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SUPERCLOSENESS OF ORTHOGONAL PROJECTIONS ONTO NEARBY
FINITE ELEMENT SPACES

Evan S. Gawlik
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Abstract. We derive upper bounds on the difference between the orthogonal projections of a smooth
function u onto two finite element spaces that are nearby, in the sense that the support of every
shape function belonging to one but not both of the spaces is contained in a common region whose
measure tends to zero under mesh refinement. The bounds apply, in particular, to the setting in which
the two finite element spaces consist of continuous functions that are elementwise polynomials over
shape-regular, quasi-uniform meshes that coincide except on a region of measure O(hγ), where γ is
a nonnegative scalar and h is the mesh spacing. The projector may be, for example, the orthogonal
projector with respect to the L2- or H1-inner product. In these and other circumstances, the bounds
are superconvergent under a few mild regularity assumptions. That is, under mesh refinement, the
two projections differ in norm by an amount that decays to zero at a faster rate than the amounts by
which each projection differs from u. We present numerical examples to illustrate these superconvergent
estimates and verify the necessity of the regularity assumptions on u.
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1. Introduction

One of the hallmarks of the finite element method is its geometric flexibility: it permits the construction of
numerical approximations to solutions of partial differential equations using meshes that are designed according
to the practitioner’s discretion. When two meshes are used to solve the same problem, the norm of the difference
between the corresponding numerical solutions is, of course, no larger than the sum of the norms of the differences
between each numerical solution and the exact solution. This paper addresses the question of whether or not a
sharper estimate holds in the event that the two meshes coincide over a large fraction of the domain.

Beyond its inherent mathematical appeal, the question raised above has important consequences in the study
of numerical solutions to time-dependent PDEs on meshes that change abruptly in time. Notable examples
are remeshing during finite element simulations of problems with moving boundaries, and adaptive refinement
during finite element simulations of problems on fixed (or moving) domains. The relevance of the aforementioned
question in this setting is elucidated in [10], where it is shown that if a parabolic PDE is discretized in space with
finite elements and the solution is transferred finitely many times between meshes using a suitable projector,
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then it is possible to derive an upper bound on the error in the numerical solution at a fixed time T > 0 that
involves the norms of the jumps in rhu(t) across the remeshing times, where rhu(t) denotes an elliptic projection
of the exact solution u(t) onto the current finite element space. These jumps are precisely the differences between
the finite element solutions of an elliptic PDE on two different meshes.

Intuition. It is perhaps not surprising that two finite element solutions associated with nearly identical meshes
should differ by an amount that is small relative to their individual differences with the exact solution, under
suitable conditions on the finite element spaces and the PDE under consideration. To develop some intuition,
it is instructive to first consider the similarity between the interpolants of a smooth function u onto two finite
element spaces associated with nearby meshes.

To this end, consider two families of shape-regular, quasi-uniform meshes {Th}h≤h0 and {T +
h }h≤h0 of an open,

bounded, Lipschitz domain Ω ⊂ R
d, d ≥ 1. Assume that the two families are parametrized by a scalar h that

equals the maximum diameter of an element among all elements of Th and T +
h for every h ≤ h0, where h0 is a

positive scalar. Let Vh and V+
h be finite element spaces consisting of, for definiteness, continuous functions that

are elementwise polynomials of degree at most r − 1 over Th and T +
h , respectively, where r > 1 is an integer.

For s ≥ 0 and p ∈ [1,∞], we denote by W s,p(Ω) the Sobolev space of differentiability s and integrability p,
equipped with the norm ‖ · ‖s,p and semi-norm | · |s,p. We sometimes write ‖ · ‖s,p,Ω and | · |s,p,Ω to emphasize
the domain under consideration. We denote Hs(Ω) = W s,2(Ω) for every s ≥ 1 and Lp(Ω) = W 0,p(Ω) for every
p ∈ [1,∞].

For finite element spaces of the aforementioned type, the nodal interpolants ihu ∈ Vh and i+h u ∈ V+
h of a

function u ∈ W r,η(Ω) ∩ C0(Ω) onto Vh and V+
h , respectively, satisfy the standard interpolation estimate

‖i+h u − u‖s,η + ‖ihu − u‖s,η ≤ Chr−s|u|r,η (1.1)

for any s ∈ {0, 1}, any η ∈ [2,∞], and every h ≤ h0 [9]. Here and throughout this paper, the letter C denotes a
constant that is not necessarily the same at each occurrence and is independent of h.

Using the triangle inequality and (1.1) with η = 2 gives an immediate upper bound on the L2- and H1-norms
of the difference between i+h u and ihu. Namely,

‖i+h u − ihu‖s,2 ≤ Chr−s|u|r,2 (1.2)

for any s ∈ {0, 1} and every h ≤ h0.
Suppose, however, that Th and T +

h are nearby in the following sense: the two meshes coincide except on
a region of measure O(hγ) for some scalar γ ≥ 0. In this scenario, ihu and i+h u agree everywhere except in
the region over which the meshes differ. Hence, by an application of Holder’s inequality (cf. Lemma 3.1), the
triangle inequality, and (1.1),

‖i+h u − ihu‖s,2 ≤ Chγ(1/2−1/η)‖i+h u − ihu‖s,η

≤ Chγ(1/2−1/η)
(
‖i+h u − u‖s,η + ‖u − ihu‖s,η

)
≤ Chr−s+γ(1/2−1/η)|u|r,η (1.3)

for any s ∈ {0, 1}, any η ∈ [2,∞], and every h ≤ h0.
A comparison of (1.3) with the naive estimate (1.2) reveals that ihu and i+h u are superclose in the L2- and

H1-norms when the corresponding meshes are nearby. The primary goal of this paper is to prove an analogous
superconvergent estimate when ihu and i+h u are replaced by the orthogonal projections rhu and r+

h u of u onto
Vh and V+

h , respectively, with respect to a coercive, continuous bilinear form a : V × V → R, where V ⊆ Hs(Ω)
and s is a nonnegative integer. As special cases, our results apply to L2-projections (the case s = 0) and elliptic
projections (the case s = 1) onto piecewise polynomial finite element spaces. Another applicable case of interest
is that in which the bilinear form a is of the form

a(u, w) =
∫

Ω

∇u · ∇w dx −
∫

Ω

(v · ∇u)w dx + κ

∫
Ω

uw dx
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with a constant κ > 0 and a vector field v : Ω → R
d. This bilinear form appears in the analysis of finite element

methods for the diffusion equation on a moving domain [10], with v playing the role of the velocity of a moving
mesh and κ an auxiliary constant introduced to ensure coercivity.

