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SPECTRAL DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS
COUPLED WITH THE HEAT EQUATION
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Abstract. We consider the spectral discretization of the Navier–Stokes equations coupled with the
heat equation where the viscosity depends on the temperature, with boundary conditions which involve
the velocity and the temperature. This problem admits a variational formulation with three independent
unknowns, the velocity, the pressure and the temperature. We prove optimal error estimates and present
some numerical experiments which confirm the validity of the discretization.
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1. Introduction

Let Ω be a connected bounded open set in R
d, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω. The

following system models the stationary flow of a viscous incompressible fluid, in the case where the viscosity of
the fluid depends on the temperature⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−div(ν(T )∇u) + (u . ∇)u + grad p = f in Ω,

divu = 0 in Ω,

−α ΔT + (u . ∇)T = g in Ω,

u = u0 on ∂Ω,

T = T0 on ∂Ω.

(1.1)
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The unknowns are the velocity u, the pressure p, and the temperature T of the fluid, while the data are the
distributions f and g. The function ν is positive and bounded, while the coefficient α is a positive constant. A
similar but slightly more complex model has been derived and analyzed in [3, 6].

Equations (1.1) are a very realistic model for a number of incompressible fluids when the temperature
presents high variations, for instance induced by the boundary condition. The solution (u, p) of the first two
equations of the system behaves like the viscosity solution of Euler’s equations. We refer to [5] for the first study
of such a simplification.

We propose a spectral discretization in the basic situation where the domain is a square or a cube. More
complex geometries can be treated using the arguments in [11], however we prefer to avoid them for simplicity.
The numerical analysis of the nonlinear discrete problem makes use of the approach of Brezzi et al. [4], the main
difficulty being the lack of compactness of the nonlinear term linked to the viscosity. Nevertheless, we prove the
existence of a solution for the discrete problem. We establish a priori error estimates for this discretization.

In a final step, we describe the Newton type iterative algorithm that is used to solve the nonlinear discrete
problem. Relying once more on the arguments in [4], we verify its convergence. We conclude with some numerical
experiments where the viscosity of the fluid ν is a constant, or a function dependent of the space variable or
a function that depends on the temperature T . All of these confirm the optimality of the discretization and
justify the choice of this formulation.

An outline of the paper is as follows:

• In Section 2, we prove the existence of a solution for problem (1.1).
• The discrete problem is described in Section 3, and we prove optimal a priori error estimates for the error.
• The Newton algorithm is described in Section 4 and some numerical experiments are presented.

2. The continuous problem

In order to write a variational formulation of system (1.1), we first make precise the assumptions on the
function ν: it belongs to L∞(R) and satisfies, for two positive constants ν1 and ν2,

for a.e. τ ∈ R, ν1 ≤ ν(τ) ≤ ν2. (2.1)

Note that these assumptions are not at all restrictive.
The treatment of a nonzero value u0 requires an appropriate lifting of this value in order to treat the nonlinear

term, i.e. the technical results linked to the Hopf lemma, (see [9], Chap. IV, Lem. 2.3). In order to avoid this
further difficulty for the analysis of the problem, we assume that u0 = 0.

To go further, for any subset O of Ω with a Lipschitz-continuous boundary ∂O, we consider the full scale
of Sobolev spaces Hs(O), s ∈ R, and also the analogous spaces Hs(∂O) on its boundary. We need the spaces
Wm,p(O), for any nonnegative integer m and 1 < p < +∞, equipped with the norm ‖.‖W m,p(O) and seminorm
| . |W m,p(O). We denote by Wm,p

0 (O) the closure in Wm,p(O) of the space D(O) of infinitely differentiable
functions with a compact support in O, by W−m,p′

(O) its dual space (with 1
p + 1

p′ = 1), and by Wm− 1
p ,p(∂O)

the space of traces of functions in Wm,p(O) on ∂O. We also introduce the space

L2
0(O) =

{
q ∈ L2(O);

∫
O

q(x) dx = 0
}
. (2.2)

We thus consider the variational problem:
Find (u, p, T ) in H1

0 (Ω)d × L2
0(Ω) × H1(Ω) such that

T = T0 on ∂Ω, (2.3)
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and that,

∀v ∈ H1
0 (Ω)d,

∫
Ω

ν(T )(x)(gradu)(x) : (grad v)(x) dx

+
∫

Ω

((u . ∇)u)(x) . v(x) dx−
∫

Ω

(div v)(x) p(x) dx = 〈f ,v〉Ω,

∀q ∈ L2
0(Ω), −

∫
Ω

(divu)(x) q(x) dx = 0, (2.4)

∀S ∈ H1
0 (Ω), α

∫
Ω

(grad T )(x) . (gradS)(x) dx

+
∫

Ω

((u . ∇)T )(x)S(x) dx = 〈g, S〉Ω,

where 〈., .〉Ω denotes the duality pairing between H−1(Ω) and H1
0 (Ω) and also between H−1(Ω)d and H1

0 (Ω)d
.

Standard arguments relying on the density of D(Ω) in H1
0 (Ω) lead to the following result.

Proposition 2.1. Problem (1.1) with u0 = 0 and problem (2.3)–(2.4) are equivalent: Any triple (u, p, T ) in
H1

0 (Ω)d×L2
0(Ω)×H1(Ω) is a solution of (1.1) (in the distribution sense) if and only if it is a solution of (2.3)–

(2.4).

The existence of a solution can be established owing to a fixed-point theorem. Its proof requires the kernel

V =
{
v ∈ H1

0 (Ω)
d
; div v = 0 in Ω

}
. (2.5)

Theorem 2.2. For any data (f , g) in H−1(Ω)d × H−1(Ω) and T0 in H
1
2 (∂Ω), problem (2.3)–(2.4) admits at

least a solution (u, p, T ) in H1
0 (Ω)d × L2

0(Ω) × H1(Ω). Moreover, this solution satisfies, for a constant c only
depending on ν1 and α,

‖ u ‖H1(Ω)d + ‖ T ‖H1(Ω) � c
(
‖ f ‖H−1(Ω)d + ‖ g ‖H−1(Ω) + ‖ T0 ‖

H
1
2 (∂Ω)

)
. (2.6)

Proof. It is performed in several steps.

