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COMPARISON RESULTS OF NONSTANDARD P2 FINITE ELEMENT
METHODS FOR THE BIHARMONIC PROBLEM

Carsten Carstensen1, Dietmar Gallistl2 and Neela Nataraj3

Abstract. As modern variant of nonconforming schemes, discontinuous Galerkin finite element meth-
ods appear to be highly attractive for fourth-order elliptic PDEs. There exist various modifications
and the most prominent versions with first-order convergence properties are the symmetric interior
penalty DG method and the C0 interior penalty method which may compete with the classical Morley
nonconforming FEM on triangles. Those schemes differ in their various jump and penalisation terms
and also in the norms. This paper proves that the best-approximation errors of all the three schemes
are equivalent in the sense that their minimal error in the respective norm and the optimal choice
of a discrete approximation can be bounded from below and above by each other. The equivalence
constants do only depend on the minimal angle of the triangulation and the penalisation parameter
of the schemes; they are independent of any regularity requirement and hold for an arbitrarily coarse
mesh.
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1. Introduction

Given the applied volume force f ∈ L2(Ω) on a bounded polygonal Lipschitz domain Ω in the plane with
unit normal ν, the biharmonic problem with clamped boundary conditions reads: Seek u such that

Δ2u = f in Ω and u|∂Ω =
∂u

∂ν

∣∣∣∣
∂Ω

= 0. (1.1)

The weak formulation corresponding to (1.1) seeks u ∈ V := H2
0 (Ω) such that

�
Ω

D2u : D2v dx =
�

Ω

fv dx for all v ∈ V. (1.2)
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This article compares the errors for various nonstandard finite element methods (FEM) of (1.2) based on
piecewise quadratic polynomials, namely the nonconforming Morley FEM [10], the discontinuous Galerkin FEM
(DGFEM) [12], and the C0 interior penalty method (C0 IP) [5,11], with respective solutions uM, udG, and uIP.

The quasi-optimality results of [15] imply that the errors of these methods are comparable with the best-
approximation in the finite element space. However, these methods come along with different discrete scalar
products and norms on different finite element spaces and, hence, are not immediately comparable. Given the
best-approximation results of [15] in respective norms, the first contribution of this paper is the identification
of a common norm ‖·‖h in which the comparison can be verified. Our suggestion is compatible for the three
nonstandard FEMs. The second contribution is the equivalence of the best-approximations in the universal
norm ‖·‖h, which overcomes the additional difficulty that the three finite element spaces are all piecewise
quadratic polynomials but involve different constraints. This enables the proof of

min
vdG∈P2(T )

‖v − vdG‖h = min
vM∈M(T )

‖v − vM‖h ≈ min
vIP∈IP(T )

‖v − vIP‖h

(details on the spaces P2(T ), M(T ) and IP(T ) follow in Sect. 2; the norm ‖·‖h is defined in Sect. 3). This paper
aims at a comparison in the spirit of [4,9] with the additional difficulty that the finite element spaces based on
piecewise quadratic polynomials do not contain a proper conforming subspace. This does not prevent the proof
of equivalence of the errors of these methods, up to data oscillations, with the L2 best-approximation Π0D

2u
of the exact solution’s Hessian D2u onto piecewise constant functions

‖u− uM‖h ≈ ‖u− uIP‖h ≈ ‖u− udG‖h ≈
∥∥(1 −Π0)D2u

∥∥
L2(Ω)

. (1.3)

The proofs are based on the local equivalence of the discrete discontinuous Galerkin norms to the norm ‖·‖h.
Hence, the methods of [2, 17] have to be excluded from the analysis of this paper.

The remaining parts of this paper are organised as follows. Section 2 introduces the three FEMs along with
necessary notation on data structures and jumps. Section 3 states equivalence of the best-approximations in
those finite element spaces with respect to the norm ‖·‖h. In Section 4 this norm is proven to be equivalent
to the energy norms of these methods. The numerical examples in Section 5 provide strong empirical evidence
of (1.3) on uniform and adaptive meshes. Comments on approximation classes complete the paper in Section 6.

