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SMALL-TIME SOLVABILITY OF PRIMITIVE EQUATIONS FOR THE OCEAN
WITH SPATIALLY-VARYING VERTICAL MIXING

Hirotada Honda1

Abstract. The small-time existence of a strong solution to the free surface problem of primitive
equations for the ocean with variable turbulent viscosity terms is shown in this paper. In this model, the
turbulent viscosity coefficients, which include the Richardson number depending on unknown variables,
are explicitly formulated. In addition, following the formulation of practical models, the kinematic
condition is assumed on the free ocean surface. As in preceding works, we consider the problem in
the three-dimensional strip-like region, and assume the f -approximation. Under some conditions on
the initial and boundary data and the topography of the bottom of the ocean, we construct a strong
local-in-time solution in Sobolev–Slobodetskĭı spaces. The boundedness of the temperature and salinity
is also shown in the present paper.
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Introduction

In the present paper, we investigate a free surface problem of primitive equations for the ocean while taking
vertical mixing into account, and show the unique existence of a strong local-in-time solution, which is a new
result developed from our earlier results [23–26].

Since the memorable contributions to the mathematical argument of primitive equations by Lions
et al. [33, 34], there have been a number of works concerning primitive equations for the ocean, the atmo-
sphere, and the coupled model of the ocean and the atmosphere [35–39] in the mathematical literature. Here
we summarize a part of these, with a particular focus on the ocean model.

As for weak solutions in an ocean domain without sidewalls, we have had two results to date. Azerad and
Guillén–González [1] discussed the non-stationary, and Besson and Laydi [5] the stationary case. In [1], they
showed the existence of a weak solution of the Navier–Stokes equations with anisotropic viscosity terms and its
convergence with a weak solution of primitive equations, as the aspect ratio of the depth to width of the domain
tends to zero. As far as we know, no contributions have been made with results concerning strong solutions in
this type of domain.

For two-dimensional primitive equations, we have some results concerning a strong global-in-time solution.
Guillén–González and Rodŕıguez–Bellido [19] showed the existence and uniqueness of the strong solution to
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primitive equations for the ocean in the two-dimensional region with a sidewall under the smallness of data.
Bresch et al. [8] also showed the existence and uniqueness of a strong solution with large data, and also showed
the uniqueness of the weak solution in a similar region. Hu et al. [27] proved the existence and uniqueness of
a strong solution to the primitive equations on thin domains with a non-flat bottom. Following that, Hu [28]
discussed primitive equations for the ocean under a small depth assumption, and proved that the solution is
represented asymptotically as a sum of barotropic flow both in the horizontal and vertical direction as ε goes
to zero. However, in these cases, Coriolis force does not make sense.

Concerning a strong solution of primitive equations for the ocean in the three-dimensional region, we
largely have two types of results in past arguments, with and without sidewalls (the vertically flat lat-
eral boundary). Guillén–González et al. [20, 21] discussed the initial boundary value problem for primi-
tive equations for the ocean in the domain surrounded by a rigid lid, sidewalls and bottom. They showed
the existence of a global strong solution with small data and a local strong solution with any data in
L∞(0, T ;H1(Ω))

⋂
L2(0, T ;H2(Ω))

⋂
W 1

2 (0, T ;L2(Ω)). In a similar situation, Temam and Ziane [51] veri-
fied the existence and uniqueness of a strong local-in-time solution of primitive equations for the ocean in
C(0, T ;H1(Ω))

⋂
L2(0, T ;H2(Ω)). Their results are based on Ziane’s preceding results [55, 56] concerning the

elliptic problem in a domain with corners. Later, Cao and Titi [11] showed the existence and uniqueness of a
global solution in C(0, T ;H1(Ω))

⋂
L2(0, T ;H2(Ω))

⋂
W 1

1 (0, T ;L2(Ω)). As far as we know, however, a formu-
lation with a free ocean surface, which is frequently used in the practical model, has not been discussed in the
mathematical literature.

We will now summarize past arguments in weather prediction and oceanography. Following the proposals
of Bjerknes [4] and the pioneering numerical modeling of the atmosphere by Richardson [43], Bryan’s work [9]
was the first to model ocean circulation, which applied the rigid lid hypothesis, that is, the ocean surface
was assumed to be flat and fixed. This is because they preferred to remove the effect of gravitational waves
of low frequencies, in order to take long as an interval length of numerical integration as possible. However,
the barotropic component in ocean movement was not removed, which requires an additional calculation for
the stream function, called the relaxation method [30]. Based upon his formulation Semtner [44] proposed the
general circulation model and numerically studied it in detail. In his model, the Boussinesq approximation and
the rigid lid hypothesis were used. After that, a trial of the free ocean surface model followed. Crowley [13, 14]
was the first person that conceived the free ocean surface model for numerical calculation. In that model,
integration with respect to the vertical coordinate system was introduced, and the problem was reduced to that
in the two-dimensional framework. Later, Blumberg and Mellor [7], Dukowicz and Smith [15], and Killworth [30]
proposed the free surface model modifying those developed by Bryan [9] and Cox [12]. For the rationale of the
model by Killworth, see [30] and the references therein ([6], for example). Combining these models, the modular
ocean model (MOM) [40, 41] became one of the most popular methods for modeling of the ocean. Although a
number of model options be selected, it includes the free ocean surface model as a default.

In a series of our works [23–26], we considered the free surface problems of primitive equations. There, we
formulated the original problem in the Cartesian coordinate first, and then transformed it into the p-coordinate
system by making use of the hydrostatic relationship ∂p/∂x3 = −�g. Then, we also made the problem into
that in the known fixed region by another coordinate transform in order to consider the coupled model. The
kinematic condition D

DtF (x, t) = 0, with F the graph of the free surface, was not assumed. This is because
we rigorously consider the effect of evaporation and condensation, while the kinematic condition assumes that
a particle on the ocean surface adheres to it. In addition, the effect of ocean surface tension was taken into
account in the boundary condition on the free ocean surface, which was the original one in the literature on the
mathematical analysis of primitive equations. Another feature in our preceding models is the stress tensor in
the conditions on the ocean surface, which is usually not considered in atmospheric science and oceanography.
On the other hand, in the practical models, some empirical formulations such as the kinematic condition and
the bulk formulae for the flux of momentum and heat, are applied in the conditions on the ocean surface. The
effect of ocean surface tension is not taken into account even in the free ocean surface model. Nevertheless, since
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there are no works concerning these models in the mathematical literature, it is uncertain if the practical model
is mathematically well-posed.

In the present paper, we discuss the ocean model with boundary conditions subject to MOM3 [40] and
MOM4 [41]. The kinematic condition, which our preceding works did not adopt, was applied in this paper. We
do not apply a p-coordinate system or the Lagrangian coordinate system in this paper.

The second feature of the present work is taking the parameterization of vertical mixing into account. All of
the existing results in the mathematical literature were found by regarding the turbulent viscosity and diffusivity
coefficients as positive constants, while it is known that modeling them as functions of the Richardson number
sometimes yields better suitability [29,31,42]. Mathematically, this requires a higher regularity of the obtained
velocity under the appropriate assumptions of the regularity of data. Following Pacanowski and Philander [42],
and Washington and Parkinson [53], the representation of the Richardson number in this paper is provided as
R( ∂v

∂x3
, �, ∂�

∂x3
) = g�−1 ∂�

∂x3
| ∂v
∂x3

|−2, which yields some difficulty in the estimation of the principal terms.
Third, for the equation of state, there have been a number of arguments in oceanography. A polynomial

fit was first proposed by Bryan and Cox [10], which is still one of the effective models. In that work, they
proposed that the density is represented as a polynomial of temperature, salinity and height at each point. In
UNESCO [52], they determined a model for the equation of state for the ocean, in which the density is provided
as a function of the temperature, salinity and pressure. Therefore, we adopt in the present paper a general form
of the equation of state � = �(p, T, S), while all of the existing results in mathematical arguments have adopted
the polynomial model for the equation of state (see, for instance, [34]). The fourth feature of our model is that it
describes the balances of the heat flux at the ocean surface and bottom as those for the potential temperature.
Since the equation is described for the in situ temperature, we have to translate the boundary conditions into
those for the in situ temperature. As in the preceding works, we construct a strong local-in-time solution in the
anisotropic Sobolev–Slobodetskĭı spaces.

This paper is organized as follows: in the first section, we formulate the problem. In Section 2, we define
the function spaces used throughout this paper. The main result of this paper is stated in Section 3. Auxiliary
lemmas, which are important in proving the main theorem, are prepared in Section 4. Section 5 concerns the
linear problem, followed by the proof of the main theorem, provided in Section 6.

1. Formulation of the problem

1.1. Mathematical formulation

There exist numerous formulations of the vertical coordinate systems of the ocean model, such as those
with z-, σ-, and �-coordinates. Although there exist some contributions applicable to the free ocean surface
model in σ-coordinates like COCO [22], Griffies [16] pointed out that the z-coordinate system is well suited to
representing the topography of the ocean bottom, as well as the movement of the free ocean surface.

Nowadays, the z-coordinate system is employed with numerous free ocean surface models, such as the ocean
circulation and climate advanced modelling (OCCAM) project, the océan parallélisé (OPA) model, and so on.

Therefore, our problem is formulated in the three-dimensional strip-like region in the z-coordinate system
mainly based on the formulations in MOM3 [40] and MOM4 [41].

For the temperature in the model equation, however, we adopt the in situ temperature, since the parameteri-
zation of the diffusivity coefficient is investigated using it, rather than the potential temperature [29,31,42]. On
the other hand, the boundary conditions are formulated by using the potential temperature, as we will show
later.

Hereafter, by x = (x1, x2, x3) = (x′, x3), we denote an orthogonal Cartesian coordinate system with x3 being
the vertical direction. Let the unknown free surface and the known bottom of the ocean be represented by
the equations x3 = F (x′, t) and x3 = b(x′), respectively. The initial value F0(x′) of F (x′, t) is assumed to
satisfy F0(x′) − b(x′) > c0 with a positive constant c0 for any x′ ∈ R2. Then the domain Ω(t) of the ocean
at time t is represented as {(x′, x3)|x′ ∈ R2, b(x′) < x3 < F (x′, t)}. Making use of Boussinesq and hydrostatic
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approximations, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t

+ (v · ∇)v + w
∂v
∂x3

−
[
μ1Δv + μ2

∂2v
∂x2

3

]
+ fAv = − 1

�0
∇p,

∂p

∂x3
= −�g,

∇ · v +
∂w

∂x3
= 0,

∂T

∂t
+ (v · ∇)T + w

∂T

∂x3
−
[
μ3ΔT + μ4

∂2T

∂x2
3

]
= 0,

∂S

∂t
+ (v · ∇)S + w

∂S

∂x3
−
[
μ5ΔS + μ6

∂2S

∂x2
3

]
= 0,

� = �(p, T, S) x ∈ Ω(t), t > 0.

(1.1)

Here, fAv is a Coriolis force with A =
(

0 −1
1 0

)
and the Coriolis parameter f is a positive constant due to the

f -approximation; ∇ and Δ are two-dimensional gradient and Laplacian, respectively. The horizontal component
of the velocity is represented by v = (v1, v2)T and the vertical component w; p is the pressure; � = �(z1, z2, z3)
is the density; �0 is a positive constant; g is the gravity force (a positive constant); T is the temperature; S is
the salinity; μ1 and μ2 are the coefficients of turbulent viscosity; and (μ3, μ4) and (μ5, μ6) are given by scaling
the sums of the turbulent and molecular diffusivity, respectively. Note that the equation of state is provided
in a general form in (1.1)6 (hereafter, we represent the ith equation of (a.b) by (a.b)i). The basic form of
this formulation was first derived by Bryan [9], and the discretized code has been widely used in numerical
calculations.

On the other hand, numerous arguments carried on him largely from two viewpoints: one is the formulation
of the ocean surface, and the other, the parameterization of turbulent viscosity and diffusivity coefficients.

As for ocean surface modeling, Bryan [9] adopted the so-called rigid lid hypothesis, which assumes that the
ocean surface is flat and fixed. This makes it easy to separate the behavior of the barotropic and baroclinic
flows in the numerical calculation as well as removing the effect of the gravitational wave. However, it imposes
the assumption w = 0 on the ocean surface and the vanishing of fresh water flux, which is a strict restriction.

Later, Crowley [13,14], Blumberg and Mellor [7], Dukowicz and Smith [15] and Killworth [30] developed the
free surface model for the ocean. As stated in MOM3 [40], the main advantage of applying the free surface
model is the presence of the fresh water flux in the model [16]. In it, the kinematic condition is described as
follows [18]:

D
Dt

(x3 − F (x′, t)) = −qw (x′, F (x′, t) , t) , (1.2)

where D
Dt ≡ ∂

∂t + v · ∇ + w ∂
∂x3

is an operator known as the material derivative, and qw, a function defined
on R3 × (0,∞), which represents the flux of the fresh water passing across the free ocean surface. It is also
represented as

qw = P − E +R,

where P , E and R are the flux of the fresh water entering and leaving the ocean, and river run off, respec-
tively [18]. The process on the ocean surface Γ (t) ≡ {(x′, F (x′, t))|x′ ∈ R2} is represented as the balance of the
fluxes. The momentum stress on the ocean surface arises from the wind stress and the fresh water momentum
in the ocean, and the balance is represented as follows (see (7.60) in MOM3 [40]):

μ1∇F · ∇v − μ2
∂v
∂x3

− qwv = τ1, (1.3)
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where τ1 ∈ R2 is the vertical turbulent momentum flux in the atmosphere-ocean boundary layer, which consists
of turbulent stress from winds and the momentum due to fresh water entrained in the winds. ∇F · ∇v in (1.3)
stands for a vector whose ith component is ∇F ·∇vi (i = 1, 2). The boundary conditions of the temperature and
salinity are described as the conservation of the tracer flux. Representing the tracer concentration of a substance
by U , the total concentration flux across the ocean surface is the sum of the change in the tracer concentration
due to the behavior of the fresh water and the diffusivity [17]:

Uqw + FU · NF , (1.4)

where FU is the diffusive tracer flux, and NF = (−∇F, 1)T ∈ R3 is the upward normal vector to the free ocean
surface.

It is well known that, as for the temperature, the potential temperature rather than the in situ temperature
satisfies (1.4) [18,40]. In general, the potential temperature θ depends on the pressure, in situ temperature and
salinity:

θ = θ(p, T, S).

Griffies [18] also pointed out that, as for the potential temperature, the first term of (1.4) does not differ so much
with respect to depth, which he calls the neutral tracer. From these considerations, the boundary conditions for
the temperature and salinity are described as follows [3, 18]:

FT · NF = τ2, FS · NF − qwS = 0, p = p0 x ∈ Γ (t), t > 0, (1.5)

where
FT = K2∇3θ, FS = K3∇3S,

with the three-dimensional gradient operator ∇3 and

Ki =

⎡⎢⎣μ2i−1 0 0

0 μ2i−1 0

0 0 μ2i

⎤⎥⎦ (i = 1, 2, 3).

In (1.5)1, τ2 is the outward heat fluxes on the ocean surface, and p0(x′, t), the pressure on the ocean surface,
formalized as a function defined on the two-dimensional Euclid region and time.

Remark 1.1. In Bryan’s model, although it applies the rigid-lid hypothesis, Dirichlet boundary conditions are
also admitted for temperature and salinity (see [9], p. 156) in place of the Neumann type condition on the ocean
surface:

(T, S) = (Te, Se) x ∈ Γ (t).

In the present paper, we concentrate on Neumann-type conditions, (1.3) and (1.5), on the ocean surface. Actually,
under appropriate assumptions, it is possible to obtain a local-in-time solution for both types of conditions.
This holds for the linear problem that we will discuss in Section 5.

At the bottom of the ocean, stress arises from those conditions associated with the bottom topography and
sub-grid scale effects [40]. In MOM3, the latter is ignored in its default configuration, and we adopt here the
formulation (see (7.51) in MOM3)

μ1∇b · ∇v + μ2
∂v
∂x3

= τ3. (1.6)

Here τ3 is the bottom stress, and the term ∇b · ∇v is interpreted as the term ∇F · ∇v in (1.3) is.
It is also necessary to impose the bottom kinematic boundary condition (see MOM3 [40] (4.24), (7.15)):

w = −v · ∇b. (1.7)
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As for the temperature and salinity, the tracer flux is set to zero (see Sect. 4.3.4 in MOM3 [40]):

FT ·Nb = 0, FS · Nb = 0 x ∈ Γb, t > 0, (1.8)

where Nb = (−∇b, 1)T.

Next, let us discuss the parameterization of the turbulent viscosity and diffusivity coefficients in the vertical
direction, μi (i = 2, 4, 6). Based on measurements, it has been pointed out that these depend on the Richardson
number [29,31], especially where the vertical mixing of seawater is vigorous. In the present paper, following the
parameterization by Pacanowski and Philander [42,53], the vertical turbulent viscosity and diffusivity coefficients
are represented as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ2 = μ2

(
∂v
∂x3

, �,
∂�

∂x3

)
= μ2a

(
1 + α2R

(
∂v
∂x3

, �,
∂�

∂x3

))−2

+ μ2b,

μi = μi

(
∂v
∂x3

, �,
∂�

∂x3

)
= μia

(
1 + αiR

(
∂v
∂x3

, �,
∂�

∂x3

))−1

+ μib (i = 4, 6),

R = R
(
∂v
∂x3

, �,
∂�

∂x3

)
= g�−1 ∂�

∂x3

∣∣∣∣ ∂v∂x3

∣∣∣∣−2

,

where μia, μib (i = 2, 4, 6) are positive constants, and R is the Richardson number. On the other hand,
μi (i = 1, 3, 5) are formulated as positive constants. It is worth noting that formulations of μ4 and μ6 are provided
as the diffusivity of the in situ temperature, and therefore we have to rewrite the boundary conditions (1.5)1
and (1.8)1 as those for the in situ temperature.

Finally, the initial conditions are provided by

(v, T, S)(x, 0) = (v0, T0, S0) (x) x ∈ Ω ≡ Ω(0), F (x′, 0) = F0 (x′) x′ ∈ R2. (1.9)

In order to consider the differentiation of the current and initial value of the horizontal velocity, we first extend
v0 = (v01, v02)T into the whole space R3 preserving the regularity [32, 54], which is denoted by v̄0, and then
introduce the notation v′ = v − v̄0. Hereafter we also use a notation Vx ≡ (p, T, S)T, for simplicity.