1) We refer to the Hopf lemma (see [9], Chap. IV, Lem. 2.3), for the following result: For any ε > 0, there exists
a lifting T 0 of T0 which satisfies

‖ T 0 ‖H1(Ω) � c ‖ T0 ‖
H

1
2 (∂Ω)

and ‖ T 0 ‖L4(Ω) � ε ‖ T0 ‖
H

1
2 (∂Ω)

, (2.7)

where the constant c is independent of ε.
2) Setting U = (u, T ) and V = (v, S), we define the mapping Φ from V × H1

0 (Ω) into its dual space by

〈Φ(U), V 〉 =
∫

Ω

ν(T + T 0)(gradu)(x) : (gradv)(x)dx+
∫

Ω

((u .∇)u)(x) .v(x)dx

+ α

∫
Ω

grad (T + T 0)(x) . (grad S)(x) dx

+
∫

Ω

((u . ∇)(T + T 0))(x)S(x) dx− 〈f ,v〉Ω − 〈g, S〉Ω.

It follows from (2.1) and the imbedding of H1(Ω) into L6(Ω) that Φ is continuous on V×H1
0 (Ω). Moreover,

it follows from (2.1), (2.5) and (2.7) and the antisymmetry property∫
Ω

(
(u . ∇)T 0

)
(x)S(x) dx = −

∫
Ω

(
(u . ∇)S

)
(x)T 0(x) dx, (2.8)
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that

〈Φ(U), U〉 � ν1 | u |2
H1(Ω)d +α | T |2H1(Ω) −α | T 0 |H1(Ω) | T |H1(Ω)

−c ε

2
‖ T0 ‖

H
1
2 (∂Ω)

( | u |2
H1(Ω)d + | T |2H1(Ω))

− ‖ f ‖H−1(Ω)d | u |H1(Ω)d − ‖ g ‖H−1(Ω) | T |H1(Ω) .

We now take ε such that
cε ‖ T0 ‖

H
1
2 (∂Ω)

� min {ν1, α}.
Thus, we deduce from the previous inequality that

〈Φ(U), U〉 � min {ν1, α}
2

(| u |2
H1(Ω)d + | T |2H1(Ω))

−
(
αc ‖ T0 ‖

H
1
2 (∂Ω)

+(‖ f ‖2
H−1(Ω)d + ‖ g ‖2

H−1(Ω))
1
2

)(
| u |2

H1(Ω)d + | T |2H1(Ω)

) 1
2

.

All this yields that 〈Φ(U), U〉 is nonnegative on the sphere of V × H1
0 (Ω) with radius

μ =
2

min {ν1, α}
(
αc ‖ T0 ‖

H
1
2 (∂Ω)

+ (‖ f ‖2
H−1(Ω)d + ‖ g ‖2

H−1(Ω))
1
2

)
. (2.9)

3) We recall from ([9], Chap. I, Cor. 2.5), that D(Ω)d∩V is dense in V. Thus, there exist an increasing sequence
(Vn)n of finite-dimensional subspaces of V and an increasing sequence (Wn)n of finite-dimensional subspaces
of H1

0 (Ω) such that ∪
n∈ N

(Vn × Wn) is dense in V × H1
0 (Ω). Moreover, the properties of the function Φ

established above still hold with V × H1
0 (Ω) replaced by Vn × Wn. Thus, applying Brouwer’s fixed-point

theorem (see [9], Chap. IV, Cor. 1.1, for instance) yields that, for each n, there exists a Un = (un, Tn)
satisfying

∀Vn ∈ Vn × Wn, 〈Φ(Un), Vn〉 = 0 and (| un |2
H1(Ω)d + | Tn |2H1(Ω))

1
2 � μ. (2.10)

4) Since the norms of un in H1(Ω)d and Tn in H1(Ω) are bounded by a constant c (due to the
Poincaré−Friedrichs inequality on Ω) and owing to the compactness of the imbedding of H1(Ω) into L4(Ω),
there exists a subsequence, still denoted by (un, Tn)n for simplicity, which converges to a pair (u, T̃ ) of
H1

0 (Ω)d × H1
0 (Ω) weakly in H1(Ω)d × H1(Ω) and strongly in L4(Ω)d × L4(Ω). Next, we observe that, for

m � n, these (un, Tn) satisfy
∀Vm ∈ Vm × Wm, 〈Φ(Un), Vm〉 = 0.

Passing to the limit on n is obvious for the linear terms and follows from the strong convergence in L4(Ω)d ×
L4(Ω) for the terms (un . ∇)un and (un . ∇)Tn. On the other hand, due to this strong convergence, the
sequence (ν(Tn + T 0)gradvm)n converges to (ν(T̃ + T 0)grad vm) a.e. in Ω and its norm is bounded by
ν2 ‖ grad vm ‖L2(Ω)d×d , so that using the Lebesgue dominated convergence theorem yields the convergence

of (ν(Tn + T 0)gradvm)n to ν(T̃ + T 0)grad vm in L2(Ω)d×d. All this leads to

∀Vm ∈ Vm × Wm, 〈Φ(u, T̃ ), Vm〉 = 0,

and passing to the limit on m is now easy. Thus, we derive that the pair (u, T = T̃ +T 0) satisfies the second
and third equation in (2.4) and also

∀v ∈ V,

∫
Ω

ν(T )(gradu)(x) : (grad v)(x) dx

+
∫

Ω

(
(u . ∇)u

)
(x) . v(x) dx = 〈f ,v〉Ω. (2.11)
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5) We recall from ([9], Chap. I, Cor. 2.4), the following inf-sup condition for a positive constant β

∀q ∈ L2
0(Ω), sup

v∈H1
0 (Ω)d

∫
Ω
(div v)(x)q(x)dx
‖ v ‖H1(Ω)d

� β ‖ q ‖L2(Ω) . (2.12)

Thus, owing to equation (2.11), there exists a p in L2
0(Ω) (see [9], Chap. I, Lem. 4.1), such that

∀v ∈ H1
0 (Ω)

d
,

∫
Ω

ν(T )(gradu)(x) : (grad v)(x) dx

+
∫

Ω

(
(u . ∇)u

)
(x) . v(x) dx− 〈f ,v〉Ω =

∫
Ω

(div v)(x) p(x) dx.

