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CONVERGENCE OF A HIGH ORDER METHOD IN TIME AND SPACE
FOR THE MISCIBLE DISPLACEMENT EQUATIONS ∗, ∗∗
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Abstract. A numerical method is formulated and analyzed for solving the miscible displacement
problem under low regularity assumptions. The scheme employs discontinuous Galerkin time stepping
with mixed and interior penalty discontinuous Galerkin finite elements in space. The numerical approx-
imations of the pressure, velocity, and concentration converge to the weak solution as the mesh size
and time step tend to zero. To pass to the limit a compactness theorem is developed which generalizes
the Aubin−Lions theorem to accommodate discontinuous functions both in space and in time.
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1. Introduction

The miscible displacement problem arises in many applications, such as contamination of groundwater, or
production of trapped oil in reservoirs by enhanced oil recovery. A solvent fluid is injected into a porous medium;
it mixes with a resident fluid. The fluid mixture moves in the porous medium as a single phase flow, with a
velocity that follows Darcy’s law. The solvent concentration satisfies a convection-dominated parabolic problem,
with a diffusion-dispersion matrix that depends on the fluid velocity in a non-linear fashion. The analysis of the
miscible displacement problem is complicated by the fact that the diffusion-dispersion matrix is not uniformly
bounded above.

This paper has two main contributions. We introduce and prove a general Aubin−Lions theorem valid for
broken Sobolev spaces. Then, we obtain convergence of a high order method in time and in space for the solution
of the miscible displacement problem under low regularity. The pressure and velocity equations are discretized
by the mixed finite element method whereas the concentration equation is discretized by the interior penalty
discontinuous Galerkin (IPDG) method. The time-stepping technique is the high order discontinuous Galerkin
method.

Keywords and phrases. Generalized Aubin−Lions, discontinuous Galerkin, mixed finite element, arbitrary order, weak solution,
convergence.
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There is little published work on the convergence analysis of numerical methods for solving the miscible
displacement for non-smooth solutions and for the case of unbounded diffusion-dispersion matrix. In [17], we
analyzed a method that employs the continuous finite element (FEM) method for the concentration equation
and the mixed finite element (MFE) method for the pressure and velocity equations. In this present work, the
discontinuous Galerkin (DG) method is used for approximating the concentration equation. It is well-known
that the DG method is well-suited for convection dominated problems whereas the classical FEM yields spurious
oscillations. To our knowledge, our work is the only one that analyzes an arbitrarily higher order in time method
with DG in space for non-smooth solutions and unbounded diffusion-dispersion matrix. In [1], a first order Euler
method in time is combined with MFE and a symmetric DG in space and the convergence analysis is obtained
by applying the standard Aubin−Lions lemma to carefully constructed interpolated functional spaces. In the
scheme in [1], the diffusion-dispersion matrix is projected onto the space of piecewise polynomial matrices. In
addition, the penalty parameter depends on the shape regularity of the mesh and polynomial degree of the
approximation space. The work of [1] was extended to a Crank−Nicolson time discretization in [15].

For smooth solutions and bounded diffusion-dispersion matrix, several methods have been formulated and
analyzed for the miscible displacement: FEM [12,13,18], MFE [9], DG [10], finite volume [16] for instance. In [20],
the proposed method enforces boundedness of the diffusion-dispersion matrix by using a cut-off operator.

1.1. Overview and notation

The next section introduces the miscible displacement problem, the assumptions on the data and the numer-
ical scheme. Convergence of the numerical approximations is established in Section 3. A generalization of the
Aubin−Lions theorem used in the convergence proof is proved in Section 4. Numerical examples are given in
Section 5.

Standard notation is used for the Lebesgue spaces, Lp(Ω), and Sobolev spaces, Wm,p(Ω), H1(Ω) = W 1,2(Ω).
The L2 inner-product over a domain O is denoted by (·, ·)O and the subscript is dropped if O = Ω. The
pressure will be in L2

0(Ω) = {q ∈ L2(Ω) :
∫

Ω q = 0}, and the velocity will belong to H(Ω, div) = {v ∈ L2(Ω)d :
div(v) ∈ L2(Ω)}. The subspace of H(Ω; div) with vanishing normal component on the boundary is denoted by
H0(Ω, div) = {v ∈ H(Ω, div) : v · n = 0 on∂Ω}. The space of functions with bounded variation is denoted by

BV (Ω) =
{

w ∈ L1(Ω) |
∫

Ω

w div(φ) ≤ C(w)‖φ‖C(Ω̄), φ ∈ C1
c (Ω̄)d

}
.

Solutions of evolution problems will be functions from [0, T ] into these spaces and the usual notation,
L2[0, T ; H1(Ω)], C[0, T ; L2(Ω)], is used to indicate the temporal regularity of such functions. The numerical
solutions will be constructed using polynomials; if E ⊂ Ω then Pk(E) denotes the set of all polynomials of
degree less or equal to k over E. Similarly, if 0 ≤ a < b ≤ T and H is a function space then

P�[a, b; H ] =

{
�∑

i=0

tivi | t ∈ [a, b], vi ∈ H, i = 0, . . . , �

}
.

Notation denoting jumps, averages, and specific finite element spaces used for the numerical scheme is introduced
in Section 2.2. We write a � b when there is a constant positive M independent of the mesh parameters used
for the numerical scheme such that a ≤ Mb.

2. Problem and scheme

2.1. Miscible displacement equations

Let [0, T ] be a time interval and Ω ⊂ �d be the region occupied by the porous medium in which a polymer
solvent is being displaced. Under the assumption of incompressibility, the fluid pressure p and velocity u satisfy
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the following equations

∇ · u = qI − qP , in Ω × (0, T ), (2.1)
u = −K(c)(∇p − ρ(c)g), in Ω × (0, T ). (2.2)

The concentration c of the solvent satisfies

∂t(φc) − div (D(u)∇c − cu) = qI ĉ − qP c, in Ω × (0, T ).

The coefficients in the model are the injection qI and production qP functions, the fluid density ρ(c), the gravity
vector g, the porosity of the medium φ, the diffusion-dispersion matrix D(u), the injected concentration ĉ, and
the matrix K(c), which is the ratio between the permeability matrix k and the fluid viscosity μ(c).

The numerical scheme introduced below uses the following reformulation of the diffusion equation for the
concentration

∂t(φc) − div (D(u)∇c − (1/2)cu ) + (1/2)u · ∇c + (1/2)(qI + qP )c = qI ĉ. (2.3)

The natural weak statement of this equation preserves the skew symmetric property of the operator div(cu)
independently of equation (2.1). Equations (2.1)−(2.3) are then completed by boundary conditions

u · n = 0, and D(u)∇c · n = 0, on ∂Ω × (0, T ),

and the initial condition
c(x, 0) = c0(x), x ∈ Ω.

Solutions of the numerical scheme will satisfy the following weak statement of equations (2.1)−(2.3): (u, p, c) ∈
L∞[0, T ; H0(Ω, div)] × L∞[0, T ; L2

0(Ω)] × L2[0, T ; H1(Ω)] and∫ T

0

(K−1(c)u,v) − (p, div(v)) =
∫ T

0

(ρ(c)g,v), (2.4)

∫ T

0

(q, div(u)) =
∫ T

0

(qI − qP , q), (2.5)

∫ T

0

(
− (φc, ∂tw) + (D(u)∇c − (1/2)cu,∇w )

+ (1/2)(u · ∇c, w) + (1/2)
(
(qI + qP )c, w

) )
= (φc0, w(0)) +

∫ T

0

(qI ĉ, w), (2.6)

for all (v, q) ∈ L1[0, T ; H(Ω, div)] × L1[0, T ; L2
0(Ω)] and for all

w ∈ {w ∈ L4[0, T ; W 1,4(Ω)] ∩ H1[0, T ; H1(Ω)′] : w(T ) = 0}.
The condition w ∈ L4[0, T ; W 1,4(Ω)] on the test function is technical and is needed since D(u) is not bounded.
Existence of weak solutions, with D(u)1/2∇c ∈ L2[0, T ; L2(Ω)] is established in [7, 14] under the following
assumptions on the coefficients and data which guarantee that the weak statement is well defined.

Assumption 2.1.

(1) Ω ⊂ �d is a bounded Lipschitz domain, d = 2 or 3.
(2) K : Ω×� → �d×d is symmetric, Carathéodory (measurable in first argument and continuous in the second

almost everywhere), uniformly bounded and elliptic. That is, there exist constants 0 < k0 < k1 such that

k0 |ξ|2 ≤ ξTK(x, c)ξ ≤ k1 |ξ|2 , ξ ∈ �d, (x, c) ∈ Ω ×�,

where |ξ| denotes the Euclidean norm. The spatial dependence will be omitted below; K(c) ≡ K(x, c).
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(3) D : Ω × �d → �d×d is Carathéodory, symmetric valued, and Lipschitz continuous in the second variable,
and there exist constants 0 < d0 < d1 such that

d0(1 + |u|) |ξ|2 ≤ ξT D(x,u)ξ ≤ d1(1 + |u|) |ξ|2 , (x,u) ∈ Ω ×�d, ξ ∈ �d. (2.7)

The spatial dependence will be omitted below; D(u) ≡ D(x,u).
(4) ĉ ∈ L∞(Ω), φ ∈ L∞(Ω) and φ0 < φ < φ1 for some positive constants φ0, φ1.