It is not obvious that superconvergent estimates of the form (1.3) should hold in these settings, since the
projections of u onto Vh and V+

h need not agree on the region over which the meshes coincide. Nevertheless,
Corollaries 2.3 and 2.5 provide such estimates under suitable assumptions on the finite element spaces Vh and
V+

h and the bilinear form a. The proof uses the observation that, loosely speaking, a(r+
h u − rhu, r+

h u − rhu) is
small if r+

h u − rhu is well-approximated by an element of V+
h ∩ Vh, since

a(r+
h u − rhu, wh) = a(r+

h u − u, wh) + a(u − rhu, wh) = 0

for any wh ∈ V+
h ∩ Vh. In particular, if ‖r+

h u − rhu − wh‖s,2 decays to zero more rapidly as h → 0 than do
‖r+

h u − u‖s,2 and ‖rhu − u‖s,2, then a superconvergent estimate for ‖r+
h u − rhu‖s,2 follows from the relation

a(r+
h u − rhu, r+

h u − rhu) = a(r+
h u − rhu, r+

h u − rhu − wh)

together with the coercivity and continuity of a. We in fact prove a more general result that applies to the case
in which the projectors rh and r+

h are associated not only with different subspaces Vh and V+
h , but also with

different bilinear forms ah and a+
h that may depend on h.

Organization. This paper is organized as follows. In Section 2, we summarize our main results. We begin with
an abstract estimate (Thm. 2.1) for the Hs-norm of r+

h u − rhu. We then apply Theorem 2.1 to the setting of
finite element spaces with nontrivial intersection in Theorem 2.2. Under some additional assumptions on the
finite element spaces, the bilinear forms, and the regularity of u, we deduce in Corollary 2.3 a superconvergent
estimate for ‖r+

h u−rhu‖s,2 that parallels (1.3). Next, we specialize to the case in which s = 1 and ah and a+
h are

bilinear forms associated with elliptic operators that possess smoothing properties. We use a duality argument
to prove a superconvergent estimate (Thm. 2.4 and Cor. 2.5) for the L2-norm of r+

h u − rhu that is up to one
order higher than the corresponding estimate in the H1-norm given by Corollary 2.3.

In Section 3, we present proofs of the preceding results and provide a few remarks along the way.
In Section 4, we demonstrate the necessity of the regularity assumptions on u that are imposed in the theorems

by exhibiting an example of a pair of projectors rh and r+
h and a function u whose insufficient regularity leads

to a reduction in the rates of convergence of ‖r+
h u − rhu‖1,2 and ‖r+

h u − rhu‖0,2.
Finally, we give numerical examples to illustrate our positive theoretical results in Section 5.

Related work. The results presented in this paper bear resemblance to the well-studied phenomenon of super-
convergence in finite element theory, where the functions under comparison are typically the solution to a PDE
and the numerical solution to a finite element discretization of the same problem. The phenomenon often man-
ifests itself as an exceptional rate of convergence of the finite element solution to the exact solution at isolated
points in the domain, as in [3, 5, 11, 15, 19, 20]. Related results involve exceptional rates of convergence of the
finite element solution to a discrete representative of the exact solution, such as its interpolant [1, 4, 6, 13, 16–18].
Finally, post-processing techniques can lead to modifications of a finite element solution that converge more
rapidly to the exact solution than the unprocessed finite element solution [2, 4, 7, 12, 14, 15, 21]. To our knowl-
edge, however, little attention has been paid to the supercloseness of finite element solutions associated with
differing meshes.

2. Statement of results

Notation. Fixing a nonnegative integer s and an open, bounded, Lipschitz domain Ω ⊂ R
d, let V be a closed

subspace of Hs(Ω). Let ah : V ×V → R and a+
h : V ×V → R be bilinear forms that may depend on a parameter

h ≤ h0, where h0 is a positive scalar. We assume that ah and a+
h are continuous and coercive uniformly in h. In
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other words, for every h ≤ h0 and every u, w ∈ V , the inequalities

ah(u, u) ≥ α‖u‖2
s,2,

ah(u, w) ≤ M‖u‖s,2‖w‖s,2

hold with constants α and M independent of h, and similarly for a+
h (with the same constants α and M).

Let {Vh}0<h≤h0 and {V+
h }0<h≤h0 be two families of finite element subspaces of V . It is a consequence of the

Lax–Milgram theorem that the maps rh : V → Vh and r+
h : V → V+

h defined by the relations

ah(rhu − u, wh) = 0 ∀wh ∈ Vh

and
a+

h (r+
h u − u, w+

h ) = 0 ∀w+
h ∈ V+

h ,

respectively, are well-defined linear projectors.
For intuition, it is useful to think of Vh and V+

h as finite element spaces associated with a pair of meshes Th

and T +
h of Ω, with the parameter h denoting the maximum diameter of an element among all elements of Th

and T +
h . This level of concreteness, however, is not needed for a presentation of the results that follow.

Abstract estimate. Our first result is an abstract estimate for the Hs-norm of r+
h u − rhu. It provides an

alternative to the obvious upper bound

‖r+
h u − rhu‖s,2 ≤ ‖r+

h u − u‖s,2 + ‖u − rhu‖s,2

that one obtains from the triangle inequality. Its utility will be made apparent shortly.

Theorem 2.1. Let a+
h and ah be uniformly coercive and continuous bilinear forms on V × V. Then for every

u ∈ V and every h ≤ h0,

‖r+
h u − rhu‖s,2 ≤ inf

eh∈Vh

e+
h ∈V+

h

[
M

α

∥∥r+
h u − rhu − (eh + e+

h )
∥∥

s,2
+

1√
α

(∣∣a+
h (r+

h u − u, eh)
∣∣1/2

+
∣∣ah(rhu − u, e+

h )
∣∣1/2

+
∣∣a+

h (rhu − u, eh + e+
h ) − ah(rhu − u, eh + e+

h )
∣∣1/2

)]
. (2.1)

The preceding theorem provides a heuristic for estimating the Hs-norm of r+
h u − rhu. Namely, one seeks

functions eh ∈ Vh and e+
h ∈ V+

h that are nearly (right-) orthogonal to r+
h u − u and rhu − u with respect

to a+
h (·, ·) and ah(·, ·), respectively, but whose sum is close to r+

h u − rhu. In general, near orthogonality and
closeness to r+

h u− rhu are competing interests. Exact orthogonality holds for eh, e+
h ∈ V+

h ∩Vh, whereas eh + e+
h

can be made equal to r+
h u − rhu by choosing, for instance, e+

h = r+
h u and eh = −rhu. If a suitable choice of eh

and e+
h leads to adequate satisfaction of both interests simultaneously, and if a+

h is close to ah (in the sense that
the last term in (2.1) is small), then the prospects of producing a superconvergent bound on ‖r+

h u− rhu‖s,2 are
favorable.

Finite element spaces with nontrivial intersection. We now apply Theorem 2.1 to the case in which the
finite element spaces V+

h and Vh intersect nontrivially. The setting that we have in mind is that in which Vh and
V+

h consist of continuous functions that are elementwise polynomials over shape-regular, quasi-uniform meshes
of Ω that coincide except on a region of measure O(hγ) for some constant γ ≥ 0. To allow for more generality,
we state the assumptions on V+

h and Vh abstractly, and we refer the reader to Appendix A for a proof of their
satisfaction in the aforementioned setting.