Then the triple (u, p, T ) is a solution of problem (2.3)–(2.4), and estimate (2.6) is easily derived from (2.7)
and (2.10), see (2.9). �

Proposition 2.3. Assume that the function ν is Lipschitz-continuous, with Lipschitz constant ν∗. There exist
two positive constants c� and c� such that

(i) if the data (f , g) in H−1(Ω)d × H−1(Ω) and T0 in H
1
2 (∂Ω) satisfy

c� ( ‖ f ‖H−1(Ω)d + ‖ g ‖H−1(Ω) +‖T0‖
H

1
2 (∂Ω)

) < 1, (2.13)

(ii) if problem (2.3)–(2.4) admits a solution (u, p, T ) such that u belongs to W 1,q(Ω)d with q > 2 in dimension
d = 2 and q � 3 in dimension d = 3, and satisfies

c� ν∗ | u |W 1,q(Ω)d < 1, (2.14)

then this solution is unique.

Proof. For brevity, we set:

c1 = c
(
‖ f ‖H−1(Ω)d + ‖ g ‖H−1(Ω) + ‖T0‖

H
1
2 (∂Ω)

)
,

where c is the constant in (2.6). Let (u1, p1, T1) and (u2, p2, T2) be two solutions of problem (2.3)–(2.4), with
u1 in W 1,q(Ω)d satisfying (2.14).
Setting for a while u = u1 − u2, p = p1 − p2 and T = T1 − T2, we proceed in three steps.

1) It follows from the third equation in (2.4) that, since T belongs to H1
0 (Ω),

α | T |2H1(Ω) = −
∫

Ω

(
(u1 . ∇)T1 − (u2 . ∇)T2

)
(x)T (x) dx

= −
∫

Ω

(
(u . ∇)T1

)
(x)T (x) dx

whence

α | T |H1(Ω) � c1 c2 |u|H1(Ω)d , (2.15)

where c2 is the square of the norm of the imbedding of H1
0 (Ω) into L4(Ω).
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2) Similarly, we derive from the first equation in (2.4) that∫
Ω

ν(T2)(x) | gradu |2 (x) dx = −
∫

Ω

(
(u . ∇)u1

)
(x) . u(x) dx

−
∫

Ω

(
ν(T1) − ν(T2)

)
(x)(gradu1)(x) : (gradu)(x) dx.

Using appropriate Hölder’s inequalities thus yields

ν1 | u |2H1(Ω)d � c1 c2 | u |2H1(Ω)d +ν∗ c3 | u1 |W 1,q(Ω)d | T |H1(Ω) | u |H1(Ω)d ,

where c3 stands for the norm of the imbedding of H1
0 (Ω) into Lq∗

(Ω), with 1
q + 1

q∗ = 1
2 .

By combining this with (2.15) and choosing c� and c� such that

c1 c2 ν−1
1

(
1 + ν∗ c3 α−1 | u1 |W 1,q(Ω)d

)
< 1,

we obtain that u is zero, so that u1 and u2 are equal.
3) It then follows from (2.15) that T1 and T2 are equal. Finally, the function p satisfies

∀v ∈ H1
0 (Ω)

d
, −

∫
Ω

(div v)(x) p(x) dx = 0,

so that it is zero (see [9], Chap. I, Sect. 2, for instance). Thus, p1 and p2 coincide.

This concludes the proof. �

Assumptions (2.13) and (2.14) are clearly very restrictive and will not be used in what follows. We conclude
with a regularity result.

Proposition 2.4. There exist a real number q0 > 2 only depending on the geometry of Ω and on the ratio
ν2/ν1 and a real number q1 > 1 only depending on the geometry of Ω such that, for any q, 2 � q � q0, and q′,
1 � q′ � q1, and for any data (f , g) in the space W−1,q(Ω)d × Lq′

(Ω) and T0 in W
2− 1

q′ ,q′
(∂Ω), any solution

(u, p, T ) of problem (2.3)–(2.4) belongs to W 1,q(Ω)d × Lq(Ω) × W 2,q′
(Ω). Moreover, q1 is � 4

3 for a general
domain Ω and � 2 when Ω is convex.

Proof. Proving the regularity of the velocity follows from the approach in [12]. The regularity of the pressure is
a direct consequence of this. Finally, the regularity of the temperature is deduced from the standard properties
of the Laplace operator (see [10], Thm. 4.3.2.4, [7], Thm. 2, or [8], Cor. 3.10). �

3. The discrete problem and its a priori analysis

We now consider the discretization of problem (2.3)–(2.4) in the case where Ω = ]− 1, 1[d, d = 2 or 3. Let N
be an integer �2. We introduce the space PN (Ω) of polynomials with d variables and degree � N with respect
to each variable and the space P

0
N(Ω) of polynomials in PN (Ω) vanishing on the boundary of Ω. Based on these

definitions, we introduce the discrete spaces

XN = P
0
N (Ω)d, MN = PN−2(Ω) ∩ L2

0(Ω),
YN = PN (Ω), Y

0
N = YN ∩ H1

0 (Ω).

The reason for the choice of the space MN is that it does not contain spurious modes (see [1], Chap. V).
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We introduce the space PN (−1, 1) of restrictions to [−1, 1] of polynomials with degree � N . Setting ξ0 = −1
and ξN = 1, we consider the N − 1 nodes ξj , 1 � j � N − 1, and the N + 1 weights ρj , 0 � j � N , of the
Gauss–Lobatto quadrature formula. We recall that the following equality holds

∀φ ∈ P2N−1(−1, 1),
∫ 1

−1

φ(ζ) dζ =
N∑

i=0

φ(ξi) ρi. (3.1)

We also recall ([2], Chap. IV, Cor. 1.10) the following property, which is useful in what follows

∀φN ∈ PN(−1, 1), ‖φN‖2
L2(−1,1) �

N∑
i=0

φ2
N (ξi) ρi � 3 ‖φN‖2

L2(−1,1). (3.2)

Relying on this formula, we introduce the discrete product, defined on continuous functions u and v by

(u, v)N =

{∑N
i =0

∑N
j =0 u(ξi, ξj) v(ξi, ξj) ρiρj if d = 2,∑N

i =0

∑N
j =0

∑N
k =0 u(ξi, ξj , ξk) v(ξi, ξj , ξk) ρiρjρk if d = 3.