Then, the original problem of (1.1)–(1.9) becomes as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v′

∂t
+ ((v′ + v̄0) · ∇)v′ + w

∂v′

∂x3
−
(
μ1�v′ + μ2

∂2v′

∂x2
3

)
= −fA (v′ + v̄0) −

1
�0

∇p− ((v′ + v̄0) · ∇) v̄0 − w
∂v̄0

∂x3
+
(
μ1�v̄0 + μ2

∂2v̄0

∂x2
3

)
,

∂T

∂t
+
(
(v′ + v̄0) · ∇

)
T + w

∂T

∂x3
−
[
μ3ΔT + μ4

∂2T

∂x2
3

]
= 0,

∂S

∂t
+ ((v′ + v̄0) · ∇)S + w

∂S

∂x3
−
[
μ5ΔS + μ6

∂2S

∂x2
3

]
= 0,

∂w

∂x3
= −∇ · (v′ + v̄0) ,

∂p

∂x3
= −g�(p, T, S) x ∈ Ω(t), t > 0

(1.10)
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D
Dt

(x3 − F (x′, t)) = −qw (x′, F (x′, t) , t) x′ ∈ R2, t > 0, (1.11)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1∇v′ · ∇F − μ2
∂v′

∂x3
− qwv′ = τ1 − μ1∇v̄0 · ∇F + μ2

∂v̄0

∂x3
+ qwv̄0,

μ3

2∑
i=1

∇3θ (Vx) · ∂Vx

∂xi

∂F

∂xi
− μ4∇3θ (Vx) · ∂Vx

∂x3
= τ2,

μ5∇S · ∇F − μ6
∂S

∂x3
− qwS = 0, p = p0 x ∈ Γ (t), t > 0,

(1.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ1∇v′ · ∇b− μ2
∂v′

∂x3
= τ3 − μ1∇v̄0 · ∇b + μ2

∂v̄0

∂x3
,

w = − (v′ + v0) · ∇b,

μ3

2∑
i=1

∇3θ (Vx) · ∂Vx

∂xi

∂b

∂xi
− μ4∇3θ (Vx) · ∂Vx

∂x3
= 0,

μ5∇S · ∇b − μ6
∂S

∂x3
= 0 x ∈ Γb, t > 0,

(1.13)

(v′, T, S) (x, 0) = (0, T0, S0) (x) x ∈ Ω ≡ Ω(0), F (x′, 0) = F0 (x′) x′ ∈ R2. (1.14)

Hereafter, we will consider the problem of (1.10)–(1.14). Before solving it, we introduce a coordinate transform
to make the region into the fixed one in the next subsection.

1.2. Coordinate transform

The problem stated in the previous subsection is considered by applying the transform ΦF : (x, t) �−→ (y, t∗)
of a coordinate system similar to the one used in preceding papers [25, 26] to (1.10)–(1.14). This enables us to
consider the problem in a fixed region.

y′ = x′, y3 = (b (x′) − F0 (x′))
x3 − F (x′, t)
b (x′) − F (x′, t)

+ F0 (x′) , t∗ = t. (1.15)

This transform is also similar to those used in [2, 47]. It is clear that for arbitrary T1 > 0, the regions⋃
0<t<T1

(Ω(t) × {t}),
⋃

0<t<T1

(Γb × {t}) ,
⋃

0<t<T1

(Γ (t) × {t})

are transformed onto the regions ΩT1 ≡ Ω × (0, T1), ΓbT1 ≡ Γb × (0, T1), ΓT1 ≡ Γ (0) × (0, T1), respectively. In
the following, we use the representation

(x′, x3, t) =
(
y′,

(y3 − F0 (y′)) (b (y′) − F (y′, t))
b (y′) − F0 (y′)

+ F (y′, t) , t
)

≡
(
y′, X(F )

3 (y, t), t
)

= Φ−1
F (y, t),

and denote the inverse of the transposed matrix of the Jacobian matrix by(
J [(x/y)]T

)−1
=
(
aij
)

=
(
aij(F )

)
(i, j = 1, 2, 3).
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Then one can easily derive

a3(F ) ≡
(
a13(F ), a23(F )

)T
=

(F0 (y′) − F (y′, t)) (y3 − F0 (y′))
(b (y′) − F (y′, t)) (b (y′) − F0 (y′))

∇b (y′)

+ (b (y′) − y3)
{

∇F0 (y′)
b (y′) − F0 (y′)

− ∇F (y′, t)
b (y′) − F (y′, t)

}
,

A1(y, t) ≡
∂y

∂t
=

y3 − b (y′)
b (y′) − F (y′, t)

∂F

∂t
(y′, t) , a33(F ) =

b (y′) − F0 (y′)
b (y′) − F (y′, t)

, aij = δij (i = 1, 2, 3, j = 1, 2).

In the following, we use the notation

(
∇F

∇F,3

)
=
(
J [(x/y)]T

)−1

⎛⎝∇y′

∂

∂y3

⎞⎠ ,

where ∇y′ is the derivative with respect to y′. We also use the notation

f̃ (F )(y, t) ≡ f
(
Φ−1

F (y, t)
)

= f
(
y′, X(F )

3 (y, t), t
)

in order to represent the dependency of the coordinate transform on F . For a function defined in the whole
space R3, we use the same notation to the one restricted on Ω(t) at each t and then transformed into the new
coordinate system.

2. Function spaces

Before proceeding to the main theorem, let us introduce some function spaces used in this paper. Let G be
a simply connected domain in Rn (n = 2, 3) in general. In the following, we mean the derivative of function f
with multi-index α by Dαf . The χ1th order derivative with respect to t and α with respect to y is denoted
by Dχ1

t Dα
y f . For notations of function spaces, we basically follow those used in preceding contributions from

Solonnikov [45], Tani [46], and Wloka [54]. By W l
2(G), we mean a space of functions u(x), x ∈ G equipped with

the norm ‖u‖2
W l

2(G) =
∑
|α|<l

‖Dαu‖2
L2(G) + ‖u‖2

Ẇ l
2(G)

, where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

‖u‖2
Ẇ l

2(G)
=
∑
|α|=l

‖Dαu‖2
L2(G) =

∑
|α|=l

∫
G

|Dαu(x)|2dx if l is an integer,

‖u‖2
Ẇ l

2(G)
=
∑

|α|=[l]

∫
G

∫
G

|Dαu(x) −Dαu(y)|2
|x− y|n+2{l} dxdy if l is a non-integer, l = [l] + {l}, 0 < {l} < 1.

We also define the following function spaces for m > 1:

W
m

2 (G) =

⎧⎨⎩u(x) = o
(
ex2
) ∣∣∣∣‖u‖2

W
m
2 (G)

≡ sup
x∈G

|u(x)|2 + ‖u‖2

Ẇ
m−[m]
2 (G)

+
∑
|α|=1

‖Dαu‖2
W m−1

2 (G)
<∞

⎫⎬⎭ ,
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and for m > 2,

W
m

2,c(G) =

{
u(x) = o

(
ex2
) ∣∣∣∣‖u‖2

W
m
2 (G)

≡ sup
x∈G,|α|≤1

|Dαu(x)|2 +
∑
|α|≤1

‖Dαu‖2

Ẇ
m−[m]
2 (G)

+
∑
|α|=2

‖Dαu‖2
W m−2

2 (G)
<∞

}
.

Next, we introduce anisotropic Sobolev–Slobodetskĭı spaces [54] W l, l
2

2 (GT1) ≡ W l,0
2 (GT1 ) ∩W

0, l
2

2 (GT1) (GT1 ≡
G× (0, T1)), whose norms are defined by

‖u‖2

W
l, l

2
2 (GT1)

=
∫ T1

0

‖u(·, t)‖2
W l

2(G)dt+
∫

G

‖u(x, ·)‖2

W
l
2
2 (0,T1)

dx ≡ ‖u‖2
W l,0

2 (GT1)
+ ‖u‖2

W
0, l

2
2 (GT1)

.

We also define function spaces for m > 2,

W
m, m

2
2 (GT1) =

{
u(x, t) = o

(
ex2
)

∀t ∈ (0, T1)
∣∣∣∣‖u‖2

W
m, m

2
2 (GT1)

≡ sup
GT1

|u(x, t)|2

+ sup
x∈G

‖u(x, ·)‖2

Ẇ
m−[m]

2
2 (0,T1)

+ sup
t∈(0,T1)

‖u(·, t)‖2

Ẇ
m−[m]
2 (G)

+
∑
|α|=1

‖Dαu‖2

W
m−1, m−1

2
2 (GT1)

+
∥∥∥∥∂u∂t

∥∥∥∥2
W

m−2, m−2
2

2 (GT1)
<∞

}
.

W
m, m

2
2,c (GT1) =

{
u(x, t) = o

(
ex2
)

∀t ∈ (0, T1)
∣∣∣∣‖u‖2

W
m, m

2
2,c (GT1)

≡ sup
GT1
|α|≤1

|Dαu(x, t)|2

+ sup
x∈G
|α|≤1

‖Dαu(x, ·)‖2

Ẇ
m−[m]

2
2 (0,T1)

+ sup
t∈(0,T1)
|α|≤1

‖Dαu(·, t)‖2

Ẇ
m−[m]
2 (G)

+
∑
|α|=2

‖Dαu‖2

W
m−2, m−2

2
2 (GT1)

+
∥∥∥∥∂u∂t

∥∥∥∥2
W

m−2,
m−2

2
2 (GT1)

<∞
}
.

The n times product of a function spaceW0 is denoted byWn
0 , and we also use notations like

∏2
i=1Wi ≡W1×W2

hereafter. Norms of the vector and the product spaces are defined by the standard vector norm and the sum of
the norms of each space, respectively.

3. Main result

In this section, we first rewrite the problem shown in Section 1 in the new coordinate system, and then
state the local-in-time solvability of it, which is the main result of the present paper. Since we define numerous
functions spaces throughout this paper, we list them in the appendix.

3.1. Problem in the new coordinate system

We introduce the problem after the coordinate transform. By noting that the coordinate system does not
vary at t = 0, we rewrite the problem from (1.10)–(1.14) in y-coordinates and denote (v′, w, T, S,Vx) after the
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coordinate transform with (u′, u3, T̃ , S̃,V). We also use notations u = u′ + ˜̄v(F )
0 , u = (u1, u2)T, U ≡ (u′, T̃ , S̃)T,

M ≡ (T̃ , S̃)T, U0 ≡ (0, T0, S0)T and P = ∇F p̃
(F ) hereafter. Note that, in the following, we consider that the

unknown variables are u′, T̃ , S̃, P and F , since u3 is represented by using u′ and F , as we will see later:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u′

∂t
− L1,U ,Fu′ = G1,F

(
u′, u3, T̃ , S̃,P

)

≡ A1
∂u′

∂y3
−
((

u′ + ˜̄v(F )
0

)
· ∇F

)(
u′ + ˜̄v(F )

0

)
− u3a

33 ∂

∂y3

(
u′ + ˜̄v(F )

0

)
−fA

(
u′ + ˜̄v(F )

0

)
− 1
�0

P + L1,U ,F ˜̄v(F )
0 ,

a33(F )
∂p̃(F )

∂y3
= −�

(
p̃(F ), T̃ , S̃

)
g ≡ −�̃g,

a33(F )
∂u3

∂y3
= −∇F ·

(
u′ + ˜̄v(F )

0

)
,

∂T̃

∂t
− L2,U ,F T̃ = G2,F

(
u′, u3, T̃

)
≡ A1

∂T̃

∂y3
−
((

u′ + ˜̄v(F )
0

)
· ∇F

)
T̃ − u3a

33(F )
∂T̃

∂y3
,

∂S̃

∂t
− L3,U ,F S̃ = G3,F

(
u′, u3, S̃

)
≡ A1

∂S̃

∂y3
−
((

u′ + ˜̄v(F )
0

)
· ∇F

)
S̃ − u3a

33(F )
∂S̃

∂y3
in ΩT1 ,

∂F

∂t
+ u · ∇F − u3 = qw in R2

T1
,

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B11 (∇F,3u, �̃,∇F,3�̃, F )u′ ≡ μ1∇F u′ · ∇F − μ2 (∇F,3u, �̃,∇F,3�̃) a33(F )
∂u′

∂y3
− qwu′

= τ1 −∇Fμ1∇˜̄v(F )
0 · ∇F + μ2 (∇F,3u, �̃,∇F,3�̃) a33(F )

∂ ˜̄v(F )
0

∂y3
+ qw ˜̄v(F )

0 ,

B12 (∇F,3u, �̃,∇F,3�̃, F )M ≡ μ3

{
θx2 (Vx)∇F T̃ · ∇F + θx3 (Vx)∇F S̃ · ∇F

}

−μ4 (∇F,3u, �̃,∇F,3�̃)

{
θx2 (Vx) a33(F )

∂T̃

∂y3
+ θx3 (Vx) a33(F )

∂S̃

∂y3

}

= τ2 − μ3θx1 (Vx)P · ∇F − μ4 (∇F,3u, �̃,∇F,3�̃) θx1 (Vx) �
(
p̃(F ), T̃ , S̃

)
g,

B13 (∇F,3u, �̃,∇F,3�̃, F )M ≡ μ5∇F S̃ · ∇F − μ6 (∇F,3u, �̃,∇F,3�̃) a33(F )
∂S̃

∂y3
− qwS̃ = 0,

p̃(F )(y, t) = p0 (y′, t) on ΓT1 ,

(3.2)
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B21 (∇F,3u, �̃,∇F,3�̃, F )u′ ≡ μ1∇F u′ · ∇b− μ2 (∇F,3u, �̃,∇F,3�̃) a33(F )
∂u′

∂y3

= τ3 − μ1∇F ˜̄v(F )
0 · ∇b+ μ2 (∇F,3u, �̃,∇F,3�̃) a33(F )

∂ ˜̄v(F )
0

∂y3
,

B22 (∇F,3u, �̃,∇F,3�̃, F )M ≡ μ3

{
θx2 (Vx)∇F T̃ · ∇b + θx3 (Vx)∇F S̃ · ∇b

}
−μ4 (∇F,3u, �̃,∇F,3�̃)

{
θx2 (Vx) a33(F )

∂T̃

∂y3
+ θx3 (Vx) a33(F )

∂S̃

∂y3

}

= −μ3θx1 (Vx)P · ∇b − μ4 (∇F,3u, �̃,∇F,3�̃) θx1 (Vx) �
(
p̃(F ), T̃ , S̃

)
g,

u3 = − (u′ + v0) · ∇b,

B23 (∇F,3u, �̃,∇F,3�̃, F )M ≡ μ5∇F S̃ · ∇b− μ6 (∇F,3u, �̃,∇F,3�̃) a33(F )
∂S̃

∂y3
= 0 on ΓbT1 ,

(3.3)

⎧⎨⎩U
∣∣
t =0

(y) = U0(y) ≡ (0, T0(y), S0(y))
T on Ω,

F |t =0 = F0 (y′) on R2,

(3.4)

where

Li,U ,F ≡ μ2i−1∇2
F + μ2i (∇F,3u, �̃,∇F,3�̃)

(
a33(F )

)2 ∂2

∂y2
3

(i = 1, 2, 3).

Note that u3 is deduced from (3.1)3 and (3.3)3:⎧⎪⎨⎪⎩ a33(F )
∂u3

∂y3
= −∇F ·

(
u′ + ˜̄v(F )

0

)
in ΩT ,

u3 = − (u′ + v0) · ∇b on Γb,

(3.5)

whose solution is provided by

u3(y, t) = −
(
u′ + v0

∣∣
Γb

)
· ∇b (y′, t) − 1

a33(F )

∫ y3

b(y′)
∇F · u (y′, z3, t) dz3. (3.6)

Hereafter, we substitute (3.6) into other equations in (3.1), and replace

G1,F

(
u′, u3, T̃ , S̃,P

)
, G2,F

(
u′, u3, T̃

)
, G3,F

(
u′, u3, S̃

)
,

in the right-hand sides by following notations

G1,F

(
u′, T̃ , S̃,P

)
, G2,F

(
u′, T̃

)
, G3,F

(
u′, S̃

)
.

Then, the problem for U in (3.1)–(3.4) is written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t

− LU ,FU = G1,F,PU in ΩT1 ,

B1 (∇F,3u, �̃,∇F,3�̃, F )U = τ̄1 (u,M, F,P) on ΓT1 ,

B2 (∇F,3u, �̃,∇F,3�̃, F )U = τ̄2 (u,M, F,P) on ΓbT1 ,

U|t=0 = U0 on Ω,

(3.7)
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where we have introduced notations

τ̄1 (u,M, F,P) =

(
τ1 − μ1∇F ˜̄v(F )

0 · ∇F + μ2 (∇F,3u, �̃,∇F,3�̃) a33(F )
∂ ˜̄v(F )

0

∂y3
+ qw ˜̄v(F )

0 ,

τ2 − μ3θx1∇F p̃
(F ) · ∇F − μ4 (∇F,3u, �̃,∇F,3�̃) θx1�

(
p̃(F ), T̃ , S̃

)
g, 0

)T

,

τ̄2 (u,M, F,P) =

(
τ3 − μ1∇F ˜̄v(F )

0 · ∇b+ μ2 (∇F,3u, �̃,∇F,3�̃) a33(F )
∂ ˜̄v(F )

0

∂y3
,

− μ3θx1∇F p̃
(F ) · ∇b− μ4 (∇F,3u, �̃,∇F,3�̃) θx1�

(
p̃(F ), T̃ , S̃

)
g, 0

)T

,

and

LU ,FU ≡
(
L1,U ,Fu′, L2,U ,F T̃ , L3,U ,F S̃

)T

, G1,F,PU ≡
(
G1,F

(
u′, T̃ , S̃,P

)
, G2,F

(
u′, T̃

)
, G3,F

(
u′, S̃

))T

,

B1(∇F,3u, �̃,∇F,3, �̃, F )U ≡(B11(∇F,3u, �̃,∇F,3�̃, F )u′,B12(∇F,3u, �̃,∇F,3�̃, F )M,B13(∇F,3u, �̃,∇F,3�̃, F )M)T,

B2(∇F,3u, �̃,∇F,3, �̃, F )U ≡(B21(∇F,3u, �̃,∇F,3�̃, F )u′,B22(∇F,3u, �̃,∇F,3�̃, F )M,B23(∇F,3u, �̃,∇F,3�̃, F )M)T.