In particular, we assume the existence of a constant η ∈ [2,∞] such that the following properties hold:

(2.2.i) For every h ≤ h0, Vh,V+
h ⊂ W s,η(Ω) ∩ V .
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(2.2.ii) There exists C > 0 independent of h such that the inverse estimate

‖wh‖m,η ≤ Ch−m‖wh‖0,η

holds for every m = 0, 1, . . . , s, every wh ∈ V+
h ∩ Vh, and every h ≤ h0.

(2.2.iii) There exist constants γ ≥ 0 and C > 0 independent of h and a map πh : V+
h +Vh → V+

h ∩Vh such that

‖πhwh‖0,η ≤ C‖wh‖0,η

and
|supp(πhwh − wh)| ≤ Chγ

for every wh ∈ V+
h + Vh and every h ≤ h0.

In the context of finite element spaces consisting of continuous functions that are elementwise polynomials
over shape-regular, quasi-uniform meshes of Ω, a befitting choice for πh in (2.2.iii) is the nodal interpolant onto
V+

h ∩Vh; see Appendix B. In that setting, the constant γ appearing in (2.2.iii) may take on any real value between
0 and d, unless the two meshes coincide entirely (in which case γ may be chosen arbitrarily large). To realize
a pair of meshes Th and T +

h fulfilling (2.2.iii) with γ ∈ [0, d], one may, for instance, consider a shape-regular,
quasi-uniform mesh Th of Ω and perturb the positions of O(h−d+γ) of its nodes by a sufficiently small amount
to define T +

h .
The following theorem results from applying Theorem 2.1 to the setting delineated in conditions (2.2.i–2.2.iii),

with the choice eh = πh(r+
h u − rhu) and e+

h = 0 in (2.1).

Theorem 2.2. Suppose the conditions of Theorem 2.1 hold and the finite element spaces V+
h and Vh satisfy

conditions (2.2.i–2.2.iii). Suppose further that there exist constants C1 > 0, δ ≥ 0, 1 ≤ q ≤ η, and μ, ν ∈
{0, 1, . . . , s} independent of h such that

|a+
h (v, w) − ah(v, w)| ≤ C1h

δ‖v‖μ,η‖w‖ν,q (2.2)

for every v, w ∈ W s,η(Ω) ∩ V and every h ≤ h0. Then there exists C > 0 independent of h such that for any
h ≤ h0 and any u ∈ W s,η(Ω) ∩ V,

‖r+
h u − rhu‖s,2 ≤ Chσ−s

[
hs‖r+

h u − u‖s,η + hs‖rhu − u‖s,η + ‖r+
h u − u‖0,η + ‖rhu − u‖0,η

+ (hμ‖rhu − u‖μ,η)
1/2 (‖r+

h u − u‖0,η + ‖rhu − u‖0,η

)1/2
]

with

σ = min
{

γ

(
1
2
− 1

η

)
,
δ + 2s − μ − ν

2

}
. (2.3)

The meaning of Theorem 2.2 is clearest when the quantities hm‖rhu − u‖m,p and hm‖r+
h u − u‖m,p, m =

0, 1, . . . , s, p = 2, η, all decay at the same rate with respect to h as h → 0. In such a setting, the theorem states
that ‖r+

h u− rhu‖s,2 tends to zero faster than ‖rhu− u‖s,2 + ‖r+
h u− u‖s,2 by a factor O(hσ), where the order of

superconvergence σ depends primarily upon two features: (1) the extent to which the finite element spaces Vh

and V+
h coincide, as measured by the constant γ in (2.2.iii), and (2) the difference between the bilinear forms ah

and a+
h , as measured by the constants δ, μ, and ν in (2.2). The regularity of u also plays a role in the estimate

via the constant η, which is in the best case equal to ∞.
To be more concrete, let us point out that in many contexts (which we detail in Appendix B), the quantities

rhu − u and r+
h u − u satisfy estimates of the form

‖rhu − u‖0,η + ‖r+
h u − u‖0,η ≤ C�(h)hr|u|r,η, (2.4)

‖rhu − u‖m,η + ‖r+
h u − u‖m,η ≤ Chr−m|u|r,η, m = 1, 2, . . . , s, (2.5)
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for every u ∈ W r,η(Ω) ∩ V and every h ≤ h0, where r > s is an integer and �(h) is either identically unity or
equal to log(h−1). Note that (2.5) is vacuous when s = 0. When such estimates hold, the following corollary to
Theorem 2.2 is immediate.

Corollary 2.3. Suppose that the conditions of Theorem 2.2 are satisfied and that both rh and r+
h satisfy es-

timates of the form (2.4) and (2.5) for an integer r > s. Then there exists C > 0 independent of h such
that

‖r+
h u − rhu‖s,2 ≤ C�(h)hr−s+σ|u|r,η

for every u ∈ W r,η(Ω) ∩ V and every h ≤ h0, with σ given by (2.3).
In particular, if ah = a+

h , then

‖r+
h u − rhu‖s,2 ≤ C�(h)hr−s+γ(1/2−1/η)|u|r,η

for every u ∈ W r,η(Ω) ∩ V and every h ≤ h0.

Note that to deduce the preceding corollary, the case ah = a+
h is handled by taking δ = ∞ and choosing any

admissible μ, ν and q in (2.2).
L2 estimates for elliptic projections. Finally, we restrict our attention to the case s = 1 with V = H1

0 (Ω),
so that ah and a+

h are coercive, continuous bilinear forms on H1
0 (Ω) × H1

0 (Ω), uniformly in h. Here, H1
0 (Ω)

denotes the space of functions in H1(Ω) with vanishing trace on ∂Ω. Our aim is to provide an estimate for the
L2-norm of r+

h u − rhu that parallels the estimate in the H1-norm provided by Corollary 2.3 but is of a higher
order by up to one power of h.

In addition to the assumptions stated in Theorem 2.2, we make the following assumptions on the bilinear
forms ah and a+

h .

(2.4.i) The bilinear forms ah and a+
h are associated with elliptic operators whose adjoints possess smoothing

properties (cf. [9], Def. 3.14), uniformly in h. Precisely, let f ∈ L2(Ω) and consider the following
problem: Find w ∈ V such that

ah(y, w) = (f, y) ∀y ∈ V , (2.6)

where (f, y) :=
∫

Ω fy. Then ah is said to have smoothing properties (uniformly in h) if there exists
a constant C > 0 independent of h such that for every f ∈ L2(Ω) and every h ≤ h0, there exists a
unique solution w to (2.6) satisfying the elliptic regularity estimate

‖w‖2,2 ≤ C‖f‖0,2.