It follows from (3.2) that this discrete product is a scalar product on PN (Ω). Let IN denote the Lagrange
interpolation operator at the nodes of the grid

ΣN =

{ {x = (ξi, ξj); 0 � i, j � N} if d = 2,

{x = (ξi, ξj , ξk); 0 � i, j, k � N} if d = 3,

with values in the space PN (Ω). Finally, let i∂Ω
N denote the Lagrange interpolation operator at the nodes of

ΣN ∩ ∂Ω with values in the space of traces of PN (Ω).
We now assume that the function T0 is continuous on ∂Ω and f , g are continuous on Ω. Thus the discrete

problem is constructed from (2.3)–(2.4) by using the Galerkin method combined with numerical integration. It
reads

Find (uN , pN , TN) in XN × MN × YN such that

TN = i∂Ω
N T0 on ∂Ω, (3.3)

and that

∀vN ∈ XN ,
(
ν(TN )graduN ,grad vN

)
N

+
(
(uN . ∇)uN ,vN

)
N
− (div vN , pN

)
N

= (f ,vN )N ,

∀qN ∈ MN , − (divuN , qN

)
N

= 0,

∀SN ∈ Y
0
N , α

(
gradTN , gradSN

)
N

+
(
(uN . ∇)TN , SN

)
N

= (g, SN)N . (3.4)

The existence of a solution can be derived by the same arguments in Section 2, however we prefer to follow the
approach of [4] to obtain directly more precise results.

We recall the existence of a discrete inf-sup condition between the spaces XN and MN (see [1], Chap. V,
Thm. 25.7)

∀ qN ∈ MN , sup
vN∈XN

∫
Ω
(div vN )(x) qN (x) dx

‖ vN ‖H1(Ω)d

� c N−(d−1)/2 ‖ qN ‖L2(Ω) . (3.5)

For any real-valued measurable function τ on Ω, we introduce the modified Stokes operator S(τ), which
associates with any datum F in H−1(Ω)d the part u of the solution (u, p) of the generalized Stokes problem⎧⎪⎨⎪⎩

−div(ν(τ)∇u) + grad p = F in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω.

(3.6)
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We also consider the operator S̃(τ) which associates with any datum F in H−1(Ω)d the part p of the solution
(u, p) of this same problem.

We introduce the inverse L of the Laplace operator which associates with any datum (g, T0) in H−1(Ω) ×
H

1
2 (∂Ω) the solution T in H1(Ω) of the problem{

−α ΔT = g in Ω,

T = T0 on ∂Ω.
(3.7)

Thus it is readily verified that, when setting U = (u, T ), problem (2.3)–(2.4) can be written equivalently as

F(U) = U +
(S(T ) 0

0 L
)
G(U) = 0, with G(U) =

(
(u . ∇)u − f

((u . ∇)T − g, T0)

)
. (3.8)

Similarly, let SN (τ) denote the discrete Stokes operator, i.e., the operator which associates with any data F
in H−1(Ω)d, the part uN of the solution (uN , pN ) in XN × MN of the Stokes problem

∀vN ∈ XN ,
(
ν(τ)∇uN ,∇vN

)
N
− (div vN , pN

)
N

= 〈F ,vN 〉Ω,

∀ qN ∈ MN , −(divuN , qN

)
N

= 0. (3.9)

Let finally LN denote the operator which associates with any datum G in H−1(Ω) and any continuous function
R0 in H

1
2 (∂Ω), the function RN in YN , equal to i∂Ω

N R0 on ∂Ω and which satisfies

∀SN ∈ Y
0
N , α

(
grad RN , grad SN

)
N

= 〈G, SN 〉Ω. (3.10)

With the notation UN = (uN , TN), problem (3.3)–(3.4) can equivalently be written as

FN(UN ) = UN +
(SN (TN ) 0

0 LN

)
GN (UN ) = 0, with GN (UN ) =

( GN1

(GN2, T0)

)
. (3.11)

The two components GN1 and GN2 are defined in the dual spaces of XN and Y
0
N , respectively, by

∀vN ∈ XN ,

∫
Ω

GN1(x) .vN (x)dx =
(
(uN . ∇)uN − f ,vN

)
N

∀SN ∈ Y
0
N ,

∫
Ω

GN2(x) SN (x) dx =
(
(uN . ∇)TN − g, SN

)
N

.

Lemma 3.1. There exists a constant c > 0 such that the following continuity property holds

〈GN1(uN ),vN 〉 � c (‖ uN ‖H1(Ω)d + ‖ INf ‖L2(Ω)d) ‖ vN ‖H1(Ω)d . (3.12)

Proof. By definition, we have

〈GN1(uN ),vN 〉 =
d∑

i,j=1

(
uNj

∂uNi

∂xj
− f ,vNi

)
N

=
d∑

i,j=1

((
uNjvNi,

∂uNi

∂xj

)
N

− (f ,vNi)N

)

=
d∑

i,j=1

((
IN (uNjvNi),

∂uNi

∂xj

)
N

− (INf ,vNi)N

)
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whence, by using (3.2), we obtain

〈GN1(uN ),vN 〉 � 3d
d∑

i,j=1

(
‖ IN (uNjvNi) ‖L2(Ω)d‖ ∂uNi

∂xj
‖L2(Ω)d

+ ‖ INf ‖L2(Ω)d‖ vNi ‖L2(Ω)d

)
.

We recall from ([1], Rem. 13.5), that,

∀ϕM ∈ PM (Ω), ‖ INϕM ‖L2(Ω)� c

(
1 +

M

N

)d

‖ ϕM ‖L2(Ω) . (3.13)

By taking M = 2N , we derive

〈GN1(uN ),vN 〉 � c
d∑

i,j=1

(
‖ uNj ‖L4(Ω)d‖ vNi ‖L4(Ω)d‖ uNi ‖H1(Ω)d

+ ‖ INf ‖L2(Ω)d‖ vNi ‖L2(Ω)d

)
.

We conclude by noting that H1(Ω) is embedded in L4(Ω). �

We recall the basic properties of the discrete operators SN (τ) and LN . The operator SN (τ) satisfies the
following properties: For any F in H−1(Ω)d,

‖ SN (τ)F ‖H1(Ω)d � c ‖ F ‖H−1(Ω)d , (3.14)

and, if moreover S̃(τ)F belongs to Hs−1(Ω) and S(τ)F to Hs(Ω)d for a real number s, s � 1,

‖ (S(τ) − SN (τ)
)
F ‖H1(Ω)d � c N1−s

(
‖ S(τ)F ‖Hs(Ω)d + ‖ S̃(τ)F ‖Hs−1(Ω)

)
. (3.15)

The analogous properties concerning the operator LN read: For any G in H−1(Ω),

‖ LN (G, 0) ‖H1(Ω) � c ‖ G ‖H−1(Ω) . (3.16)

and, if moreover LG belongs to Hs(Ω)d, s � 1, and R0 belongs to Hσ(∂Ω), for a real number σ, σ > d−1
2 ,

‖ (L − LN )(G, R0) ‖H1(Ω) � c N1−s ‖ LG ‖Hs(Ω) +N
1
2−σ ‖ R0 ‖Hσ(∂Ω) . (3.17)

Note that these properties yield the following convergence result, for any F in H−1(Ω)d and any G in H−1(Ω),

lim
N→+∞

‖ (S(τ) − SN (τ)
)
F ‖H1(Ω)d = 0, lim

N→+∞
‖ (L − LN )(G, 0) ‖H1(Ω) = 0. (3.18)

From now on, we denote by

X (Ω) = H1
0 (Ω)d × H1(Ω), XN = XN × YN .