Note that P is calculated by the relationship⎧⎪⎨⎪⎩
a33(F )

∂p̃(F )

∂y3
= −�

(
p̃(F ), T̃ , S̃

)
g in ΩT1 ,

p̃(F )
∣∣
y3=F0(y′) = p0 on R2,

(3.8)

which has a unique solution (p̃(F ), T̃ , S̃) by virtue of the ordinary differential equation if p̃(F ) has sufficient
regularity. For F , taking the horizontal divergence of (3.2)1, and adding it with (3.1)6 yields the following
problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂F

∂t
− L4,U ,FF = qw − u · ∇F + u3 + μ1

2∑
i=1

∂

∂yi
(∇Fui) · ∇F

−
2∑

i=1

∂

∂yi

(
μ2 (∇F,3u, �̃,∇F,3�̃, F )a33 ∂ui

∂y3

)
−∇ · (qwu) −∇ · τ1 in R2

T1
,

F
∣∣
t=0

= F0 on R2,

(3.9)

where L4,U ,FF ≡ μ1

2∑
i=1

∇Fui ·∇ ∂F
∂yi

. As we have stated, the problem from (3.7)–(3.9) now constitutes a problem

for (u′, T̃ , S̃, F,P).

3.2. Statement of main result

Hereafter, we denote the value of p at t = 0 by pu(x), which satisfies the following relationship:

pu(x) = p0 (x′, 0) + g

∫ x3

F0(x′)
� ((pu, T0, S0) (x′, z3, 0)) dz3. (3.10)

We also introduce notations �u ≡ �(pu, T0, S0), R0 ≡ R
(

∂v0
∂x3

, �u,
∂�u

∂x3

)
.
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In addition, we define the following notations:

V0 ≡ (pu, T0, S0)
T
, μi0 = μi

(
∂v0

∂y3
, �u,

∂�u

∂y3

)
(i = 2, 4, 6),

Lj,0 ≡ Lj,U0,F0 = μ2j−1∇2 + μ2j

(
∂v0

∂y3
, �u,

∂�u

∂y3

)
∂2

∂y2
3

(j = 1, 2, 3),

where U0 = (v0, T0, S0)T. Then, the main result of this paper concerning the small-time solvability of (3.7)–(3.9),
which will be proved in Section 6, is provided as follows:

Theorem 3.1. Let l ∈ (1/2, 1), and T1 be an arbitrary positive number. Assume that

(i) (v0, T0, S0) ∈ W0 ≡ W
3+l

2,c (Ω) ×
(
W

2+l

2 (Ω)
)2

, F0 ∈ W
5
2+l
2 (R2), 0 < cu ≤ min

{
(1 + αiR0)

∣∣∣∂v0
∂x3

∣∣∣ , ∣∣∣∂v0
∂x3

∣∣∣}
(i = 2, 4, 6), T 0 ≤ T0(x) <∞, and 0 < S0 ≤ S0(x) <∞ with positive constants cu, T 0 and S0, respectively;

(ii) b ∈ W
5
2 +l

2 (R2) and F0(x′) − b(x′) > c0 > 0 on R2 with a positive constant c0;
(iii) θ ∈ C3+β(R3) with 1/2(l− 1/2) < β < l + 1/2;

(iv) With a constant l′′ > l, τi ∈ W
3
2+l′′, 3

4+ l′′
2

2 (R2
T1

) (i = 1, 2, 3), qw ∈W
3
2+l′′, 34+ l′′

2
2 (R2

T1
), ∂v0

∂yi

∣∣∣
Γ
∈W

3
2+l′′

2 (R2),

∂p0
∂yi

∈ W
3
2 +l′′, 34+ l′′

2
2 (R2

T1
), p0 ∈ W

5
2+l, 5

4+ l
2

2 (R2
T1

). It is also assumed that for the case of |α| = 3 with a
multi-index α, Dα

xp0 satisfy the Hölder condition with exponent βp0 > l/2 with respect to x3;

(v)
∂v10
∂x1

∂v20
∂x2

− ∂v10
∂x2

∂v20
∂x1

(x) > 0 ∀x ∈ Ω;

(vi)

M0(x) ≡ v0 · ∇v0 −
(

v0 · ∇b +
∫ x3

b(x′)
∇ · v0 (x′, z3) dz3

)
∂v0

∂x3
− fAv0 ∈ W 1+l

2 (Ω),

M1 (x′) ≡ τ1
∣∣
t=0

+ μ20
∂v0

∂x3

∣∣∣
Γ
∈W

3
2+l
2

(
R2
)
,

M2 (x′) ≡ τ2
∣∣
t=0

− μ40θx (V0) � (V0) g
∣∣∣
Γ
∈W

3
2+l
2

(
R2
)
,

M3 (x′) ≡ τ3
∣∣
t=0

− μ20θx (V0) � (V0) g
∣∣∣
Γb

∈ W
3
2 +l
2

(
R2
)
,

M4 (x′) ≡
∫ F0(x′)

b(x′)
∇ · v0 (x′, z3) dz3 +

2∑
i=1

∂μ20

∂yi

∂v0

∂y3
∈ W

1
2+l
2

(
R2
)
;

(vii) � ∈ C4+β′
(G) on G = {x = (x1, x2, x3) ∈ R3

∣∣x1 > c1, x2 > T 0, x3 > S0} with l/2 < β′ < 1 + l/2,
inf
x∈G

�(x) ≥ c1 > 0 and sup
x∈G

|Dα�(x)| ≤M� for |α| ≤ 4.

Moreover, the compatibility conditions up to the order 1 [32, 48] are satisfied. Then, there exists T ∗ ∈ (0, T1]
such that the problem (3.7)–(3.9) has a unique solution

(U ,P, F ) ∈ W (T ∗) ≡W
3+l, 3+l

2
2 (ΩT∗) ×

(
W

3+l, 3+l
2

2 (ΩT∗)
)2

×W
3
2+l, 3

4+ l
2

2 (ΩT∗) ×W
5
2 +l, 5

4+ l
2

2

(
R2

T∗
)

satisfying 0 < T 0
2 ≤ T̃ <∞ and 0 < S0

2 ≤ S̃ <∞ on ΩT∗ .



888 H. HONDA

3.3. Overview of proof of Theorem 3.1

In the following sections, we provide the proof of Theorem 3.1 in several steps. Here we provide an overview
of the proof [50].

The next section is devoted to auxiliary lemmas, which will be used later in considering the linear and
nonlinear problems. Then, we consider the linear problems for U and F in Section 5. There, coefficients of the
principal terms and the right-hand side of each problem are assumed to be provided with sufficient regularity.
For the problem of U , we first consider the coefficients independent of time, then the original one. This process
is achieved by the regularizer method described in the same section. In Section 6, we consider the nonlinear
problem by using the iteration method. A sequence of unknown variables is recursively constructed, and we
deduce the boundedness of the sequence first by virtue of the results of the linear problem. Next, we show
that the sequence forms a Cauchy sequence, which converges to the desired solution. This is achieved owing
to Lemmas 4.10 and 6.3. The uniqueness of this solution is proved easily in a similar manner, and we omit it.
These are shown to hold on a sufficiently short time interval. Finally, we show that T̃ and S̃ are bounded from
below on a sufficiently short time interval. This completes the proof of Theorem 3.1.

4. Auxiliary lemmas

In this section, we prepare some lemmas used in the following sections. We first prepare lemmas concerning
multiplicative inequalities in Sobolev–Slobodetskĭı spaces. Lemmas 4.1–4.2 hold on

ΩT1 =
{
(y, t) = (y′, y3, t) |y′ ∈ R2, b (y′) ≤ y3 ≤ F0 (y′) , t ∈ (0, T1]

}
.

Lemma 4.1. For T1 > 0 arbitrarily provided and functions f ∈ W
3
2+l, 3

4+ l
2

2 (R2
T1

), g11, g12 ∈ W
1+l, 1+l

2
2 (ΩT1),

and g2 ∈W
2+l, 2+l

2
2 (ΩT1), in general, the following estimates hold:

‖fg11‖
W

1+l, 1+l
2

2 (ΩT1)
≤ C1‖f‖

W
3
2 +l, 3

4+ l
2

2

(
R2

T1

)‖g11‖
W

1+l, 1+l
2

2 (ΩT1)
,

‖fg2‖
W

3
2+l, 3

4+ l
2

2 (ΩT1)
≤ C2‖f‖

W
3
2 +l, 3

4+ l
2

2

(
R2

T1

)‖g2‖
W

2+l, 2+l
2

2 (ΩT1)
,

‖fg11g12‖
W

l, l
2

2 (ΩT1)
≤ C3‖f‖

W
3
2 +l, 3

4+ l
2

2

(
R2

T1

)‖g11‖
W

1+l, 1+l
2

2 (ΩT1)
‖g12‖

W
1+l, 1+l

2
2 (ΩT1)

,

with positive constants Ci (i = 1, 2, 3) depending on ‖b‖
W

5
2+l

2 (R2)
and ‖F0‖

W
5
2+l

2 (R2)
.

The proof of this lemma is similar to that of Lemma 4.3 in [26], and we omit it here. Hereafter, C stands for
positive constants depending on ‖b‖

W
5
2+l

2 (R2)
, ‖F0‖

W
5
2+l

2 (R2)
, and ‖p0‖

W
5
2+l, 4

5+ l
2

2 (R2
T1

)
, and φ(·) for increasing

positive functions of their arguments.

Lemma 4.2. For T1 > 0 arbitrarily provided and function f ∈ W
l, l

2
2 (ΩT1) in general, we have the following

estimate: ∥∥∥∥ f

b− F0

∥∥∥∥2
W

l, l
2

2 (ΩT1)
≤ C‖f‖2

W
l, l

2
2 (ΩT1)

.

For Lemmas 4.3 and 4.5–4.7, below, we assume the following assumption: a number T1 > 0 and a function F∗
satisfy F∗ ∈ W

5
2+l, 5

4+ l
2

2 (R2
T1

) and F∗(y′, t) − b(y′) > c0 for t ∈ [0, T1], and F∗(y′, 0) = F0(y′). We shall call
this assumption (AF∗). The coordinate transform (1.15) is executed with F replaced by F∗. The functions b

and F0 are assumed to satisfy the assumptions imposed in the statement of Theorem 3.1, that is, b ∈W
5
2+l

2 (R2),

F0 ∈ W
5
2 +l
2 (R2) and F0(y′)− b(y′) > c0. The following lemma is proved with some elementary calculations, and

we introduce it without proof.
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Lemma 4.3. For T1 > 0, F∗ ∈ W
5
2+l, 5

4+ l
2

2 (R2
T1

) and function f ∈ W
3+l, 3+l

2
2 (R3

T1
) in general, we have the

following estimate:

φ

(
‖F∗‖

W
i− 1

2+l, i
2− 1

4+ l
2

2

(
R2

T1

)
)
‖f‖

W
i+l, i+l

2
2

(
R3

T1

) ≤
∥∥∥f̃ (F∗)

∥∥∥
W

i+l, i+l
2

2 (ΩT1)

≤ Cφ

(
‖F∗‖

W
i− 1

2 +l, i
2− 1

4 + l
2

2

(
R2

T1

)
)
‖f‖

W
i+l, i+l

2
2

(
R3

T1

) (i = 2, 3).

For the estimate of p, we prepare the following lemma:

Lemma 4.4. For arbitrary l > 1/2 and F0 ∈ W
5
2 +l
2 (R2), let us introduce a notation of an interval

Ib,F0 =
(
− sup

R2
|b|, sup

R2
|F0|
)
,

and let function g = g(y, z3), defined on Ω × Ib,F0 , satisfy∫
Ib,F0

‖g (·, z3) ‖2

Ẇ
l− 1

2
2 (Ω)

dz3 +
∫

Ω

|g (y, z3)|2 dy <∞ ∀z3 ∈ Ib,F0 .

We also introduce a function defined on Ω, Φg(y) ≡
∫ y3

F0(y′)
g(y, z3) dz3. Then, we have the following estimate

with a certain y30 ∈ Ib,F0 :

‖Φg‖2

Ẇ
l− 1

2
2 (Ω)

≤ C

{∫
Ib,F0

‖g (·, z3) ‖2

Ẇ
l− 1

2
2 (Ω)

dz3 +
∫

Ω

|g (y, y30)|2 dy

}
.

Similarly, if we take function f ∈ W l
2(Ω) and define function Φf (y) ≡

∫ y3

F0(y′) f(y′, z3) dz3, defined on Ω, the
following estimate holds:

‖Φf‖2
Ẇ l

2(Ω)
≤ C‖f‖2

W l
2(Ω). (4.1)

Proof. The proofs of both inequalities are similar, so we only show the first one. For two points, y(i) =
(y(i)′, y(i)

3 ) ∈ Ω (i = 1, 2), the following inequality holds:

∣∣∣Φg

(
y(1)
)
− Φg

(
y(2)
)∣∣∣2 ≤ 3

⎧⎨⎩
∣∣∣∣∣
∫ y

(1)
3

F0(y(1)′)
g
(
y(1), z3

)
dz3 −

∫ y
(2)
3

F0(y(1)′)
g
(
y(1), z3

)
dz3

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ y

(2)
3

F0(y(1)′)
g
(
y(1), z3

)
dz3 −

∫ y
(2)
3

F0(y(2)′)
g
(
y(1), z3

)
dz3

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ y

(2)
3

F0(y(2)′)

{
g
(
y(1), z3

)
− g
(
y(2), z3

)}
dz3

∣∣∣∣∣
2
⎫⎬⎭ ≡ 3

3∑
i=1

Ii.

In accordance with the mean value theorem, there exists a certain y30 ∈ Ib,F0 , such that

∫
Ω

∫
Ω

I1∣∣y(1) − y(2)
∣∣2+2l

dy(1)dy(2) ≤
∫

Ω

∫
Ω

∣∣∣y(1)
3 − y

(2)
3

∣∣∣2 ∣∣g (y(1), y30
)∣∣2∣∣y(1) − y(2)

∣∣2+2l
dy(1)dy(2).
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Letting ỹ = (ỹ′, ỹ3) ≡ y(1) − y(2), it is easily seen that

∫
R2

∣∣∣y(1)
3 − y

(2)
3

∣∣∣2
|ỹ|2+2l

dỹ′ = |ỹ3|2−2l
∫ ∞

0

dχ

(1 + χ)
2+2l

2

,

and therefore, ∫
Ω

∫
Ω

I1∣∣y(1) − y(2)
∣∣2+2l

dy(1)dy(2) ≤ C

∫
Ω

∣∣∣g (y(1), y30

)∣∣∣2 dy(1).

Next, we have ∫
Ω

∫
Ω

I2∣∣y(1) − y(2)
∣∣2+2l

dy(1)dy(2)

≤
∫

Ω

∫
Ω

∣∣F0

(
y(1)′)− F0

(
y(2)′)∣∣ ∫

Ig

∣∣g (y(1), z3
)∣∣2 dz3∣∣y(1) − y(2)

∣∣2+2l
dy(1)dy(2)

≤
∫

Ig

‖g(·, z3)‖2
L2(Ω) dz3

∫
Ω

∣∣F0

(
y(1)′)− F0

(
y(1)′ − ỹ′

)∣∣
|ỹ|2+2l

dỹ.

Then, noting the fact W
5
2+l
2 (R2) ⊂ C

3
2+l(R2),

∫
Ω

∣∣F0

(
y(1)′)− F0

(
y(1)′ − ỹ′

)∣∣
|ỹ|2+2l

dỹ ≤ C

{∫
|ỹ|≤1

|ỹ′| 32+l

|ỹ|2+2l
dỹ +

∫
|ỹ|>1

|ỹ′|
|ỹ|2+2l

dỹ

}
<∞.

The estimate of I3 is obtained in a similar manner, and we arrive at the first statement. The second state-
ment (4.1) is proved more easily, and we omit the proof of it here. �

The next lemma enables the estimate of F later.

Lemma 4.5. For arbitrary T1 > 0, F∗ ∈ W
5
2 + l

2 , 5
4+ l

2
2 (R2

T1
), such that F∗|t=0 = F0 ∈W

5
2+l
2 (R2), w = w′+˜̄v(F∗)

0 ,
with ˜̄v(F∗)

0 being defined earlier, the following estimates hold:

‖∇F∗ ·w‖2

W
i+l,

i+l
2

2 (ΩT1)
≤
(
φ4i

(
‖F∗‖

W
5
2+l, 5

4+ l
2

2

(
R2

T1

)
)

+ C

)
‖w‖2

W
i+l,

i+l
2

2 (ΩT1)
(i = 1, 2),

where φ4i(·) (i = 1, 2) stand for homogeneous polynomials of their arguments, with coefficients depending on
‖b‖

W
5
2 +l

2 (R2)
and ‖F0‖

W
5
2+l

2 (R2)
.

In addition, the following lemma is useful in the iteration process in the final section.

Lemma 4.6. For arbitrary T1 > 0, F∗ ∈W
5
2+l, 5

4+ l
2

2 (R2
T1

) such that F∗|t=0 = F0 ∈ W
5
2 +l
2 (R2),∥∥∥˜̄v(F∗)

0 − v0

∥∥∥
W

i+l,
i+l
2

2 (ΩT1)
≤ (ε+ εT1) ‖F∗ − F0‖

W
5
2 +l, 5

4+ l
2

2

(
R2

T1

)‖v0‖W
3+l
2,c (Ω)

(i = 1, 2)

holds with a small positive constant ε and Cε depending on ε.
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Proof. By applying the mean value theorem,

˜̄v(F∗)
0 − v0 = v̄0

(
y′, X(F∗)

3 (y, t)
)
− v0(y)

=
∫ 1

0

d
dχ

v̄0

(
y′, χX(F∗)

3 (y, t) + (1 − χ)y3
)

dχ

=
(F∗ (y′, t) − F0 (y′)) (b (y′) − y3)

b (y′) − F0 (y′)

∫ 1

0

∂v0

∂y3

(
y′, χX(F∗)

3 (y, t) + (1 − χ)y3
)

dχ.

This, and by applying the interpolation inequality of Sobolev–Slobodetskĭı spaces and the estimate of the
extended function, lead to the desired result. �

Now, we show some estimates concerning the derivatives of p̃(F ).

Lemma 4.7. For T1 > 0, p0 ∈ W
5
2+l, 5

4+ l
2

2 (R2
T1

) and F∗ ∈ W
5
2 +l, 5

4+ l
2

2 (R2
T1

) provided, which satisfies F∗|t=0 =

F0 ∈ W
5
2 +l
2 (R2), the following estimates hold:

∥∥∥Dα
y p̃

(F∗)
∥∥∥

W
5
2−|α|+l,

5
2−|α|+l

2
2 (ΩT1)

≤ φ

(
‖M‖

W
|α|+l,

|α|+l
2

2 (ΩT1)

)
‖F∗‖

W
5
2+l, 5

4+ l
2

2 (ΩT1)
(|α| = 1, 2, 3),

where M = (T̃ , S̃)T.