(2.4.ii) There exists C > 0 such that for any h ≤ h0, any subdomain R ⊆ Ω, and any v, w ∈ V with
supp(w) ⊆ R,

|ah(v, w)| ≤ C‖v‖1,2,R‖w‖1,2,R,

where the constant C is independent of h and R, and similarly for a+
h .

(2.4.iii) The constant q appearing in the bound (2.2) satisfies the additional restriction{
q < ∞ if d = 4 − 2ν,

q ≤ 2d
d−4+2ν if d > 4 − 2ν.

Condition (2.4.iii) guarantees the validity of the Sobolev emdedding H2(Ω) ⊂ W ν,q(Ω). Note that it places no
additional restriction on q if d < 4 − 2ν.

Furthermore, we assume the existence of interpolation operators ih : V̄ → Vh and i+h : V̄ → V+
h defined on a

space H2(Ω) ∩ V ⊆ V̄ ⊆ V that satisfy the following properties.
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(2.4.iv) There exists C > 0 independent of h such that

‖ihw‖ν,q + ‖i+h w‖ν,q ≤ C‖w‖ν,q

for every w ∈ H2(Ω) ∩ V and every h ≤ h0.
(2.4.v) There exists C > 0 independent of h such that

‖ihw − w‖1,2 + ‖i+h w − w‖1,2 ≤ Ch|w|2,2

for every w ∈ H2(Ω) ∩ V and every h ≤ h0.
(2.4.vi) For every w ∈ H2(Ω) ∩ V and every h ≤ h0,

supp(i+h w − ihw) ⊆ Rh,

where
Rh :=

⋃
wh∈Vh+V+

h

supp(wh − πhwh)

and πh is the map introduced in (2.2.iii).

Our estimate for the L2-norm of r+
h u − rhu, whose proof employs a duality argument, is as follows.

Theorem 2.4. Suppose the conditions of Theorem 2.2 hold with s = 1. Assume further that conditions (2.4.i–
2.4.vi) hold. Then there exists C > 0 independent of h such that for every u ∈ W 1,η(Ω) ∩ V and every h ≤ h0,

‖r+
h u − rhu‖0,2 ≤ Chσ′ [

h‖r+
h u − u‖1,η + h‖rhu − u‖1,η + ‖r+

h u − u‖0,η + ‖rhu − u‖0,η

+ (hμ‖rhu − u‖μ,η)
1/2 (‖r+

h u − u‖0,η + ‖rhu − u‖0,η

)1/2

+ hμ‖rhu − u‖μ,η

]
,

with

σ′ = min
{

γ

(
1
2
− 1

η

)
,
δ + 2 − μ − ν

2
, δ − μ

}
. (2.7)

Just as in Theorem 2.2, the meaning of Theorem 2.4 is clearest when the quantities hm‖rhu − u‖m,p and
hm‖r+

h u − u‖m,p, m = 0, 1, . . . , s, p = 2, η, all decay at the same rate with respect to h as h → 0. In such a
setting, Theorem 2.4 states that ‖r+

h u − rhu‖0,2 tends to zero faster than ‖rhu − u‖0,2 + ‖r+
h u − u‖0,2 by a

factor O(hσ′
), where the order of superconvergence σ′ is given by (2.7). Note that σ′ ≤ σ, where σ is the order

of superconvergence of the H1-norm of r+
h u − rhu that was provided in Theorem 2.2.

Concretely, when estimates of the form (2.4) and (2.5) hold for u ∈ W r,η(Ω) ∩ V with an integer r > 1, we
arrive immediately at the following corollary to Theorem 2.4.

Corollary 2.5. Suppose that the conditions of Theorem 2.2 are satisfied and that both rh and r+
h satisfy es-

timates of the form (2.4) and (2.5) for an integer r > 1. Then there exists C > 0 independent of h such
that

‖r+
h u − rhu‖0,2 ≤ C�(h)hr+σ′ |u|r,η

for every u ∈ W r,η(Ω) ∩ V and every h ≤ h0, with σ′ given by (2.7).
In particular, if ah = a+

h , then

‖r+
h u − rhu‖0,2 ≤ C�(h)hr+γ(1/2−1/η)|u|r,η

for every u ∈ W r,η(Ω) ∩ V and every h ≤ h0.

Note that to deduce the preceding corollary, the case ah = a+
h is again handled by taking δ = ∞ and choosing

any admissible μ, ν and q in (2.2).



566 E.S. GAWLIK AND A.J. LEW

3. Proofs

This section presents proofs of Theorems 2.1, 2.2, and 2.4.

Proof of Theorem 2.1. Let eh ∈ Vh and e+
h ∈ V+

h , and write

a+
h (r+

h u − rhu, r+
h u − rhu) = a+

h

(
r+
h u − rhu, r+

h u − rhu − (eh + e+
h )
)

+ a+
h (r+

h u − rhu, eh + e+
h ).

The uniform coercivity and continuity of a+
h imply

‖r+
h u − rhu‖2

s,2 ≤ 1
α

(
M‖r+

h u − rhu‖s,2‖r+
h u − rhu − (eh + e+

h )‖s,2 + |a+
h (r+

h u − rhu, eh + e+
h )|
)
.

Using the fact that for real numbers x, a, b ≥ 0,

x2 ≤ ax + b =⇒ x ≤ a +
√

b,

we deduce that

‖r+
h u − rhu‖s,2 ≤ M

α
‖r+

h u − rhu − (eh + e+
h )‖s,2 +

1√
α
|a+

h (r+
h u − rhu, eh + e+

h )|1/2

The result will then follow from the identity

a+
h (r+

h u − rhu, eh + e+
h ) = a+

h (r+
h u − u, eh) + ah(u − rhu, e+

h )
+ a+

h (u − rhu, eh + e+
h ) − ah(u − rhu, eh + e+

h ) (3.1)

together with the subadditivity of the square root operator.
To prove (3.1), use the decomposition r+

h u − rhu = (r+
h u − u) + (u − rhu) to write

a+
h (r+

h u − rhu, eh + e+
h ) = a+

h (r+
h u − u, eh + e+

h ) + a+
h (u − rhu, eh + e+

h ).

Now add and subtract ah(u − rhu, eh + e+
h ) to obtain

a+
h (r+

h u − rhu, eh + e+
h ) = a+

h (r+
h u − u, eh + e+

h ) + ah(u − rhu, eh + e+
h )

+ a+
h (u − rhu, eh + e+

h ) − ah(u − rhu, eh + e+
h ).

Finally, use the definitions of r+
h and rh to simplify the first two terms, giving (3.1). �

We remark that while the estimate (2.1) is not symmetric in the “+” variables and their unadorned counter-
parts, it can easily be made symmetric by exchanging the roles of r+

h and a+
h with rh and ah, respectively, and

averaging the resulting estimates. The same holds true for the estimates in Theorems 2.2 and 2.4.
We now turn to the proof of Theorem 2.2. We begin with a lemma concerning the relationship between a

function’s support and its Sobolev norms.