Assumption 3.2. The solution (u, p, T ) of problem (2.3)–(2.4) satisfies:

(i) the velocity u belongs to Hρ(Ω)d and the temperature T belongs to Hρ(Ω), for some ρ > 1;
(ii) the pair U = (u, T ) is such that DF(U) is an isomorphism of X (Ω).
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Note that these assumptions are not restrictive, compared with the hypotheses of Proposition 2.3 for the
uniqueness of the solution.

We are thus in a position to prove the preliminary results which we need for applying the theorem of Brezzi
et al. [4]. This requires an approximation U�

N = (u�
N , T �

N) of U in XN × YN which satisfies (see [2], Chap. III,
Thm. 2.4) for the real number ρ of Assumption 3.2 and 0 � t � ρ,

‖u− u�
N‖Ht(Ω)d � c N t−ρ ‖ u ‖Hρ(Ω)d , ‖T − T �

N‖Ht+1(Ω) � c N t−ρ ‖ T ‖Hρ+1(Ω)d . (3.19)

Lemma 3.3. If that the data f belong to Hσ(Ω)d, σ > d
2 , the following result holds

〈G1(uN ) − GN1(uN ),vN 〉Ω � c
(
N− 1

2 ‖ uN ‖H1(Ω)d +N−σ ‖ f ‖Hσ(Ω)d

)
‖ vN ‖H1(Ω)d (3.20)

with
〈G1(uN ),vN 〉Ω =

∫
Ω

((uN . ∇)uN − f )(x) · vN (x) dx.

Proof. Denoting for brevity the scalar product of L2(Ω) by (·, ·), we have,

〈G1(uN ) − GN1(uN ),vN 〉Ω = ((uN . ∇)uN − f ,vN ) − ((uN . ∇)uN − f ,vN )N .

If N ′ stands for the integer part of N−1
2 , we introduce an approximation uN ′ of uN in IPN ′(Ω) and we note the

identity
((uN ′ . ∇)uN ′ ,vN ) = ((uN ′ . ∇)uN ′ ,vN )N .

Inserting it, we obtain

〈G1(uN ) − GN1(uN ),vN 〉Ω =
(
(uN . ∇)uN − (uN ′ . ∇)uN ′ ,vN

)
+
(
(uN ′ . ∇)uN ′ − (uN . ∇)uN ),vN

)
N

− ((f ,vN ) − (INf ,vN )N

)
.

The arguments for evaluating the first two quantities are the same, so we only consider the first one. We have(
(uN . ∇)uN − (uN ′ . ∇)uN ′ ,vN

)
= ((uN − uN ′) . ∇uN ,vN ) + ((uN ′ . ∇)(uN − uN ′),vN ).

Writing

((uN − uN ′ . ∇)uN ,vN ) =
∫

Ω

d∑
i,j=1

(uNi − uN ′i)(x)vNj (x)∇uNi(x) dx,

we obtain

((uN − uN ′ . ∇)uN ,vN ) � ‖uN − uN ′‖L3(Ω)d ‖vN‖L6(Ω)d ‖∇uN‖L2(Ω)d

� ‖uN − uN ′‖
H

1
2 (Ω)d

‖vN‖H1(Ω)d |uN |H1(Ω)d ,

we conclude by using (3.19) for t = 1
2 and ρ = 1.

To evaluate the third term, we have for any fN−1 in IPN−1(Ω)d

(f ,vN ) − (f ,vN )N =
∫

Ω

f (x).vN (x)dx− (f ,vN )N

=
∫

Ω

(f − fN−1)(x).vN (x)dx− (f − fN−1,vN )N ,
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whence

(f ,vN ) − (f ,vN )N �
( ‖ f − fN−1 ‖L2(Ω)d +3d ‖ INf − fN−1 ‖L2(Ω)d

) ‖ vN ‖L2(Ω)d ,

(f ,vN ) − (f ,vN )N � c
( ‖ f − INf ‖L2(Ω)d + inf

fN−1∈PN−1(Ω)
‖ f − fN−1 ‖L2(Ω)d

) ‖ vN ‖H1(Ω)d .

By taking fN−1 equal to the image of f by the L2(Ω) orthogonal projection operator (see [2], Chap. III), using
([2], Chap. IV, Thm 2.6), and ([2], Chap. III, Thm 2.4), we obtain

(f ,vN ) − (f ,vN )N � cN−σ ‖ f ‖Hσ(Ω)d‖ vN ‖H1(Ω)d .

We are now in a position to prove the following lemmas, we denote by E the space of endomorphisms of
X (Ω). Here, D stands for the differential operator. �

Lemma 3.4. Assume that ν is of class C 2 on R, with bounded derivatives, and Assumption 3.2 holds. There
exists a positive integer N0 such that, for all N � N0, the operator DFN(U�

N ) is an isomorphism of XN × YN

with the norm of its inverse bounded independently of N .

Proof. We write the expansion

DFN (U�
N ) = DF(U) −

(
(S − SN )(T ) 0

0 L − LN

)
DG(U) −

(SN 0
0 LN

)
(DG(U) − DG(U�

N ))

−
(SN 0

0 LN

)
(DG(U�

N ) − DGN (U�
N )) −

(
D(S − SN )(T ) 0

0 0

)
G(U)

−
(

DSN (T ) 0
0 0

)
(G(U) − G(U�

N )) −
(

DSN (T ) 0
0 0

)
(G(U�

N ) − GN (U�
N)).

Due to part (ii) of Assumption 3.2, it suffices to check that the last six terms in the right-hand side tend to
zero when N tends to +∞ in the norm of the space E . Let WN = (wN , RN ) be any element in the unit sphere
of XN .