(5) qI , qP ∈ L∞[0, T ; L2(Ω)] with qI , qP ≥ 0 and
∫

Ω

qI(x, t) =
∫

Ω

qP (x, t) for t ∈ [0, T ].

(6) There exist positive constants ρ0, ρ1 such that the function ρ : � → � is Lipschitz continuous and
ρ0 ≤ ρ ≤ ρ1.

2.2. Numerical scheme

Spatial approximations of (2.1)−(2.2) are constucted using the mixed finite element method and spatial ap-
proximations of equation (2.3) are developed using the interior penalty discontinuous Galerkin (IPDG) method.
Discontinuous Galerkin time stepping will be used to discretize time [11].

Let {Eh}h>0 be a regular family of meshes of Ω, where h is maximum element diameter; the finite element
subspaces are:

Uh = {uh ∈ H0(Ω; div) | uh|E ∈ (Pk(E))d + xPk(E), E ∈ Eh},
Ph = {qh ∈ L2(Ω) : qh|E ∈ Pk(E), E ∈ Eh},
Ch = {ch ∈ L2(Ω) : ch|E ∈ Pr(E), E ∈ Eh}.

For definiteness Raviart−Thomas spaces are used for the velocity; however, any classical mixed finite element
spaces suffice; for example BDMk(Eh) and BDFMk(Eh) [3].

Let {tn}N
n=0 � {tnh}Nh

n=0 be a family of partitions of [0, T ] that are quasi-uniform; i.e., there exists ν ∈ (0, 1]
such that

νΔt ≤ min
1≤n≤N

(tn − tn−1), where Δt = max
1≤n≤N

(tn − tn−1).

The numerical solutions are discontinuous in time and the jump of a function v at time tn is denoted by [vn]t:

vn
+ = lim

ε↓0
v(·, tn + ε), vn

− = lim
ε↓0

v(·, tn − ε), [vn]t = vn
+ − vn

−.

The numerical solution of the concentration is discontinuous across mesh elements. To define the jump [·] and
average {·} of a discontinuous function let Γh denote the set of interior faces. Then for each e ∈ Γh fix a normal
vector ne and let Ee

+ and Ee− denote the neighboring elements such that ne points from Ee
+ to Ee−. Then

{v} =
v|Ee

+
+ v|Ee

−

2
, and [v] = v|Ee

+
− v|Ee

− .

The broken Sobolev spaces are denoted by W s,p(Eh) and let Hs(Eh) = W s,2(Eh).
The norms on H1(Eh) and W 1,4(Eh) are defined as

‖v‖H1(Eh) =

(
‖v‖2

L2(Ω) +
∑

E∈Eh

‖∇v‖2
L2(E) +

∑
e∈Γh

h−1‖[v]‖2
L2(e)

)1/2

,

‖v‖W 1,4(Eh) =

(
‖v‖4

L4(Ω) +
∑

E∈Eh

‖∇v‖4
L4(E) +

∑
e∈Γh

h−3‖[v]‖4
L4(e)

)1/4

.
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The L2 inner-product on Eh and Γh are:

(·, ·)Eh
=
∑

E∈Eh

(·, ·)E , (·, ·)Γh
=
∑
e∈Γh

(·, ·)e.

With this notation the numerical scheme becomes:
find uh ∈ P�[tn−1, tn;Uh], ph ∈ P�[tn−1, tn; Ph], ch ∈ P�[tn−1, tn; Ch], satisfying

∫ tn

tn−1

(
(K−1(ch)uh,vh) − (ph, div(vh))

)
=
∫ tn

tn−1

(ρ(ch)g,vh), (2.8)

∫ tn

tn−1

(qh, div(uh)) =
∫ tn

tn−1

(qI − qP , qh), (2.9)

∫ tn

tn−1

(
(φ∂tch, wh) + Bd(ch, wh;uh) + Bcq(ch, wh;uh)

)
+
([

cn−1
h

]
t
, φwn−1

h+

)
=
∫ tn

tn−1

(ĉqI , wh), (2.10)

for all vh ∈ P�[tn−1, tn;Uh], qh ∈ P�[tn−1, tn; Ph], and wh ∈ P�[tn−1, tn; Ch]. Here Bd(·, ·; ·) denotes the IPDG
discretization of the operator −∇ · (D(u)∇c) with penalty coefficient, σ > 0, and parameter ε ∈ {−1, 0, 1},

Bd(ch, wh;uh) = (D(uh)∇ch,∇wh)Eh
− ([wh], {D(uh)∇ch · ne})Γh

+ ε([ch], {D(uh)∇wh · ne})Γh
+ (σh−1(1 + {|uh|})[ch], [wh])Γh

. (2.11)

When the diffusion operator is unbounded, inclusion of the weight 1 + {|uh|} in the last term is essential for
our analysis. The term Bcq(·, ·; ·) is the DG discretization of the convection terms,

Bcq(ch, wh;uh) =
1
2

(
(uh · ∇ch, wh)Eh

− (uhch,∇wh)Eh
+
(
(qI + qP )ch, wh

)
+ (cup

h uh · ne, [wh])Γh
− (wdown

h uh · ne, [ch])Γh

)
. (2.12)

The upwind value (resp. downwind value) of a discontinuous function wh with respect to uh · ne is denoted
by wup

h (resp. wdown
h ). To complete the definition of the scheme, set c0

h− to be the L2 projection of the initial
condition c0. Our method is parametrized by ε. As usual, the scheme is referred to as the SIPG method (NIPG
method, IIPG method resp.) if ε = −1 (ε = +1, ε = 0 resp.).

3. Convergence of the scheme

In this section, we establish the following theorem which is the main result of this paper.

Theorem 3.1. Let the data and coefficients satisfy Assumption 2.1, and let {uh, ph, ch}h>0 be solutions of
the discrete scheme (2.8)−(2.10) constructed over a regular family of meshes and quasi-uniform family of time
partitions. If the maximal time step Δt tends to zero with the mesh parameter h, then, upon passage to a
subsequence, {uh, ph, ch}h>0 converges strongly in L2[0, T ; H(Ω; div)] × L2[0, T ; L2(Ω)] × L2[0, T ; L2(Ω)], and
the subsequence {∇ch}h>0 converges weakly in L2[0, T ; H−1(Ω)]. In particular, the numerical solutions of SIPG
discretization converge to a solution of the weak statement (2.4)−(2.6) of the miscible displacement equations.

The finite element spaces and time stepping scheme were chosen so that the discrete solutions inherit the
stability properties of the continuous problem. The key step in the convergence proof is to then establish
sufficient compactness to facilitate passage to the limit in the nonlinear terms. The following generalization of
the Aubin−Lions theorem [19] is applicable in the current situation where:

(1) Solutions may be discontinuous in time; in particular, their time derivatives are not integrable.
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(2) Spatial operators are unbounded; that is, they are coercive over one space (V in the theorem), but continuous
in a smaller space (W ⊂ V ).

(3) Discrete spaces are non-conforming (Wh 
⊂ W in the theorem).

Theorem 3.2. Let H be a Hilbert space with inner-product (·, ·)H and V and W be Banach spaces equipped
with norms ‖ · ‖V and ‖ · ‖W . Assume that W ⊂ H is dense and

W ↪→ V ↪→→ H ↪→ W ′

are dense embeddings with V compactly embedded in H. The space W ′ denotes the dual space of W . Let h ∈
(0,∞) be a (mesh) parameter and for each h > 0 let W (Eh) be a Banach space with W ↪→ W (Eh) ↪→ V where
the embedding constants are independent of h.

For each h, let Wh ⊂ W (Eh) be a closed subspace and let {tnh}Nh
n=0 be a quasi-uniform family of partitions of

[0, T ]. Let Πh : H → Wh denote the orthogonal projection, and assume that its restriction to W (Eh) is stable
in the sense that there exists a constant M > 0 independent of h such that ‖Πhw‖W (Eh) ≤ M‖w‖W (Eh) for
w ∈ W (Eh).

Fix � ≥ 0 an integer and 1 < p < ∞, 1 ≤ q < ∞, with 1/p + 1/q ≥ 1, and assume that

(1) For each h > 0, wh ∈ {wh ∈ Lp[0, T ; Wh] | wh|(tn−1
h ,tn)h

∈ P�[tn−1
h , tnh; Wh]} and on each interval satisfies

∀zh ∈ P�[tn−1
h , tnh; Wh],

∫ tn
h

tn−1
h

(∂twh, zh)H + (wn−1
h+ − wn−1

h− , zn−1
h+ )H =

∫ tn
h

tn−1
h

Fh(zh).

(2) The sequence {wh}h>0 is bounded in Lp[0, T ; V ].
(3) For each h > 0, Fh ∈ Lq[0, T ; W ′

h] and {‖Fh‖Lq [0,T ;W ′
h]}h>0 ⊂ � is bounded.