Throughout the paper, standard notation on Lebesgue and Sobolev spaces and their norms is employed. The
polynomials of degree ≤ k over some domain ω are denoted by Pk(ω). The integral mean is denoted by

�
;

the dot denotes the product of two one-dimensional lists of the same length while the colon denotes the scalar
product of matrices, e.g., a · b = a�b ∈ R for a, b ∈ R

2 and A : B =
∑2

j,k=1 AjkBjk for 2× 2 matrices A, B. The
notation a � b abbreviates a ≤ Cb for a positive generic constant C that may depend on the domain Ω but not
on the mesh-size. The notation a ≈ b stands for a � b � a. The measure |·| is context-sensitive and refers to
the number of elements of some finite set or the length of an edge or the area of some domain and not just the
modulus of a real number or the Euclidean length of a vector.

2. Finite element methods and their comparison

This section introduces the various finite element formulations for (1.2).

2.1. Morley FEM

Let T denote a shape-regular triangulation of the polygonal Lipschitz domain Ω ⊂ R
2 into closed triangles,

that is, Ω = ∪T∈T T , which is regular in the sense that two distinct triangles are either disjoint or share exactly
one vertex or one edge. Let N denote the set of vertices; N (Ω) denote the set of interior vertices and N (∂Ω)
denote the boundary vertices. Let E denote the set of edges of T ; E(Ω) denote the set of interior edges, E(∂Ω)
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(a) (b)

Figure 1. Morley finite element and six-noded Lagrange finite element.
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Figure 2. Adjacent triangles T− and T+ that share the edge E = ∂T− ∩ ∂T+. The unit
normal νE is the outward normal to T+.

denote the set of boundary edges. Denote for any edge E ∈ E its midpoint by mid(E). Let

H2(T ) :=
{
v ∈ L2(Ω)

∣∣ ∀T ∈ T , v|T ∈ H2(int(T ))
}
,

P2(T ) :=
{
v ∈ L2(Ω)

∣∣ ∀T ∈ T , v|T ∈ P2(T )
}
.

The nonconforming Morley element space [10] (see Fig. 1a) is defined by

M(T ) :=

{
vM ∈ P2(T )

∣∣∣ vM is continuous at N (Ω), and vanishes at N (∂Ω);

∀E ∈ E(Ω),
�

E

[
∂vM
∂νE

]
E

ds = 0; ∀E ∈ E(∂Ω),
�

E

∂vM
∂νE

ds = 0

}
.

The piecewise action of the Hessian D2 is denoted by D2
NC. Equip M(T ) with the discrete scalar product

aNC (vM, wM) :=
�

Ω

D2
NCvM : D2

NCwM dx for all vM, wM ∈ M(T )

and induced norm |||·|||NC = aNC(·, ·)1/2. The Morley FEM seeks uM ∈ M(T ) such that

aNC (uM, vM) =
�

Ω

fvM dx for all vM ∈ M(T ). (2.1)

2.2. C0 IP

The C0 IP method is based on the continuous Lagrange P2 finite element space

IP(T ) := P2(T ) ∩H1
0 (Ω) (2.2)

and penalty terms along edges. For any interior edge E ∈ E(Ω), there will be two adjacent triangles T+ and T−
such that E = ∂T+ ∩ ∂T− (see Fig. 2). Let νE = (νE(1), νE(2)) denote the fixed normal vector of E that points
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from T+ to T−. For E ∈ E(∂Ω), let νE denote the outward unit normal vector of Ω. The tangential vector of
an edge E is denoted by τE := (−νE(2), νE(1)). Given any (possibly vector-valued) function v, define the jump
and the average of v of across E by

[v]E := v
∣∣
T+ − v

∣∣
T−

and 〈v〉E :=
(
v
∣∣
T+ + v

∣∣
T−

)
/2 along E.