1) We observe that

DG(U).WN =
(

(u . ∇)wN + (wN . ∇)u
((u . ∇)RN + (wN . ∇)T, 0)

)
.

Thus, the compactness of the imbedding of H1(Ω) into Lq(Ω), with q < ∞ in dimension d = 2 and q < 6
in dimension d = 3, combined with the regularity of u yields that both terms (u . ∇)wN + (wN . ∇)u and
(u . ∇)RN + (wN . ∇)T belong to a compact subset of H−1(Ω)d and H−1(Ω) respectively. Combining all
this with (3.18) leads to

lim
N→+∞

∥∥∥∥((S − SN )(T ) 0
0 L − LN

)
DG(U)

∥∥∥∥
E

= 0. (3.21)

2) Due to the definition of DG, we must now investigate the convergence of the two terms

((u − u�
N ) .∇)wN + (wN . ∇)(u − u�

N ), ((u− u�
N ) .∇)RN + (wN . ∇)(T − T �

N ).

By applying (3.19) with a t < ρ such that Ht(Ω) is imbedded in Lr(Ω), with r > 2 in dimension d = 2 and
r = 3 in dimension d = 3, and combining it with (3.14) and (3.16), we derive

lim
N→+∞

∥∥∥∥(SN 0
0 LN

)
(DG(U) − DG(U�

N ))
∥∥∥∥
E

= 0. (3.22)
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3) Similarly, using an extension of Lemma 3.3 obviously yields

lim
N→+∞

∥∥∥∥(SN 0
0 LN

)
(DG(U�

N ) − DGN (U�
N ))
∥∥∥∥
E

= 0. (3.23)

4) On the other hand, we note that, for any F in H−1(Ω)d,

(DS(T )RN )F = S(T )
(− div(∂τν(T )RN ∇S(T )F )

)
,

(DSN (T )RN)F = SN (T )
(− div(∂τν(T )RN ∇SN (T )F )

)
. (3.24)

By subtracting the second line from the first one, we derive

(D(S − SN )(T )RN )F = (S − SN )(T )
(− div(∂τν(T )RN ∇S(T )F )

)
+ SN (T )

(− div(∂τν(T )RN ∇(S − SN ) (T )F )
)
.

Denoting by F the first component of G(U), we see that S(T )F is equal to −u, see (3.8). First, using the
compactness of the imbedding of H1(Ω) into Lr(Ω) for any r < ∞ in dimension d = 2 and r < 6 in dimension
d = 3, we deduce from the regularity assumption on u that, when WN runs through the unit sphere of XN ,
the quantity −div(∂τν(T )RN ∇S(T )F ) belongs to a compact subset of H−1(Ω)d. Thus, the convergence of
the first term to zero follows from (3.18).
To handle the second term, we observe from (3.14) that it suffices to prove the convergence of the quantity
‖ ∇(S − SN ) (T )F ‖Lq∗ (Ω)d×d , with 1

q + 1
q∗ = 1

2 for the q introduced in the beginning of the proof. Since
S (T )F coincides with −u, by using the injection of H1(Ω) into W 1,q∗

(Ω), we obtain

‖ ∇(S − SN ) (T )F ‖Lq∗ (Ω)d×d � c
(
N1−s

( ‖ u ‖Hs(Ω)d + ‖ p ‖Hs−1(Ω)

))
.

Hence, we derive

lim
N→+∞

∥∥∥∥(D(S − SN )(T ) 0
0 0

)
G(U)

∥∥∥∥
E

= 0. (3.25)

5) The convergence of the fifth term is deduced from (3.19), (3.12) and the stability of DSN (τ) and the
convergence of the last term is obtained with the same arguments as for Lemma 3.3.

This concludes the proof. �

Lemma 3.5. If the function ν belongs to W 2,∞(R), with Lipschitz-continuous derivatives, there exist a neigh-
bourhood of U�

N in XN and a constant c > 0 such that the operator DFN satisfies the following Lipschitz
property, for all U∗

N in this neighbourhood,

‖ DFN (U�
N ) − DFN (U∗

N ) ‖E � c μ(N) ‖ U�
N − U∗

N ‖X (Ω), (3.26)

with μ(N) equal to | log N | 12 in dimension d = 2 and to N in dimension d = 3.

Proof. Let us introduce the matrix operators

M(ξ) =
(S(ξ) 0

0 L
)

, MN (ξ) =
(SN (ξ) 0

0 LN

)
.

Setting U∗
N = (u∗

N , T ∗
N), we have

DFN(U�
N ) − DFN (U∗

N ) = (MN (T �
N) −MN (T ∗

N ))DGN (U�
N) + (DMN (T �

N ) − DMN(T ∗
N ))GN (U�

N )
+ MN (T ∗

N )(DGN (U�
N ) − DGN (U∗

N )) + DMN (T ∗
N)(GN (U�

N ) − GN (U∗
N )).
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We have to evaluate these quantities, for any WN = (wN , RN ) in the unit sphere of XN and ψN in the
unit sphere of XN . Since evaluating the last two terms follows from Lemma 3.3 and an extension of it, we only
consider the first two terms. All constants c in what follows only depend on the norms ‖ U�

N ‖X (Ω), ‖ U∗
N ‖X (Ω)

and ‖ ν ‖W 2,∞(R).

1) We have

(MN (T �
N ) −MN (T ∗

N))DGN (U�
N )WN = MN(T �

N )
(

A
0

)
,

with
A = div

(
(ν(T �

N ) − ν(T ∗
N ))∇SN (T ∗

N )((u�
N . ∇)wN + (wN . ∇)u�

N ,ψN )N ).

There exists a constant c only depending on the Lipschitz property of ν such that,

‖ (MN (T �
N) −MN (TN ))DGN (U�

N)WN ‖X (Ω)� c ‖ T �
N − T ∗

N ‖L2(Ω)‖ wN ‖L∞(Ω) .

We conclude by applying the inverse inequality [13], valid for any polynomial ϕN in PN(Ω),

‖ϕN‖L∞(Ω) � cN
2d
δ ‖ϕN‖Lδ(Ω),

and noting that
– in dimension d = 3, H1(Ω) is embedded in L6(Ω).
– in dimension d = 2, H1(Ω) is embedded in any Lδ(Ω) with the norm of the imbedding smaller than c

√
δ

(see [14]), (we thus take δ equal to log N).
2) On the other hand, combining the second part of (3.24) with a further triangle inequality

‖ ((DMN (T �
N ) − DMN(T ∗

N )RN )GN (U�
N ) ‖X (Ω)� c ‖ T �

N − T ∗
N ‖L2(Ω)‖ RN ‖L∞(Ω) .

