ∀K ∈ T (b).
(4.14)
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Multiplying (4.14a) by ej,i, summing over i, we obtain

−
Nj∑
i=1

(ej,i+1 − ej,i)2

h
ej

i+1/2

− ej,1 − ej,0

h
ej

1/2

ej,1 =
Nj∑
i=1

Rj,i+1/2(ej,i − ej,i+1) − Rj,1/2ej,1, , j = 1, . . . , n. (4.15)

Multiplying (4.14b) by eK , summing over K, we obtain

−
∑

σ∈Eint,σ=σK/L

m(σ)
dσ

(eL − eK)2 +
n∑

j=1

∑
σ∈EK ,σ⊂γ′

j

m(σ)
dσ

(ej,0 − eK)eK

=
∑

σ∈Eint,σ=σK/L

m(σ)RK,σ(eK − eL) +
n∑

j=1

∑
σ∈EK ,σ⊂γ′

j

m(σ)RK,σeK . (4.16)

The right summations (in each member) are done for σ ⊂ γ′
j, and for each of them, K is the control volume

such that σ ∈ EK (as in (2.2c) and (2.3)). We multiply (4.15) by θjε, sum over j, and add (4.16). Then we
consider the two quantities with terms on the interfaces. The first one, depending on ej,0, may be rewritten

−θjε
ej,1 − ej,0

h
ej

1/2

ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)
dσ

(ej,0 − eK)eK = −θjε
(ej,1 − ej,0)2

h
ej

1/2

−
∑

σ∈EK ,σ⊂γ′
j

m(σ)
dσ

(ej,0 − eK)2 (4.17)

because
ej,1 − ej,0

h
ej

1/2

=
1

θjε

∑
σ∈EK ,σ⊂γ′

j

m(σ)
dσ

(ej,0 − eK), j = 1, . . . , n. (4.18)

The second one, depending on Rj,1/2 and RK,σ with σ ∈ EK , σ ⊂ γ′
j , can be written thanks to Lemma 5.2,

−θjεRj,1/2ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σeK = −θjεRj,1/2(ej,1 − ej,0) +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σ(eK − ej,0) (4.19)

then we use (4.18) again, which implies that

− θjεR
∗
j,1/2(ej,1 − ej,0) +

∑
σ∈EK ,σ⊂γ′

j

m(σ)R∗
K,σ(eK − ej,0)

= (u∗
j (δ) − vj(δ))

⎛⎝θjε
ej,1 − ej,0

h
ej

1/2

+
∑

σ∈EK ,σ⊂γ′
j

m(σ)
dσ

(eK − ej,0)

⎞⎠
= 0

and allows to simplify (4.19) in the following way

−θjεRj,1/2ej,1 +
∑

σ∈EK ,σ⊂γ′
j

m(σ)RK,σeK = −θjεR
∇
j,1/2(ej,1 − ej,0) +

∑
σ∈EK ,σ⊂γ′

j

m(σ)R∇
K,σ(eK − ej,0). (4.20)
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So multiplying (4.15) by θjε, summing over j, adding (4.16), using (4.17) and (4.20), we get

−
n∑

j=1

θjε

⎛⎝ Nj∑
i=1

(ej,i+1 − ej,i)2

h
ej

i+1/2

+
(ej,1 − ej,0)2

h
ej

1/2

⎞⎠−
∑

σ∈Eint
σ=σK/L

m(σ)
dσ

(eL − eK)2 −
n∑

j=1

∑
σ∈EK

σ⊂γ′
j

m(σ)
dσ

(ej,0 − eK)2

=
n∑

j=1

θjε

Nj∑
i=1

Rj,i+1/2(ej,i − ej,i+1) −
n∑

j=1

θjεR
∇
j,1/2(ej,1 − ej,0) +

∑
σ∈Eint

σ=σK/L

m(σ)RK,σ(eK − eL)

+
n∑

j=1

∑
σ∈EK

σ⊂γ′
j

m(σ)R∇
K,σ(eK − ej,0). (4.21)

We recognize −‖eT ‖2
1,T in the left member of (4.21). We then apply Cauchy–Schwarz inequality. This gives

‖eT ‖1,T ≤

⎛⎝ n∑
j=1

θjε

Nj∑
i=1

R2
j,i+1/2h

ej

i+1/2 +
n∑

j=1

θjε(R∇
j,1/2)

2h
ej

1/2 +
∑

σ∈Eint,σ=σK/L

m(σ)dσR2
K,σ

+
n∑

j=1

∑
σ∈EK ,σ⊂γ′

j

m(σ)dσ(R∇
K,σ)2

⎞⎠1/2

≤ h O
(
‖v′′‖∞ + ‖∇2u‖∞

)⎛⎝ n∑
j=1

θjε

Nj∑
i=0

h
ej

i+1/2 +
∑

σ∈Eint

m(σ)dσ +
n∑

j=1

∑
σ⊂γ′

j

m(σ)dσ

⎞⎠1/2

≤ h O
(
‖v′′‖∞ + ‖∇2u‖∞

)⎛⎝ n∑
j=1

θjε(lj − δ) + 2m(Ω′
ε)

⎞⎠1/2

. (4.22)

Since the solution is regular, the second derivatives of the solution are bounded. We conclude that there is a
constant c1 depending only on ud and Dε such that

‖eT ‖1,T ≤ c1h.