For a boundary edge E ∈ E(∂Ω) ∩ E(T+), the partner v|T− is set zero.
For any v ∈ H2(T ) with v± = v

∣∣
T±

, define the jump and mean of the normal derivative of v on E by[
∂v

∂νE

]
E

=
∂v+
∂νE

∣∣∣∣
E

− ∂v−
∂νE

∣∣∣∣
E

and
〈
∂v

∂νE

〉
E

=
1
2

(
∂v+
∂νE

∣∣∣∣
E

+
∂v−
∂νE

∣∣∣∣
E

)
.

For v ∈ H2(T ) and z ∈ E ∈ E , define
[v(z)]E = v+(z) − v−(z). (2.3)

Given σIP > 0, define the discrete scalar product for vIP, wIP ∈ IP(T ) by

aIP (vIP, wIP) := aNC (vIP, wIP) +
∑
E∈E

�
E

〈
∂2vIP
∂ν2

E

〉
E

[
∂wIP

∂νE

]
E

ds

+
∑
E∈E

�
E

〈
∂2wIP

∂ν2
E

〉
E

[
∂vIP
∂νE

]
E

ds +
∑
E∈E

σIP

hE

�
E

[
∂vIP
∂νE

]
E

[
∂wIP

∂νE

]
E

ds. (2.4)

The discrete norm reads
‖vIP‖2

IP := |||vIP|||2NC +
∑
E∈E

h−1
E ‖[∂vIP/∂νE ]E‖

2
L2(E) .

It is known [5, 11] that ‖·‖2
IP � aIP(·, ·) on VIP(T ) provided σIP is sufficiently large.

The C0 IP method [5, 11] for (1.2) seeks uIP ∈ IP(T ) such that

aIP (uIP, vIP) =
�

Ω

fvIP dx for all vIP ∈ IP(T ).

2.3. DG method (DGFEM)

This modification of the DG method of [2] was proposed in [12]. The scalar product adG(·, ·) reads for
vdG, wdG ∈ P2(T ) and the penalty parameter σdG > 0

adG (vdG, wdG) := aNC (vdG, wdG)

−
∑
E∈E

(�
E

(〈
D2

NCvdG

〉
E
νE

)
· [∇NCwdG]E ds +

�
E

(〈
D2

NCwdG

〉
E
νE

)
· [∇NCvdG]E ds

)

+
∑
E∈E

(
σdG

h3
E

�
E

[vdG]E [wdG]E ds +
σdG

hE

�
E

[
∂vdG

∂νE

]
E

[
∂wdG

∂νE

]
E

ds
)
.

In general, the two stabilisation terms in the bilinear form may rely on different penalty parameters. The DG
norm reads

‖vdG‖2
dG := |||vdG|||2NC +

∑
E∈E

(
h−3

E ‖[vdG]E‖
2
L2(E) + h−1

E ‖[∂vdG/∂νE]E‖
2
L2(E)

)
.

Provided the penalty parameter σdG is sufficiently large, it holds ‖·‖2
dG � adG(·, ·) on P2(T ). The DGFEM seeks

udG ∈ P2(T ) such that

adG (udG, vdG) =
�

Ω

fvdG dx for all vdG ∈ P2(T ).
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2.4. Statement of equivalence

Throughout this paper, the oscillations of a function f ∈ L2(Ω) with respect to a triangulation T read

osc(f, T ) :=
√∑

T∈T
h4

T

∥∥f −
�

T f dx
∥∥2

L2(T )
.

The main result of this paper states that the errors of these methods are equivalent up to oscillations.

Theorem 2.1. The discrete solutions uM, uIP and udG of the Morley FEM, C0 IP and DGFEM satisfy

|||u− uM|||NC ≈ ‖u− uIP‖IP ≈ ‖u− udG‖dG ≈
∥∥(1 −Π0)D2u

∥∥
L2(Ω)

up to oscillations osc(f, T ).

The proof follows in the subsequent sections.