Then the set {wh}h>0 is precompact in Lp[0, T ; H ]∩ Lr[0, T ; W ′] for each 1 ≤ r < ∞.

This theorem is proved in Section 4 and extends of the corresponding results in [17, 21] for conforming
approximations, Wh ⊂ W , to the non-conforming setting, Wh 
⊂ W . In this situation it is necessary introduce
the semi–discrete space W (Eh) which contains both W and Wh. Solutions of the time stepping scheme are
equicontinuous in the (mesh dependent) spaces Lr[0, T ; W ′

h], and the structural assumptions relating the three
spaces, Wh, W (Eh), and H , are used to establish equicontinuity in Lr[0, T ; W ′]. Compactness then follows from
standard arguments.

3.1. Stability of the numerical solutions

Stability estimates for the Darcy velocity and pressure computed using the mixed finite element method are
well-known [4] The following lemma from [17] bounds the numerical approximations of the velocity and pressure
by the data.

Lemma 3.3 (Stability of the pressure and the velocity). Let the coefficients and data satisfy Assumption 2.1.
Then exists a constant M > 0 depending only upon the aspect ratio of the mesh Eh such that the velocity and
pressure computed using equations (2.8) and (2.9) satisfy the following bounds.

• If 1 ≤ p, q ≤ ∞ and qI , qP ∈ Lp[0, T ; Lq(Ω)], then

‖div(uh)‖Lp[0,T ;Lq(Ω)] ≤ M
(‖qI‖Lp[0,T ;Lq(Ω)] + ‖qP ‖Lp[0,T ;Lq(Ω)]

)
.

• If 1 ≤ p ≤ ∞, qI , qP ∈ Lp[0, T ; L2(Ω)], then

‖uh‖Lp[0,T ;H(Ω,div)] + ‖ph‖Lp[0,T ;L2(Ω)] ≤ M
(‖qI‖Lp[0,T ;L2(Ω)] + ‖qP ‖Lp[0,T ;L2(Ω)] + ‖ρ1g‖Lp[0,T ;L2(Ω)]

)
.
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The following semi-norm on Ch is used to characterize stability bound of the concentration.

‖vh‖2
Ch

=
∑

E∈Eh

‖D1/2(uh)∇vh‖2
L2(E) +

∑
e∈Γh

h−1‖(1 + {|uh|})1/2[vh]‖2
L2(e), vh ∈ Ch. (3.1)

The next two lemmas state the continuity and coercivity of the forms Bd and Bcq. The proof of these lemmas
is given at the end of the section.

Lemma 3.4 (Continuity properties). Let ch and wh be in Ch and let uh be in Uh.

|Bd(ch, wh;uh)| � (1 + ‖uh‖1/2
L2(Ω))‖ch‖Ch

‖wh‖W 1,4(Eh), (3.2)

|Bcq(ch, wh;uh)| � ‖wh‖W 1,4(Eh)(‖uh‖1/2
L2(Ω)‖ch‖Ch

+
(‖qI + qP ‖L2(Ω) + ‖uh‖L2(Ω)

)‖ch‖L4(Ω)). (3.3)

Lemma 3.5 (Coercivity properties). Let ch and wh be in Ch and let uh be in Uh. Then there exists σ0 > 0
independent of h provided σ ≥ σ0 if the symmetrization parameter ε takes the value −1 or 0, and σ = 1 if ε is
equal to 1 such that

Bd(wh, wh;uh) ≥ 1
2
‖wh‖2

Ch
, (3.4)

Bcq(wh, wh;uh) ≥ 1
2

(
‖(qI + qP )1/2wh‖2

L2(Ω) + ‖ |uh · ne|1/2 [wh]‖2
Γh

)
. (3.5)

Theorem 3.6 (Stability of the concentration). There exists σ0 > 0 independent of h such that solutions of
equation (2.10) satisfy

‖φ1/2cm
h−‖2

L2(Ω) +
∫ tm

0

(‖ch‖2
Ch

+ ‖
√

qP ch‖2
L2(Ω) + ‖ |uh · ne|1/2 [ch]‖2

Γh

)

+
m∑

n=1

‖[φ1/2cn−1
h ]t‖2

L2(Ω) ≤ ‖φ1/2c0
h−‖2

L2(Ω) +
∫ tm

0

‖
√

qI ĉ‖2
L2(Ω), (3.6)

provided σ ≥ σ0 if the symmetrization parameter ε takes the value −1 or 0, and σ = 1 if ε is equal to 1. In
particular, max1≤n≤N ‖cn

h−‖L2(Ω), ‖ch‖L2[0,T ;Ch], and ‖ch‖L2[0,T ;H1(Eh)] are bounded independently of h and Δt.

Proof. We integrate the time-derivative to obtain:∫ tn

tn−1

(φ∂tch, ch)dt + (cn−1
h+ , φcn−1

h+ ) =
1
2
(φcn

h−, cn
h−) +

1
2
(φcn−1

h+ , cn−1
h+ )

=
1
2
‖φ1/2cn

h−‖2
L2(Ω) +

1
2
‖[φ1/2cn−1

h ]t‖2
L2(Ω) + (φcn−1

h+ , cn−1
h− ) − 1

2
‖φ1/2cn−1

h− ‖2
L2(Ω). (3.7)

Therefore, taking wh = ch in (2.10) and using (3.7), we obtain∫ tn

tn−1

(Bd(ch, ch;uh) + Bcq(ch, ch;uh)) +
1
2
‖φ1/2cn

h−‖2
L2(Ω) +

1
2
‖[φ1/2cn−1

h ]t‖2
L2(Ω)

+(φcn−1
h+ , cn−1

h− ) − 1
2
‖φ1/2cn−1

h− ‖2
L2(Ω) = (cn−1

h− , φcn−1
h+ ) +

∫ tn

tn−1

(ĉqI , ch).

Hence, we obtain after simplification

1
2
‖φ1/2cn

h−‖2
L2(Ω) +

1
2
‖[φ1/2cn−1

h ]t‖2
L2(Ω) +

∫ tn

tn−1

(Bd(ch, ch;uh) + Bcq(ch, ch;uh))

=
1
2
‖φ1/2cn−1

h− ‖2
L2(Ω) +

∫ tn

tn−1

(ĉqI , ch).
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Using (3.4) and (3.5), the equation above becomes an inequality

1
2
‖φ1/2cn

h−‖2
L2(Ω) +

1
2

∫ tn

tn−1

(
‖ch‖2

Ch
+ ‖(qI + qP )1/2ch‖2

L2(Ω) + ‖|uh · ne|1/2 [ch]‖2
Γh

)

+
1
2
‖[φ1/2cn−1

h ]t‖2
L2(Ω) ≤

1
2
‖φ1/2cn−1

h− ‖2
L2(Ω) +

∫ tn

tn−1

(ĉqI , ch). (3.8)

Now, again use Cauchy−Schwarz’s inequality and Young’s inequality to obtain

(ĉqI , ch) ≤ 1
2
‖
√

qIch‖2
L2(Ω) +

1
2
‖ĉ
√

qI‖2
L2(Ω).

Thus, substitute this term into (3.8)

‖φ1/2cn
h−‖2

L2(Ω) + ‖[φ1/2cn−1
h ]t‖2

L2(Ω) +
∫ tn

tn−1

(
‖ch‖2

Ch
+ ‖
√

qP ch‖2
L2(Ω) + ‖|uh · ne|1/2 [ch]‖2

Γh

)

≤ ‖φ1/2cn−1
h− ‖2

L2(Ω) +
∫ tn

tn−1

‖
√

qI ĉ‖2
L2(Ω).

We sum up over all time steps to obtain (3.6). Since qP is non-negative, the definition of ‖ · ‖H1(Eh) and ‖ · ‖Ch
,

with (3.6) gives the uniform bound of ‖ch‖L2[0,T ;H1(Eh)] independent of h and Δt. �

The proof of Lemma 3.4 is now given.

Proof. The first term of Bd(ch, wh;uh) is

(D(uh)∇ch,∇wh)Eh
≤
∑

E∈Eh

‖D1/2(uh)∇ch‖L2(E)‖D1/2(uh)∇wh‖L2(E).

Notice that by (2.7),

‖D1/2(uh)∇wh‖L2(E) �
(∫

E

(
1 + |uh|

) |∇wh|2
)1/2

� ‖∇wh‖L2(E) +
(∫

E

|uh| |∇wh|2
)1/2

� ‖∇wh‖L2(E) + ‖uh‖1/2
L2(E)‖∇wh‖L4(E).

So, we have

(D(uh)∇ch,∇wh)Eh
�
∑

E∈Eh

‖D1/2(uh)∇ch‖L2(E)

(
‖∇wh‖L2(E) + ‖uh‖1/2

L2(E)‖∇wh‖L4(E)

)

� ‖D1/2(uh)∇ch‖L2(Eh)

(
‖∇wh‖L2(Eh) +

( ∑
E∈Eh

‖uh‖L2(E)‖∇wh‖2
L4(E)

)1/2
)

� ‖D1/2(uh)∇ch‖L2(Eh)

(
‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω)‖∇wh‖L4(Eh)

)
.