Proof. We first show the following equalities with i, j, k = 1, 2:

∂p̃(F∗)

∂yi
=
∂p0

∂yi
Φ

(M,F∗)
1 +

g

a33∗

∫ y3

F0(y′)
Ψ

(M,F∗)
1 (y′, z3, t)Φ

(M,F∗)
2 (y, z3, t) dz3, (4.2)

∂2p̃(F∗)

∂yi∂yj
=

∂2p0

∂yi∂yj
Φ

(M,F∗)
1 +

g

a33∗

∫ y3

F0(y′)
Ψ

(M,F∗)
2 (y′, z3, t)Φ

(M,F∗)
2 (y, z3, t) dz3, (4.3)

∂3p̃(F∗)

∂yi∂yj∂yk
=

∂3p0

∂yi∂yj∂yk
Φ

(M,F∗)
1 +

g

a33∗

∫ y3

F0(y′)
Ψ

(M,F∗)
3 (y′, z3, t)Φ

(M,F∗)
2 (y, z3, t) dz3, (4.4)

where

Φ
(M,F∗)
1 (y, t) = exp

(
− g

a33∗

∫ y3

F0(y′)

∂�

∂z1
(V (y′, z3, t)) dz3

)
,

Φ
(M,F∗)
2 (y, z3, t) = exp

(
− g

a33∗

∫ y3

z3

∂�

∂z1
(V (y′, τ, t)) dτ

)
,

Ψ
(M,F∗)
1 (y, t) = − g

a33∗

(
∂�

∂z2

∂T̃

∂yi
+

∂�

∂z3

∂S̃

∂yi

)
+

∂

∂yi

(
g

a33∗

)
�(V(y, t)) ≡ Ψ

(M,F∗)
11 + Ψ

(M,F∗)
12 ,

Ψ
(M,F∗)
2 (y, t) = − ∂

∂yj

(
g

a33∗

∂�

∂z1

)
∂p̃(F∗)

∂yi
+
∂Ψ

(M,F∗)
1

∂yj
,

Ψ
(M,F∗)
3 (y, t) = − ∂

∂yk

(
g

a33∗

∂�

∂z1

)
∂2p̃(F∗)

∂yi∂yj
+
∂Ψ

(M,F∗)
2

∂yk
,
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with a33∗ = a33(F∗). Actually, the differentiation of the hydrostatic relationship with respect to yi (i = 1, 2)
leads to

∂2p̃(F∗)

∂y3∂yi
= − g

a33∗

∂�

∂z1

∂p̃(F∗)

∂yi
+ Ψ

(M,F∗)
1 .

By solving this ordinary differential equation with respect to y3 with the boundary condition

∂p̃(F∗)

∂yi

∣∣∣
y3=F0(y′)

=
∂p0

∂yi
,

we have

∂p̃(F∗)

∂yi
=
∂p0

∂yi
exp

(
− g

a33∗

∫ y3

F0(y′)

∂�

∂z1
(V (y′, z3, t)) dz3

)

+
∫ y3

F0(y′)
Ψ

(M,F∗)
1 (y′, z3, t) exp

(
− g

a33∗

∫ y3

z3

∂�

∂z1
(V (y′, τ, t)) dτ

)
dz3.

Thus we have (4.2). (4.3) and (4.4) are shown in a similar manner. By applying Lemma 4.4, we have the desired
result. �

Now let us state a lemma concerning the differentiation of p with different F . Let p̃(i) satisfy

p̃(i)(y, t) = p0 (y′, t) +
g

a33
(i) (y′, t)

∫ F0(y′)

y3

�
(
V(i) (y′, z3, t)

)
dz3 (i = 1, 2),

where V(i) ≡ (p̃(i), T̃(i), S̃(i))T = (p̃(i),M(i))T, a33
(i) = a33(F(i)) (i = 1, 2). In addition, we introduce notations

Ṽ ≡ V(2) − V(1) ≡
(

˜̃p, ˜̃T, ˜̃S
)T

, F̃ ≡ F(2) − F(1), M̃ ≡
(

˜̃T, ˜̃S
)T

.

Based on these notations, we have the following lemma concerning the estimates of the derivatives of ˜̃p:

Lemma 4.8. For T1 > 0, the following estimates hold:

∥∥Dα
y

˜̃p
∥∥

W
5
2−|α|+l, 5

4− |α|
2 + l

2
2 (ΩT1)

≤ φ0

(∥∥∥F̃∥∥∥
W

|α|+l− 1
2+ |α|+l−1

2
2 (ΩT1)

, ‖M̃‖
W

|α|+l,
|α|+l

2
2 (ΩT1)

)
(|α| = 0, 1, 2, 3),

where φ0(·) is a homogeneous polynomial of its argument.

Proof. We first show the following estimates for y, y(i) (i = 1, 2) ∈ Ω:∣∣ ˜̃p(y, t)∣∣ ≤ φ0

(∣∣∣F̃ (y, t)
∣∣∣ , ∣∣∣M̃(y, t)

∣∣∣) , (4.5)∣∣∣ ˜̃p(y(1), t
)
− ˜̃p
(
y(2), t

)∣∣∣ ≤ φ0

(∣∣∣F̃ (y(1)′, t
)
− F̃

(
y(2)′, t

)∣∣∣ , ∣∣∣M̃(
y(1), t

)
− M̃

(
y(2), t

)∣∣∣) . (4.6)

To see these, we take the difference of the equalities

a33
(i)

∂p̃(F(i))

∂y3
= −g�

(
V(i)

)
(i = 1, 2),
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which yields

a33
(2)

∂ ˜̃p
∂y3

=
gF̃

b− F0

∂p̃(F(1))

∂y3
− gṼ ·

∫ 1

0

∇3� (Vσ′) dσ′,

where Vσ′ = σ′V(1) + (1 − σ′)V(2). The boundary condition is provided by

˜̃p
∣∣
y3=F0(y′) = 0.

From the classical result of the ordinary differential equation, we then have

˜̃p(y, t) =
∫ y3

F0

{
gF̃

b− F0

∂p̃(F(1))

∂y3
(y′, z3, t) − g

(∫ 1

0

∇2� (Vσ′ (y′, z3, t)) dσ′
)
· M̃ (y′, z3, t)

}

× exp
(
−g
∫ y3

z3

∫ 1

0

∂�

∂z1
(Vσ′ (y′, τ, t)) dσ′ dτ

)
dz3,

where ∇2� =
(

∂�
∂z2

, ∂�
∂z3

)T

. From this, (4.5)–(4.6) are easily obtained. Due to (4.2), on the other hand, we obtain

the explicit form of ∂ ˜̃p
∂yi

(i = 1, 2) by making use of the proof of Lemma 4.7:

∂ ˜̃p
∂yi

=
∂p0

∂yi

{
exp

(
− g

a33
(1)

∫ y3

F0(y′)

∂�

∂z1

(
V(1) (y′, z3, t)

)
dz3

)

− exp

(
− g

a33
(2)

∫ y3

F0(y′)

∂�

∂z1

(
V(2) (y′, z3, t)

)
dz3

)}

+
∫ y3

F0(y′)

(
Ψ

(1)
1 − Ψ

(2)
1

)
exp

(
− g

a33
(1)

∫ y3

z3

∂�

∂z1

(
V(1) (y′, τ, t)

)
dτ

)
dz3

+
∫ y3

F0(y′)
Ψ

(2)
1

{
exp

(
− g

a33
(1)

∫ y3

z3

∂�

∂z1

(
V(1) (y′, τ, t)

)
dτ

)

− exp

(
− g

a33
(2)

∫ y3

z3

∂�

∂z1

(
V(2) (y′, τ, t)

)
dτ

)}
≡

3∑
i=1

Ki, (4.7)

where Ψ (k)
1 ≡ Ψ

(M(k),F(k))
1 (k = 1, 2).

By virtue of the mean value theorem, the first term in the right-hand side of (4.7) is described as follows:

K1 =

{
− gF̃

b− F0

∫ y3

F0(y′)

∂�

∂z1

(
V(1) (y′, z3, t)

)
dz3

+
g

a33
(1)

∫ y3

F0

∫ 1

0

∇3
∂�

∂z1
(Vσ (y′, z3, t)) · Ṽ (y′, z3, t) dσdz3

}∫ 1

0

exp (Jσ′) dσ′,

where

Jσ′ = − σ′g
a33
(1)

∫ y3

F0(y′)

∂�

∂z1

(
V(1) (y′, z3, t)

)
dz3 −

(1 − σ′) g
a33
(2)

∫ y3

F0(y′)

∂�

∂z1

(
V(2) (y′, z3, t)

)
dz3.



894 H. HONDA

Next, it is easily seen that

Ψ
(1)
11 − Ψ

(2)
11 = − gF̃

b− F0

(
∇2 ·

∂M
∂yi

)
− g

a33
(2)

∇2�
(
V(2)

)
· ∂M̃
∂yi

− gṼ
a33
(2)

{(∫ 1

0

∇3
∂�

∂z2
(Vσ) dσ

)
∂T̃

∂yi
+
(∫ 1

0

∇3
∂�

∂z3
(Vσ) dσ

)
∂S̃

∂yi

}
,

Ψ
(1)
12 − Ψ

(2)
12 = − ∂

∂yi

(
gF̃

b− F0

)
�
(
V(1)

)
+

∂

∂yi

(
g

a33
(2)

)(∫ 1

0

∇3� (Vσ) dσ
)
Ṽ ,

where Ψ (i)
1j = Ψ

(M(i),F(i))

1j (i, j = 1, 2). Applying (4.5) and (4.6) together with these, it is possible to estimate∥∥∥ ∂ ˜̃p
∂yi

∥∥∥
Ẇ l

2(Ω)
, and we have the desired result with the help of Lemma 4.2. Other cases are calculated in a similar

manner. �

For arbitrary T1 > 0, we introduce new notations of function spaces:

W1(T1) ≡
(
W

1+l, 1+l
2

2 (ΩT1)
)3

, W2(T1) ≡
(
W

3
2+l, 3

4+ l
2

2 (ΓT1)
)3

, W3(T1) ≡
(
W

3
2+l, 3

4 + l
2

2 (ΓbT1)
)3

,

WH(T1) ≡
3∏

i=1

Wi(T1).

The next lemma is concerned with the estimate of the differential of a function with respect to time in Sobolev
space [49]. It is useful in estimating the difference of the operators with respect to time in Lemma 4.10.

Lemma 4.9. For arbitrary T1 > 0 and function g ∈ W
1+l, 1+l

2
2 (ΩT1 ) in general, there exists a positive con-

stant β1, such that

‖g(·, t) − g(·, 0)‖2
W l

2(Ω) ≤ Ctβ1‖g‖2

W
l+2β1, l

2+β1
2 (ΩT1)

holds in the time interval (0, T1).

Proof. First, we extend the function g onto the space R3 × (0,∞) preserving the regularity [54], so that what

we discuss in the following is based on the assumption g ∈ W
1+l, 1+l

2
2 (R3 × (0,∞)) without loss of generality.

From the elementary fact of the spacial Fourier transform, the following representation holds:

‖g(·, t) − g(·, 0)‖2
W l

2(R3) =
∫
R3

(
1 + |ξ|2

)l |Fy[g(y, t) − g(y, 0)](ξ, t)|2 dξ, (4.8)

where Fy[f ] stands for the Fourier transform of function f(y) with respect to y. On the other hand, by virtue
of the inverse Fourier transform with respect to time, the following relationship holds:

g(y, t+ τ) − g(y, τ) =
1
2π

∫
R

exp(iτη)(exp(itη) − 1)ĝt(y, η) dη, (4.9)
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where ĝt(y, η) is the Fourier transform of g with respect to time. By taking τ = 0 in (4.9), and then substituting
it into (4.8), we have

‖g(·, t) − g(·, 0)‖2
W l

2(R
3) =

1
2π

∫
R3

(
1 + |ξ|2

)l ∣∣∣∣Fy

[∫
R

(exp(itη) − 1)ĝt(y, η)dη
]

(ξ, t)
∣∣∣∣2 dξ

=
1
2π

∫
R3

(
1 + |ξ|2

)l ∣∣∣∣∫
R

(exp(itη) − 1)ĝy,t(ξ, η)dη
∣∣∣∣2 dξ

≤
{∫

R

(∫
R3

(
1 + |ξ|2

)l
(exp(itη) − 1)2

∣∣ĝy,t(ξ, η)
∣∣2 dξ

) 1
2

dη

}2

=
∫
R

(exp(itη) − 1)2
∥∥ĝt(η)

∥∥2

W l
2(R3)

dη

≤ Ctβ1

∫
R

(
1 + η2

)β1
∥∥ĝt(η)

∥∥2

W l
2(R3)

dη ≤ Ctβ1‖g‖2

W
l+2β1, l

2+β1
2 (R3×(0,∞))

. (4.10)

In (4.10), ĝy,t means the Fourier transform with respect to both space and time, and we have applied Minkowski’s
inequality in the first inequality. This and the way of extension completes the proof. �

Now, we can prove the following lemma, which plays an important role in later:

Lemma 4.10. For T1 > 0 small enough, define (u∗, T̃∗, S̃∗, F∗), (u(i), T̃(i), S̃(i), F(i)) ∈ W
3+l, 3+l

2
2,c (ΩT1) ×

W
3+l, 3+l

2
2 (ΩT1 ) ×W

3+l, 3+l
2

2 (ΩT1 ) ×W
5
2+l, 5

4 + l
2

2 (R2
T1

) with(
u∗, T̃∗, S̃∗, F∗

)∣∣∣
t=0

=
(
u(i), T̃(i), S̃(i), F(i)

)∣∣∣
t=0

= (v0, T0, S0, F0) (i = 1, 2).

That is, u∗ = u′∗ + ˜̄v(F∗)
0 , u(i) = u′

(i) + ˜̄v(F(i))
0 (i = 1, 2). Let p̃∗, �̃∗ = �̃∗(y, t) ≡ �(p̃∗, T̃∗, S̃∗), p̃(i), �̃(i) =

�̃(i)(y, t) ≡ �(p̃(i), T̃(i), S̃(i)) (i = 1, 2) satisfy

a33
∗
∂p̃∗
∂y3

= −g�̃∗, in ΩT1 , p̃∗
∣∣
y3=F0(y′) = p0 (y′, t) on ΓT1 ,

a33
(i)

∂p̃(i)

∂y3
= −g�̃(i), in ΩT1 , p̃(i)

∣∣
y3=F0(y′) = p0 (y′, t) on ΓT1 (i = 1, 2),

respectively, where a33∗ = a33(F∗) and a33
(i) = a33(F(i)). We also assume (v0, T0, S0) ∈ W0, F0 ∈ W

5
2+l
2 (R2),

� ∈ C4+β′
(G) on G = {x = (x1, x2, x3) ∈ R3

∣∣x1 > c1, x2 > T 0, x3 > S0} with l/2 < β′ < 1 + l/2. Let us
introduce notations

WU (T1) ≡W
3+l, 3+l

2
2 (ΩT1) ×W

3+l, 3+l
2

2 (ΩT1) ×W
3+l, 3+l

2
2 (ΩT1) , W ′

U(T1) ≡
(
W

3+l, 3+l
2

2 (ΩT1)
)3

,

U(i) =
(
u′

(i), T̃(i), S̃(i)

)T

, U∗ =
(
u′
∗, T̃∗, S̃∗

)T

, Ũ =
(
u(1) − u(2), T̃(1) − T̃(2), S̃(1) − S̃(2)

)T

,

L0U =
(
L1,0u′,L2,0T̃ ,L3,0S̃

)T

, Bi,0 = Bi

(
∂v0

∂y3
, �u,

∂�u

∂y3
, F0

)
, Bi(∗) ≡ Bi (∇F∗,3u∗, �̃∗,∇F∗,3�̃∗) ,

Bi(j) ≡ Bi

(
∇F(j),3u(j), �̃(j),∇F(j),3�̃(j)

)
(i, j = 1, 2),

μ2(i) ≡ μ2a

(
1 + α2R(i)

)−2 + μ2b (i = 1, 2), μm(i) ≡ μma

(
1 + αmR(i)

)−1 + μmb (i = 1, 2, m = 4, 6),
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where R(i) ≡ g�̃−1
(i)

a33
(i)

∂�̃(i)

∂y3

∣∣∣∂u(i)

∂y3

∣∣∣−2

(i = 1, 2). We also define R∗ ≡ g�̃−1
∗

a33∗
∂�̃∗
∂y3

∣∣∣∂u∗
∂y3

∣∣∣−2

, V∗ ≡ (p̃∗, T̃∗, S̃∗)T and

assume (1 + αiR0)
∣∣∣∂v0

∂y3

∣∣∣ ≥ cu > 0 (i = 2, 4, 6). Let T1 > 0 and a function F∗ satisfy F∗ ∈ W
5
2+l, 5

4+ l
2

2 (R2
T1

),

F∗(y′, t) − b(y′) > c0, min
{

(1 + αiR∗)
∣∣∣∂u∗

∂y3

∣∣∣ , ∣∣∣∂u∗
∂y3

∣∣∣} ≥ cu > 0 and min
{
(1 + αiR(j))

∣∣∣∂u(j)

∂y3

∣∣∣ , ∣∣∣∂u(j)

∂y3

∣∣∣} ≥ cu > 0
(i = 2, 4, 6, j = 1, 2) for any t ∈ (0, T1]. Then, under these assumptions, the following estimates hold for any
t ∈ (0, T1] and ε > 0:

∥∥LU(1),F(1)U∗
∥∥
W1(t)

+
2∑

i=1

∥∥Bi(1)U∗
∥∥
Wi+1(t)

≤ φ01

(∥∥F(1)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )
, ‖F∗‖

W
5
2+l, 5

4+ l
2

2 (R2
t )
,
∥∥U(1)

∥∥
WU (t)

, ‖U∗‖WU (t)

)
, (4.11)

∥∥[LU(1),F(1) − LU(2),F(2)

]
U∗
∥∥
W1(t)

+
2∑

i=1

∥∥[Bi(1) − Bi(2)

]
U∗
∥∥
Wi+1(t)

≤ (ε+ Cεt)φ02

(
2∑

i=1

(∥∥F(i)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

+
∥∥U(i)

∥∥
WU (t)

)
, ‖U∗‖WU(t)

)

×
(∥∥∥Ũ∥∥∥

W′
U (t)

+
∥∥∥F̃∥∥∥

W
5
2+l, 5

4+ l
2

2 (R2
t )

)
, (4.12)

∥∥[LU(1),F(1) − L0

]
U∗
∥∥
W1(t)

+
2∑

i=1

∥∥[Bi(1) − Bi,0

]
U∗
∥∥
Wi+1(t)

≤ (ε+ Cεt)φ03

(∥∥F(1)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )
,
∥∥U(1)

∥∥
WU (t)

)
‖U∗‖WU(t), (4.13)

where φ0i(·) (i = 1, 2, 3) are homogeneous polynomials of their arguments, and Cε is a positive constant depending
on ε.

