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THE ELECTROMAGNETIC SCATTERING PROBLEM WITH GENERALIZED
IMPEDANCE BOUNDARY CONDITIONS
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Abstract. In this paper we consider the electromagnetic scattering problem by an obstacle char-
acterised by a Generalized Impedance Boundary Condition in the harmonic regime. These boundary
conditions are well known to provide accurate models for thin layers or imperfectly conducting bodies.
We give two different formulations of the scattering problem and we provide some general assumptions
on the boundary condition under which the scattering problem has at most one solution. We also
prove that it is well-posed for three different boundary conditions which involve second order surface
differential operators under weak sign assumptions on the coefficients defining the surface operators.
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1. Introduction

Driven by recent advances in the study of inverse acoustic scattering problems in the presence of so-called
generalized impedance boundary conditions (see [2–4, 6]) we study in this paper well-posedness of the forward
electromagnetic scattering problem in the harmonic regime in the case where the scatterer is characterised by
a boundary condition of the form

ν × E + ZHT = f on Γ,

where Γ is the boundary of the scatterer, ν is the outward unit normal vector to Γ , E is the electric field, HT

stands for the tangential component of the magnetic field H, Z is a surface differential operator and f is a source
term. This kind of boundary conditions, often referred to as Generalized Impedance Boundary Condition, are
known to provide accurate models for all sort of small scale structures. Moreover, in some specific configurations,
such as the scattering by a perfect conductor covered by a thin layer of dielectric or of ferromagnetic material
(see [1, 11, 13]), or the scattering by an imperfectly conducting body (see [14]), asymptotic analysis techniques
provide an expression for Z in terms of surface differentials operators as well as approximation properties. For
a similar treatment of transmission problems see [7, 12] for example.

In this paper we establish sufficient conditions on the operator Z under which the scattering problem is well
posed. We introduce two different ways of writing the problem: the first one (which we will call the volume
approach) consists in considering the scattering problem as a volume problem and in studying the associated
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variational formulation. This path is rather standard and follows the lines of ([15], Chap. 10). We state a general
existence and uniqueness result for the scattering problem which uses the volume formulation in Theorem 3.6.
Nevertheless, with these standard approach one needs to assume some compatibility between the signs of the
surface operator Z and the sign of the volume contribution to the variational formulation to ensure reasonable
coercivity properties. Actually, at least for the acoustic scattering problem problem (see [6, 16]), it seems that
such restrictive conditions are not needed. To clarify this point, we consider a different formulation for the
scattering problem which consists in writing the problem as a single operator equation posed on the boundary
of the scatterer. We will call this approach the surface formulation. We indeed show that the scattering problem
is equivalent to finding the tangential component of the electromagnetic field H that solves

(SΓ + Z)HT = f on Γ

where SΓ is the so-called Magnetic-to-Electric Calderón operator (see [15], Chap. 9 for example). In the scalar
case, it is sufficient to assume that Z is a pseudo-differential operator of order greater or smaller than 1 to
obtain existence and uniqueness of the solution to the scattering problem.

Even though we establish a general existence and uniqueness result for this formulation in Theorem 3.5, the
situation is more challenging than in the scalar case mainly because the principal part of Z may have a kernel
of infinite dimension. To tackle this difficulty, we will introduce a tailored Helmholtz’ decomposition on the
boundary of the scatterer. This allows for example to treat the case of an operator Z corresponding to the first
order impedance boundary condition for thin coatings which is given by

Z =
iδ

κε
curlΓ curlΓ − iκμδ,

where curlΓ and curlΓ stand for the surface vectorial and scalar rotational operators, ε and μ are the dielectric
constants of the coating and δ is the thickness of the layer. For this operator, the surface approach gives well-
posedness regardless the sign of ε (which can be negative for metals) whereas the volume approach seems to be
limited to positive ε.

In the next section we introduce notations and recall some important concepts for the study of boundary
value problems for Maxwell’s equations. In the third section, we introduce the volume and surface equations
and we give general results about existence and uniqueness. Finally, the fourth section is dedicated to the study
of well-posedness for three different surface operators of order 2, each of them requiring the use of different
techniques.