And consequently using the fact that

‖∇wh‖L2(Eh) � ‖∇wh‖L4(Eh), (3.9)

we have,

(D(uh)∇ch,∇wh)Eh
� ‖ch‖Ch

(
1 + ‖uh‖1/2

L2(Ω)

)
‖wh‖W 1,4(Eh). (3.10)
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For the term ([wh], {D(uh)∇ch · ne})Γh
using the same argument as for (3.26) we have,

([wh], {D(uh)∇ch · ne})Γh
�
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[wh]2
)1/2

‖D1/2(uh)∇ch‖L2(Eh). (3.11)

We have the following inequality:(∑
e∈Γh

∫
e

h−1(1 + {|uh|})[wh]2
)1/2

�
(∑

e∈Γh

∫
e

h−1[wh]2
)1/2

+

(∑
e∈Γh

∫
e

h−1{|uh|}[wh]2
)1/2

.

Using Cauchy−Schwarz’s inequality and the fact that |e| ≈ hd−1, we have

∑
e∈Γh

∫
e

h−1[wh]2 �
(∑

e∈Γh

h−3

∫
e

[wh]4
)1/2(∑

e∈Γh

hd

)1/2

�
(∑

e∈Γh

h−3

∫
e

[wh]4
)1/2

. (3.12)

For the other term, we can write∑
e∈Γh

∫
e

h−1{|uh|}[wh]2 �
∑
e∈Γh

∫
e

h−1
∣∣u+

h

∣∣ [wh]2 +
∑
e∈Γh

∫
e

h−1
∣∣u−

h

∣∣ [wh]2.

We treat each term separately, but in a similar fashion

∑
e∈Γh

∫
e

h−1
∣∣u+

h

∣∣ [wh]2 �
(∑

e∈Γh

h−3

∫
e

[wh]4
)1/2(∑

e∈Γh

h

∫
e

∣∣u+
h

∣∣2)1/2

�
(∑

e∈Γh

h−3

∫
e

[wh]4
)1/2(∑

e∈Γh

‖uh‖2
L2(Ee

+)

)1/2

.

Therefore we have ∑
e∈Γh

∫
e

h−1{|uh|}[wh]2 � ‖uh‖L2(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]4
)1/2

. (3.13)

To summarize, from (3.12) and (3.13), we have,(∑
e∈Γh

h−1

∫
e

(1 + {|uh|})[wh]2
)1/2

�
(
1 + ‖uh‖1/2

L2(Ω)

)(∑
e∈Γh

h−3

∫
e

[wh]4
)1/4

, (3.14)

and thus,
([wh], {D(uh)∇ch · ne})Γh

�
(
1 + ‖uh‖1/2

L2(Ω)

)
‖wh‖W (Eh)‖D1/2(uh)∇ch‖L2(Eh). (3.15)

For the third term of Bd(ch, wh;uh), we use a trace inequality (see (A.2) in Appendix) and a similar argument
as in (3.25)

([ch], {D(uh)∇wh · ne})Γh
=
∑
e∈Γh

([ch], {D(uh)∇wh · ne})e

�
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[ch]2
)1/2 {

‖∇wh‖L2(Ee) + ‖uh‖1/2
L2(Ee)‖∇wh‖L4(Ee)

}

�
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[ch]2
)1/2 ({‖∇wh‖L2(Ee)

}
+
{
‖uh‖1/2

L2(Ee)‖∇wh‖L4(Ee)

})

� ‖ch‖Ch

(
‖∇wh‖L2(Eh) + ‖uh‖1/2

L2(Ω)‖∇wh‖L4(Eh)

)
. (3.16)
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Using Cauchy−Schwarz’s inequality and (3.14), the penalty term in Bd(ch, wh;uh) can be bounded as

(σh−1(1 + {|uh|})[ch], [wh])Γh
�
(∑

e∈Γh

∫
e

h−1(1 + {|uh|})[ch]2
)1/2(∑

e∈Γh

∫
e

h−1(1 + {|uh|})[wh]2
)1/2

� ‖ch‖Ch

(
1 + ‖uh‖1/2

L2(Ω)

)
‖wh‖W (Eh). (3.17)

Therefore the bound (3.2) is obtained by combining (3.9), (3.10), (3.15), (3.16) and (3.17).
To obtain (3.3), we now bound each term in Bcq(ch, wh;uh). For the first term, using (2.7), we have:

(uh∇ch, wh)Eh
≤
∑

E∈Eh

(∫
E

|uh| |∇ch|2
)1/2 (∫

E

|uh|w2
h

)1/2

�
∑

E∈Eh

‖D1/2(uh)∇ch‖L2(E)‖uh‖1/2
L2(E)‖wh‖L4(E)

� ‖D1/2(uh)∇ch‖L2(Eh)‖uh‖1/2
L2(Ω)‖wh‖L4(Ω). (3.18)

Similarly we have

(uhch,∇wh)Eh
≤
∑

E∈Eh

‖uh‖L2(E)‖ch‖L4(E)‖∇wh‖L4(E)

≤ ‖∇wh‖L4(Eh)‖uh‖L2(Ω)‖ch‖L4(Ω). (3.19)

For the third term in Bcq(ch, wh;uh) we easily obtain
(
(qI + qP )ch, wh

) ≤ ‖qI + qP ‖L2(Ω)‖ch‖L4(Ω)‖wh‖L4(Ω). (3.20)

For the upwind term, we remark that

|cup
h | ≤ max

{ ∣∣c+
h

∣∣ , ∣∣c−h ∣∣ } ≤ ∣∣c+
h

∣∣+ ∣∣c−h ∣∣ .
Therefore, using the fact that u+

h · ne = u−
h · ne, we can write

(cup
h uh · ne, [wh])e ≤

∫
e

∣∣c+
h

∣∣ ∣∣u+
h

∣∣ |[wh]| +
∫

e

∣∣c−h ∣∣ ∣∣u−
h

∣∣ |[wh]| .

We treat each term separately but in a similar fashion. By Cauchy−Schwarz’s inequality and trace inequalities,
we have

∫
e

∣∣c+
h

∣∣ ∣∣u+
h

∣∣ |[wh]| ≤
(∫

e

∣∣u+
h

∣∣ ∣∣c+
h

∣∣2)1/2(∫
e

∣∣u+
h

∣∣ [wh]2
)1/2

� ‖uh‖1/2
L2(Ee

+)‖ch‖L4(Ee
+)

(
h−1

∫
e

{|uh|}[wh]2
)1/2

.

Next, we sum up over all interior faces and obtain

∑
e∈Γh

(cup
h uh · ne, [wh])e � ‖uh‖1/2

L2(Ω)‖ch‖L4(Ω)

(∑
e∈Γh

h−1

∫
e

{|uh|}[wh]2
)1/2

, (3.21)
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which, with (3.13), yields

(cup
h uh · ne, [wh])Γh

� ‖uh‖L2(Ω)‖ch‖L4(Ω)

(∑
e∈Γh

h−3

∫
e

[wh]4
)1/4

. (3.22)

We apply the same idea as in (3.21) to the last term and have:

(wdown
h uh · ne, [ch])Γh

� ‖uh‖1/2
L2(Ω)‖wh‖L4(Ω)

(∑
e∈Γh

h−1

∫
e

(
1 + {|uh|}

)
[ch]2

)1/2

. (3.23)

Therefore, the bound (3.3) is obtained by combining (3.18), (3.19), (3.20), (3.22) and (3.23). �

The proof of Lemma 3.5 is now given.

Proof. We first note that

Bcq(wh, wh;uh) =
1
2
((

(qI + qP )wh, wh

)
+ (|uh · ne| [wh], [wh])Γh

)
. (3.24)

Next we show (3.4) by first noting:

Bd(wh, wh;uh) = (D(uh)∇wh,∇wh)Eh
+ (ε − 1)([wh], {D(uh)∇wh · ne})Γh

+ (σh−1(1 + {|uh|})[wh], [wh])Γh
.

We fix a face e shared by Ee
+ and Ee− and denote by v+ (resp. v−) the restriction of any function v to Ee

+ (resp.
Ee

−). We begin by expanding and bounding the terms using Cauchy−Schwarz’s inequality,

([wh], {D(uh)∇wh · ne})e � ([wh],D(u+
h )∇w+

h · ne)e + ([wh],D(u−
h )∇w−

h · ne)e

�
{∫

e

∣∣∣D1/2(uh)ne

∣∣∣ |[wh]|
∣∣∣D1/2(uh)∇wh

∣∣∣}

�
{(∫

e

∣∣∣D1/2(uh)ne

∣∣∣2 [wh]2
)1/2 (∫

e

∣∣∣D1/2(uh)∇wh

∣∣∣2)1/2
}

�
(∫

e

{∣∣∣D1/2(uh)ne

∣∣∣}2

[wh]2
)1/2

{(∫
e

∣∣∣D1/2(uh)∇wh

∣∣∣2)1/2
}

.