Lemma 3.1. Let f ∈ W k,p(Ω), k ≥ 0, p ∈ [1,∞]. Then for any 1 ≤ t ≤ p,

‖f‖k,t ≤ |supp(f)|1/t−1/p‖f‖k,p.

Proof. Let χ : Ω → {0, 1} denote the indicator function for supp(f). We have

‖f‖k,t =
∑
|α|≤k

‖∂αf‖0,t

=
∑
|α|≤k

‖χ∂αf‖0,t.
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Now let p̃ ∈ [1,∞] be such that 1
p̃ + 1

p = 1
t . By Holder’s inequality,

‖f‖k,t ≤
∑
|α|≤k

‖χ‖0,p̃‖∂αf‖0,p

= |supp(f)|1/p̃
∑
|α|≤k

‖∂αf‖0,p

= |supp(f)|1/t−1/p‖f‖k,p. �

The Proof of Theorem 2.2 is as follows.

Proof of Theorem 2.2. Choose e+
h = 0 and eh = πh(r+

h u− rhu) in (2.1). By the stability assumption in (2.2.iii),

‖eh‖0,η ≤ C‖r+
h u − rhu‖0,η

≤ C
(
‖r+

h u − u‖0,η + ‖u − rhu‖0,η

)
.

Thus, for any m = 0, 1, . . . , s,

‖eh‖m,η ≤ Ch−m
(
‖r+

h u − u‖0,η + ‖u − rhu‖0,η

)
(3.2)

by (2.2.ii). It follows that

‖r+
h u − rhu − (eh + e+

h )‖s,η ≤ ‖r+
h u − u‖s,η + ‖u − rhu‖s,η + ‖eh‖s,η + ‖e+

h ‖s,η

≤ C
(
‖r+

h u − u‖s,η + ‖u − rhu‖s,η

+ h−s‖r+
h u − u‖0,η + h−s‖u − rhu‖0,η

)
.

Now note that r+
h u − rhu − (eh + e+

h ) has support of measure O(hγ) by (2.2.iii). Consequently, by Lemma 3.1,

‖r+
h u − rhu − (eh + e+

h )‖s,2 ≤ Chγ(1/2−1/η)‖r+
h u − rhu − (eh + e+

h )‖s,η

≤ Chγ(1/2−1/η)
(
‖r+

h u − u‖s,η + ‖rhu − u‖s,η

+ h−s‖r+
h u − u‖0,η + h−s‖rhu − u‖0,η

)
. (3.3)

To estimate the remaining terms that appear in (2.1), note that

a+
h (r+

h u − u, eh) = 0

since eh ∈ V+
h ∩ Vh ⊆ V+

h , and
ah(rhu − u, e+

h ) = 0

since e+
h = 0. Finally, using (3.2) with m = ν together with (2.2) shows that∣∣a+

h (rhu − u, eh+e+
h ) − ah(rhu − u, eh + e+

h )
∣∣

≤ Chδ‖rhu − u‖μ,η‖eh‖ν,q

≤ Chδ‖rhu − u‖μ,η‖eh‖ν,η

≤ Chδ−ν‖rhu − u‖μ,η

(
‖r+

h u − u‖0,η + ‖u − rhu‖0,η

)
.

Taking the square root and adding (3.3) proves the claim. �

Note that the preceding proof treats the estimate (2.2) wastefully when q < η, in the sense that the ultimate
bound on ‖r+

h u − rhu‖s,2 is unchanged if q is replaced by η. The importance of considering scenarios in which
q may be chosen less than η is made apparent in Theorem 2.4, where the restriction (2.4.iii) is enforced.

With this in mind, we now prove Theorem 2.4.
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Proof of Theorem 2.4. Define w ∈ V as the solution to the dual problem

a+
h (y, w) = (r+

h u − rhu, y) ∀y ∈ V . (3.4)

Note that w ∈ H2(Ω) ∩ V by (2.4.i).
For any w+

h ∈ V+
h , wh ∈ Vh, we have

‖r+
h u − rhu‖2

0,2 = a+
h (r+

h u − rhu, w)

= a+
h (r+

h u − rhu, w − w+
h ) + a+

h (r+
h u − rhu, w+

h )
= a+

h (r+
h u − rhu, w − w+

h ) + a+
h (u − rhu, w+

h )
= a+

h (r+
h u − rhu, w − w+

h ) + a+
h (u − rhu, w+

h − wh)

+ a+
h (u − rhu, wh) − ah(u − rhu, wh)

=: T1 + T2 + T3,

where

T1 = a+
h (r+

h u − rhu, w − w+
h ),

T2 = a+
h (u − rhu, w+

h − wh),
T3 = a+

h (u − rhu, wh) − ah(u − rhu, wh).

Now choose w+
h = i+h w and wh = ihw and bound each term separately. By the continuity of a+

h and (2.4.v),

|T1| ≤ C‖r+
h u − rhu‖1,2‖w − w+

h ‖1,2

≤ Ch‖r+
h u − rhu‖1,2|w|2,2.

To bound T2, note that supp(w+
h − wh) ⊆ Rh has measure O(hγ) by (2.4.vi) and (2.2.iii). Thus,

|T2| ≤ C‖u − rhu‖1,2,Rh
‖w+

h − wh‖1,2,Rh

≤ Chγ(1/2−1/η)‖u − rhu‖1,η

(
‖w+

h − w‖1,2,Rh
+ ‖w − wh‖1,2,Rh

)
≤ Chγ(1/2−1/η)+1‖u − rhu‖1,η|w|2,2

by (2.4.ii), Lemma 3.1, and (2.4.v). For T3, we have by (2.2) that

|T3| ≤ Chδ‖u − rhu‖μ,η‖wh‖ν,q.

Using (2.4.iv) together with the Sobolev embedding H2(Ω) ⊂ W ν,q(Ω) ensured by (2.4.iii) gives

|T3| ≤ Chδ‖u − rhu‖μ,η‖w‖2,2.

Combining results and invoking the regularity estimate (i) leads to

‖r+
h u − rhu‖0,2 ≤ C

[
h‖r+

h u − rhu‖1,2 + hmin{γ(1/2−1/η),δ−μ} (h‖u − rhu‖1,η + hμ‖u − rhu‖μ,η)
]
.

Conclude using Theorem 2.2. �
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4. The need for regularity

When a+
h = ah and γ is fixed, the estimates of Corollaries 2.3 and 2.5 are of the highest order in h when

η = ∞, but in this case they demand that u ∈ W r,∞(Ω) ∩ V . If the regularity requirement u ∈ W r,∞(Ω) ∩ V is
relaxed, the rates of convergence of ‖r+

h u − rhu‖0,2 and ‖r+
h u − rhu‖1,2 as h → 0 may deteriorate.