3. Equivalence of best-approximations in ‖·‖h

Let hT denote the diameter of T , for all T ∈ T and let hE the length of an edge E. The set of two vertices
of an edge E is denoted by N (E). Define the following seminorm for all vh ∈ H2(T )

‖vh‖2
h := |||vh|||2NC +

∑
E∈E

(�
E

[
∂vh

∂νE

]
E

ds
)2

+
∑
E∈E

h−2
E

∑
z∈N (E)

[vh(z)]2E ,

which is obviously a norm on V + P2(T ).
The subsequent theorem establishes a comparison between the best-approximations in M(T ), IP(T )

and P2(T ).

Theorem 3.1. For any v ∈ V , the following distances are equivalent

min
vdG∈P2(T )

‖v − vdG‖h = min
vM∈M(T )

‖v − vM‖h ≈ min
vIP∈IP(T )

‖v − vIP‖h.

The proof of Theorem 3.1 is based on the following two lemmas. Let

C(N ) :=
{
v ∈ H2(T )

∣∣ v is continuous at all z ∈ N
}
.

Lemma 3.2. Any v2 ∈ P2(T ) ∩ C(N ) satisfies

min
vIP∈IP(T )

‖v2 − vIP‖2
h �

∑
E∈E

h−2
E |[v2]E (midE)|2 .

Proof. The generalised nodal interpolation operator

I∗2 : P2(T ) ∩ C(N ) → IP(T )

acts on v2 ∈ P2(T ) ∩ C(N ) as

(I∗2 (v2)) (z) = v2(z) for any z ∈ N (Ω),

(I∗2 (v2)) (mid(E)) = 〈v2〉E (mid(E)) for any E ∈ E(Ω)
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and provides an upper bound for the minimum

min
vIP∈IP(T )

‖v2 − vIP‖2
h ≤ ‖v2 − I∗2v2‖2

h

= |||v2 − I∗2v2|||2NC +
∑
E∈E

(�
E

[
∂ (v2 − I∗2v2)

∂νE

]
E

ds
)2

.
(3.1)

For any E ∈ E , the edge-patch ωE is defined as the union of the triangles that share E (see Fig. 2), that is
ωE = T+ ∪ T− for interior edges with E = ∂T+ ∩ ∂T− and ωE = T+ for boundary edges with E = ∂T+ ∩ ∂Ω.
Furthermore denote the set of triangles sharingE by T (ωE) := {T ∈ T |T ⊂ ωE}. Let ϕE ∈ P2(T (ωE))∩C0(ωE)
denote the piecewise quadratic edge-bubble function with ϕ(mid(E)) = 1 which vanishes at N and the midpoints
of edges F ∈ E with F �= E. The triangle inequality and the scaling

∥∥D2
NCϕE

∥∥
ωE

� h−1
E prove for the first

contribution

|||v2 − I∗2v2|||2NC =
∑
T∈T

∥∥∥∥∥∥
∑

E∈E(T )

(v2(midE) − 〈v2〉E (midE))D2
NCϕE

∥∥∥∥∥∥
2

L2(T )

�
∑
E∈E

|[v2]E (midE)|2
∥∥D2

NCϕE

∥∥2

L2(ωE)

�
∑
E∈E

h−2
E |[v2]E (midE)|2 .

Similarly, the second contribution of (3.1) satisfies

∑
E∈E

∣∣∣∣
�

E

[
∂ (v2 − I∗2v2)

∂νE

]
E

ds
∣∣∣∣
2

�
∑
E∈E

|[v2]E (midE)|2
∣∣∣∣
�

E

∂ϕE

∂νE
ds
∣∣∣∣
2

�
∑
E∈E

h−2
E |[v2]E (midE)|2 . �

Lemma 3.3. Any vM ∈ M(T ) satisfies

min
vIP∈IP(T )

‖vM − vIP‖h � min
v∈H2

0 (Ω)
‖vM − v‖h.