By the property (2.7), we obtain

([wh], {D(uh)∇wh · ne})e �
(∫

e

(1 + {|uh|})[wh]2
)1/2 {‖D1/2(uh)∇wh‖L2(e)

}
. (3.25)

Using a trace inequality (see (A.1) in appendix), we obtain

‖D1/2(u+
h )∇w+

h ‖L2(e) � h−1/2
(
‖∇wh‖2

L2(Ee
+) + ‖|uh|1/2 |∇wh|‖2

L2(Ee
+)

)1/2

� h−1/2

(∫
Ee

+

(1 + |uh|) |∇wh|2
)1/2

.

Using (2.7), we have then

‖D1/2(u+
h )∇w+

h ‖L2(e) � h−1/2‖D1/2(uh)∇wh‖L2(Ee
+).
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Therefore, we have {‖D1/2(uh)∇wh‖L2(e)

}
� h−1/2

{‖D1/2(uh)∇wh‖L2(Ee)

}
.

where by convention we have {‖ · ‖L2(Ee)} = 0.5‖ · ‖L2(Ee
+) + 0.5‖ · ‖L2(Ee

−). So, summing over the faces, we see
that there is a positive constant M such that

([wh], {D(uh)∇wh · ne})Γh
=
∑
e∈Γh

([wh], {D(uh)∇wh · ne})e

�
∑
e∈Γh

(∫
e

h−1(1 + {|uh|})[wh]2
)1/2 {‖D1/2(uh)∇wh‖L2(Ee)

}

≤ M

(∑
e∈Γh

h−1‖(1 + {|uh|})1/2[wh]‖2
L2(e)

)1/2

‖D1/2(uh)∇wh‖L2(Eh). (3.26)

Therefore with Young’s inequality, for any positive constant, δ, we have

Bd(wh, wh;uh) ≥ (1 +
δ

2
(ε − 1))‖D1/2(uh)∇wh‖2

L2(Eh) +
∑
e∈Γh

(
σ +

ε − 1
2δ

M2

)
h−1‖(1 + {|uh|})1/2[wh]‖2

L2(e).

If ε = 0, we choose δ = 1 and σ ≥ 1
2 (1 + M2). If ε = −1, we choose δ = 1

2 and σ ≥ 1
2 + 2M2. Finally, if ε = 1,

there is no constraint on the penalty parameter. Thus, we have proved (3.4). �

3.2. Compactness of the concentration

One important and challenging step in proving convergence of the numerical approximation of the concentra-
tion is to show compactness of {ch}h>0. This is stated in the following theorem, which is a non-trivial application
of Theorem 3.2.

Theorem 3.7. Suppose the maximal time step Δt tends to zero with the mesh parameter h. Then the concentra-
tion {ch}h>0 computed using the numerical scheme (2.10) are precompact in L2[0, T ; L2(Ω)]∩Lr [0, T ; W 1,4(Ω)′]
for all 1 ≤ r < ∞.

Proof. We apply Theorem 3.2 with the following choice of spaces:

W = W 1,4(Ω), V = BV (Ω) ∩ L4(Ω), H = L2(Ω), W (Eh) = W 1,4(Eh), Wh = Ch.

The spaces W, V and H are clearly Banach spaces and it is easy to check that W (Eh) equipped with the
following norm is a Banach space.

‖w‖W (Eh) = ‖w‖W 1,4(Eh). (3.27)

From [1, 17], we also have that W ⊂ H is dense and W ↪→ V ↪→→ H ↪→ W ′ are dense embeddings with V
compactly embedded in H . Next we easily see that W 1,4(Ω) is embedded in W 1,4(Eh), which is itself embedded
in V , with embedding constants independent of h. It remains to check the assumptions of Theorem 3.2. The
fact that the L2 projection, Πh : L2(Ω) → Ch, is stable in W 1,4(Eh) is proved in Lemma 3.8. Assumption 1 in
Theorem 3.2 is immediately satisfied if the inner-product on H is the weighted L2 inner-product with weight φ
and if we define the function Fh as:

Fh(wh) = (ĉqI , wh) − Bd(ch, wh;uh) − Bcq(ch, wh;uh). (3.28)

Assumption 2 is satisfied for p = 2, since the boundedness of {ch}h>0 in L2(0, T ; V ) is a consequence of the
embedding of H1(Eh) into V and the boundedness of {‖ch‖L2(0,T ;H1(Eh))}h>0. Finally, it remains to check
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Assumption 3 of Theorem 3.2. This requires upper bounds for the forms Bd, Bcq, that are proved in Lemma 3.4.
Since ĉ ∈ L∞(Ω), one can easily obtain

(ĉqI , wh) � ‖qI‖L2(Ω)‖wh‖L4(Ω).

Therefore, by Lemma 3.4 we have,

|Fh(wh)| ≤ M‖wh‖W 1,4(Eh)

(
(1 + ‖uh‖1/2

L2(Ω))‖ch‖Ch
+ ‖qI‖L2(Ω) +

(‖qI + qP ‖L2(Ω) + ‖uh‖L2(Ω)

)‖ch‖L4(Ω)

)
,

with the constant M independent of the mesh size.
From [1], [5, 6, 8] and (2.7),

‖ch‖L4(Ω) � ‖ch‖H1(Eh). (3.29)

Hence, using Cauchy−Schwarz’s inequality

∫ T

0

|Fh(wh)| ≤M

∫ T

0

‖wh‖W 1,4(Eh)

((
1 + ‖uh‖1/2

L2(Ω)

)‖ch‖Ch
+ ‖qI‖L2(Ω)

+
(‖qI + qP ‖L2(Ω) + ‖uh‖L2(Ω)

)‖ch‖L4(Ω)

)
≤M

((
1 + ‖uh‖1/2

L∞[0,T ;L2(Ω)]

)‖ch‖L2[0,T ;Ch]

+ ‖qI‖L∞[0,T ;L2(Ω)] +
(‖qI + qP ‖L∞[0,T ;L2(Ω)]

+ ‖uh‖L∞[0,T ;L2(Ω)]

)‖ch‖L2[0,T ;H1(Eh)]

)
‖wh‖L4[0,T ;W 1,4(Eh)].

Therefore, Fh belongs to L1[0, T ; W ′
h] and we have

‖Fh‖L1[0,T ;W ′
h] ≤M

((
1 + ‖uh‖1/2

L∞[0,T ;L2(Ω)]

)‖ch‖L2[0,T ;Ch] + ‖qI‖L∞[0,T ;L2(Ω)]

+
(‖qI + qP ‖L∞[0,T ;L2(Ω)] + ‖uh‖L∞[0,T ;L2(Ω)]

)‖ch‖L2[0,T ;H1(Eh)]

)
.

Furthermore, according to the stability analysis in Theorems 3.3 and 3.6, we know that ‖uh‖L∞[0,T ;L2(Ω)],
‖ch‖L2[0,T ;H1(Eh)] and ‖ch‖L2[0,T ;Ch] are bounded by a constant independent of h and Δt. Therefore,{‖Fh‖L1[0,T,W ′

h]

}
h>0

is bounded. �

Lemma 3.8. The L2 projection
Πh : L2(Ω) → Ch

is stable in W (Eh) = W 1,4(Eh), i.e. there is a constant M > 0 independent of h such that

‖Πhw‖W (Eh) ≤ M‖w‖W (Eh), ∀w ∈ W (Eh).

Proof. Fix w ∈ W 1,4(Eh). For the term ‖Πhw‖L4(Ω), we use an inverse inequality, the stability of Πh in L2 and
Cauchy−Schwarz’s inequality to obtain

‖Πhw‖4
L4(Ω) =

∑
E∈Eh

‖Πhw‖4
L4(E) �

∑
E∈Eh

h−d‖Πhw‖4
L2(E) �

∑
E∈Eh

h−d‖w‖4
L2(E) � ‖w‖4

L4(Ω). (3.30)

Next, let w̄ denote the average of w on each element, i.e.

w̄|E =
1
|E|

∫
E

w, ∀E ∈ Eh.
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Thus, we have

(∑
E∈Eh

‖∇Πhw‖4
L4(E) +

∑
e∈Γh

h−3‖[Πhw]‖4
L4(e)

)1/4

≤
(∑

e∈Γh

h−3‖[Πhw̄]‖4
L4(e)

)1/4

+

(∑
E∈Eh

‖∇Πh(w − w̄)‖4
L4(E) +

∑
e∈Γh

h−3‖[Πh(w − w̄)]‖4
L4(e)

)1/4

.

For the first term in the upper bound, we have

‖[Πhw̄]‖L4(e) = ‖[w̄]‖L4(e) ≤ ‖[w − w̄]‖L4(e) + ‖[w]‖L4(e).

From [2], we have ∑
e∈Γh

h−3‖[w − w̄]‖4
L4(e) �

∑
E∈Eh

‖∇w‖4
L4(E).

Hence, we have ∑
e∈Γh

h−3‖[Πhw̄]‖4
L4(e) �

∑
E∈Eh

‖∇w‖4
L4(E) +

∑
e∈Γh

h−3‖[w]‖4
L4(e).

Using the same derivation as in (3.30), we have:∑
E∈Eh

‖∇Πh(w − w̄)‖4
L4(E) =

∑
E∈Eh

‖∇Πhw‖4
L4(E) �

∑
E∈Eh

‖∇w‖4
L4(E).