Indeed, consider the case in which Vh is the space of continuous, piecewise affine functions on a grid
(0, h, 2h, 3h, . . . , 1) of the unit interval in one dimension that vanish at 0 and 1. Let V+

h be the space of continuous,
piecewise affine functions on the nearby grid (0, 3h/2, 2h, 3h, . . . , 1) that vanish at 0 and 1. Let

a+
h (u, w) = ah(u, w) =

∫ 1

0

∂u

∂x

∂w

∂x
dx,

so that the projectors rh and r+
h coincide with the nodal interpolants onto Vh and V+

h , respectively ([9],
Rem. 3.25(i)). In this setting, the conditions of Corollaries 2.3 and 2.5 hold with η = ∞, γ = 1, r = 2,
and �(h) ≡ 1, leading to the estimates

‖r+
h u − rhu‖0,2 ≤ Ch5/2|u|r,∞,

‖r+
h u − rhu‖1,2 ≤ Ch3/2|u|r,∞

for u ∈ W 2,∞(0, 1) ∩ H1
0 (0, 1).

However, consider the function
u(x) = x2−1/p − x

with 2 < p < ∞, so that u ∈ W 2,p−ε(0, 1) ∩ H1
0 (0, 1) for any ε > 0. Then a direct calculation renders that

‖r+
h u − rhu‖0,2 ≥ Ch5/2−1/p,

‖r+
h u − rhu‖1,2 ≥ Ch3/2−1/p,

which are of a lower order than the rates h5/2 and h3/2, respectively, obtainable for a function in W 2,∞(0, 1) ∩
H1

0 (0, 1). In fact, by letting p → 2, these rates can be made arbitrarily close to the quadratic and linear rates
that hold in the L2- and H1-norms, respectively, on a pair of unrelated meshes.

5. Numerical examples

In this section, we numerically illustrate the superconvergent estimates of Corollaries 2.3 and 2.5 on test cases
in one and two dimensions.

One dimension. Consider the case in which Vh is the space of continuous, piecewise polynomial functions of
degree at most r − 1 on a grid (0, h, 2h, 3h, . . . , 1) of the unit interval in one dimension that vanish at 0 and
1. Let V+

h be the space of continuous, piecewise polynomial functions of the same degree that vanish at 0 and
1, on the same grid but with the node nearest to x = 1/4 perturbed by h/4 in the positive direction. In this
scenario, assumption (2.2.iii) is satisfied with γ = 1. Let u(x) = sin(πx) and let

a+
h (u, w) = ah(u, w) =

∫ 1

0

uw dx,

so that rh and r+
h are the L2-projectors onto Vh and V+

h , respectively.
Table 1 shows the L2-norm of the difference r+

h u− rhu for several values of h, beginning with h = 1/8 =: h0.
The table illustrates the predictions of Corollary 2.3, namely

‖r+
h u − rhu‖0,2 ≤

{
Ch5/2|u|2,∞ if r = 2,

Ch7/2|u|3,∞ if r = 3.
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Table 1. L2-supercloseness of L2-projections onto piecewise affine (r = 2) and piecewise
quadratic (r = 3) finite element spaces over nearby meshes (γ = 1) in one dimension.

Affine (r = 2) Quadratic (r = 3)
h0/h ‖r+

h u − rhu‖0,2 Order ‖r+
h u − rhu‖0,2 Order

1 3.2150e-03 – 1.2843e-04 –
2 5.6505e-04 2.5084 1.0676e-05 3.5886
4 9.9837e-05 2.5007 9.1277e-07 3.5480
8 1.7645e-05 2.5003 7.9301e-08 3.5248
16 3.1189e-06 2.5002 6.9484e-09 3.5126
32 5.5132e-07 2.5001 6.1146e-10 3.5063

Table 2. H1-supercloseness of elliptic projections onto piecewise affine (r = 2) and piecewise
quadratic (r = 3) finite element spaces over nearby meshes (γ = 1) in one dimension.

Affine (r = 2) Quadratic (r = 3)
h0/h ‖r+

h u − rhu‖1,2 Order ‖r+
h u − rhu‖1,2 Order

1 1.4451e-01 – 7.4390e-03 –
2 5.1203e-02 1.4968 1.2835e-03 2.5351
4 1.8081e-02 1.5017 2.2408e-04 2.5180
8 6.3851e-03 1.5017 3.9364e-05 2.5090
16 2.2558e-03 1.5011 6.9369e-06 2.5045
32 7.9723e-04 1.5006 1.2243e-06 2.5023

Next, consider the same setup as above, but with

a+
h (u, w) = ah(u, w) =

∫ 1

0

∂u

∂x

∂w

∂x
dx,

so that rh and r+
h are the standard elliptic projectors onto Vh and V+

h , respectively. Table 2 shows the H1-norm
of the difference r+

h u − rhu for the sequence of grids described above. The table illustrates the predictions of
Corollary 2.3, namely

‖r+
h u − rhu‖1,2 ≤

{
Ch3/2 log(h−1)|u|2,∞ if r = 2,

Ch5/2|u|3,∞ if r = 3.

Table 3 shows the L2-norm of the difference r+
h u− rhu for the same sequence of grids. The table illustrates the

predictions of Corollary 2.5, namely

‖r+
h u − rhu‖0,2 ≤

{
Ch5/2 log(h−1)|u|2,∞ if r = 2,

Ch7/2|u|3,∞ if r = 3.

Note that we have not attempted to detect the presence of the factor log(h−1) in these numerical experiments.

Two dimensions. Consider now the case in which Vh ⊂ H1
0 ((0, 1)× (0, 1)) is the space of continuous, piecewise

affine functions on a mesh of the unit square in two dimensions consisting of equally sized isosceles right triangles,
as in Figure 1a. Let V+

h ⊂ H1
0 ((0, 1)× (0, 1)) be the space of continuous, piecewise affine functions on the same

mesh, but with the node nearest to (x, y) = (1/4, 1/4) perturbed by h/4 in the positive x direction, as in
Figure 1b. In this scenario, assumption (2.2.iii) is satisfied with γ = 2. Let u(x) = sin(πx) sin(πy) and let

a+
h (u, w) = ah(u, w) =

∫ 1

0

∫ 1

0

uw dxdy,
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(a) (b) (c)

Figure 1. (a) Mesh of the unit square consisting of equally sized isosceles right triangles.
(b) Identical mesh, but with the node at (x, y) = (1/4, 1/4) perturbed by h/4 in the positive
x direction. (c) Identical mesh, but with all nodes having distance h/

√
2 from the boundary

perturbed by h/4 in the positive x direction.

Table 3. L2-supercloseness of elliptic projections onto piecewise affine (r = 2) and piecewise
quadratic (r = 3) finite element spaces over nearby meshes (γ = 1) in one dimension.