Proof. Without losing generality, we show the statement in the case of t = T1. Since the inequality (4.13) is the
most difficult to prove, we only show the essence of the proof of it here. (4.11) and (4.12) are proved in a similar
manner, though more easily.

In the proof of (4.13), it is most important and very difficult to estimate the term∥∥∥∥∥(μ4(1) − μ40

)
θx1

(
p̃(1), T̃(1), S̃(1)

)
a33
(1)

∂T̃∗
∂y3

∥∥∥∥∥
W

3
2 +l, 3

4+ l
2

2 (ΓT1)
. (4.14)

Especially, we show the proof of the term∥∥∥∥∥
(

∂2

∂yi∂yj

(
μ4(1) − μ40

))
θx1

(
p̃(1), T̃(1), S̃(1)

)
a33
(1)

∂T̃∗
∂y3

∥∥∥∥∥
W

l− 1
2 , l

2− 1
4

2 (ΓT1)
, (4.15)

with i, j = 1, 2, which appears in (4.14). For the sake of simplicity, we denote f |Γ = f(y′, F0(y′), t) by f(y′, t)
hereafter for function f . Expanding the term of the second order derivative in (4.15), the amount in the norm,
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denoted by J , is represented as follows:

J = μ4a

(
1 + α4R(1)

)−2
∣∣∣∣∂u(1)

∂y3

∣∣∣∣−4(
ψ(1) ·

∂2u(1)

∂yi∂y3

)(
ψ(1) ·

∂2u(1)

∂yj∂y3

) ∣∣∣∣∣
Γ

− μ4a (1 + α4R0)
−2

∣∣∣∣∂u0

∂y3

∣∣∣∣−4(
ψ0 ·

∂2u0

∂yi∂y3

)(
ψ0 ·

∂2u0

∂yj∂y3

) ∣∣∣∣∣
Γ

≡ Θ −Θ0,

where

ψ(1) =
∣∣∣∣∂u(1)

∂y3

∣∣∣∣−1 ∂u(1)

∂y3

∣∣∣
Γ
, ψ0 =

∣∣∣∣∂u0

∂y3

∣∣∣∣−1
∂u0

∂y3

∣∣∣∣∣
Γ

.

Thanks to Lemma 4.9, we have the estimate with 0 < ε < 1/2 such that

‖Θ(·, t) − Θ0(·)‖
W

l− 1
2

2 (R2)
≤ Ct

ε
2 ‖Θ‖

W
l− 1

2+ε, l
2− 1

4+ ε
2

2 (R2
t )
. (4.16)

Therefore, we only have to estimate the right-hand side of (4.16). First, we show the estimate of

‖Θ(t)‖2

Ẇ
l− 1

2+ε

2 (R2)
.

Taking |ψ(1)| = 1 and the boundedness of the amount

(
1 + α4R(1)

)−2
∣∣∣∣∂u(1)

∂y3

∣∣∣∣−4

on a short time interval into account, it is essential to estimate the amount

J1(t) ≡
∫
R2

∫
R2

∣∣ψ(1) (y′1, t) − ψ(1) (y′2, t)
∣∣2 ∣∣∣ ∂2u(1)

∂yi∂y3
(y′1, t)

∣∣∣2 ∣∣∣ ∂2u(1)

∂yj∂y3
(y′1, t)

∣∣∣2
|y′1 − y′2|

1+2l+2ε
dy′1dy

′
2.

By taking z′ = y′1−y′2 in the right-hand side of the above, and taking the positive constant τ < 2
1−l , the Hölder’s

inequality with respect to y′1 and the Sobolev embedding theorem lead to

J1(t) ≤
∥∥∥∥ ∂2u(1)

∂yi∂y3
(t)
∥∥∥∥2

Lτ (R2)

∥∥∥∥ ∂2u(1)

∂yj∂y3
(t)
∥∥∥∥2

Lτ(R2)

∫
R2

∥∥ψ(1)(·, t) − ψ(1) (· − z′, t)
∥∥2

W 1
2 (R2)

|z′|1+2l+2ε
dz′. (4.17)

In order to estimate the term

∫
R2

∥∥∥ ∂
∂yk

ψ(1)(·, t) − ∂
∂yk

ψ(1) (· − z′, t)
∥∥∥2

L2(R2)

|z′|1+2l+2ε
dz′ (k = 1, 2), (4.18)

we note the fact that

∂

∂yk
ψ(1) =

∂2u(1)

∂yk∂y3

∣∣∣∣∂u(1)

∂y3

∣∣∣∣−1

−
∂u(1)

∂y3
·
∂2u(1)

∂yk∂y3

∣∣∣∣∂u(1)

∂y3

∣∣∣∣− 3
2 ∂u(1)

∂y3
,

and the assumption (i) in Theorem 3.1. We estimate the term

J2(t) ≡∫
R2

∫
R2

∣∣∣∂u(1)

∂y3
(y′1, t) ·

∂2u(1)

∂yk∂y3
(y′1, t)

∂u(1)

∂y3
(y′1, t)−

∂u(1)

∂y3
(y′1−z′, t) ·

∂2u(1)

∂yk∂y3
(y′1−z′, t)

∂u(1)

∂y3
(y′1−z′, t)

∣∣∣2
|z′|1+2l+2ε

dz′dy′1,
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which is essential in estimating (4.18). By virtue of Hölder’s inequality and the Sobolev embedding theorem
again, we have

J2(t) ≤ 2 sup
R2

T1

∣∣∣∣∂u(1)

∂y3

∣∣∣∣2 ∥∥∥∥ ∂2u(1)

∂yk∂y3
(t)
∥∥∥∥2

W
l− 1

2
2 (R2)

∥∥∥∥∂u(1)

∂y3
(t)
∥∥∥∥2

Ẇ
l+ 1

2+ε

2 (R2)

+ sup
R2

T1

∣∣∣∣∂u(1)

∂y3

∣∣∣∣4 ∥∥∥∥ ∂2u(1)

∂yk∂y3
(t)
∥∥∥∥2

W
l− 1

2+ε

2 (R2)

≤ C (2K1(t) +K2(t)) ,

where

K1(t) ≡

⎛⎜⎝∥∥∥∥∥∂u
′
(1)

∂y3

∥∥∥∥∥
2

W
3
2 +l, 3

4+ l
2

2

(
R2

T1

) + ‖u0‖2

W
3+l, 3+l

2
2,c (ΩT1)

⎞⎟⎠
2⎛⎝∥∥∥∥∥ ∂

2u′
(1)

∂yk∂y3
(t)

∥∥∥∥∥
2

W
l− 1

2
2 (R2)

+ ‖u0‖2

W
3+l, 3+l

2
2,c (ΩT1)

⎞⎠ ,

K2(t) ≡

⎛⎜⎝∥∥∥∥∥∂u
′
(1)

∂y3

∥∥∥∥∥
4

W
3
2 +l, 3

4+ l
2

2

(
R2

T1

) + ‖u0‖4

W
3+l, 3+l

2
2,c (ΩT1)

⎞⎟⎠
⎛⎝∥∥∥∥∥ ∂

2u′
(1)

∂yk∂y3
(t)

∥∥∥∥∥
2

W
l− 1

2+ε

2 (R2)

+ ‖u0‖2

W
3+l, 3+l

2
2,c (ΩT1)

⎞⎠ .

Combining the discussions after (4.17), we have

J1(t) ≤ C (2K1(t) +K2(t))
∥∥∥∥ ∂2u(1)

∂yi∂y3
(t)
∥∥∥∥2

Lτ (R2)

∥∥∥∥ ∂2u(1)

∂yj∂y3
(t)
∥∥∥∥2

Lτ(R2)

. (4.19)

Next, we estimate
∫ T1

0 J1(t) dt, which amounts to estimating
∫ T1

0 ‖Θ(t)‖2

Ẇ
l− 1

2+ε

2 (R2)
dt. Owing to (4.19) and the

representations of Km (m = 1, 2), it is sufficient to estimate the amount

J3 ≡
∫ T1

0

∥∥∥∥ ∂2u(1)

∂yi∂y3
(t)
∥∥∥∥2

Lτ (R2)

∥∥∥∥ ∂2u(1)

∂yj∂y3
(t)
∥∥∥∥2

Lτ (R2)

∥∥∥∥∥ ∂
2u′

(1)

∂yk∂y3
(t)

∥∥∥∥∥
2

W
l− 1

2
2 (R2)

dt.

Again, by virtue of Hölder’s inequality, the Sobolev embedding theorem, and the multiplicative inequality of

Sobolev–Slobodetskĭı spaces, and by making use of the trace theorem and τ <
2

1 − l
, we arrive at the estimate

J3 ≤ sup
t∈(0,T1)

∥∥∥∥ ∂2u(1)

∂yk∂y3

∥∥∥∥
W

l− 1
2

2 (R2)

∥∥∥∥ ∂2u(1)

∂yi∂y3

∥∥∥∥2
L4(0,T1;Lτ (R2))

∥∥∥∥∥ ∂
2u′

(1)

∂yj∂y3

∥∥∥∥∥
2

L4(0,T1;Lτ (R2))

≤ (ε′ + Cε′T1)
∥∥u(1)

∥∥2
W

3+l, 3+l
2

2 (ΩT1)

∥∥∥∥ ∂2u(1)

∂yi∂y3

∥∥∥∥2
W

1+l, 1+l
2

2 (ΩT1)

∥∥∥∥∥ ∂
2u′

(1)

∂yj∂y3

∥∥∥∥∥
2

W
1+l, 1+l

2
2 (ΩT1)

,

where ε′ > 0 is a small positive constant. This completes the estimate of ‖Θ‖2

L2(0,T1;Ẇ
l− 1

2+ε

2 (R2))
. The estimate

of the time derivative of Θ is obtained by similar calculations, which leads to

‖Θ‖2

L2

(
R2;Ẇ

l
2 − 1

4+ ε
2

2 (0,T1)

) ≤ c(T1)
(

1 + ‖u′
(1)‖

W
3+l, 3+l

2
2 (ΩT1)

)2 ∥∥∥u′
(1)

∥∥∥6
W

3+l,
3+l
2

2 (ΩT1)
,

with an increasing function of time c(·), which tends to zero as t does. These, together with (4.19) and by
applying the multiplicative inequality to (4.15), yields the desired estimate (4.13). Estimates (4.11) and (4.12)
are obtained in the same line, but more easily, and we omit the proofs here. �
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5. Linear problems

In this section, we consider linear problems for U ≡ (u′,M)T ≡ (u′, T̃ , S̃)T and F . Each problem will
contribute to constructing the successive approximation of the nonlinear problem in the next section.

5.1. Extension of initial data into the region t > 0

The original problem for U in (3.7) has nonlinearity in its principal term of the equation, which results in the
complicated process in solving the linearized problem. In order to overcome this issue, we prepare a mapping
which corresponds extensions of (T0, S0) into the region t > 0 [32].

Assume that an arbitrary T1 > 0 and a pair of functions (l′2, l
′
3) ∈

(
W

1+l, 1+l
2

2 (ΩT1)
)2

are provided. Then, we

introduce a mapping V1 : (l′2, l
′
3,U0) �−→ (T̄0, S̄0) = (T̆0, S̆0)

∣∣
Ω

, which corresponds the restriction onto Ω of a
pair of solutions (T̆0, S̆0) of the Cauchy problems⎧⎪⎨⎪⎩

∂T̆0

∂t
− L2,0T̆0 = T̄

(1)
0 in R3

T1
,

T̆0

∣∣
t=0

= T0 on R3,

⎧⎪⎨⎪⎩
∂S̆0

∂t
− L3,0S̆0 = S̄

(1)
0 in R3

T1
,

S̆0

∣∣
t=0

= S0 on R3,

to (l′2, l
′
3,U0), where T̄ (1)

0 and S̄(1)
0 are solutions to the following problems, respectively:⎧⎪⎪⎨⎪⎪⎩

∂T̄
(1)
0

∂t
− L2,0T̄

(1)
0 = 0 in R3

T1
,

T̄
(1)
0

∣∣∣
t=0

= l′2 on R3,

⎧⎪⎪⎨⎪⎪⎩
∂S̄

(1)
0

∂t
− L3,0S̄

(1)
0 = 0 in R3

T1
,

S̄
(1)
0

∣∣∣
t=0

= l′3 on R3.

It is obvious that V1(l′2, l
′
3;U0) = (T̄0, S̄0) defined above satisfies

V1 (l′2, l
′
3;U0)|t=0 = (T0, S0) ,

∂

∂t
V1 (l′2, l

′
3;U0)

∣∣∣∣
t=0

= (L2,0T0, L3,0S0) + (l′2, l
′
3)
∣∣
t=0

.

Now, using a notation

WM(T1) ≡
(
W

3+l, 3+l
2

2 (ΩT1)
)2

,

we advocate the following statement.

Lemma 5.1. For arbitrary T1 > 0, (l′2, l′3) ∈
(
W

1+l, 1+l
2

2 (ΩT1)
)2

and U0 = (v0, T0, S0)T ∈ W0, the following
inequality holds:

‖V1 (l′2, l
′
3;U0)‖WM(T1) ≤ C

(
3∑

i=2

‖l′i‖
W

1+l, 1+l
2

2 (ΩT1)
+ ‖U0‖W0

)
.

The proof of the lemma above is based on the classical theory of linear partial differential equations, and we
omit it here.

5.2. Problem for U
In this subsection, we consider linear problems for U . For arbitrary T1 > 0, let a set of functions (w, σ, s, f)

be provided such that (w, σ, s, f) ∈ W
3+l, 3+l

2
2,c (ΩT1 ) × W

3+l, 3+l
2

2 (ΩT1 ) × W
3+l, 3+l

2
2 (ΩT1 ) × W

5
2 +l, 5

4+ l
2

2 (R2
T1

),
(w, σ, s, f)|t=0 = (v0, T0, S0, F0)T. It is also assumed the function p̃∗ satisfies

∂p̃∗
∂y3

= −a33(f)� (p̃∗, σ, s) g in ΩT1 , p̃∗
∣∣
y3=F0(y′,t) = p0 (y′, t) on ΓT1 ,
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respectively. Define the notations Ŭ = (w, σ, s) and �̃∗ ≡ �(p̃∗, σ, s), and we consider the following problem with
li ∈ Wi(T1) (i = 1, 2, 3) provided:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t

− LŬ ,fU = l1 in ΩT1 ,

B1 (∇f,3w, �̃∗,∇f,3�̃∗, f)U = l2 on ΓT1 ,

B2 (∇f,3w, �̃∗,∇f,3�̃∗, f)U = l3 on ΓbT1 ,

U|t=0 = (0, T0, S0)
T on Ω,

(5.1)

together with the compatibility conditions up to the order 1:⎧⎪⎪⎨⎪⎪⎩
B1U

∣∣
t=0

= l2
∣∣
t=0

,
∂

∂t
B1U

∣∣∣
t=0

=
∂

∂t
l2
∣∣
t=0

on Γ,

B2U
∣∣
t=0

= l3
∣∣
t=0

,
∂

∂t
B2U

∣∣∣
t=0

=
∂

∂t
l3
∣∣
t=0

on Γb,

(5.2)

where we have used notations defined right below (3.7):

LŬ ,fU ≡
(
L1,Ŭ,fu

′, L2,Ŭ,f T̃ , L3,Ŭ,f S̃
)T

,

B1 (∇f,3w, �̃∗,∇f,3�̃∗, f)U
≡ (B11 (∇f,3w, �̃∗,∇f,3�̃∗, f)u′, B12 (∇f,3w, �̃∗,∇f,3�̃∗, f)M, B13 (∇f,3w, �̃∗,∇f,3�̃∗, f)M)T ,

B2 (∇f,3w, �̃∗,∇f,3�̃∗, f)U
≡ (B21 (∇f,3w, �̃∗,∇f,3�̃∗, f)u′, B22 (∇f,3w, �̃∗,∇f,3�̃∗, f)M, B23 (∇f,3w, �̃∗,∇f,3�̃∗, f)M)T .

Since the principal terms of left-hand side in (5.1) includes (w, σ, s), we apply a little more complicated argu-
ments to show the solvability of it than those with constant coefficients. The difficulties arise from the presence
of the Richardon number in the principal term which includes ∂v0

∂x3
.

In the following, we show the process of solving (5.1). We first rewrite (5.1) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t

− L0U =
[
LŬ ,f − L0

]
U + l1 ≡ m1(U) in ΩT1 ,

B1,0U = [B1,0 − B1 (∇f,3w, �̃∗,∇f,3�̃∗, f)]U + l2 ≡ m2(U) on ΓT1 ,

B2,0U = [B2,0 − B2 (∇f,3w, �̃∗,∇f,3�̃∗, f)]U + l3 ≡ m3(U) on ΓbT1 ,

U|t=0 = (0, T0, S0)
T on Ω,

(5.3)

where

L0U =
(
L1,0u′,L2,0T̃ ,L3,0S̃

)T

, Bi,0 = Bi

(
∂v0

∂y3
, �u,

∂�u

∂y3
, F0

)
(i = 1, 2),

and �u = �(pu, T0, S0) with pu(y, t) which is provided in (3.10). Prior to solving (5.3), we consider a linear
problem with (m1(U),m2(U),m3(U)) in (5.3) replaced by the provided data m′ = (m′

1,m
′
2,m

′
3) satisfying
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(m′
1,m

′
2,m

′
3)
∣∣
t=0

= (l1, l2, l3)
∣∣
t=0

. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U
∂t

− L0U = m′
1 in ΩT1 ,

B1,0U = m′
2 on ΓT1 ,

B2,0U = m′
3 on ΓbT1 ,

U|t=0 = (0, T0, S0)T on Ω.

(5.4)

Due to (5.3), following compatibility conditions hold in this case:⎧⎪⎪⎪⎨⎪⎪⎪⎩
B1,0U

∣∣
t=0

= m′
2

∣∣
t=0

,
∂

∂t
B1,0U

∣∣∣∣
t=0

=
∂

∂t
m′

2

∣∣∣∣
t=0

on Γ,

B2,0U
∣∣
t=0

= m′
3

∣∣
t=0

,
∂

∂t
B2,0U

∣∣∣∣
t=0

=
∂

∂t
m′

3

∣∣∣∣
t=0

on Γb.