2. Problem setting and variational spaces

Let Ω be a simply connected open bounded domain of R3 with C1,1 boundary Γ and let Ωext := R3 \ Ω
be its complementary. We consider the following exterior boundary value problem for the electromagnetic field
(E,H): ⎧⎪⎨⎪⎩

curl H + iκεE = 0 in Ωext,

curl E− iκμH = 0 in Ωext,

ν × E + ZHT = f on Γ

(2.1)

where ν ∈ (C0,1(Γ ))3 is the inward unit normal to Ω, HT := (ν × H) × ν, Z is a surface differential operator
(see Def. 3.1) and f is some function defined on Γ . We also denote by κ > 0 the wavenumber and by ε and μ
the relative permittivity and permeability respectively. Following [8], we will assume that ε and μ are complex
valued function of C1(R3 \ Ω) with nonnegative imaginary part and positive real part. We also assume that
μ(x) = ε(x) = 1 for all x outside a fixed ball of radius R0. When considering the scattering of an incident wave
(Ei,Hi) that solves

curl Hi + iκεEi = 0 and curl Ei − iκμHi = 0 in R
3,
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the right hand side f is given by
f := −

(
ν × Ei + ZHi

T

)
.

We complement equations (2.1) with the so-called Silver–Müller radiation condition

lim
R→∞

∫
∂BR

|H × x̂ − (x̂ × E) × x̂|2 ds = 0 (2.2)

where BR is a ball of radius R and x̂ := x/|x|.
To study equations (2.1) and (2.2) we introduce some classical energy spaces and to define specific surface

differential operators. We recall hereafter some classical results from ([5], Chap. 2) for the convenience of the
reader. Let O be a generic bounded simply connected open set of R3 with C1,1 boundary ∂O and with outer
unit normal ν. Let us first introduce the usual energy space H(curl,O) of (L2(O))3 distributions with curl in
(L2(O))3 as well as the space of L2 tangential vector fields on ∂O:

L2
t (∂O) := {v ∈ (L2(∂O))3 | v · ν = 0}.

For s ∈ [−1, 1] we denote Hs
t (∂O) the closure of {v ∈ (C∞(∂O))3 | v · ν = 0} in (Hs(∂O))3. The tangential

trace operators are given for v ∈ (H1(O))3 by

γtv := ν × v|∂O, vT = γT (v) := (ν × v|∂O) × ν.

These two operators are bounded and linear from (H1(O))3 into L2
t (∂O). Let us now introduce the surface

differential operators ∇∂O : H1(∂O) → L2
t (∂O) and curl∂O : H1(∂O) → L2

t (∂O) that are given for u ∈
H1(∂O) by

∇∂Ou := γT (∇ũ) and curl∂Ou := −ν ×∇∂Ou,

where ũ is some extension of u to a three dimensional neighbourhood of ∂O. We denote their adjoints −div∂O :
L2

t (∂O) → H−1(∂O) and curl∂O : L2
t (∂O) → H−1(∂O) that are defined for all u ∈ H1(∂O) and v ∈ L2

t (∂O) by∫
∂O

∇∂Ou · vds = −〈u, div∂Ov〉H1(∂O),H−1(∂O),∫
∂O

curl∂Ou · vds = 〈u, curl∂Ov〉H1(∂O),H−1(∂O).

The vector operators curl∂O and ∇∂O can be extended to continuous linear operators from Hs(∂O) into
Hs−1

t (∂O) while the scalar operators div∂O and curl∂O can be extended to continuous linear operators from
Hs

t (∂O) into Hs−1(∂O) for s ∈ [−1/2, 3/2]. Moreover,

curl∂Ou := ν · curl ũ and div∂Ou = curl∂O(ν × u) (2.3)

for all u ∈ H1
t (∂O) where ũ is some extension of u to a neighbourhood of ∂O.

We conclude this section by introducing the following boundary spaces for s ∈ [−1/2, 1/2]:

Hs(div∂O, ∂O) := {v ∈ Hs
t (∂O) | div∂Ov ∈ Hs(∂O)},

Hs(curl∂O, ∂O) := {v ∈ Hs
t (∂O) | curl∂Ov ∈ Hs(∂O)}.