With the Poincaré inequality (Lem. 3.3), this yields

‖eT ‖2,T ≤
√

cc1h. (4.23)

Let ûT be a function defined for a.e. (x, y) ∈ Ωε by

ûT (x, y) =

{
u(xK), (x, y) ∈ K, K ∈ T
vj(x

ej

i ), (x, y) ∈ Bε
j , xej ∈ (xej

i−1/2, x
ej

i+1/2), i = 1, . . . , Nj, j = 1, . . . , n.
(4.24)

We have
‖ud − ud

T ‖L2(Ωε) ≤ ‖ud − ûT ‖L2(Ωε) + ‖eT ‖2,T (4.25)

and

‖ud − ûT ‖L2(Ωε) ≤ h O (‖v′‖∞ + ‖∇u‖∞)

⎛⎝ n∑
j=1

θjε(lj − δ) + m(Ω′
ε)

⎞⎠1/2

. (4.26)



548 M.-C. VIALLON

Using (4.25), since the solution is regular, the estimates (4.23) and (4.26) yield (4.2). This ends the proof of
Theorem 4.1. �
Remark 4.3. It is also possible to prove the estimates of Theorem 4.1 under the weaker assumption u ∈
H2(Ω′

ε), vj ∈ H2((δ, lj)), j = 1, . . . , n. Taylor expansions with integral errors should be used to bound the
consistency errors. The bounds (4.8) and (4.10) (resp. (4.22)) should involve the L2-norm of the second deriva-
tives in some part of the corresponding control volumes (resp. in Ω′

ε and (δ, lj)), and (4.1) should still be true
(see [19]).

Now, Theorem 4.1 yields the following estimate about the solution of (1.3).

Theorem 4.4. Let ud
T be the finite volume approximation of (1.1) defined by (2.4). For any J > 0, there is M

independent of ε, such that if δ = Mε|lnε|, if the solution of (1.3) is assumed to be regular, then we have

‖uε − ud
T ‖L2(Ωε) = O

(
h√
ε

)
+ O(εJ ).

Proof. Using Lemma 1.2 we deduce in this case from (4.22) that

‖eT ‖1,T = h O

(
1
ε

)
O(

√
ε) = O

(
h√
ε

)
·

With Lemma 3.3, this yields

‖eT ‖2,T = O

(
h√
ε

)
· (4.27)

We deduce from (4.26) that
‖ud − ûT ‖L2(Ωε) = h O(1)O(

√
ε)

so this term is negligible compared with (4.27) if ε is small, and (4.25) yields

‖ud − ud
T ‖L2(Ωε) = O

(
h√
ε

)
· (4.28)

We end the proof by applying Lemma 1.1. �
Remark 4.5. If ε is fixed and small so that O(εJ ) is negligible, then ‖uε − ud

T ‖L2(Ωε) = O(h), that improves
the convergence order O(

√
h) in terms of the size of the mesh that we get in [36] for (1.3) (see Sect. 1.5).

Moreover, it is reasonable to expect that the mesh of Ω′
ε is not excessively coarse near the interfaces. So the

assumption h < θminε, θmin = min{θj, j = 1, . . . , n} is not restrictive, especially since h is intended to be small.
That is why it is worth highlighting that:

Lemma 4.6. Under the assumptions of Theorem 4.4, if there is a constant c such that h < c ε then

‖uε − ud
T ‖L2(Ωε) = O(

√
ε). (4.29)

So the convergence order in terms of ε is the same as the one we obtained in [36] using another kind of proof.
If we look at the numerical experiments in [36], the convergence order in terms of ε seems to be optimal.

Remark 4.7. It is possible to consider that ud is defined on a domain Ωε with regular boundary and that ud
T

is defined on a polygonal domain Ωε,poly ⊂ Ωε. This would increase the number of possible regular solutions
of (1.1). In this case, the results of Theorem 4.1, Theorem 4.4, Remark 4.5 and Lemma 4.6 are still valid in
L2(Ωε,poly ).

The hybrid scheme has been used to solve the Poisson equation in [36]. The numerical experiments have shown
that the numerical convergence order of the hybrid scheme seems to be greater than one. So the theoretical
convergence order O(h), in terms of the size of the mesh, that we obtained in the present paper, seems not yet
optimal. However, we also observe a difference between the numerical and the theoretical convergence order for
other schemes for instance the TPFA scheme (defined in [19], see [15]).
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5. Conclusion

In this paper, we study a finite volume scheme to solve a linear model problem on a geometrical multi-scale
1D-2D domain (one node and n outgoing branches). This could contribute to the simulation of problems set in
rod structures, such as arterial trees for example. Indeed this study can be generalized to solve more realistic
problems (the heat equation will be addressed in a forthcoming paper) which are possibly set in a 3D rod-
structure. We explain what are the advantages to work on a dimensionally-heterogeneous domain rather than
keep a 2D domain and consider non-matching grids. We define a specific H1 discrete norm for the functions
defined on such a domain, which involves the convex combinations of the values of the functions on both sides
of the interfaces between the 1D part and the 2D part. We establish a Poincaré inequality that yields a L2 error
estimate (4.2). If the thickness of the branches, that is proportional to ε, is fixed, then this estimate can be
read in terms of the size of the mesh h (order of convergence 1). If not, this estimate is rewritten (4.29) and
it can be read in terms of ε (order of convergence 1/2). Indeed, the convergence according to the thickness of
the branches may also be considered when applying the Method of Asymptotic Partial Domain Decomposition,
since then the thickness of the branches is intended to tend to zero. To the best of our knowledge, we prove
here the first error estimate using a finite volume scheme in a geometrical multi-scale domain.

Acknowledgements. The author would like to thank the reviewers for their careful and constructive assessment of the
manuscript.
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