(5.5)

Then we apply the extension mapping defined in the previous subsection:(
T 0, S0

)
= V1 (m′

12,m
′
13;U0) ,

where m′
1i (i = 2, 3) are the second and third components of m′

1. Introducing notations Ũ = (u′, T−T 0, S−S0)T

and U ′
0 = (0, T 0, S0)T, we have from (5.4)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ũ
∂t

− L0Ũ = m′
1 −
(
∂

∂t
− L0

)
U ′

0 ≡ k1 in ΩT ,

B1,0Ũ = m′
2 − B1,0U ′

0 ≡ k2 on ΓT ,

B2,0Ũ = m′
3 − B2,0U ′

0 ≡ k3 on ΓbT ,

Ũ |t=0 = 0 on Ω.

(5.6)

It is easily seen that the right-hand sides of (5.6) satisfies ki|t=0 = 0 (i = 1, 2, 3), ∂
∂tki

∣∣∣
t=0

= 0 (i = 2, 3), and

(k1,k2,k3) ∈ WH(T1) ≡
∏3

i=1 Wi(T1). In addition, the regularity of coefficients in operators in the left-hand
side of (5.6) are sufficient in the sense that we are able to apply the regularizer method. Accordingly, by virtue
of the classical result of the linear partial differential equation, we have the following result.

Theorem 5.2. Assume F0 ∈ W
5
2 +l
2 (R2), U0 = (v0, T0, S0)T ∈ W0, (1 + αiR0)

∣∣∣∂v0
∂x3

∣∣∣ ≥ cu > 0 (i = 2, 4, 6).
Let T1 > 0 and f satisfy the assumption (Af ). In addition, the compatibility conditions up to the order 1 are
assumed to hold. Then, there exists T51 ∈ (0, T1] and a unique solution Ũ ∈ W ′

U(T51) to (5.6) satisfying∥∥∥Ũ∥∥∥
W′

U (T51)
≤ C

3∑
i=1

‖ki‖Wi(T51) . (5.7)

The proof of this theorem is substantial to the main result of this paper, but is somewhat lengthy, and will be
provided in the next subsection. This theorem obviously implies that the problem (5.4) has a unique solution U
satisfying

‖U‖WU(T51) ≤ C ‖m′‖WH(T51)
,

where the function space WU (T51) is defined in the statement of Lemma 4.10. Next, we show the unique existence
of the solution to the problem (5.2).
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Theorem 5.3. Assume F0 ∈ W
5
2+l
2 (R2), U0 ≡ (v0, T0, S0)T ∈ W0, min

{
(1 + αiR0)

∣∣∣∂v0
∂y3

∣∣∣ , ∣∣∣∂v0
∂y3

∣∣∣} ≥ cu >

0 (i = 2, 4, 6). Define R∗ as that in Lemma 4.10 with (u∗, T̃∗, S̃∗, F∗) replaced by (w, σ, s, f), and w′ = w− ˜̄v(f)
0 .

Let T1 > 0 and f satisfy the assumption (Af ), li ∈ Wi(T1) (i = 1, 2, 3), and assume in addition

min
{

(1 + αiR∗)
∣∣∣∣ ∂w∂y3

∣∣∣∣ , ∣∣∣∣ ∂w∂y3
∣∣∣∣} ≥ cu > 0

holds for t ∈ (0, T1]. We also assume that the compatibility conditions (5.2) hold. Then, under the condition

C0(T1)

{
‖w′‖

W
3+l, 3+l

2
2 (ΩT1)

+
∑

1≤2χ1+|χ2|≤3

[∥∥Dχ1
t Dχ2

y σ
∥∥

W
l, l

2
2 (ΩT1)

+
∥∥Dχ1

t Dχ2
y s
∥∥

W
l, l

2
2 (ΩT1)

]

+ ‖f − F0‖
W

5
2+l, 5

4 + l
2

2

(
R2

T1

)
}
< δ (5.8)

with some power function C0(·) and a positive constant δ, there exists T52 ∈ (0, T1] and a unique solution
U ∈ WU (T52) to (5.1) satisfying

‖U‖WU(T52) ≤ C

3∑
i=1

‖li‖Wi(T52).

Proof. Define a mapping V2 that corresponds the solution U to (m1,m2,m3) in (5.3), which is assured to exist
by Theorem 5.2. Then, the problem (5.1) can be interpreted as the following functional equation:

U = V2 ((m1,m2,m3) (U)) .

The estimate (4.12) in Lemma 4.10 indicates that the right-hand side of above equality is a contraction map
on WU(T52) over a short time interval (0, T52], which is obviously continuous at the same time. Combining the
estimates stated in Lemmas 4.10 and 5.1, we have the desired estimate. �

5.3. Proof of Theorem 5.2

Now we show the proof of Theorem 5.2. The basic idea of the proof of Theorem 5.2 is the combination of
the abstract argument of the functional analysis and the regularizer method [32]. Let A be a linear operator
defined in the space W ′

U (T1) which corresponds Ũ ∈ W ′
U (T1) to

(
L0Ũ ,B1,0Ũ

∣∣
Γ
,B2,0Ũ

∣∣
Γb

)
. By virtue of (4.11)

in Lemma 4.10, it is obvious that the operator A is bounded. Then problem (5.6) is interpreted as the problem
of solving the abstract equation

AŨ = H

for H ∈ WH(T1) =
3∏

i=1

Wi(T1) (see the definition right above Lem. 4.9), and what we have to do is to show the

existence of a bounded inverse operator A−1. In order to prove Theorem 5.2, we will construct an operator R
acting from WH(T1) into W ′

U (T1) and such that for any H ∈ WH(T1) and Ũ ∈ W ′
U (T1),

ARH = H + T H, (5.9)

RAŨ = Ũ +W Ũ , (5.10)

where T and W are bounded operators in the spaces WH(T1) and W ′
U (T1), respectively, whose norms are small

if T1 is sufficiently small. The overview of the line of the proof is as follows:

• We introduce coverings of the region Ω;
• In each piece of the covering, we consider the model problem in the half-space in a local chart;
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• We construct the operators T and W above, and show the smallness of their norms under small T1;
• We show the existence of A−1 under the small T1, and extend the time interval by the continuation argument.

In the following, we denote the original coordinate system in Ω by y to avoid confusion.

5.3.1. Coverings of Ω

We first introduce coverings of Ω, on which we construct the regularizer later [32]. Take an arbitrary point
ξ ∈ Γ , around which Γ is represented by the equation ỹ3 = Fξ(ỹ′). Here ỹ = (ỹ′, ỹ3) = (ỹ1, ỹ2, ỹ3) is a local

coordinate system with the origin at ξ and with ỹ3-axis directed along NF0 and Fξ ∈ W
5
2 +l
2 (R2). The same

situation holds on Γb, that is, around an arbitrary point ξ ∈ Γb, Γb is represented by the equation ỹ3 = bξ(ỹ′) with
the local chart ỹ, whose origin is located at ξ. We also note that Fξ is defined on a circle Kr ≡ {ỹ′ ∈ R2||ỹ′| < r}
and satisfies Fξ(0) = ∇Fξ(0) = 0, and ‖Fξ‖

W
5
2+l

2 (R2)
≤M1. This holds for Γb also by replacing Fξ by bξ. Then

we introduce two systems of of covering of Ω, say, {ω(k)} and {Ω(k)}, which are constructed for any small
number λ, satisfying 0 < λ < min{r, c0/2} as follows (c0 was introduced in the statement of Thm. 3.1):

(i) ω(k) ⊂ Ω(k) ⊂ Ω ∀k,
⋃
k

ω(k) =
⋃
k

Ω(k) = Ω;

(ii) for any ξ ∈ Ω, there exists ω(k) such that y ∈ ω(k) and dist(y,Ω\ω(k)) ≥ β1λ with some β1;

(iii) for any λ > 0, there exists a natural number N0 independent of λ such that
N0+1⋂
k=1

Ω(k) is a null set;

(iv) if Ω(k)
⋂

(Γ
⋃
Γb) is a null set, then ω(k) and Ω(k) are the cubes with the same center ξ(k) and with the

length of their edges equal to λ
2 and λ, respectively. In this case, we represent k ∈ N1;

(v) if ω(k)
⋂
Γ �= φ, then by the local rectangular coordinate system {ỹ} with the origin at ξ ∈ Γ , ω(k) and Ω(k)

are defined by the inequalities

|ỹi| <
λ

2
(i = 1, 2); 0 < ỹ3 − Fξ(ỹ′) <

λ

2
,

|ỹi| < λ (i = 1, 2); 0 < ỹ3 − Fξ(ỹ′) < λ.

Similarly, if ω(k)
⋂
Γb �= φ, then by the local rectangular coordinate system {ỹ} with the origin at ξ ∈ Γb,

ω(k) and Ω(k) are defined by the inequalities

|ỹi| <
λ

2
(i = 1, 2); 0 < ỹ3 − bξ(ỹ′) <

λ

2
,

|ỹi| < λ (i = 1, 2); 0 < ỹ3 − bξ(ỹ′) < λ.

In case Ω(k)
⋂
Γ �= φ, we represent k ∈ N2, while in case Ω(k)

⋂
Γb �= φ, k ∈ N3.

Next, let us introduce a smooth partition of unity {ζ(k)(y)} subordinated to {ω(k)} and {Ω(k)} having the
following properties with a multi-index α:

0 ≤ ζ(k)(y) ≤ 1,
∣∣∣Dα

y ζ
(k)(y)

∣∣∣ ≤ cα
λ|α| , ζ(k)(y) =

{
1 for y ∈ ω(k),

0 for y ∈ Ω\Ω(k),

with some constant cα independent of k and λ. By virtue of the property (iii) of Ω(k), 1 ≤
∑
k

(
ζ(k)(y)

)2 ≤ N0,

and it is possible to take the functions

η(k)(y) ≡ ζ(k)(y)(∑
j ζ

(j)(y)
)2 k ∈

3⋃
i=1

Ni,
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having the properties

η(k)(y) = 0 in Ω\Ω(k),
∣∣∣Dα

y η
(k)(y)

∣∣∣ ≤ cα
λ|α| ,

∑
k

η(k)(y)ζ(k)(y) = 1.

5.3.2. Problems in half-space

Now we consider the model problems in the half-space R3
(+) ≡ R2 × (0,∞) for each affiliation of k. In the

following, let T1 be an arbitrary positive number. We introduce following notations to represent the coordinate
system of coefficients and the derivatives of the operators explicitly:

L0

(
y, t,

∂

∂y

)
, Bi,0

(
y, t,

∂

∂y

)
(i = 1, 2),

where ∂
∂y =

(
∂

∂y1
, ∂

∂y2
, ∂

∂y3

)T

. First, we show the case k ∈ N1. We consider the problem

⎧⎪⎨⎪⎩
∂Ũ (k)

∂t
− L0

(
ξ(k), 0,

∂

∂y

)
Ũ (k) = k(k)

1 in R3
(+)T1

≡ R3
(+) × (0, T1) ,

Ũ (k)
∣∣
t=0

= 0 on R3
(+),

(5.11)

for certain ξ(k) ∈
{
(y′, 0)|y′ ∈ R2

}
and k(k)

1 = ζ(k)k1 ∈ W1(+)(T1) ≡
(
W

1+l, 1+l
2

2

(
R3

(+)T1

))3

.

It is well known that the problem (5.11) has a unique solution Ũ (k) ∈
(
W

3+l, 3+l
2

2 (R3
(+)T1

)
)3

[32], which is
explicitly provided by applying the Fourier–Laplace transform and the rotation of the coordinate system. We
denote by R(k) the operator that corresponds this solution U (k) to k(k)

1 in (5.11).

Next, we consider the case k ∈ N2. Hereafter we use notations B(H)
i,0 (i = 1, 2, 3) representing operators consist-

ing of the terms of derivative in Bi,0 (i = 1, 2, 3). In addition, for k ∈
⋃3

i=2 Ni, let L(k)
0 (ỹ, t, ∂

∂ỹ ), B(H)(k)

i,0 (ỹ, t, ∂
∂ỹ )

be the operators (L0 and B(H)
i,0 (i = 1, 2, 3) in the local chart {ỹ} around a point ξ(k) = (ξ(k)

1 , ξ
(k)
2 , ξ

(k)
3 )T. Note

that the coordinate systems {y} and {ỹ} are related with a rotation and movement of the coordinate system:

ỹi =
3∑

j=1

β
(k)
ij

(
yj − ξ

(k)
j

)
(i = 1, 2, 3),

where
[
β

(k)
ij

]
i,j=1,2,3

is an orthogonal matrix. Now, let us introduce a notation of the coordinate transform

Zk : f(z) �−→ f̃(y) ≡ f(z(y)) on Ω(k) from z-coordinate system to y-coordinate system, where the relationship
between z- and ỹ-coordinate system is provided by

z′ = ỹ′, z3 =

{
ỹ3 − Fξ (ỹ′) .

ỹ3 − bξ (ỹ′) ,

while the one between ỹ- and y-coordinate system is provided above. Hereafter in this subsection, we use the
term “z-coordinate” referring to the local chart after this transform. Note that it is different from the one used
in Section 1.1 in the literature of oceanography. Then, rewriting the problem in z-coordinate system, we consider
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the following initial boundary value problem in the half-space:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ũ (k)

∂t
− L(k)

0

(
0, 0,

∂

∂z

)
Ũ (k) = k(k)

1 in R3
(+)T1

,

B(H)(k)

1,0

(
0, 0,

∂

∂z

)
Ũ (k) = k(k)

2 ≡ ζ(k)k2 on R2
T1

≡ R2 × (0, T1) ,

Ũ (k)
∣∣
t=0

= 0 on R3
(+).

(5.12)

This problem also has a unique solution Ũ (k) ∈ (W 3+l, 3+l
2

2 (R3
(+)T1

))3 by applying the Fourier–Laplace trans-

form [32], and we denote by R(k) the operator that associates with h(k) = (k(k)
1 ,k(k)

2 ) ∈ W1(+)(T1)×W2(+)(T1)
the solution of the problem above, where

W2(+)(T1) ≡
(
W

3
2+l, 3

4 + l
2

2

(
R2

T1

))3

.

For k ∈ N3, let L(k)
0 (ỹ, t, ∂

∂ỹ ),B(H)(k)

2,0 be the operators (L0,B(H)
2,0 ) in the local chart {ỹ} at the point ξ(k) ∈ Γb.

Then we consider the problem in the z-coordinate system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ũ (k)

∂t
− L(k)

0

(
0, 0,

∂

∂z

)
Ũ (k) = k(k)

1 in R3
(+)T1

,

B(H)(k)

2,0

(
0, 0,

∂

∂z

)
Ũ (k) = k(k)

3 ≡ ζ(k)k3 on R2
T1
,

Ũ (k)
∣∣
t=0

= 0 on R3
(+).

(5.13)

This problem also has a unique solution Ũ (k) ∈
(
W

3+l, 3+l
2

2 (R3
(+)T1

)
)3 by applying the Fourier–Laplace trans-

form [32], and we denote by R(k) the operator that associates with h(k) = (k(k)
1 ,k(k)

3 ) ∈ W1(+)(T1)×W2(+)(T1)
the solution of the problem above. Define an operator R, which associates H = (k1,k2,k3) ∈ WH(T1) the
following items:

RH =
∑

k

η(k)(y)Ũ (k)(y, t),

where

Ũ (k)(y, t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R(k)ζ(k)k1 (k ∈ N1) ,

ZkR
(k)
(
Z−1

k ζ(k)k1, Z
−1
k ζ(k)k2

)
(k ∈ N2) ,

ZkR
(k)
(
Z−1

k ζ(k)k1, Z
−1
k ζ(k)k3

)
(k ∈ N3) .

By virtue of the classical result of the half-space problem, we have the estimates∥∥∥R(k)k1

∥∥∥
W

3+l, 3+l
2

2

(
R3

(+)T1

) ≤ C ‖k1‖W1(+)(T1) for k ∈ N1,∥∥∥R(k) (k1,ki)
∥∥∥

W
3+l, 3+l

2
2

(
R3

(+)T1

) ≤ C
(
‖k1‖W1(+)(T1) + ‖ki‖W2(+)(T1)

)
for k ∈ Ni (i = 2, 3).

From this, we have the following lemma without proof.
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Lemma 5.4. For arbitrary T1 > 0, the operator R is a bounded operator acting from the space WH(T1) into
the space W ′

U(T1), and is subject to the estimate

‖RH‖W′
U (T1)

≤ C‖H‖WH(T1).