Affine (r = 2) Quadratic (r = 3)

h0/h ‖r+
h u − rhu‖0,2 Order ‖r+

h u − rhu‖0,2 Order

1 3.4546e-03 – 1.7770e-04 –
2 6.1937e-04 2.4796 1.5493e-05 3.5198
4 1.1019e-04 2.4908 1.3576e-06 3.5124
8 1.9537e-05 2.4957 1.1943e-07 3.5069
16 3.4587e-06 2.4979 1.0530e-08 3.5036
32 6.1186e-07 2.4990 9.2955e-10 3.5018

Table 4. L2-supercloseness of L2-projections onto piecewise affine (r = 2) finite element spaces
over nearby meshes (γ = 2; see Figs. 1a and 1b) in two dimensions.

Affine (r = 2)

h0/h ‖r+
h u − rhu‖0,2 Order

1 6.3533e-03 –
2 7.5614e-04 3.0708
4 8.8718e-05 3.0914
8 1.1020e-05 3.0091
16 1.3781e-06 2.9993

so that rh and r+
h are the L2-projectors onto Vh and V+

h , respectively.
Table 4 shows the L2-norm of the difference r+

h u−rhu for several values of h, beginning with h =
√

2/4 =: h0.
The table illustrates the predictions of Corollary 2.3, namely

‖r+
h u − rhu‖0,2 ≤ Ch3|u|2,∞. (5.1)
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Table 5. H1- and L2-supercloseness of elliptic projections onto piecewise affine (r = 2) finite
element spaces over nearby meshes (γ = 2; see Figs. 1a and 1b) in two dimensions.

Affine (r = 2)

h0/h ‖r+
h u − rhu‖1,2 Order ‖r+

h u − rhu‖0,2 Order

1 2.1441e-01 – 6.6386e-03 –
2 4.7374e-02 2.1782 7.8678e-04 3.0768
4 1.1359e-02 2.0603 9.6370e-05 3.0293
8 2.8114e-03 2.0144 1.2033e-05 3.0016
16 7.0176e-04 2.0023 1.5106e-06 2.9937

Next, consider the same setup as above, but with

a+
h (u, w) = ah(u, w) =

∫ 1

0

∫ 1

0

(
∂u

∂x

∂w

∂x
+

∂u

∂y

∂w

∂y

)
dxdy,

so that rh and r+
h are the elliptic projectors onto Vh and V+

h , respectively. Table 5 shows the H1- and L2-norms
of the difference r+

h u − rhu for the sequence of meshes described above. The table illustrates the predictions of
Corollaries 2.3 and 2.5, namely

‖r+
h u − rhu‖m,2 ≤

{
Ch2 log(h−1)|u|2,∞ if m = 0,

Ch3 log(h−1)|u|2,∞ if m = 1.
(5.2)

Again, we have not attempted to detect the presence of the factor log(h−1).

More substantial mesh perturbation in two dimensions. Finally, consider the same two-dimensional tests
as above, but with the mesh of Figure 1b replaced by a different perturbation of the uniform mesh. Namely,
consider perturbing all nodes whose distance from the boundary of the unit square is equal to h/

√
2 (the length

of the shortest edge of each triangle) via a translation by h/4 in the positive x direction, as in Figure 1c.
In this scenario, assumption (2.2.iii) is satisfied with γ = 1, so that the estimates (5.1) and (5.2) no longer

apply. Their analogues in this case read

‖r+
h u − rhu‖0,2 ≤ Ch5/2|u|2,∞.

and

‖r+
h u − rhu‖m,2 ≤

{
Ch3/2 log(h−1)|u|2,∞ if m = 0,

Ch5/2 log(h−1)|u|2,∞ if m = 1,

respectively. Tables 6 and 7 illustrate these predictions. Again, we have not attempted to detect the presence
of the factor log(h−1).

6. Summary

We have derived estimates for the difference between the orthogonal projections rhu and r+
h u of a smooth

function u onto nearby finite element spaces Vh and V+
h , respectively, with respect to bilinear forms ah, a+

h :
V × V → R, respectively, where V is a closed subspace of Hs(Ω). When s ∈ {0, 1} and Vh and V+

h consist of
continuous functions that are elementwise polynomials over shape-regular, quasi-uniform meshes that coincide
except on a region of measure O(hγ) for a constant γ ≥ 0, the estimates for ‖r+

h u−rhu‖s,2 are superconvergent by
O(hγ/2), provided that u ∈ W s,∞(Ω) and ah and a+

h are sufficiently close. In addition, when s = 1 and a few more
mild assumptions (namely (2.4.i)–(2.4.vi)) are satisfied, an O(hγ/2)-superconvergent estimate for ‖r+

h u−rhu‖0,2

holds. Numerical experiments illustrated these estimates and verified the necessity of the regularity assumptions
on u.



SUPERCLOSENESS OF ORTHOGONAL PROJECTIONS ONTO NEARBY FINITE ELEMENT SPACES 573

Table 6. L2-supercloseness of L2-projections onto piecewise affine (r = 2) finite element spaces
over nearby meshes (γ = 1; see Figs. 1a and 1c) in two dimensions. Relative to Table 4, a lower
order of superconvergence is observed due to the larger fraction of perturbed elements present
in the perturbed mesh.

Affine (r = 2)

h0/h ‖r+
h u − rhu‖0,2 Order

1 2.2504e-02 –
2 4.8445e-03 2.2158
4 1.0019e-03 2.2736
8 1.9159e-04 2.3866
16 3.5132e-05 2.4472
32 6.3195e-06 2.4749

Table 7. H1- and L2-supercloseness of elliptic projections onto piecewise affine (r = 2) finite
element spaces over nearby meshes (γ = 1; see Figs. 1a and 1c) in two dimensions. Relative to
Table 5, lower orders of superconvergence are observed due to the larger fraction of perturbed
elements present in the perturbed mesh.

Affine (r = 2)

h0/h ‖r+
h u − rhu‖1,2 Order ‖r+

h u − rhu‖0,2 Order

1 5.4318e-01 – 1.9864e-02 –
2 2.8504e-01 0.9303 4.8794e-03 2.0254
4 1.2522e-01 1.1867 1.0528e-03 2.2125
8 4.8674e-02 1.3632 1.9842e-04 2.4075
16 1.7931e-02 1.4407 3.5671e-05 2.4758
32 6.4595e-03 1.4730 6.3290e-06 2.4947

Appendix A. Properties of piecewise polynomial finite element spaces

In this section, we verify conditions (2.2.i)–(2.2.iii) for piecewise polynomial finite element spaces on nearby
meshes for the cases s = 0 and s = 1.

As in Section 1, consider two families of shape-regular, quasi-uniform meshes {Th}h≤h0 and {T +
h }h≤h0 of an

open, bounded, Lipschitz domain Ω ⊂ R
d, d ≥ 1. Assume that the two families are parametrized by a scalar h

that equals the maximum diameter of an element among all elements of Th and T +
h for every h ≤ h0. Let Vh

and V+
h be finite element spaces consisting of continuous functions that are elementwise polynomials of degree

at most r − 1 over Th and T +
h , respectively, where r > 1 is an integer.