Proof. Lemma 3.2 plus some equivalence of norms prove

min
vIP∈IP(T )

‖vM − vIP‖h �
∑
E∈E

h−2
E [vM(mid(E))]2E �

∑
E∈E

h−3
E ‖[vM]E‖

2
L2(E) .

For any E ∈ E , the Friedrichs and Poincaré inequalities along E yield

h−3
E ‖[vM]E‖

2
L2(E) � hE

∥∥∂2 [vM]E /∂τ
2
E

∥∥2

L2(E)
≤ hE

∥∥[D2
NCvM

]
E
τE
∥∥2

L2(E)
.

Denote the endpoints of E by z1, z2 and let, for j ∈ {1, 2}, φj ∈ P1(T ) be the piecewise affine function with
φj(zj) = 1 and φj(y) = 0 for all y ∈ N \{zj}. Let �E := 6φ1φ2 ∈ H1

0 (ωE). This piecewise quadratic edge-bubble
function satisfies

‖�E‖L∞(Ω) = 3/2 and
�

E

�E ds = |E| .
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Define ψE := (�E

[
D2

NCvM
]
E
τE) ∈ H1

0 (ωE ; R2). Since
[
D2

NCvM
]
E

is constant along E, it follows that

∥∥[D2
NCvM

]
E
τE
∥∥2

L2(E)
=
∥∥∥�1/2

E

[
D2

NCvM
]
E
τE

∥∥∥2

L2(E)
.

The Curl of a vector field β ∈ H1(Ω; R2) is defined as

Curlβ :=

(−∂β1/∂x2 ∂β1/∂x1

−∂β2/∂x2 ∂β2/∂x1

)
.

For any v ∈ H2
0 (Ω), an integration by parts reveals that∥∥∥�1/2

E

[
D2

NCvM
]
E
τE

∥∥∥2

L2(E)
=

�
E

([
D2

NCvM
]
E
τE
)
· ψE ds =

�
ωE

D2
NC (vM − v) : CurlψE dx

(here, the L2-orthogonality of CurlψE on D2v has been used). The Cauchy and inverse inequalities prove that
this is bounded by∥∥D2

NC (vM − v)
∥∥

L2(ωE)
‖CurlψE‖L2(ωE) �

∥∥D2
NC (vM − v)

∥∥
L2(ωE)

∣∣[D2
NCvM

]
E
τE
∣∣ .

This implies
hE

∥∥[D2
NCvM

]
E
τE
∥∥2

L2(E)
� min

v∈H2
0 (Ω)

∥∥D2
NC(vM − v)

∥∥
L2(ωE)

.

The combination of the preceding estimates concludes the proof. �

Proof of Theorem 3.1. The Morley interpolation operator IM : H2(Ω) → M(T ) is defined for all v ∈ H2(Ω) by

(IMv)(z) = v(z) for each vertex z ∈ N ,

∂IMv

∂νE
(mid(E)) =

�
E

∇v · νE ds for each edge E ∈ E ,

and enjoys the integral mean property of the Hessians [7]

D2
NCIM = Π0D

2. (3.2)

The inclusions M(T ) ⊂ P2(T ) and IP(T ) ⊂ P2(T ) plus (3.2) imply

min
vdG∈P2(T )

‖u− vdG‖h ≤ min
vM∈M(T )

‖u− vM‖h ≤ ‖u− IMu‖h

=
∥∥(1 −Π0)D2u

∥∥
L2(Ω)

= min
vdG∈P2(T )

‖u− vdG‖h ≤ min
vIP∈IP(T )

‖u− vIP‖h.

Therefore, it remains to prove

min
vIP∈IP(T )

‖u− vIP‖h � min
vM∈M(T )

‖u− vM‖h.

The triangle inequality and ‖u− IMu‖h = minvM∈M(T )‖u− vM‖h from the first part of the proof reveal

min
vIP∈IP(T )

‖u− vIP‖h ≤ ‖u− IMu‖h + min
vIP∈IP(T )

‖IMu− vIP‖h

= min
vM∈M(T )

‖u− vM‖h + min
vIP∈IP(T )

‖IMu− vIP‖h.
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Lemma 3.3 and the projection property (3.2) imply

min
vIP∈IP(T )

‖IMu− vIP‖h � min
v∈H2

0 (Ω)
‖IMu− v‖h ≤ ‖u− IMu‖h = min

vM∈M(T )
‖u− vM‖h. �

4. Equivalence of norms

One key argument in comparison results is the equivalence of various norms.