Furthermore, by trace and inverse inequalities we obtain

‖Πh(w − w̄)‖L4(e) ≤ Mh
−1/4
E ‖Πh(w − w̄)‖L4(E) ≤ Mh

−1/4
E h

−d/4
E ‖Πh(w − w̄)‖L2(E)

≤ Mh
−1/4
E h

−d/4
E ‖w − w̄‖L2(E) ≤ Mh

1/4
E h

−d/4
E h

−1/2
E ‖w − w̄‖L2(E)

≤ Mh
1/4
E h

−d/4
E h

1/2
E ‖∇w‖L2(E) ≤ Mh

1/4
E h

−d/4
E h

1/2
E h

d/4
E ‖∇w‖L4(E)

≤ Mh3/4‖∇w‖L4(E).

Hence, we have ∑
e∈Γh

h−3‖[Πh(w − w̄)]‖4
L4(e) ≤ M

∑
E∈Eh

‖∇w‖4
L4(E).

So, we can conclude by combining all the bounds above. �

3.3. Convergence of the solutions

From Theorem 3.7 and the precompactness of {ch}h>0 in L2[0, T ; L2(Ω)], there exists a subsequence, still
denoted by {ch}h>0 that converges strongly in L2[0, T ; L2(Ω)] to a function c ∈ L2[0, T ; L2(Ω)]. This is sufficient
to show strong convergence of the numerical approximations of velocity and pressure.

Theorem 3.9. Given the data, parameters and numerical scheme, and suppose the maximal time step Δt
tends to zero with the mesh parameter. Suppose that the sequence {ch}h>0 ⊂ L2[0, T ; L2(Ω)] converges to c in
L2[0, T ; L2(Ω)], then the velocity and pressure computed using the scheme (2.8)−(2.9) over the regular family
of meshes converge strongly to the solutions (u, p) of the weak forms (2.4) and (2.5).

The proof of this result is skipped as it follows closely the proof of Theorem 3.10 in [17].
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Theorem 3.10. Suppose that the maximal time step Δt and h tend to zero with mesh parameter. Then upon
passage to a subsequence, the concentrations {ch}h computed using the scheme (2.10) with SIPG namely with
ε = −1 over a regular family of meshes converge strongly in L2[0, T ; L2(Ω)] to c ∈ L2[0, T ; H1(Ω)], that satisfies
the weak formulation (2.6).

Proof. The uniform boundedness of {‖ch‖L2[0,T ;H1(Eh)]}h>0, obtained from Theorem 3.6, implies that every
accumulation point of {ch}h>0 in L2[0, T ; L2(Ω)] belongs to L2[0, T ; H1(Ω)], and that there exists a subsequence,
still denoted by {ch}h>0, such that {∇ch}h>0 converges weakly in L2[0, T ; H−1(Ω)] to ∇c (see Thm. 7.1 in [1]).
Let w ∈ C∞[0, T ; C∞(Ω)] and w(T ) = 0. Approximation theory guarantees existence of wh ∈ C[0, T ; L2(Ω)]
such that wh|(tn−1,tn) belongs to P�[tn−1, tn; Ch], with wh(T ) = 0 and such that the sequence {wh}h>0 converges
strongly to w in the following sense

lim
h→0

‖wh − w‖L∞[0,T ;L∞(Ω)] = 0,

lim
h→0

‖∇wh −∇w‖L∞[0,T ;L∞(Ω)] = 0. (3.31)

Integrating the temporal term in (2.10), summing over n, and using the fact that wh(T ) = 0, yields

∫ T

0

(−(φch, ∂twh) + Bd(ch, wh;uh) + Bcq(ch, wh;uh)) =
(
φc0

h−, wh(0)
)

+
∫ T

0

(
ĉqI , wh

)
. (3.32)

We now pass to the limit term by term in (3.32). We clearly have

lim
h→0

∫ T

0

(φch, ∂twh) =
∫ T

0

(φc, ∂tw),

lim
h→0

(φc0
h−, wh(0)) = (φc0, w(0)),

lim
h→0

∫ T

0

(ĉqI , wh) =
∫ T

0

(ĉqI , w).

Next we will show that ∫ T

0

(∇c,D(u)∇w) = lim
h→0

∫ T

0

Bd(ch, wh;uh). (3.33)

The proof of this result is technical and requires the introduction of two operators, G and Dh. The approximate
gradient Gch ∈ L2[0, T ;P2r−1(Eh)d] is defined by

(Gch(t),a) = (∇ch(t),a)Eh
− ([ch(t)], {a · ne})Γh

, ∀a ∈ P2r−1(Eh)d, ∀t. (3.34)

The uniform boundedness of {‖ch‖L2[0,T ;H1(Eh)]}h>0 implies that the subsequence {Gch}h>0 converges weakly
to ∇c in L2[0, T ; L2(Ω)] (see Thm. 6.3 in [1]).

The matrix Dh(v) is a piecewise constant matrix defined by

Dh(v)|E = D(ṽ|E), ṽ|E =
1
|E|

∫
E

v, ∀E ∈ Eh.

By the Lipschitz continuity of the diffusion-dispersion tensor D, we have

‖Dh(uh) − D(u)‖L2(Ω) = ‖D(ũh) − D(u)‖L2(Ω) � ‖ũh − u‖L2(Ω)

� ‖ũh − ũ‖L2(Ω) + ‖ũ− u‖L2(Ω).
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Since ũ is the piecewise constant approximation of u, then

lim
h→0

∫ T

0

‖ũ− u‖2
L2(Ω) = 0. (3.35)

Furthermore,

‖ũh − ũ‖L2(Ω) ≤ ‖uh − u‖L2(Ω).

Since the sequence {uh}h converges strongly to u in L2[0, T ; L2(Ω)], we have

lim
h→0

∫ T

0

‖ũh − ũ‖2
L2(Ω) = 0.

Therefore, we can conclude

lim
h→0

∫ T

0

‖Dh(uh) − D(u)‖2
L2(Ω) = 0. (3.36)

Since we also have the property,

lim
h→0

∫ T

0

‖D(uh) − D(u)‖2
L2(Ω) = 0. (3.37)

Consequently we have

lim
h→0

∫ T

0

‖D(uh) − Dh(uh)‖2
L2(Ω) = 0. (3.38)

From the property (3.38), we have

lim
h→0

∫ T

0

(∇ch,D(uh)∇wh)Eh
= lim

h→0

∫ T

0

(∇ch, (D(uh) − Dh(uh))∇wh)Eh
+ lim

h→0

∫ T

0

(∇ch,Dh(uh)∇wh)Eh

= lim
h→0

∫ T

0

(∇ch,Dh(uh)∇wh)Eh
. (3.39)

Additionally from the property (3.36) and (3.31), we have∫ T

0

(∇c,D(u)∇w) = lim
h→0

∫ T

0

(∇c,Dh(uh)∇wh)Eh
. (3.40)

We also observe,∫ T

0

|(Gch,Dh(uh)∇wh)Eh
− (∇c,Dh(uh)∇wh)Eh

| ≤
∫ T

0

|(Gch −∇c,D(u)∇w)Eh
|

+
∫ T

0

|(Gch, (Dh(uh) − D(u))∇wh)Eh
| + |(Gch,D(u)(∇wh −∇w))Eh

|

+
∫ T

0

|(∇c, (D(u) − Dh(uh))∇w)Eh
| + |(∇c,Dh(uh)(∇w −∇wh))Eh

| .

Therefore, we have from (3.31), (3.36) and the weak convergence of {Gch}h to ∇c

lim
h→0

∫ T

0

(∇c,Dh(uh)∇wh)Eh
= lim

h→0

∫ T

0

(Gch,Dh(uh)∇wh)Eh
. (3.41)
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Thus, we conclude with (3.40), (3.41) and (3.34)∫ T

0

(∇c,D(u)∇w) = lim
h→0

∫ T

0

(∇c,Dh(uh)∇wh)Eh
= lim

h→0

∫ T

0

(Gch,Dh(uh)∇wh)Eh

= lim
h→0

∫ T

0

(
(∇ch,Dh(uh)∇wh)Eh

− ([ch], {Dh(uh)∇wh · ne})Γh

)
. (3.42)

Using a trace inequality, we write

∫ T

0

([ch], {(D(uh) − Dh(uh))∇wh · ne})Γh
� ‖ch‖Ch

(∑
e∈Γh

h‖D(uh) − Dh(uh)‖2
L2(e)

)1/2

‖∇wh‖L∞(Ω)

� ‖ch‖Ch
‖uh − ũh‖L2(Ω)

(‖∇w‖L∞(Ω) + ‖∇w −∇wh‖L∞(Ω)

)
.

From the stability of ch in L2[0, T ; Ch] and (3.31), we obtain

lim
h→0

∫ T

0

([ch], {D(uh)∇wh · ne})Γh
= lim

h→0

∫ T

0

([ch], {Dh(uh)∇wh · ne})Γh
. (3.43)

Thus (3.39), (3.42) and (3.43) imply∫ T

0

(∇c,D(u)∇w) = lim
h→0

∫ T

0

(∇ch,D(uh)∇wh)Eh
− ([ch], {D(uh)∇wh · ne})Γh

. (3.44)

Next, let us examine the term ([wh], {D(uh)∇ch · ne})Γh
. Using (3.11) and (3.6), we have

∫ T

0

([wh], {D(uh)∇ch · ne})Γh
�
(∫ T

0

∑
e∈Γh

∫
e

h−1
(
1 + {|uh|}

)
[wh]2

)1/2

.