Now we construct operators T and W which are shown to be bounded on the spaces WH(T1) and W ′
U (T1),

respectively. We define

A0Ũ =
(
L0Ũ ,B(H)

1,0 Ũ
∣∣∣
Γ
,B(H)

2,0 Ũ
∣∣∣
Γb

)T

,

A1Ũ =
(
L′

0Ũ ,B
(L)
1,0 Ũ

∣∣∣
Γ
,B(L)

2,0 Ũ
∣∣∣
Γb

)T

,

where B(L)
i,0 = Bi,0 − B(H)

i,0 (i = 1, 2). By noting(
∂

∂t
− L0

(
ξ(k), 0,

∂

∂y

))
Ũ (k)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ(k)k1 (k ∈ N1) ,

Zk

[
L(k)

0

(
0, 0,

∂

∂z
−∇3Fξ(k)

∂

∂z3

)
− L(k)

0

(
0, 0,

∂

∂z

)]
R(k)

(
Z−1

k ζ(k)k1, Z
−1
k ζ(k)k2

)
+ζ(k)k1 (k ∈ N2) ,

Zk

[
L(k)

0

(
0, 0,

∂

∂z
−∇3bξ(k)

∂

∂z3

)
− L(k)

0

(
0, 0,

∂

∂z

)]
R(k)

(
Z−1

k ζ(k)k1, Z
−1
k ζ(k)k3

)
+ζ(k)k1 (k ∈ N3) ,

we have (∇3 is defined right after (1.5))(
∂

∂t
− L0

)
RH =

∑
k

[(
∂

∂t
− L0

)
η(k)Ũ (k)

]

=
∑

k

η(k) ∂Ũ (k)

∂t
−
∑

k

(
L0η

(k)Ũ (k) − η(k)L0Ũ (k)
)

−
∑

k

η(k)

[
L0

(
y, t,

∂

∂y

)
− L0

(
ξ(k), 0,

∂

∂y

)]
Ũ (k) −

∑
k

η(k)L0

(
ξ(k), 0,

∂

∂y

)
Ũ (k)

= k1 + T1H,

where

T1H ≡ −
∑

k

(
L0η

(k)Ũ (k) − η(k)L0Ũ (k)
)
−
∑

k

η(k)

[
L0

(
y, t,

∂

∂y

)
− L0

(
ξ(k), 0,

∂

∂y

)]
Ũ (k)

−
∑

k∈N2

η(k)Zk

[
L(k)

0

(
0, 0,

∂

∂z
−∇3Fξ(k)

∂

∂z3

)
− L(k)

0

(
0, 0,

∂

∂z

)]
R(k)

(
Z−1

k ζ(k)k1, Z
−1
k ζ(k)k2

)

−
∑

k∈N3

η(k)Zk

[
L(k)

0

(
0, 0,

∂

∂z
−∇3bξ(k)

∂

∂z3

)
− L(k)

0

(
0, 0,

∂

∂z

)]
R(k)

(
Z−1

k ζ(k)k1, Z
−1
k ζ(k)k3

)
. (5.14)
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In the analogous way, we have
Bi,0RU = ki+1 + Ti+1H (i = 1, 2),

where

T2H ≡ B(L)

1,0RH
∣∣∣
Γ

+
∑

k∈N2

(
B(H)

1,0 η
(k)Ũ (k) − η(k)B(H)

1,0 Ũ (k)
)∣∣∣∣∣

Γ

+
∑

k∈N2

η(k)

[
B(H)

1,0

(
y, t,

∂

∂y

)
− B(H)

1,0

(
ξ(k), 0,

∂

∂y

)]
Ũ (k)

∣∣∣∣∣
Γ

+
∑

k∈N2

η(k)Zk

[
B(H)(k)

1,0

(
0, 0,

∂

∂z
−∇Fξ(k)

∂

∂z3

)
− B(H)(k)

1,0

(
0, 0,

∂

∂z

)]

×R(k)
(
Z−1

k ζ(k)k1, Z
−1
k ζ(k)k2

)∣∣∣
Γ
, (5.15)

T3H ≡ B(L)

2,0RH
∣∣∣
Γb

+
∑

k∈N3

(
B(H)

2,0 η
(k)Ũ (k) − η(k)B(H)

2,0 Ũ (k)
)∣∣∣∣∣

Γb

+
∑

k∈N3

η(k)

[
B(H)

2,0

(
y, t,

∂

∂y

)
− B(H)

2,0

(
ξ(k), 0,

∂

∂y

)]
Ũ (k)

∣∣∣∣∣
Γb

+
∑

k∈N3

η(k)Zk

[
B(H)(k)

2,0

(
0, 0,

∂

∂z
−∇3bξ(k)

∂

∂z3

)
− B(H)(k)

2,0

(
0, 0,

∂

∂z

)]

×R(k)
(
Z−1

k ζ(k)k1, Z
−1
k ζ(k)k3

)∣∣∣
Γb

, (5.16)

and B(L)

i,0 (i = 1, 2) are the operators without the derivative terms in Bi,0 (i = 1, 2), respectively. Thus, (5.9)
holds with

T H = (T1H, T2H, T3H)T .

Take T1 = λχ2 with a certain number χ > 0. Then, by combining (5.14)–(5.16), and taking the regularity of θ(·)
into consideration, we have the following estimate [32]:

‖T H‖WH(T1) ≤ Cφ01(χ, λ)‖H‖WH(T1), (5.17)

where φ01 is a homogeneous polynomial.
In a similar manner, we have (5.10) with

W Ũ ≡ RA1Ũ+
∑

k∈N1

η(k)R(k)
[
ζ(k)L0Ũ−L0ζ

(k)Ũ
]
+
∑

k∈N1

η(k)R(k)

[{
L0

(
y, t,

∂

∂y

)
−L0

(
ξ(k), 0,

∂

∂y

)}
ζ(k)Ũ

]

+
∑

k∈N2

η(k)ZkR
(k)
[
Z−1

k

(
ζ(k)L0Ũ − L0ζ

(k)Ũ
)
, Z−1

k

(
ζ(k)B(H)(k)

1,0 Ũ − B(H)(k)

1,0 ζ(k)Ũ
)∣∣∣

Γ

]

+
∑

k∈N3

η(k)ZkR
(k)

[
Z−1

k

(
ζ(k)L0Ũ − L0ζ

(k)Ũ
)
, Z−1

k

(
ζ(k)B(H)(k)

2,0 Ũ − B(H)(k)

2,0 ζ(k)Ũ
)∣∣∣

Γb

]
+

3∑
j=2

Φ̃j ,
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with

Φ̃2 =
∑

k∈N2

η(k)ZkR
(k)

[
Z−1

k

{
L0

(
y, t,

∂

∂y

)
− L0

(
ξ(k), 0,

∂

∂y

)}
ζ(k)Ũ ,

Z−1
k

{
B(H)(k)

1,0

(
0, t,

∂

∂y

)
− B(H)(k)

1,0

(
0, 0,

∂

∂y

)}
ζ(k)Ũ

∣∣∣∣∣
Γ

]

+
∑

k∈N2

η(k)ZkR
(k)

[{
L(k)

0

(
0, 0,

∂

∂z
−∇3F

∂

∂z3

)
− L(k)

0

(
0, 0,

∂

∂z

)}
Z−1

k ζ(k)Ũ ,

{
B(H)(k)

1,0

(
0, 0,

∂

∂z
−∇3F

∂

∂z3

)
− B(H)(k)

1,0

(
0, 0,

∂

∂z

)}
Z−1

k ζ(k)Ũ
∣∣∣∣∣
z3=0

]
.

Φ̃3 =
∑

k∈N3

η(k)ZkR
(k)

[
Z−1

k

{
L0

(
y, t,

∂

∂y

)
− L0

(
ξ(k), 0,

∂

∂y

)}
ζ(k)Ũ ,

Z−1
k

{
B(H)(k)

2,0

(
0, t,

∂

∂y

)
− B(H)(k)

2,0

(
0, 0,

∂

∂y

)}
ζ(k)Ũ

∣∣∣
Γ

]

+
∑

k∈N3

η(k)ZkR
(k)

[{
L(k)

0

(
0, 0,

∂

∂z
−∇3b

∂

∂z3

)
− L(k)

0

(
0, 0,

∂

∂z

)}
Z−1

k ζ(k)Ũ ,

{
B(H)(k)

2,0

(
0, 0,

∂

∂z
−∇3b

∂

∂z3

)
− B(H)(k)

2,0

(
0, 0,

∂

∂z

)}
Z−1

k ζ(k)Ũ
∣∣∣∣
z3=0

]
.

Then, by virtue of Lemma 5.4, we easily have the estimate

‖W Ũ‖W′
U(T1) ≤ Cφ02(λ, χ)

∥∥∥Ũ∥∥∥
W′

U (T1)
(5.18)

with a homogeneous polynomial φ02. The estimates (5.17)–(5.18) lead us to conclude that both T and W are
bounded operators in the spaces WH(T1) and W ′

U(T1), respectively, and their norms are small if we take T1

sufficiently small.

5.3.3. Existence of operator A−1

From the arguments above, it is possible to make the operator norms of T and W satisfy

‖T ‖L(WH(T1):WH(T1)) < 1, ‖W‖L(W′
U (T1):W′

U(T1)) < 1

by taking T1 small enough, where
‖ · ‖L(WA(T1):WB(T1))

is the operator norm of a linear operator from a function space WA(T1) into WB(T1).
Then, by virtue of the contraction mapping principle, it is possible to conclude that there exist (I + T )−1

and (I +W )−1. Then, by replacing H in (5.9) by (I + T )−1H, and applying (I +W )−1 to both sides of (5.10),
we have

AR(I + T )−1H = H,

(I +W )−1RAŨ = Ũ .
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This means that A−1 = R(I + T )−1 = (I +W )−1R exists on the time interval (0, T1). This is equivalent to the
boundedness of the operator A−1, which is obvious by virtue of the estimate∥∥A−1

∥∥
L(WH(T1):W′

U (T1)) ≤
∥∥(I + T )−1

∥∥
L(WH(T1):WH(T1))

‖R‖L(WH(T1):W′
U (T1)).

If we take T1 so small, say, T10, that ‖T ‖WH(T10) ≤ 1
2 , then ‖(I + T )−1‖L(WH(T10):WH(T10)) ≤ 2, and∥∥A−1

∥∥
L(WH(T10):W′

U (T10)) ≤ 2‖R‖L(WH(T10):W′
U (T10)),

the right-hand side of which is estimated by Lemma 5.4. Finally, we refer to the extension of the time interval.
It is possible to consider the problem on the time interval (T10, 2T10), which yields the same existence result and
the estimate of the solution. Iterating this process until the time interval reaches T1, we arrive at the desired
result. This completes the proof of Theorem 5.2.

5.4. Problem for F

In this subsection, we consider linear problem for F with provided data on the time interval (0, T53).⎧⎪⎨⎪⎩
∂F

∂t
− L4,Ŭ,fF = l4 in R2

T53
,

F
∣∣
t=0

= F0 on R2.

Note that the operator L4,Ŭ,f is uniformly elliptic on a short time interval under the condition (v) in Theorem 3.1.
Due to the classical result of the Cauchy problem for the linear partial differential equation of parabolic type,
we have F ∈W

5
2 +l, 5

4+ l
2

2 (R2
T53

) and

‖F‖
W

5
2+l, 5

4+ l
2

2

(
R2

T53

) ≤ C51

(
‖l4‖

W
1
2+l, 1

4+ l
2

2

(
R2

T53

) + ‖F0‖
W

3
2+l

2 (R2)

)
,

with C51 > 0 depending on ‖w‖
W

3+l, 3+l
2

2 (ΩT53)
, ‖f‖

W
5
2+l, 5

4+ l
2

2 (R2
T53

)
, ‖s‖

W
3+l, 3+l

2
2 (ΩT53 )

and ‖σ‖
W

3+l, 3+l
2

2 (ΩT53 )
.

6. Nonlinear problem (Proof of Theorem 3.1)

In this section, we consider the original nonlinear problem by using the iteration method. This section is
divided into three subsections. In the first subsection, we construct the successive approximation and estimate
the right-hand side of each problem. In addition, we show the well-definedness of the successive approximation
on a short time interval by using some inequalities. The second subsection provides the convergence of the
successive approximation by showing they form the Cauchy sequence. Some sort of the boundedness of the
temperature and salinity will be shown in the final subsection.

6.1. Well-posedness of successive approximation

Here we solve the problem (3.5)–(3.7) by the method of successive approximations taking (U ′
(m),P(m), F(m)) ≡

(0, T0, S0,∇pu, F0), R(m) = g(�̃(m)a
33(F0))−1

∣∣∣∂v̄0
∂y3

∣∣∣−2

for m = 0, and for arbitrary T1 > 0, let p̃(m) and
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�̃(m) = �̃(m)(y, t) ≡ �(p̃(m)(y, t), T̃(m)(y, t), S̃(m)(y, t)) ≡ �(V(m)) satisfy for m ≥ 0

⎧⎪⎨⎪⎩
a33
(m)

∂p̃(m)

∂y3
= −g�̃(m) in ΩT1 ,

p̃(m)

∣∣
y3=F0(y′) = p0 (y′, t) on ΓbT1 ,

(6.1)

where a33
(m) = a33(F(m)). In the following, we also use a notation M(m) = (T̃(m), S̃(m))T.

Defining (U(m+1),P(m+1), F(m+1)) = (u′
(m+1), T̃(m+1), S̃(m+1),P(m+1), F(m+1)) (m = 0, 1, 2, . . .) as a solution

to the following problem (6.3)–(6.5) provided that (U (m), u3(m), F(m)) is given in such a way that

C0(T1)

⎧⎨⎩∥∥∥u′
(m)

∥∥∥
W

3+l,
3+l
2

2 (ΩT1)
+

∑
1≤2χ1+|χ2|≤3

∥∥Dχ1
t Dχ2

y M(m)

∥∥
WM(T1)

+
∥∥F(m) − F0

∥∥
W

5
2+l, 5

4+ l
2

2

(
R2

T1

)
⎫⎬⎭ < δ

(6.2)
holds with a constant δ > 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U(m+1)

∂t
− LU(m),F(m)U(m+1) = G1,F(m)U(m) ≡ E(m)

1 =
(
E(m)
11 , E(m)

12 , E(m)
13

)T

in ΩT1 ,

B1

(
∇F(m),3u(m), �̃(m),∇F(m),3�̃(m)

)
U(m+1) = τ̄

(m)
1 on ΓT1 ,

B2

(
∇F(m),3u(m), �̃(m),∇F(m),3�̃(m)

)
U(m+1) = τ̄

(m)
2 on ΓbT1 ,

U(m+1)

∣∣
t=0

= U0 = (0, T0, S0)
T on Ω.

(6.3)

P(m+1) = ∇p0 exp

(
−
∫ y3

F0

g

a33
(m)

�z1

(
V(m) (y′, z3, t)

))
dz3

+
∫ y3

F0

Ψ
(M(m+1),F(m+1),M(m),F(m))
1 (y′, z3, t) exp

(
−
∫ y3

z3

g

a33
(m)

�z1

(
V(m)

)
(y′, τ, t) dτ

)
dz3

≡ E(m)
2 in ΩT1 , (6.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂F(m+1)

∂t
− L4,U(m),F(m)F(m+1) = qw − u(m) · ∇F(m) −

(
u(m) · ∇b+

1
a33
(m)

∫ y3

F0(y′)
∇F(m) · u(m) (y′, z3, t) dz3

)

+μ1

2∑
i=1

∂

∂yi

(
∇F(m) · u(m+1)

)
· ∇F(m) −

2∑
i=1

∂

∂yi

(
μ2(m)a

33
(m)

∂u(m+1)

∂y3

)
−∇ ·

(
qwu(m)

)
−∇ · τ1 ≡ E(m)

3 in R2
T1
,

F(m+1)

∣∣
t=0

= F0 on R2.

(6.5)
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where

μ2(m) = μ2

(
∇F(m),3u(m), �̃(m),∇F(m),3�̃(m)

)
, V(m) =

(
p̃(m), T̃(m), S̃(m)

)T

,

Ψ
(M(m+1),F(m+1),M(m),F(m))
1 = −g∇

(
1

a33
(m+1)

)
− g

a33
(m)

(
�z2

(
V(m)

)
∇T̃(m+1) + �z3

(
V(m)

)
∇S̃(m+1)

)
,

τ̄1(m) =

⎛⎝τ1 − μ1∇F(m)
˜̄v(F(m))

0 · ∇F(m+1) + μ2(m)a
33
(
F(m)

) ∂ ˜̄v(F(m))
0

∂y3
+ qw ˜̄v(F(m))

0 ,

τ2 − μ3θx1

(
V(m)

)
P(m) · ∇F(m+1) − μ4(m)θx1

(
V(m)

)
�
(
V(m)

)
g, 0

⎞⎠T

,

τ̄2(m) =

(
τ3 − μ1∇F(m)

˜̄v(F(m))
0 · ∇b+ μ2(m)a

33
(
F(m)

) ∂ ˜̄v(F(m))
0

∂y3
,

− μ3θx1

(
V(m)

)
P(m) · ∇b − μ4(m)θx1

(
V(m)

)
�
(
V(m)

)
g, 0

)T

.

Note that in deriving the expression of P(m+1), we have made use of (4.2) in Lemma 4.7. The unique existence
of U(m+1) is guaranteed by Theorem 5.2, and we shall estimate the norm of the solution. By the interpolation

and Young’s inequalities, it is easy to confirm [23] that for a function f ∈ W
m, m

2
2 (ΩT1) satisfying f |t=0 = 0 in

general,

‖f‖2
W k,0

2 (ΩT1)
≤ ε‖f‖2

W m,0
2 (ΩT1)

+ CεT
2
1

∥∥∥∥∂f∂t
∥∥∥∥2

L2(ΩT1)
(6.6)

for any ε > 0 if m > k. Making use of (6.6) and Theorem 5.2, we shall estimate the right-hand sides of (6.3)–(6.5)
with the aid of the following lemma. Hereafter we use notations

E0(t) ≡
∥∥∥Ŭ0

∥∥∥
W0

+ ‖F0‖
W

5
2+l

2 (R2)
+

3∑
i=1

‖τi‖
W

3
2 +l′′, 4

3+ l′′
2

2 (R2
t )

+ ‖qw‖
W

1
2+l, 1

4 + l
2

2 (R2
t )

+‖p0‖
W

5
2+l, 5

4+ l
2

2 (R2
t )

+ ‖b‖
W

5
2+l

2 (R2)
,

and R(m) ≡
g�̃−1

(m)

a33
(m)

∂�̃(m)

∂y3

∣∣∣∣∂u(m)

∂y3

∣∣∣∣−2

for m ≥ 1.

Lemma 6.1. Assume F0 ∈ W
5
2+l
2 (R2), U0 ≡ (v0, T0, S0)T ∈ W0, min

{
(1 + αiR0)

∣∣∣∂v0
∂x3

∣∣∣ , ∣∣∣∂v0
∂x3

∣∣∣} ≥ cu > 0 (i =
2, 4, 6). In addition, for a certain m provided, let us assume that there exists T61 > 0 satisfying F(m)(y′, t) −
b(y′) > c0 > 0 and min

{
(1 + αiR(m))

∣∣∣∂u(m)

∂y3

∣∣∣ , ∣∣∣∂u(m)

∂y3

∣∣∣} > cu > 0 (i = 1, 2, 3) for t ∈ (0, T61]. Then, for the
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right-hand side of (6.3)–(6.5), following estimates hold for arbitrary small ε > 0 and t ∈ (0, T61]:

∥∥∥E(m)
1

∥∥∥
W1(t)

+
2∑

i=1

∥∥τ̄i(m)

∥∥
W2(t)

≤ (ε+ Cεt)

{
φ61

(∥∥U(m)

∥∥
WU (t)

+
∥∥F(m)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

)
+
∥∥P(m)

∥∥
W

3
2+l, 3

4 + l
2

2 (Ωt)

+ φ62

(∥∥∥M](m)

∥∥∥
WM(t)

)∥∥F(m+1)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

}
+ C61(t)E0(t),

∥∥∥E(m)
2

∥∥∥
W

3
2+l, 3

4+ l
2

2 (Ωt)
≤ φ63

(∥∥M(m)

∥∥
WM(t)

+
∥∥F(m)

∥∥
W

5
2 +l, 5

4+ l
2

2 (R2
t )

)(∥∥F(m+1)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

+‖M(m+1)‖WM(t)

)

+ φ64

(∥∥F(m)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

+ ‖M(m)‖WM(t)

)
,

∥∥∥E(m)
3

∥∥∥
W

1
2+l, 1

4+ l
2

2 (R2
t )

≤ φ65

(∥∥U(m)

∥∥
WU (T1)

+
∥∥F(m)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

)∥∥∥u′
(m+1)

∥∥∥
W

3+l, 3+l
2

2 (Ωt)

+ (ε+ Cεt)

[{
‖u′

(m)‖
W

3+l,
3+l
2

2 (Ωt)
+ φ66

(∥∥F(m)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)}

×
(

1 +
∥∥F(m)

∥∥
W

5
2 +l, 5

4+ l
2

2 (R2
t )

)

+ φ67

(∥∥F(m)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

+
∥∥M(m)

∥∥
WM(t)

)]
,

where φ6i(·) (i = 1, 2, . . . , 7) are positive and monotonically increasing functions of their arguments, and Cε is
a positive constant depending on ε.