Theorem 4.1 (Discrete dG norm equivalence). The norm ‖·‖h satisfies

‖·‖h = |||·|||NC on V + M(T ), (4.1)

‖·‖h ≈ ‖·‖dG on V + P2(T ), (4.2)

‖·‖h ≈ ‖·‖IP on V + IP(T ). (4.3)

Proof. The equivalence (4.1) follows from the continuity conditions of the Morley finite element functions
(resp. their normal derivatives) at the vertices (resp. midpoints of edges). In order to prove (4.2) consider an
arbitrary edge E ∈ E and vdG ∈ P2(T ). Recall that the edge-patch of an edge E ∈ E is denoted by ωE and
T (ωE) = {T ∈ T |T ⊂ ωE}. Define the seminorms ρE and θE on P2(T (ωE))

ρE (vdG)2 :=
∥∥D2

NCvdG

∥∥2

L2(ωE)
+
(�

E

[∂vdG/∂νE]E ds
)2

+ h−2
E

∑
z∈N (E)

[vdG(z)]2E ,

θE (vdG)2 :=
∥∥D2

NCvdG

∥∥2

L2(ωE)
+ h−1

E

∥∥∥∥
[
∂vdG

∂νE

]
E

∥∥∥∥
2

L2(E)

+ h−3
E ‖[vdG]E‖

2
L2(E) .

These seminorms on the finite-dimensional space P2(T (ωE)) are equivalent. A scaling argument plus the finite
overlap prove (4.2). For an edge E ∈ E and vIP ∈ IP(T ) define ξE by

ξE(vIP)2 :=
∥∥D2

NCvIP
∥∥2

L2(ωE)
+ h−1

E ‖[∂vIP/∂νE]E‖
2
L2(ωE) .

The seminorms ρE and ξE are equivalent on P2(T (ωE)). A scaling argument and the finite overlap
prove (4.3). �

Remark 4.2. The proof of Theorem 4.1 relies on local equivalence of seminorms. Therefore, the two DG
methods of [2, 17] are excluded from the analysis of this paper. The DG norm of those papers reads

(∑
T∈T

‖ΔvdG‖2
L2(T ) +

∑
E∈E

h−1
E

∥∥∥∥
[
∂vdG

∂νE

]
E

∥∥∥∥
2

L2(E)

+
∑
E∈E

h−3
E ‖[vdG]E‖

2
L2(E)

)1/2

.

For an interior edge E, the term

‖ΔNCvdG‖2
L2(ωE) + h−1

E

∥∥∥∥
[
∂vdG

∂νE

]
E

∥∥∥∥
2

L2(E)

+ h−3
E ‖[vdG]E‖

2
L2(E)

may vanish for any smooth and harmonic vdG on ωE although vdG|ωE �≡ 0. Consequently, the arguments that
lead to Theorem 4.1 are not applicable for [2, 17].

The following quasi-optimality result is proven in [15].
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Theorem 4.3 ([15], p. 2172). The errors of the Morley FEM, C0 IP FEM, and DGFEM are quasi-optimal
with respect to their norms in the sense that

|||u− uM|||NC � min
vM∈M(T )

|||u − vM|||NC + osc(f, T ),

‖u− uIP‖IP � min
vIP∈IP(T )

‖u− vIP‖IP + osc(f, T ),

‖u− udG‖dG � min
vdG∈P2(T )

‖u− vdG‖dG + osc(f, T ).

Proof. The first two estimates are derived explicitly in [15]. For the proof of the third inequality, the abstract
framework of [15] shows that it suffices to verify the existence of an enriching operator EdG : P2(T ) → VC , for
some conforming finite element space VC , such that for all vdG ∈ P2(T )∥∥D2EdGvdG

∥∥
L2(Ω)

� ‖vdG‖dG

and sup
wdG∈P2(T )\{0}

�
Ω f (wdG − EdGwdG) dx − adG (vdG, wdG − EdGwdG)

‖wdG‖dG

� (‖u− vdG‖dG + osc(f, T )) .