The specific spaces H−1/2(curl∂O, ∂O) and H−1/2(div∂O, ∂O) are dual to each other with L2
t (∂O) as pivot space

and the trace operators

γt : H(curl,O) → H−1/2(div∂O, ∂O), γT : H(curl,O) → H−1/2(curl∂O, ∂O)

are linear continuous and surjective. Moreover, we recall that the following formula holds for u and v in
H(curl,O): ∫

O
(curl u · v − u · curl v) dx = 〈γt(u), γT (v)〉H−1/2(div∂O,∂O),H−1/2(curl∂O,∂O). (2.4)

See for example ([15], Thm. 3.31).
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3. Study of an abstract boundary value problem

Let us denote by V(Γ ) ⊂ L2
t (Γ ) endowed with its inner product (·, ·)V(Γ ) a Hilbert space that is such that

{v ∈ (C∞(Γ ))3 | v · ν = 0} ⊂ V(Γ )

and such that the injection is dense. Let us denote V(Γ )∗ the dual space of V(Γ ) with respect to L2
t (Γ ). The

impedance operator is defined as follows.

Definition 3.1. A generalized impedance operator Z is a linear and bounded operator from V(Γ ) into its dual
V(Γ )∗.

We define Hloc(curl, Ωext) as being the set of functions in H(curl, BR \ Ω) for every ball BR of radius R that
contains Ω and VH := {H ∈ Hloc(curl, Ωext) | HT ∈ V(Γ )}, the exterior problem (2.1) together with the
radiation condition (2.2) then writes for f ∈ V(Γ )∗:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find (E,H) ∈ Hloc(curl, Ωext) × VH such that
curl H + iκεE = 0 in Ωext,

curl E− iκμH = 0 in Ωext,

ν × E + ZHT = f on Γ,

lim
R→∞

∫
∂BR

|H × x̂ − (x̂ × E) × x̂|2 ds = 0.

(3.1)

To study existence and uniqueness of the solution to (3.1) we have to reformulate these equations in a bounded
domain. In the following we propose two different approaches to achieve this goal. The first is rather classical
and consists in bounding the domain Ωext by introducing a ball that contains the domain Ω and by apply-
ing a transparent boundary condition on this artificial boundary. The second approach consist in writing the
system (3.1) as a single equation on Γ by using the so-called Magnetic-to-Electric Calderón operator for the
exterior problem. In Lemma 3.2 we prove that these two formulations are equivalent.

3.1. A volume formulation in a bounded domain

Let BR be a ball of radius R > R0 such that Ω ⊂ BR, and let us introduce the Magnetic-to-Electric
Calderón operator SR : H−1/2(div∂BR , ∂BR) → H−1/2(div∂BR , ∂BR) defined for v ∈ H−1/2(div∂BR , ∂BR) by
SRv := x̂ × E where (E,H) ∈ Hloc(curl, R3 \ BR) × Hloc(curl, R3 \ BR) is the unique solution (see [8] for
fundamental results about electromagnetic scattering theory) to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curl H + iκE = 0 in R3 \ BR,

curl E− iκH = 0 in R3 \ BR,

x̂ × H = v on ∂BR,

lim
r→∞

∫
∂Br

|H× x̂ − (x̂ × E) × x̂|2 ds = 0.

Let us denote ΩR := BR \ Ω and let us define the Hilbert space VH,R := {v ∈ H(curl, ΩR) | vT ∈ V(Γ )}
endowed with the norm

‖ · ‖VH,R := ‖ · ‖H(curl,ΩR) + ‖ · ‖V(Γ ).

Then, for any f ∈ V(Γ )∗, problem (3.1) is equivalent to:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Find (E,H) ∈ H(curl, ΩR) × VH,R such that
curl H + iκεE = 0 in ΩR,

curl E− iκμH = 0 in ΩR,

ν × E + ZHT = f on Γ,

x̂ × E− SR(x̂ × H) = 0 on ∂BR

(3.2)
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which is equivalent to find H ∈ VH,R such that∫
ΩR

ε−1curl H · curl v − κ2μH · vdx + iκ〈ZH,v〉V(Γ )∗,V(Γ ) − iκ

∫
∂BR

SR(x̂ × H) · v ds

= iκ〈f,v〉V(Γ )∗,V(Γ )

(3.3)

for all v ∈ VH,R. To ensure weak coercivity of this variational formulation one has to assume that the imaginary
part of Z is negative. In fact, this is not always necessary and we overcome this difficulty by introducing an
alternative formulation for problem (3.1) in next section.