The same arguments as in part 1) yields the desired result. �

Lemma 3.6. Assume that ν is of class C 2 on R and that the solution (u, p, T ) of problem (2.3)−(2.4) belongs
to Hs(Ω)d ×Hs−1(Ω)×Hs(Ω) for a real number s, s � 1, and the data f belongs to Hσ(Ω)d for a real number
σ, σ > d

2 . Then, the following estimate is satisfied

‖ FN (U�
N) ‖X (Ω) � c N1−s (‖ u ‖Hs(Ω)d + ‖ p ‖Hs−1(Ω) + ‖ T ‖Hs(Ω)) + c′N−σ ‖ f ‖Hσ(Ω)d .

Proof. Since F(U) is zero, we have

‖ FN (U�
N ) ‖X (Ω)�‖ U − U�

N ‖X (Ω) +
∥∥∥∥((S − SN )(T ) 0

0 L − LN

)
G(U)

∥∥∥∥
X (Ω)

+
∥∥∥∥(SN (T ) 0

0 LN

)
(G(U) − G(U�

N ))
∥∥∥∥
X (Ω)

+
∥∥∥∥(SN (T ) 0

0 LN

)
(G(U�

N ) − GN (U�
N ))
∥∥∥∥
X (Ω)

.

The first term is bounded in (3.19). Evaluating the second term follows from (3.15) and (3.17) by noting that,
if F denotes the first component of G(U), SF is equal to −u and F is equal to f + div(ν(T )∇u) − grad p. To
bound the third term, we apply (3.14), triangle inequalities and estimate (3.19). Finally, proving the estimate
for the fourth term is obtained by using the standard arguments for the error issued from numerical integration
combined with the same arguments as in the proof of Lemma 3.3.

Thanks to Lemmas 3.4 to 3.6, we are now in a position to prove the main result of this section. �
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Theorem 3.7. Let (u, p, T ) be a solution of problem (2.3)–(2.4) which satisfies Assumption 3.2 for ρ > d − 1
and belongs to Hs(Ω)d × Hs−1(Ω) × Hs(Ω), s > 1. We further assume that the function ν is of class C 2 on R

with Lipschitz-continuous derivatives and that the data f belong to Hσ(Ω)d for a real number σ, σ > d
2 . Then,

there exist a positive number N� and a constant c� such that, for all N � N�, problem (3.3)–(3.4) has a unique
solution (uN , pN , TN) such that (uN , TN ) belongs to the ball of X (Ω) with center (u, T ) and radius c�μ−1

N for
the constant μN introduced in Lemma 3.5. Moreover, this solution satisfies

‖ u− uN ‖H1(Ω)d + ‖ T − TN ‖H1(Ω) +N−(d−1)/2 ‖ p − pN ‖L2(Ω)

� c N1−s(‖ u ‖Hs(Ω)d + ‖ p ‖Hs−1(Ω) + ‖ T ‖Hs(Ω)) + c′N−σ ‖ f ‖Hσ(Ω)d . (3.27)

Proof. Combining Lemmas 3.4 to 3.6 with Brezzi–Rappaz–Raviart’s theorem [4] (see also [9], Chap. IV, Thm 3.1)
yields for N sufficiently large, the existence of a solution (uN , TN), its local uniqueness and the desired estimates
for ‖ u− uN ‖H1(Ω)d and ‖ T − TN ‖H1(Ω).

Moreover, thanks to the discrete inf-sup condition (3.5), there exists a unique pN in MN such that:∫
Ω

(divvN )(x)pN (x)dx =
∫

Ω

ν(TN )(graduN )(x) : (gradvN )(x)dx+
∫

Ω

(
(uN . ∇)uN

)
(x) . vN (x)dx−(f ,vN ),

whence, for any qN in MN ,∫
Ω

(div vN )(x) (pN − qN )(x) dx =
∫

Ω

(
ν(TN )(graduN )(x) − ν(T )(gradu)(x)

)
: (gradvN )(x) dx

+
∫

Ω

(
(uN . ∇)uN −(u .∇)u

)
(x) .vN (x)dx+

∫
Ω

(divvN )(x)(p−qN)(x)dx.

So by using successively (3.5), triangle inequalities and the error estimates on u and T , we derive the estimate
for ‖ p − pN ‖L2(Ω).

Estimate (3.27) is fully optimal. Moreover the regularity assumptions on the solution (u, p, T ) are not at all
restrictive in dimension d = 2. �

4. Numerical experiments

The numerical experiments have been performed in the two-dimensional case, on the square Ω = ] − 1, 1[2.
Problem (3.3)–(3.4) is solved via the following iterative algorithm. We set:

H(UN ) = UN + MN(TN )GN (UN ).

Applying Newton’s method consists in solving iteratively the equation

Um
N = Um−1

N − DH(Um−1
N )−1H(Um−1

N ),

which can equivalently be written as: Um
N = Um−1

N − Wm−1
N , where Wm−1

N = (zm−1
N , χm−1

N ) is a solution of the
problem:

DH(Um−1
N )Wm−1

N = H(Um−1
N ).

But Newton’s algorithm can also be applied to one unknown, for simplicity. In fact, we iteratively solve the
following problems, for m � 1. They read



SPECTRAL DISCRETIZATION OF THE NAVIER–STOKES EQUATIONS COUPLED WITH THE HEAT EQUATION 635

Find (zm−1
N , ϕm−1

N , χm−1
N ) in XN × MN × YN such that

∀vN ∈ XN , (ν(T m−1
N )∇zm−1

N ,∇vN)N + ((um−1
N . ∇)zm−1

N + (zm−1
N . ∇)um−1

N ,vN )N − (div vN , ϕm−1
N )N

= (ν(T m−1
N )∇um−1

N ,∇vN )N + ((um−1
N . ∇)um−1

N ,vN )N

− (div vN , pm−1
N )N − (f ,vN )N ,

∀qN ∈ MN , − (div zm−1
N , qN )N = 0,

∀SN ∈ Y
0
N , α(∇χm−1

N ,∇SN )N + ((zm−1
N . ∇)T m−1

N r + (um−1
N . ∇)χm−1

N , SN )N

= α(∇T m−1
N ,∇SN )N + ((um−1

N . ∇)T m−1
N , SN )N − (g, SN )N . (4.1)

The convergence of this method can be easily derived from [4] (see [9], Chap. IV, Thm. 6.5) owing to
Lemmas 3.4 to 3.6. We only skip its proof for brevity. It can also be noted that the matrix must be reassembled
at each iteration (due to the dependency of the viscosity with respect to T m−1

N ), which make its use expensive.
However, very few iterations are needed before the solution stops moving. On the other hand and as well-
known, the key point for the Newton’s method is the initial guess: to do this, by taking for a while the viscosity
constant, it is very easy to uncouple the unknowns, more precisely to solve first the Navier–Stokes (or even
Stokes) equations, next the heat equation; but we take it equal to zero when possible.