The design of such an operator can be found in [13]. �

Proof of Theorem 2.1. Theorem 4.1 allows to replace the upper bounds in Theorem 4.3 by the respective best-
approximations with respect to the norm ‖·‖h. Theorem 3.1 establishes the equivalence

‖u− uM‖h ≈ ‖u− uIP‖h ≈ ‖u− udG‖h �
∥∥(1 −Π0)D2u

∥∥
L2(Ω)

up to oscillations osc(f, T ). �

Remark 4.4. For the C0 IP and DGFEM, the multiplicative constants of the second and third inequality of
Theorem 4.3 depend on the penalisation parameters σIP, σdG and deteriorate for large penalisation param-
eters. Therefore, the best-approximation constants in the estimates ‖u − uIP‖IP �

∥∥(1 −Π0)D2u
∥∥

L2(Ω)
and

‖u − udG‖dG �
∥∥(1 −Π0)D2u

∥∥
L2(Ω)

of Theorem 2.1 depend critically on the fixed choice of the penalisation
parameters.

Remark 4.5. The assumption f ∈ L2 is essential in the analysis because the results of [15] are based on the
efficiency of volume parts of a residual-based error estimators.

Remark 4.6 (Higher-order FEMs). The analysis of this paper focuses on the lowest-order case of piecewise
quadratic FEM nonconforming approximations which are attractive for a convenient implementation. A compar-
ison with conforming schemes, for example, with the quintic Argyris triangle based on piecewise P5 polynomials
will in general result in a superior convergence rate of the Argyris FEM. The arguments of [15] may be applied
for a comparison of the DGFEM or the C0 IP FEM based on P5(T ) polynomials with the Argyris FEM and
yield best-approximation of those discontinuous Galerkin schemes in their respective norms whereas the classical
Galerkin orthogonality for the Argyris FEM only gives the best-approximation in the subspace of P5(T ) with C1

continuity constraints. It is expected that this best-approximation is comparable with the best-approximation
in P5(T ), but the proof remains as an open question. A corresponding statement for the approximation by
piecewise gradients was proven in [19].
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Figure 3. Convergence history for the analytic example.

5. Numerical experiments

Two numerical examples illustrate the result that the Morley FEM, C0 IP and DGFEM are equivalent. In
all the experiments, the penalty parameters are σIP = σdG = 15. The schemes were implemented in Matlab in
the framework of [1]; cf. [8] for an outline of an implementation for the Morley FEM.

5.1. Analytic solution

Let u = −(x4 − 2x2 + 1)(y4 − 2y2 + 1) be the solution with respect to the right-hand side f := Δ2u on
the unit square. The initial triangulation consists of a criss grid of (−1, 1)2 into two triangles. Figure 3 shows
the convergence history of the exact error in the energy norm ‖·‖h on uniform red-refined meshes. In all the
experiments, the equivalence constants range between 2 and 6.

5.2. L-shaped domain with uniform mesh refinement

Consider the L-shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) with ω := 3π/2 and α := 0.5444837 as a
noncharacteristic root of sin2(αω) = α2 sin2(ω). The exact singular solution from ([14], p. 107) [6] reads in polar
coordinates

u(r, θ) =
(
r2 cos2 θ − 1

)2 (
r2 sin2 θ − 1

)2
r1+α g(θ) for

g(θ) =
(

1
α− 1

sin((α− 1)ω) − 1
α+ 1

sin((α + 1)ω)
)

(cos((α− 1)θ) − cos((α + 1)θ))

−
(

1
α− 1

sin((α − 1)θ) − 1
α+ 1

sin((α+ 1)θ)
)

(cos((α − 1)ω) − cos((α+ 1)ω)) .