Then, with (3.12) and (3.13), we have

∫ T

0

([wh], {D(uh)∇ch · ne})Γh
�
(∫ T

0

(
1 + ‖uh‖2

L2(Ω)

))1/4(∫ T

0

∑
e∈Γh

h−3‖[wh]‖4
L4(e)

)1/4

.

From Lemma 3.3 and an inverse inequality we have

∫ T

0

([wh], {D(uh)∇ch · ne})Γh
�
(∫ T

0

h−(2+d)
∑
e∈Γh

‖[wh]‖4
L2(e)

)1/4

.

We now apply Jensen’s inequality and an approximation result

∫ T

0

([wh], {D(uh)∇ch · ne})Γh
�
(∫ T

0

h−(2+d)

( ∑
e∈Γh

‖[wh]‖2
L2(e)

)2
)1/4

�
(∫ T

0

h−(2+d)

( ∑
e∈Γh

‖[wh − w]‖2
L2(e)

)2
)1/4

�
(∫ T

0

h4−d‖w‖4
H2(Ω)

)1/4

� h1/4

(∫ T

0

‖w‖4
H2(Ω)

)1/4

.
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Therefore, we have

lim
h→0

∫ T

0

([wh], {D(uh)∇ch · ne})Γh
= 0. (3.45)

For the penalty term, we use a similar argument

∫ T

0

(σh−1(1 + {|uh|})[ch], [wh])Γh

�
(∫ T

0

(h−1(1 + {|uh|})[wh], [wh])Γh

)1/2(∫ T

0

‖ch‖2
Ch

)1/2

� h1/4

(∫ T

0

‖w‖4
H2(Ω)

)1/4

.

Therefore, we have

lim
h→0

∫ T

0

(σh−1(1 + {|uh|})[ch], [wh])Γh
= 0. (3.46)

Combining the results above, namely (3.44)−(3.46), yields (3.33). Next we will show that

1
2

∫ T

0

(
(u · ∇c, w) − (cu,∇w) + ((qI + qP )c, w)

)
= lim

h→0

∫ T

0

Bcq(ch, wh;uh). (3.47)

Since {uh}h converges strongly to u in L2[0, T ; L2(Ω)], it is easy to show that

1
2

∫ T

0

(−(cu,∇w) + ((qI + qP )c, w)
)

= lim
h→0

1
2

∫ T

0

(− (chuh,∇wh) +
((

qI + qP
)
ch, wh

))
. (3.48)

Using trace inequality and inverse inequality, we also have,

(cup
h uh · ne, [wh])Γh

� ‖uh‖L2(Ω)‖ch‖L4(Ω)

(∑
e∈Γh

h− d+1
2

∫
e

[wh − w]2
)1/2

� h1/2‖w‖H2(Ω)‖uh‖L2(Ω)‖ch‖L4(Ω).

With the stability bounds on uh and ch, we then have

lim
h→0

∫ T

0

(cup
h uh · ne, [wh])Γh

= 0. (3.49)

Integrating by parts on each element and summing over all elements yields:

(ch, div(uhw)) = −(uh · ∇ch, w)Eh
+ (w uh · ne, [ch])Γh

. (3.50)

We write

(ch, div(uhw)) − (c, div(uw)) = (ch, (div(uh) − div(u))w) + (ch, (uh − u) · ∇w).

We denote by qI
h and qP

h the L2-projections of qI and qP respectively, in the space Ph. We remark that (2.9)
yields

div(uh) = qI
h − qP

h . (3.51)

Therefore we have
div(uh) − div(u) =

(
qI
h − qI

)− (qP
h − qP

)
.
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We can now obtain

lim
h→0

∫ T

0

(ch, div(uhw)) =
∫ T

0

(c, div(uw)) . (3.52)

From (3.31), we have

lim
h→0

∫ T

0

(uh · ∇ch, wh)Eh
= lim

h→0

∫ T

0

(uh · ∇ch, w)Eh
, (3.53)

lim
h→0

∫ T

0

(wdown
h uh · ne, [ch])Γh

= lim
h→0

∫ T

0

(w uh · ne, [ch])Γh
. (3.54)

Thus, from the result obtained in (3.50), (3.52)−(3.54) we have
∫ T

0

(u · ∇c, w) =
∫ T

0

−(c, div(uw))

= lim
h→0

∫ T

0

(uh · ∇ch, wh)Eh
− (wdown

h uh · ne, [ch])Γh
. (3.55)

We have then proved (3.47) and we conclude that the limit c satisfies the weak problem. �

As a remark, further investigations are required for establishing the convergence of the solutions by NIPG
and IIPG to the weak solution.

4. Proof of compactness theorem

In this section, we prove Theorem 3.2. First, we fix δ > 0 and consider the space Lp[δ, T ; W (Eh)]. Its dual
space is Lp′

[δ, T ; W (Eh)′] with 1/p + 1/p′ = 1. Since the function t → wh(t) − wh(t − δ) belongs to Wh, we use
the definition of the projection Πh onto Wh and its stability on W (Eh) to have:

(∫ T

δ

‖wh(t) − wh(t − δ)‖p′

W ′
h

dt

)1/p′

= sup
v∈Lp[δ,T ;W (Eh)]

∫ T

δ
(wh(t) − wh(t − δ), v)Hdt

‖v‖Lp[δ,T ;W (Eh)]

= sup
v∈Lp[δ,T ;W (Eh)]

∫ T

δ
(wh(t) − wh(t − δ), Πhv)Hdt

‖v‖Lp[δ,T ;W (Eh)]

= sup
v∈Lp[δ,T ;W (Eh)]

∫ T

δ (wh(t) − wh(t − δ), Πhv)Hdt

‖Πhv‖Lp[δ,T ;W (Eh)]

‖Πhv‖Lp[δ,T ;W (Eh)]

‖v‖Lp[δ,T ;W (Eh)]

≤ M sup
v∈Lp[δ,T ;W (Eh)]

∫ T

δ
(wh(t) − wh(t − δ), Πhv)Hdt

‖Πhv‖Lp[δ,T ;W (Eh)]
·

This implies

(∫ T

δ

‖wh(t) − wh(t − δ)‖p′

W ′
h

dt

)1/p′

≤ M sup
v∈Lp[δ,T ;Wh]

∫ T

δ
(wh(t) − wh(t − δ), v)Hdt

‖v‖Lp[δ,T ;W (Eh)]
· (4.1)

Lemma 3.9 of [17] then gives that

sup
vh∈Lp[δ,T ;Wh]

∫ T

δ
(wh(t) − wh(t − δ), vh)H dt

‖vh‖Lp[δ,T ;W (Eh)]
≤ M(�, ν)‖Fh‖Lq[0,T ;W ′

h] max(Δt, δ)1/q′
δ1/p′

.
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Thus equation (4.1) becomes (with a different constant M that depends on ‖Πh‖L(W (Eh),Wh))

(∫ T

δ

‖wh(t) − wh(t − δ)‖p′

W ′
h

dt

)1/p′

≤ M(�, ν)‖Fh‖Lq[0,T ;W ′
h] max(Δt, δ)1/q′

δ1/p′
.

Next, since W ↪→ W (Eh), there is a constant M > 0 such that

‖wh(t) − wh(t − δ)‖W ′ ≤ M‖wh(t) − wh(t − δ)‖W ′
h
.

Therefore we have(∫ T

δ

‖wh(t) − wh(t − δ)‖p′
W ′ dt

)1/p′

≤ M(�, ν)‖Fh‖Lq [0,T ;W ′
h] max(Δt, δ)1/q′

δ1/p′
. (4.2)

By assumption, ‖Fh‖Lq [0,T ;W ′
h] is uniformly bounded. We now show that {wh}h>0 is equicontinuous in

Lp′
[0, T ; W ′].
Fix ε > 0. We want to show there is δ0 > 0 such that

(∫ T

δ

‖wh(t) − wh(t − δ)‖p′
W ′ dt

)1/p′

≤ ε, ∀h > 0, ∀δ < δ0. (4.3)

Since p > 1, we have p′ < ∞. If q = 1, we choose δ0 such that Mδ
1/p′
0 < ε. If q > 1, it suffices to find δ0 such

that
M max(Δt, δ0)1/q′

δ
1/p′
0 < ε.

We can assume that δ0 < Δt and take

δ0 = min
(

1
2
(

ε

MΔt1/q′ )
p′

, Δt

)
.

Consider now the case q > 1, then q′ < ∞. It suffices to find δ0 such that

M max(Δt, δ0)1/q′
δ
1/p′
0 < ε.

We can assume that δ0 < Δt and choose

δ0 = min
(

1
2
(

ε

MΔt1/q′ )
p′

, Δt

)
.