3.2. A surface formulation

Let us introduce the so-called Magnetic-to-Electric Calderón operator SΓ : H−1/2(curlΓ , Γ ) →
H−1/2(divΓ , Γ ) defined for v ∈ H−1/2(curlΓ , Γ ) by SΓv := ν × E where (E,H) ∈ Hloc(curl, Ωext) ×
Hloc(curl, Ωext) is the unique solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

curl H + iκεE = 0 in Ωext,

curl E− iκμH = 0 in Ωext,

HT = v on Γ,

lim
R→∞

∫
∂BR

|H× x̂ − (x̂ × E) × x̂|2 ds = 0

(3.4)

and we recall that this operator is linear and continuous (see [15] Chap. 10, for more details). Using SΓ ,
problem (3.1) can be rewritten in these terms:{

Find u ∈ V(Γ ) ∩H−1/2(curlΓ , Γ ) such that
SΓ (u) + Zu = f

(3.5)

for f ∈ (V(Γ ) ∩H−1/2(curlΓ , Γ ))∗ where V(Γ ) ∩H−1/2(curlΓ , Γ ) is endowed with the norm

‖ · ‖V(Γ )∩H−1/2(curlΓ ,Γ ) := ‖ · ‖V(Γ ) + ‖ · ‖H−1/2(curlΓ ,Γ ).

Equation (3.5) makes sense in (V(Γ ) ∩ H−1/2(curlΓ , Γ ))∗ since SΓ (u) ∈ H
−1/2
divΓ

(Γ ) and this space can be
identified with the dual space of H−1/2(curlΓ , Γ ). Therefore, SΓ (u) can be identified with a linear and continuous
application on H−1/2(curlΓ , Γ ) and consequently on (V(Γ ) ∩H−1/2(curlΓ , Γ )). As stated in the next Lemma,
problems (3.1) and (3.5) are equivalent.

Lemma 3.2. Let f be in (V(Γ ) ∩ H−1/2(curlΓ , Γ ))∗, if u ∈ V(Γ ) ∩ H−1/2(curlΓ , Γ ) solves (3.5) then the
unique solution (E,H) ∈ Hloc(curl, Ωext) × VH to (3.4) with v = u solves (3.1). Conversely, if (E,H) ∈
Hloc(curl, Ωext) × VH solves (3.1) then HT ∈ V(Γ ) ∩ H−1/2(curlΓ , Γ ) and solves (3.5).

Proof. We take f ∈ (V(Γ ) ∩H−1/2(curlΓ , Γ ))∗ and let u ∈ V(Γ ) ∩H−1/2(curlΓ , Γ ) be a solution to (3.5). We
define (E,H) ∈ Hloc(curl, Ωext) × VH as being the unique solution to (3.4) for v = u on Γ . The tangential
component of H satisfies HT = u on Γ and then H ∈ VH. Finally, since ν ×E = SΓ (u) and since u solves (3.5)
we obtain

ν × E + ZHT = f on Γ

which means that (E,H) solves (3.1).
The reverse statement is straightforward since ν×E = SΓ (HT ) as soon as (E,H) solves Maxwell’s equations

outside Ω. �

We therefore obtain that problems (3.1), (3.2) and (3.5) are equivalent. We establish now a well-posedness result
for (3.1) which is valid for a general class of operators Z.
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3.3. Existence and uniqueness for a general class of boundary conditions

First, to ensure uniqueness, we impose a certain absorption condition to be satisfied by the boundary opera-
tor Z. In general this hypothesis is not restrictive since it is linked to some absorption property of the modelled
material.

Hypothesis 3.3. The operator Z has a nonpositive real part, that is:


〈Zv, v〉V(Γ )∗,V(Γ ) ≤ 0

for all v ∈ V(Γ ).

Under this hypothesis we prove uniqueness.

Theorem 3.4. If Hypothesis 3.3 is satisfied then problem (3.1) has at most one solution.