Proof. We show a part of the estimate of
∥∥∥E(m)

1

∥∥∥
W2(t)

here, especially
∥∥∥E(m)

11

∥∥∥
W

1+l,
1+l
2

2 (Ωt)
since other terms are

estimated similarly.

E(m)
11 = −

(
u(m) · ∇

)
u′

(m) +

(
u(m) · ∇b+

1
a33
(m)

∫ y3

F0(y′)
∇F(m) · u(m) (y′, z3, t) dz3

)
a33
(m)

∂u′
(m)

∂y3

− ˜̄v(F(m))
0 · ∇F(m)u

′
(m) − fAu′

(m) −
a3

(m)g

a33
(m)

�
(
V(m)

)
−
(

˜̄v(F(m))
0 · ∇F(m)

˜̄v(F(m))
0 − v0 · ∇v0

)

+

{(
u(m) · ∇b +

1
a33
(m)

∫ y3

F0(y′)
∇F(m) · u(m) (y′, z3, t) dz3

)
a33
(m)

∂u′
(m)

∂y3

−
(

v0 · ∇b+
∫ y3

F0(y′)
∇ · v0 (y′, z3, t) dz3

)
∂v0

∂y3

}

+
(
L1,U(m),F(m)

˜̄v(F(m))
0 − L1,0v0

)
− fA

(
˜̄v(F(m))

0 − v0

)
+M1(y).
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We show the estimates of some of terms in the right-hand side of the above equality. First, by virtue of the
multiplicative and interpolation inequalities and Lemma 4.3, we have∥∥∥(u(m) · ∇F(m)

)
u′

(m)

∥∥∥
W

1+l, 1+l
2

2 (Ωt)
≤ (ε+ Cεt)

{∥∥∥u′
(m)

∥∥∥
W

3+l, 3+l
2

2 (Ωt)
+ φ

(∥∥F(m)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

)}

×
(

1 +
∥∥F(m)

∥∥
W

5
2 +l, 5

4 + l
2

2 (R2
t )

)∥∥∥u′
(m)

∥∥∥
W

3+l, 3+l
2

2 (Ωt)
.

Next, by virtue of (4.13) of Lemma 4.10 and Lemma 4.6, we have∥∥∥∥L1,U(m),F(m)
˜̄v(F(m))

0 − L1,0v0

∥∥∥∥
W

1+l, 1+l
2

2 (Ωt)

≤
∥∥∥∥[L1,U(m),F(m) − L1,0

]
˜̄v(F(m))

0

∥∥∥∥
W

1+l, 1+l
2

2 (Ωt)

+
∥∥∥∥L1,0

(
˜̄v(F(m))

0 − v0

)∥∥∥∥
W

1+l, 1+l
2

2 (Ωt)

≤ φ0 (ε+ Cεt)φ1

(∥∥U(m)

∥∥
WU (t)

+
∥∥F(m)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

)
for a homogeneous polynomial φ0 and a polynomial φ1. Other terms are estimated by making use of Lemmas 4.2
and 4.5, and by combining these, we arrive at the desired result. �

Now we introduce the notations

E(m)(t) ≡
∥∥(U(m),P(m), F(m)

)∥∥
W(t)

, E′
(m)(t) ≡

∥∥U(m)

∥∥
WU(t)

,

and take T61 such that F(m)(y′, t) − b(y′) > c0, min
{
(1 + αiR(m))

∣∣∣∂u(m)

∂y3

∣∣∣ , ∣∣∣∂u(m)

∂y3

∣∣∣} > cu

2 > 0 hold for t ∈
(0, T61]. Then, we have the following estimates for t ∈ (0, T61] with the aid of the results of the previous section
and Lemma 6.1:

E′
(m+1)(t) ≤ (ε+ Cεt)

{
φ61

(
E(m)(t)

)
+ φ62

(
E(m)(t)

) ∥∥F(m+1)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

}
+ C62(t), (6.7)

∥∥P(m+1)

∥∥
W

3
2+l, 3

4+ l
2

2 (Ωt)
≤ φ63

(
E(m)(T1)

)(∥∥F(m+1)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

+
∥∥M(m+1)

∥∥
WM(t)

)
+ φ64

(
E(m)(t)

)
,

(6.8)∥∥F(m+1)

∥∥
W

5
2 +l, 5

4+ l
2

2 (R2
t )

≤ φ65

(
E(m)(t)

) ∥∥∥u′
(m+1)

∥∥∥
W

3+l, 3+l
2

2 (Ωt)
+ (ε+ Cεt)φ66

(
E(m)(t)

)
+ E0(t). (6.9)

First, by adding (6.9) and (6.8) multiplied by 1/2φ63(E(m)(T1)), we have∥∥F(m+1)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

+
∥∥P(m+1)

∥∥
W

3
2 +l, 3

4+ l
2

2 (Ωt)

≤ φ67(Em (T1)E′
(m+1)(t) + (ε+ Cεt)φ68 (Em(t)) + C63(T61). (6.10)

Then, by taking ε and t small enough, if necessary, and by adding (6.7) and (6.10) multiplied by 1/2φ67(Em(T1)),
and estimating the right-hand side, we arrive at the inequality of the form

E(m+1)(t) ≤ C64(T1)
{
(ε+ Cεt)φ69

(
E(m)(T61)

)
+ 1
}

with some C64(t) ≥ 0 depending on t monotonically and increasingly. Take M > 0 such that E(m)(T61) < M
holds. Then, take ε first so that

εC64(T1)φ69(M) < M − C64(T1)
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holds, and then T61 ∈ (0, T1] so that

C64(T61)Cεφ69(M)T61 < M − C64(T61) − εC64(T61)φ69(M).

Consequently we obtain E(m+1)(T61) < M from the assumption E(m)(T61) < M . Now we show that T61 does
not depend on m with the following lemma:

Lemma 6.2. For T1 > 0 sufficiently small, we have the following inequality for any m ≥ 0:∣∣∣∣(1 + αiR(m)(y, t)
) ∣∣∣∣∂u(m)

∂y3
(y, t)

∣∣∣∣− (1 + αiR0(y))
∣∣∣∣∂v0

∂y3
(y)
∣∣∣∣∣∣∣∣ ≤ C65t

1
2

(∥∥U(m)

∥∥
WU(t)

+
∥∥F(m)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)
∀(y, t) ∈ ΩT1 .

Proof. This lemma is shown by direct calculations with the aid of the Sobolev embedding theorem, and we omit
the proof of it (the function space WU (t) is defined in the statement of Lem. 4.10). �

Due to Lemma 6.2, we have
(
1 + αiR(m)(y, t)

)
|∂u(m)

∂y3
(y, t)| > cu

2 for t ∈ (0, cu

2C65M ). Thus, by taking T61 small
enough, it does not depend on m. By induction {U(m),P(m), F(m)}∞m=0 is well defined in W(T61) satisfying (5.8)
with (w, σ, s, f) replaced by (u(m), T(m), S(m), F(m)) and E(m)(T61) < M for m = 0, 1, 2, . . .

6.2. Convergence of the successive approximation

In this subsection, we show the convergence of the successive approximation. Subtract (6.3)–(6.5) with m

replaced by m− 1 from itself. Denoting Ũ(m) ≡ U(m) −U(m−1), ũ′
(m) = u′

(m) − u′
(m−1), P̃(m) ≡ P(m) −P(m−1),

F̃(m) ≡ F(m) − F(m−1) for m ≥ 0, we consider the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ũ(m+1)

∂t
− LU(m),F(m) Ũ(m+1) =

[
E(m)
1 − E(m−1)

1

]
+
[
LU(m),F(m) − LU(m−1),F(m−1)

]
U(m) in ΩT61 ,

B1

(
∇F(m),3u(m), �̃(m),∇F(m),3�̃(m)

)
Ũ(m+1)

=
[
τ̄1(m) − τ̄1(m−1)

]
+
[
B1

(
∇F(m),3u(m), �̃(m),∇F(m),3�̃(m)

)
−B1

(
∇F(m−1),3u(m−1), �̃(m−1),∇F(m−1),3�̃(m−1)

) ]
U(m) on ΓT61 ,

B2

(
∇F(m),3u(m), �̃(m),∇F(m),3�̃(m)

)
Ũ(m+1)

=
[
τ̄2(m) − τ̄2(m−1)

]
+
[
B2

(
∇F(m),3u(m), �̃(m),∇F(m),3�̃(m)

)
−B2

(
∇F(m−1),3u(m−1), �̃(m−1),∇F(m−1),3�̃(m−1)

)]
U(m) on ΓbT61 ,

Ũ(m+1)

∣∣
t=0

= 0 on Ω,

P̃(m+1) = E(m)
2 − E(m−1)

2 in ΩT61 ,

⎧⎪⎨⎪⎩
∂F̃(m+1)

∂t
− L4,U(m−1),F(m−1) F̃(m+1) =

[
E(m)
3 − E(m−1)

3

]
+
[
L4,U(m),F(m) − L4,U(m−1),F(m−1)

]
F(m) in R2

T61
,

F̃(m+1)

∣∣
t=0

= 0 on R2.
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Lemma 6.3. Under the assumptions of Lemma 6.1, following estimates hold for ε > 0 and t ∈ (0, T61):∥∥∥E(m)
1 − E(m−1)

1

∥∥∥
W1(t)

+
2∑

i=1

∥∥τ̄i(m) − τ̄i(m−1)

∥∥
Wi+1(t)

≤ (ε+ Cεt)

[
φ610

(
m∑

i=m−1

(∥∥U(i)

∥∥
WU (t)

+
∥∥F(i)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)
+
∥∥P(m−1)

∥∥
W

3
2+l, 3

4+ l
2

2 (Ωt)

)

×
(∥∥∥Ũ(m)

∥∥∥
W′

U(t)
+
∥∥∥P̃(m)

∥∥∥
W

3
2+l, 3

4+ l
2

2 (Ωt)
+
∥∥∥F̃(m)

∥∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)

+ φ611

(
m+1∑

i=m−1

∥∥F(i)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)∥∥∥F̃(m)

∥∥∥
W

5
2 +l, 5

4+ l
2

2 (R2
t )

+ φ612

(∥∥F(m−1)

∥∥
W

5
2 +l, 5

4+ l
2

2 (R2
t )

)∥∥∥F̃(m+1)

∥∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

]
,

∥∥∥E(m)
2 − E(m−1)

2

∥∥∥
W

3
2 +l, 3

4+ l
2

2 (Ωt)
≤ φ613

(
m∑

i=m−1

∥∥M(i)

∥∥
WM(t)

+
∥∥F(i)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)

×
(∥∥∥M̃(m+1)

∥∥∥
WM(t)

+
∥∥∥F̃(m+1)

∥∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

)

+ (ε+ Cεt)φ614

(
m+1∑

i=m−1

∥∥M(i)

∥∥
WM(t)

+
∥∥F(i)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)

×
(∥∥∥F̃(m)

∥∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

+
∥∥∥M̃(m)

∥∥∥
WM(t)

)
,

∥∥∥E(m)
3 − E(m−1)

3

∥∥∥
W

1
2 +l, 1

4+ l
2

2 (R2
t )

≤ φ615

(∥∥M(m)

∥∥
W

3+l, 3+l
2

2 (Ωt)
+
∥∥F(m)

∥∥
W

5
2 +l, 5

4+ l
2

2 (R2
t )

)

×
{∥∥∥ũ′

(m+1)

∥∥∥
W

3+l,
3+l
2

2 (Ωt)
+ (ε+ Cεt)

∥∥∥F̃(m+1)

∥∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

}

+ (ε+ Cεt)φ616

(
m∑

i=m−1

∥∥U(i)

∥∥
WU (t)

+
∥∥F(i)

∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)

×
(∥∥∥ũ′

(m)

∥∥∥
W

3+l, 3+l
2

2 (Ωt)
+
∥∥∥M̃(m)

∥∥∥
W

3+l, 3+l
2

2 (Ωt)
+
∥∥∥F̃(m)

∥∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

)
,

where M̃(m) = M(m) −M(m−1), Cε is a positive constant depending on ε, and φ6i(·) (i = 10, 11, . . . , 16) are
increasing functions of their arguments.

Proof. This lemma is shown with the aid of Lemmas 4.1–4.3 and 4.6 and multiplicative inequalities, and we
omit the detail here. �

Let us define
W ′(T61) ≡ W ′

U (T61) ×W
3
2+l, 3

4+ l
2

2 (ΩT61) ×W
5
2 +l, 5

4+ l
2

2

(
R2

T61

)
,
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and Ẽ(m)(t) ≡ ‖(Ũ(m), P̃(m), F̃(m))‖W′(t), Ẽ′
(m)(t) ≡ ‖Ũ(m)‖W′

U(t). From Lemma 6.3, we have the following
inequality for any t ∈ (0, T61):

Ẽ′
(m+1)(t) ≤ (ε+ Cεt)

[
φ617(t)

(
E(m−1)(t) + E(m)(t) + E(m+1)(t)

)
Ẽ(m)(t)

+ φ612

(∥∥F(m−1)

∥∥
W

5
2+l, 5

4 + l
2

2 (R2
t )

)∥∥∥F̃(m+1)

∥∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

]
, (6.11)

∥∥∥P̃(m+1)

∥∥∥
W

3
2+l, 3

4 + l
2

2 (Ωt)
≤ Cφ613

(
m∑

i=m−1

E(i)(T61)

)(∥∥∥F̃(m+1)

∥∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

+
∥∥∥M̃∥∥∥

WM(t)

)

+ (ε+ Cεt)φ614

(
i=m+1∑

m

E(i)(t)

)
Ẽ(m)(t), (6.12)

∥∥∥F̃(m+1)

∥∥∥
W

5
2+l, 5

4+ l
2

2 (R2
t )

≤ Cφ615

(
E(m)(t)

) ∥∥∥ũ′
(m+1)

∥∥∥
W

3+l, 3+l
2

2 (Ωt)

+ (ε+ Cεt)φ616

(
E(m−1)(t) + E(m)(t)

)
Ẽ(m)(t). (6.13)

By manipulating (6.11)–(6.13) as we have done for (6.7)–(6.9), we arrive at the inequality

Ẽ(m+1)(t) ≤ (ε+ Cεt)φ618

(
E(m−1)(T61) + E(m)(T61) + E(m+1)(T61)

)
Ẽ(m)(t) (6.14)

for any t ∈ (0, T61]. Take ε small enough again so that εφ618(3M) < 1 holds, and then T62 ∈ (0, T61] so that
CεT62φ618(3M) < 1 − εφ618(3M) holds. For these ε and T62, we obtain

Ẽ(m+1)(t) ≤ rẼ(m)(t), r = (ε+ CεT62)φ618(3M) ∈ (0, 1).

Then we can verify that
{
(U(m),P(m), F(m))

}∞
m=0

is a Cauchy sequence in W(T62). Therefore the limit

(U ,P, F ) ≡ lim
m→∞

(
U(m),P(m), F(m)

)
exists in W(T62), which is our desired solution.

6.3. Boundedness of temperature and salinity

Finally we shall show that 0 < T 0/2 ≤ T̃ (y, t) < ∞ and 0 < S0/2 ≤ S̃(y, t) < ∞ hold by taking the time

interval small enough again. Indeed, since T̃ ′ ≡ T̃ −T0 ∈W
2+l, 2+l

2
2 (ΩT62 ) and T̃ ′∣∣

t=0
= 0, we have for t ∈ (0, T62]

T̃ (y, t) ≥ T0(y) −
∣∣∣T̃ (y, t) − T0(y)

∣∣∣ ≥ T 0 − tγ sup
y∈Ω

|T̃ ′(y, t)|(γ)
t

with exponent 0 < γ < l
2 − 1

4 . Since Sobolev embedding theorem implies sup
y∈Ω

|T̃ ′(y, t)|(γ)
t ≤ ‖T̃ ′‖

W
2+l, 2+l

2
2 (ΩT62)

,

with this γ, if we take

T63 ≡ T62 ∧

⎛⎜⎜⎝ T 0

2
∥∥∥T̃ ′
∥∥∥

W
2+l,

2+l
2

2 (ΩT62)

⎞⎟⎟⎠
1
γ

,

then we have T 0/2 ≤ T̃ (y, t) <∞ on [0, T63]. A similar argument holds for S̃, and both T 0/2 ≤ T̃ (y, t) <∞ and
S0/2 ≤ S̃(y, t) <∞ hold on the time interval (0, T63] (Take T63 small enough again, if necessary). This provides
the desired result. Uniqueness of the solution can be proved by virtue of an analogous inequality to (6.14). This
completes the proof of the main theorem.
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Appendix A. List of function spaces

Table 1. Function spaces.

W0 W
3+l
2,c (Ω) ×

(
W

2+l
2 (Ω)

)2

W(T ∗) W
3+l, 3+l

2
2 (ΩT1) ×

(
W

3+l, 3+l
2

2 (ΩT1)
)2

× W
3
2+l, 3

4+ l
2

2 (ΩT1) × W
5
2+l, 54 + l

2
2 (R2

T1)

W1(T1)
(
W

1+l, 1+l
2

2 (ΩT1)
)3

W2(T1)
(
W

3
2+l, 3

4+ l
2

2 (ΓT1)
)3

W3(T1)
(
W

3
2+l, 3

4+ l
2

2 (ΓbT1)
)3

WH(T1)
∏3

i=1 Wi(T1)

WU (T1) W
3+l, 3+l

2
2 (ΩT1) × W

3+l, 3+l
2

2 (ΩT1) × W
3+l, 3+l

2
2 (ΩT1)

W ′
U (T1)

(
W

3+l, 3+l
2

2 (ΩT1)
)3

W ′(T1) W ′
U (T1) × W

3
2+l, 3

4+ l
2

2 (ΩT1) × W
5
2+l, 54 + l

2
2 (R2

T1 )

WM(T1)
(
W

3+l, 3+l
2

2 (ΩT1)
)2

W1(+)(T1)
(
W

1+l, 1+l
2

2

(
R3

(+)T1

))3

W2(+)(T1)
(
W

3
2+l, 3

4+ l
2

2

(
R2

T1

))3
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[19] F. Guillén–González and M.A. Rodŕıguez–Bellido, On the strong solutions of the primitive equations in 2D domains. Nonlinear
Anal. 50 (2002) 621–646.
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