By assumption {wh}h>0 is bounded in Lp[0, T ; V ] with p > 1. This implies that {wh}h>0 is bounded in
L1[0, T ; V ]. In addition, we showed that {wh}h>0 is equicontinuous in Lp′

[0, T ; W ′] for 1 < p′ < ∞. Then,
from Theorem 3.2 of [21], we conclude that for all 0 < θ < T/2, the set {wh|(θ,T−θ)}h>0 is precompact in
Lp′

[θ, T − θ; W ′].
Equation (4.2), with the assumption 0 < δ < T , gives:

∫ T

δ

‖wh(t) − wh(t − δ)‖p′
W ′ dt ≤ Mδ.

Using Lemma 3.4 in [21], we conclude that {wh}h>0 is uniformly bounded in Lr[0, T ; W ′] for any 1 ≤ r < ∞.
Therefore uniform integrability holds and this implies that {wh}h>0 is precompact in Lp′

[0, T ; W ′]. Now, the fact
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that {wh}h>0 is bounded in Lr[0, T ; W ′] for any 1 ≤ r < ∞ and that {wh}h>0 is precompact in Lp′
[0, T ; W ′],

implies that {wh}h>0 is precompact in Lr[0, T ; W ′] for any 1 ≤ r < ∞.
Finally it remains to show that {wh}h>0 is precompact in Lp[0, T ; H ]. From [19] the fact V ↪→→ H ↪→ W ′

implies that for all ε > 0 there exists M(ε) > 0 such that

‖wh(t)‖H ≤ ε‖wh(t)‖V + M(ε)‖wh(t)‖W ′ .

So,
‖wh‖Lp[0,T ;H] ≤ ε‖wh‖Lp[0,T ;V ] + M(ε)‖wh‖Lp[0,T ;W ′].

Since {wh}h>0 is bounded in Lp[0, T ; V ] and precompact in Lp[0, T ; W ′] it easily follows that it is also precompact
in Lp[0, T ; H ].

5. Numerical example

We test our method for the following analytical solutions on the unit square:

p(x, y, t) =
(
2 − e−x

(
1 + x + x2

)− e−y
(
1 + y + y2

))
e

πt
2 ,

c(x, y, t) =
1
2
(
sin(2πx)2 + cos(2πy)2

)
sin
(

πt

2

)
.

The parameters in the equations are

φ = 0.2 , K(c) =
9.44 × 10−3

1 + (0.0524c)4.74
, g = 0 , qI = 1, ε = σ = 1,

D(u) =
uuT

|u| (α� − αt) + (dm + αt|u|) I, α� = 1.8 × 10−5, αt = 0.1α�, dm = 1.8 × 10−7.

A fourth order method in time is used. We vary the degree of approximation in space from a first order method
to a third order method. In order to reduce the size of the systems, we decouple the velocity-pressure equations
from the concentration equation. Table 1 shows the errors and convergence rates for the first-order method in
space (k = 0 and r = 1) obtained at the final time t = 0.5. We then increase the order of the method and shows
the corresponding results in Tables 2−3. For all simulations, the time step is chosen constant equal to 10−2.
The numerical rates show convergence of the proposed method.

Appendix A.

Lemma A.1. Let E be a mesh element and let e be a face of ∂E. For any polynomial function wh defined on
E, and any polynomial vector function zh defined on E, we have

‖D1/2(zh)∇wh‖L2(e) � h−1/2
(
‖∇wh‖2

L2(E) + ‖|zh|1/2|∇wh|‖2
L2(E)

)1/2

, (A.1)

‖D1/2(zh)∇wh‖L2(e) � h−1/2
(
‖∇wh‖L2(E) + ‖zh‖1/2

L2(E)‖∇wh‖L4(E)

)
. (A.2)

Proof. With (2.7), we have

‖D1/2(zh)∇wh‖L2(e) �
(∫

e

(1 + |zh|) |∇wh|2
)1/2

�
(
‖∇wh‖2

L2(e) + ‖|zh|1/2 |∇wh|‖2
L2(e)

)1/2

.

We now make use of a standard trace inequality for polynomial functions

‖∇wh‖L2(e) � h−1/2‖∇wh‖L2(E). (A.3)
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Table 1. Errors and rates for method of first-order in space.

Pressure and velocity

h ‖p − ph‖L2(Ω) Cvg. rate ‖u − uh‖L2(Eh) Cvg. rate

2−2 5.556826e-2 – 2.651639e-4 –

2−3 1.940921e-2 1.52 6.730343e-5 1.98

2−4 7.540286e-3 1.36 1.689074e-5 1.99

2−5 3.371601e-3 1.16 4.226787e-6 2.00

2−6 1.626564e-3 1.05 1.056954e-6 2.00

2−7 8.053275e-4 1.01 2.642547e-7 2.00

Concentration

h ‖c − ch‖L2(Ω) Cvg. rate ‖∇c −∇ch‖L2(Eh) Cvg. rate

2−2 2.126244e-2 – 4.860163e-1 –

2−3 1.572547e-2 0.44 9.787947e-1 −1.01

2−4 4.070491e-3 1.95 5.012288e-1 0.97

2−5 1.050597e-3 1.95 2.532644e-1 0.98

2−6 2.790473e-4 1.91 1.284574e-1 0.98

2−7 7.677982e-5 1.86 6.579732e-2 0.97

Table 2. Errors and rates for method of second order in space.

Pressure and velocity

h ‖p − ph‖L2(Ω) Cvg. rate ‖u − uh‖L2(Eh) Cvg. rate

2−1 3.75612627e-2 – 9.12292627e-5 –

2−2 1.51988594e-2 1.305 1.18909883e-2 2.940

2−3 4.70278178e-3 1.692 1.50219946e-6 2.985

2−4 1.30205703e-3 1.853 1.88274337e-7 2.996

2−5 3.42238663e-4 1.928 2.35499363e-8 2.999

Concentration

h ‖c − ch‖L2(Ω) Cvg. rate ‖∇c −∇ch‖L2(Eh) Cvg. rate

2−1 2.32838162e-3 – 1.86209926 –

2−2 1.37922246e-3 0.755 1.10375937 0.755

2−3 2.30891708e-4 2.579 2.16460653e-1 2.350

2−4 4.84970125e-5 2.251 5.47554909e-2 1.983

2−5 1.01955089e-5 2.250 1.36293565e-2 2.006

Let zh,i denote the ith component of zh.

‖|zh|1/2 |∇wh|‖L2(e) � |e|1/4

(∫
e

|zh|2 |∇wh|4
)1/4

� |e|1/4

⎛
⎝ d∑

i,j=1

∫
e

z2
h,i

(
∂wh

∂xj

)4
⎞
⎠

1/4

� |e|1/4

⎛
⎝ d∑

i,j=1

‖zh,i

(
∂wh

∂xj

)2

‖2
L2(e)

⎞
⎠

1/4

� |e|1/4

⎛
⎝h−1

d∑
i,j=1

‖zh,i

(
∂wh

∂xj

)2

‖2
L2(E)

⎞
⎠

1/4

.
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Table 3. Errors and rates for method of third order in space.

Pressure and Velocity

h ‖p − ph‖L2(Ω) Cvg. rate ‖u − uh‖L2(Eh) Cvg. rate

2−1 1.14265447e-2 – 4.08259591e-6 –

2−2 1.81358816e-3 2.655 2.62942571e-7 3.957

2−3 2.55346692e-4 2.828 1.65601216e-8 3.989

2−4 3.38735338e-5 2.914 1.03699484e-9 3.997

2−5 4.36191826e-6 2.957 6.48427172e-11 3.999

Concentration

h ‖c − ch‖L2(Ω) Cvg. rate ‖∇c −∇ch‖L2(Eh) Cvg. rate

2−1 2.19480438e-3 – 1.78168909 –

2−2 1.00751042e-4 4.445 8.09128327e-2 4.461

2−3 3.20635143e-5 1.652 3.15839214e-2 1.357

2−4 3.69915500e-6 3.116 4.05515779e-3 2.961

2−5 4.80717242e-7 2.944 5.14981839e-4 2.977

By an inverse inequality, we have

‖zh,i

(
∂wh

∂xj

)2

‖L2(E) � h−d/2‖zh,i

(
∂wh

∂xj

)2

‖L1(E).

Therefore, we can conclude

‖|zh|1/2 |∇wh|‖L2(e) � |e|1/4

⎛
⎝h−1h−d

d∑
i,j=1

‖zh,i

(
∂wh

∂xj

)2

‖2
L1(E)

⎞
⎠

1/4

� h−1/2

⎛
⎝ d∑

i,j=1

(∫
E

|zh,i|
(

∂wh

∂xj

)2
)2
⎞
⎠

1/4

� h−1/2‖|zh|1/2 |∇wh|‖L2(E). (A.4)

Combining (A.3) and (A.4) yields (A.1). To obtain (A.2), we apply Cauchy−Schwarz’s inequality to (A.1).

‖D1/2(zh)∇wh‖L2(e) � h−1/2
(
‖∇wh‖2

L2(E) + ‖zh‖L2(E)‖∇wh‖2
L4(E)

)1/2

. �
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