Proof. Assume that (E,H) ∈ Hloc(curl, Ωext) × VH satisfies (3.1) with f = 0 on Γ . Let BR be a ball of radius
R > R0 that contains Ω, by using the integration by part formula (2.4) in Ωext∩BR we find that (E,H) satisfies

〈γtE, γTH〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) +
∫

∂BR

x̂ × E · Hds =
∫

Ωext∩BR

curl E · H− E · curl Hdx

=
∫

Ωext∩BR

iκμ|H|2 + iκε|E|2 dx.

By taking the real part of this equality we obtain


〈γtE, γT H〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) = −

(∫

∂BR

x̂ × E · Hds

)
+

∫
Ωext∩BR


(iκμ)|H|2 + 
(iκε)|E|2 ds

and since ν × E = −ZHT on Γ this relation becomes


 〈ZHT ,HT 〉V(Γ )∗,V(Γ ) = 

(∫

∂BR

x̂ × E · H ds

)
−

∫
Ωext∩BR


(iκμ)|H|2 + 
(iκε)|E|2 ds.

Since we assume that the real part of Z is nonpositive and since the imaginary parts of ε and μ are nonnegative,
this gives



(∫

∂BR

x̂ × E ·H ds

)
≤ 0

which in regards of Rellich’s Lemma ([15], Lem. 9.28) gives E = H = 0 in R3 \BR. Since the coefficients ε and μ
are continuously differentiable, E and H are in (H1(O))3 for all open set O such that O ⊂ Ωext and the unique
continuation principle given in [17] applies. That gives E = H = 0 in Ωext and it concludes the proof. �

As a consequence, to prove that problem (3.1) is well-posed it is sufficient to prove that it can be formulated as
a Fredholm type problem. When V(Γ ) is compactly embedded into H−1/2(curlΓ , Γ ) the surface formulation (3.5)
allows to prove this property in a straightforward way as soon as Z : V(Γ ) → V(Γ )∗ can be decomposed as the
sum of an isomorphism and a compact operator.

Theorem 3.5. Let Z be an impedance operator such that Hypothesis 3.3 is satisfied. If V(Γ ) is compactly
embedded into H−1/2(curlΓ , Γ ) and Z = T + K where T : V(Γ ) → V(Γ )∗ is an isomorphism and K : V(Γ ) →
V(Γ )∗ is a bounded and compact operator, then for all f ∈ V(Γ )∗ problem (3.1) has a unique solution (E,H) ∈
Hloc(curl, Ωext) × VH and for every ball BR that contains Ω it exists CR > 0 such that

‖E‖H(curl,ΩR) + ‖H‖VH,R ≤ CR‖f‖V(Γ )∗ .
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Proof. First of all, V(Γ ) ∩ H−1/2(curlΓ , Γ ) = V(Γ ) with equivalence of norms and we have equivalence be-
tween (3.1) and (3.5) in the sense of Lemma 3.2. Let us prove that SΓ + Z : V(Γ ) → V(Γ )∗ is of Fredholm
type. The operator SΓ : H−1/2(curlΓ , Γ ) → V(Γ )∗ is continuous and therefore is compact from V(Γ ) into
V(Γ )∗ since we assumed that V(Γ ) is compactly embedded into H−1/2(curlΓ , Γ ). Moreover, Z = T + K with
T : V(Γ ) → V(Γ )∗ an isomorphism and K : V(Γ ) → V(Γ )∗ a compact operator and consequently, SΓ + Z is
of Fredholm type with index 0. Theorem 3.4 allows to finish the proof. �

When V(Γ ) is not included into H−1/2(curlΓ , Γ ), there is no real advantage in using the surface formulation
to establish existence and uniqueness of the solution to the scattering problem and we have to impose some
restrictions on the sign of the imaginary part of the boundary operator to obtain the following theorem.

Theorem 3.6. Let Z be an impedance operator such that Hypothesis 3.3 is satisfied and such that it exists
c > 0 such that


〈iκZu,u〉V(Γ )∗,V(Γ ) > c‖u‖2
V(Γ ) ∀ u ∈ V(Γ ).

Then for all f ∈ V(Γ )∗ problem (3.1) has a unique solution (E,H) ∈ Hloc(curl, Ωext) × VH and for every ball
BR that contains Ω it exists CR > 0 such that

‖E‖H(curl,ΩR) + ‖H‖VH,R ≤ CR‖f‖V(Γ )∗ .