The numerical experiments that we present in the sequel are performed by a MATLAB code and the global
system is solved by a GMRES algorithm.

To start, we take in all the calculations u0
N , T 0

N , p0
N zeros on internal nodes, knowing that whatever the choice

of these solutions the algorithm converges. In all tests the number of iterations needed for better convergence
of the Newton algorithm, varies between 5 and 10. We work with ν as a constant, as a function dependent of
the space variable and finally as a function which depends on the temperature T .

• Case where ν(T ) is a constant equal to 10−2.
In the first experiment, the exact solution is given by

u(x, y) =
(

y(1 − x2)
11
2 (1 − y2)

9
2

−x(1 − x2)
9
2 (1 − y2)

11
2

)
, p(x, y) = x2 + y − 1

3
, T (x, y) = (x2 + y2)

7
2 . (4.2)

The errors of solution computed with N = 24 are presented in Figure 1, for the two components of the velocity
on the top, the pressure and the temperature on the bottom.

• Case where ν(T ) is a function equal to x + y + 1.
(i) In the first case, we work with regular functions where the boundary conditions are non-homogeneous,

and we attain an error of 10−13 from N = 6.
(ii) In the second experiment, we work with the solution given in (4.2). In Figure 2, we present the conver-

gence of the relative errors in u, p and T in the L2(Ω)2, H1(Ω)2, L2(Ω) or H1(Ω) norm in logarithmic
scales, as a function of N , for N varying from 8 to 30.

• Case where ν(T ) depend on T .
(i) We first consider a smooth solution in the case where ν(T ) equal to 3

√
T 2 + 1 + 2,

u(x, y) =
(

y2

x2

)
, p(x, y) = sin(x + y), T (x, y) = cos(xy). (4.3)

In Figure 3 we present the error of solution obtained from (4.3) computed with N = 20.
(ii) We next consider the solution in the case where ν(T ) is given by T + 1,

u(x, y) =
(

x sin(πxy)
−y sin(πxy)

)
, p(x, y) = x + y, T (x, y) = xy. (4.4)
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Figure 1. The errors of solution obtained from (4.2).

Figure 2. The estimations of errors of the solution obtained from (4.2).
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Figure 3. The errors of the solution corresponding to (4.3).

In Figure 4 we present the quantities:

log10 ‖u− uN‖L2(Ω)2 , log10 ‖u− uN‖H1(Ω)2 , log10 ‖p − pN‖L2(Ω),

log10 ‖T − TN‖L2(Ω) and log10 ‖T − TN‖H1(Ω)

as functions of N , for N varying from 8 to 24. We observe the good convergence for N = 24.
(iii) We now present numerical experiments in the case when ν(T ) is taken to be equal to T 2 +T , the datum

f is equal to zero, and the datum g is 1.
The boundary velocity h = (hx, hy) is given by

hx(x, y) =
{

0 if y = ±1,
sin(πx), otherwise, hy(x, y) =

{
0 if x = ±1,
sin(πy), otherwise. (4.5)

And the boundary condition is replaced by

u = h on ∂Ω, T0 = 0.

Note that the data satisfy the usual compatibility condition
∫

∂Ω
h(τ)·n(τ)dτ = 0. We present in Figure 5

the isovalues of the two components of the velocity, the pressure and the temperature obtained from
(4.5) computed with N = 26.

(iv) For the last numerical experiment we work with the solution given by

u(x, y) =

(
2 sin(πx)2 sin(πy) cos(πy)

−2 sin(πy)2 sin(πx) cos(πx)

)
, p(x, y) = x2 − y2, T (x, y) = xy. (4.6)
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Figure 4. The estimations of error of the solution obtained from (4.4).

Figure 5. Isovalues of the discrete solution corresponding to (4.5).
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Table 1. Convergence of the solution (4.6) as a function of ν(T ).

ν(T ) T+1 1
25

(T+1) 1
50

(T+1) 1
75

(T+1) 1
100

(T+1)

||u − uN ||L2(Ω)2 7.64e-9 1.48e-8 4.16e-8 5.50e-8 9.62e-8
||u − uN ||H1(Ω)2 8.76e-8 2.76e-7 4.23e-7 7.67e-7 9.33e-7
||p − pN ||L2(Ω) 1.35e-8 4.16e-8 6.16e-8 9.02e-8 4.73e-7
||T − TN ||L2(Ω) 4.23e-11 3.03e-10 4.06e-10 8.39e-10 1.58e-9
||T − TN ||H1(Ω) 5.68e-10 9.18e-10 2.28e-9 5.21e-9 6.93e-9

In Table 1 we present different values of ν(T ). We observe the stability of the algorithm and the variation of
the errors of the velocity, pressure and temperature computed with N = 16.

In Table 1 we note that if ν(T ) = T +1 is replaced by ν(T ) =
T + 1

M
then as M increases the errors grows. So

in order to restore the accuracy one needs to increase the discretization parameter N : for example we obtain the
same precision of the solution in the following two cases N = 16, ν(T ) = T + 1 and N = 18, ν(T ) = 1

100 (T+1).
Developing the software for the three-dimensional case is in progress. It just started so we have not face

difficulties yet, as it require a lot of time due to the large size of the matrices to invert.

5. Conclusions

We believe that the model that we propose has many applications: Think of a fluid with exothermic chemical
reactions or the flow of water in a partially heated channel. In simple geometries, the spectral method seems
appropriate to solve it due to its high accuracy and also to its simplicity of implementation. When coupling it
with the Newton’s algorithm, we obtain an efficient way of solving this model in a large number of cases.

Acknowledgements. We thank Prof. F. Coquel and P.-A. Raviart who gave us the idea of this model.
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