Figure 4 displays the convergence history of the exact error on uniform red-refined meshes.
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Figure 4. Convergence history of the error for Grisvard’s example.

Algorithm 1. Adaptive Morley finite element method.
Input initial triangulation T0, bulk parameter 0 < θ ≤ 1.
for � = 0, 1, 2, . . . do
Solve. Compute the solution of Morley FEM u� := uM with respect to T� and ndof degrees of freedom.
Estimate. Compute local contributions of the error estimator

η2(T ) :=
∥∥h2

T f
∥∥2

L2(T )
+

∑
E∈E(T )

hE

∥∥[D2
NCu�

]
E

τE

∥∥2

L2(E)
for all T ∈ T�.

Mark. The Dörfler marking chooses a minimal subset M� ⊂ T� such that

θ
∑

T∈T�

η2(T ) ≤
∑

T∈M�

η2(T ).

Refine. Compute the closure of M� and generate a new triangulation T�+1 using newest vertex bisection [3,18]. od
Output Sequence of triangulations (T�)� and discrete solutions(u�)�.

5.3. L-Shaped domain with adaptive mesh refinement

In this experiment, the methods are compared on a sequence of adaptively refined meshes. The meshes are
generated by the AFEM loop for the Morley FEM from [16], see Algorithm 1 below.

The triangulations only depend on the Morley FEM solution and the error estimator. The C0 IP and DGFEM
show the same convergence rate as the Morley FEM on these meshes for θ = 0.5, see Figure 5. An adaptive
mesh is shown in Figure 6.

6. Equivalence of approximation classes

The comparison of various nonconforming schemes in this paper is for a fixed triangulation and states equiva-
lence of the errors of the Morley FEM, C0 IP and DGFEM with the best approximation. Some more far-reaching
question is the comparison of the three schemes and their optimal mesh-design.
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Figure 5. Convergence history of the error for Grisvard’s example.

Figure 6. Adaptive mesh, 6977 triangles.
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Given the initial mesh T0, let T be the set of all admissible refinements of T0 created by newest-vertex
bisection [3, 18], and (recall that |T | abbreviates the number of triangles in T ) let

T(N) :=
{
T ∈ T

∣∣ |T | − |T0| ≤ N
}

for N ∈ N.

Define the seminorms for (u, f) ∈ V × L2(Ω)

|(u, f)|s,h := sup
N∈N

Ns inf
T ∈T(N)

inf
v2∈P2(T )

(
‖u− v2‖2

h + osc2(f, T )
)1/2

|(u, f)|s,M := sup
N∈N

Ns inf
T ∈T(N)

(
|||u − uM(T )|||2NC + osc2(f, T )

)1/2

|(u, f)|s,IP := sup
N∈N

Ns inf
T ∈T(N)

(
‖u− uIP(T )‖2

IP + osc2(f, T )
)1/2

|(u, f)|s,dG := sup
N∈N

Ns inf
T ∈T(N)

(
‖u− udG(T )‖2

dG + osc2(f, T )
)1/2

.

Here uM(T ), uIP(T ) and udG(T ) denote the solutions of the Morley FEM, C0 IP and DGFEM with respect
to the triangulation T . The comparison results of this paper imply that the four approximation classes for
j ∈ {h,M, IP, dG}

As,j :=
{

(u, f) ∈ V × L2(Ω)
∣∣ u solves (1.2) with right-hand side f and |(u, f)|s,j <∞

}
are equal, i.e.,

As,h = As,M = As,IP = As,dG with equivalent norms.

The equivalence constants depend on T0 and the stabilisation parameters σIP and σdG (through the quasi-
optimal constants by [15]) but not on 0 < s <∞.
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Mathematics]. Masson, Paris (1992).

[15] T. Gudi, A new error analysis for discontinuous finite element methods for linear elliptic problems. Math. Comp. 79 (2010)
2169–2189.

[16] J. Hu, Z. Shi and J. Xu, Convergence and optimality of the adaptive Morley element method. Numer. Math. 121 (2012)
731–752.
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