In this setting, condition (2.2.i) is automatic for any η ∈ [2,∞], s ∈ {0, 1}. Condition (2.2.ii) is trivial for
s = 0 and is satisfied for s = 1 and any η ∈ [2,∞] [9].

Condition (2.2.iii) holds for any η ∈ [2,∞] when Th and T +
h coincide except on a region of measure O(hγ).

To prove this, let {Na}A
a=1 ⊂ Vh and {N+

a }A+

a=1 ⊂ V+
h be the standard Lagrange shape functions that form

bases for Vh and V+
h , respectively. Our assumptions on Th and T +

h imply the existence of an integer I such that
Na = N+

a for every 1 ≤ a ≤ I and such that∣∣∣∣∣∣
(

A⋃
a=I+1

supp(Na)

)
∪

⎛
⎝ A+⋃

a=I+1

supp(N+
a )

⎞
⎠
∣∣∣∣∣∣ ≤ Chγ (A.1)

for every h ≤ h0.
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Define πh : V+
h + Vh → V+

h ∩ Vh as follows: For any

wh =
I∑

a=1

caNa +
A∑

a=I+1

caNa +
A+∑

a=I+1

c+
a N+

a (A.2)

belonging to V+
h + Vh, set

πhwh :=
I∑

a=1

caNa. (A.3)

Clearly,
|supp(πhwh − wh)| ≤ Chγ

for every wh ∈ V+
h + Vh and every h ≤ h0. To prove that

‖πhwh‖0,η ≤ C‖wh‖0,η (A.4)

for every wh ∈ V+
h + Vh and every h ≤ h0, there are two cases to consider: η = ∞ and 2 ≤ η < ∞.

For η = ∞, it is enough to note that for each of the two finite element spaces, every shape function is
bounded uniformly in h in the maximum norm, the number of shape functions whose support intersects any
given element is bounded uniformly in h, and the coefficients ca, 1 ≤ a ≤ I, in the expansion (A.2) of wh are
bounded by ‖wh‖0,∞. Indeed, the standard degrees of freedom σa, 1 ≤ a ≤ I, for the Lagrange shape functions
Na(= N+

a ), 1 ≤ a ≤ I, satisfy
σa(Nb) = δab, 1 ≤ b ≤ A

and
σa(N+

b ) = δab, 1 ≤ b ≤ A+,

where δab denotes the Kronecker delta. Hence, for any 1 ≤ a ≤ I,

|ca| = |σa(wh)| ≤ ‖wh‖0,∞.

For 2 ≤ η < ∞, the proof of (A.4) relies on the following lemma.

Lemma A.1. Let {Th}h≤h0 be a shape-regular, quasi-uniform family of meshes of an open, bounded, Lipschitz
domain Ω ⊂ R

d, d ≥ 1, with h denoting the maximum diameter of an element K ∈ Th. Let r > 1 be an integer.
For any K ∈ Th, let θ1, θ2, . . . , θnsh

denote the local shape functions for the Lagrange finite element of degree at
most r − 1 on K. Then for any 2 ≤ η < ∞, there exist C1, C2 > 0 independent of h such that for every h ≤ h0,
every K ∈ Th, and every v =

∑nsh

i=1 diθi,

C1h
d

nsh∑
i=1

|di|η ≤ ‖v‖η
0,η,K ≤ C2h

d
nsh∑
i=1

|di|η.

Proof. A proof of this fact when η = 2 is given in ([9], Lem. 9.7). The case 2 < η < ∞ is a trivial modification
thereof. �

Now let wh and πhwh be as in (A.2) and (A.3), respectively. Note that the support of πhwh is contained
within the region Qh ⊆ Ω over which Th and T +

h coincide. On any K ∈ Th with K ⊆ Qh, we can write

wh|K =
nsh∑
i=1

diθi
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and

πhwh|K =
nsh∑
i=1

d̄iθi,

with scalars di ∈ R and d̄i ∈ {0, di} for every i. By Lemma A.1,

‖πhwh‖η
0,η,K ≤ C2h

d
nsh∑
i=1

|d̄i|η

≤ C2h
d

nsh∑
i=1

|di|η

≤ C2C
−1
1 ‖wh‖η

0,η,K

on every such K. Summing over all K ∈ Th with K ⊆ Qh proves (A.4) for 2 ≤ η < ∞.

Appendix B. Estimates for the L2
-projection and elliptic projections

Two exemplary cases in which estimates of the form (2.4) and (2.5) are known to hold are the following.
Suppose that V = Hs(Ω) ∩ H1

0 (Ω) and Vh is the space of continuous functions in V that are elementwise
polynomials of degree at most r−1 on a shape-regular, quasi-uniform family of meshes {Th}h≤h0 whose maximum
element diameter is h. Then:

(i) If s = 0, d ∈ {1, 2}, and

ah(u, w) =
∫

Ω

uw dx

so that rh is the L2-projector onto Vh, then (2.4) holds with �(h) ≡ 1 for any η ∈ [2,∞] [8]. Note that the
estimate (2.5) is vacuous in this case, since s = 0.

(ii) If s = 1, d ∈ {2, 3}, and

ah(u, w) =
∫

Ω

⎛
⎝ d∑

i,j=1

aij(x)
∂u

∂xi

∂w

∂xj
+

d∑
j=1

bj(x)
∂u

∂xj
w + b0(x)uw

⎞
⎠ dx

with h-independent coefficients aij , i, j = 1, 2, . . . , d and bj , j = 0, 1, . . . , d, then (2.4) and (2.5) hold [9]
with �(h) ≡ 1 for any 2 ≤ η < ∞ (if r = 2) and any η ∈ [2,∞] (if r > 2), provided that
• The coefficients satisfy bj ∈ L∞(Ω), j = 0, 1, . . . , d, and aij ∈ L∞(Ω)∩W 1,p(Ω), i, j = 1, 2, . . . , d, with

p > 2 if d = 2 and p ≥ 12/15 if d = 3.
• The coefficients aij are coercive pointwise, i.e. there exists c > 0 independent of x such that

d∑
i,j=1

aij(x)ξiξj ≥ c|ξ|2 (B.1)

for every 0 �= ξ ∈ R
d and a.e. x ∈ Ω.

• There exists C > 0, q0 > d such that the continuous Dirichlet problem

ah(u, w) =
∫

Ω

fw dx ∀w ∈ V

has a unique solution satisfying
‖u‖2,q ≤ C‖f‖0,q (B.2)

for every f ∈ Lp(Ω) and every 1 < q < q0.
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Under the same conditions as above but with r = 2 and η = ∞, the estimates (2.4) and (2.5) hold with
�(h) = log(h−1) in dimension d = 2 [9].
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