Proof. The proof of this result is a slight adaptation of the procedure presented in ([15], Chap. 10) and is
therefore postponed in appendix. �

4. Well-posedness for second order surface differential operators

In this section we will consider three different second order surface differential operators and we will see that
these operators are very different from one another and require different treatments. For the first two cases
we will prove the Fredholm property of the surface formulation (3.5) and use Theorem 3.5 while in the third
case V(Γ ) is not a subspace of H−1/2(curlΓ , Γ ) and we will make use of Theorem 3.6. While the case treated
in Section 4.2 corresponds to an approximate model for thin layers (see [11] for example), the two other cases
(Sects. 4.3 and 4.1) are presented here mainly for their theoretical interest. To the knowledge of the author,
they are not known yet to be approximate models of a given physical configuration.

4.1. The case of Z = curlΓηcurlΓ + ∇ΓγdivΓ + λ

We take (λ, η, γ) ∈ (L∞(Γ ))3 and we define

Z = curlΓ ηcurlΓ + ∇Γ γdivΓ + λ

which is a bounded and linear operator from V(Γ ) = H0(divΓ , Γ ) ∩H0(curlΓ , Γ ) into its dual. For all v,w in
V(Γ ) we have

〈Zv,w〉V(Γ )∗,V(Γ ) :=
∫

Γ

ηcurlΓ v curlΓ w− γdivΓv divΓw + λv ·w ds.

The space V(Γ ) is endowed with the norm

‖ · ‖V(Γ ) := ‖ · ‖H0(divΓ ,Γ ) + ‖ · ‖H0(curlΓ ,Γ )

and this space is nothing but H1
t (Γ ) since we have the algebraic relation

−ΔΓ = curlΓ curlΓ −∇Γ divΓ

where ΔΓ is the vector Laplace Beltrami operator on Γ . As a consequence, the embedding of V(Γ ) in
H−1/2(curlΓ , Γ ) and L2

t (Γ ) is compact. Therefore we can use the surface formulation (3.5) to prove that prob-
lem (3.1) is well-posed under the following sign assumptions on λ, η and γ.
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Hypothesis 4.1. The functions (λ, η, γ) ∈ (L∞(Γ ))3 are such that


(λ) ≤ 0, 
(η) ≤ 0, 
(γ) ≥ 0 a.e. on Γ,

it exists c > 0 such that
|γ| ≥ c, |η| ≥ c a.e. on Γ

and the imaginary parts of γ and η do not change sign on Γ and are of opposite sign.

The following theorem is then a consequence of Theorem 3.5.

Theorem 4.2. If (λ, η, γ) satisfy Hypothesis 4.1 then for all f ∈ V(Γ )∗ problem (3.1) with Z = curlΓ ηcurlΓ +
∇Γ γdivΓ + λ has a unique solution (E,H) and for every ball BR that contains Ω it exists CR > 0 such that

‖E‖H(curl,ΩR) + ‖H‖VH,R ≤ CR‖f‖V(Γ )∗ .

Proof. Let us assume that (λ, η, γ) ∈ (L∞(Γ ))3 satisfy Hypothesis 4.1, then the real part of Z is nonpositive
and from Theorem 3.4 we deduce that problem (3.1) with Z = curlΓ ηcurlΓ + ∇Γ γdivΓ + λ has at most one
solution. To prove existence we use the surface formulation (3.5) which is equivalent to (3.1) since V(Γ ) ⊂
H−1/2(curlΓ , Γ ). Let us define the bounded linear operators T : V(Γ ) → V(Γ )∗ and K : V(Γ ) → V(Γ )∗ by

〈Tv,w〉V(Γ )∗,V(Γ ) :=
∫

Γ

η curlΓv curlΓ wds −
∫

Γ

γ divΓv divΓ wds +
∫

Γ

η v · wds,

〈Kv,w〉V(Γ )∗,V(Γ ) :=
∫

Γ

(λ − η) v · wds

for all v and w in V(Γ ) and then Z = T + K. We recall that for any complex number z = a + ib ∈ C we have

|z| ≥ |a| + |b|√
2

(4.1)

and since (λ, η, γ) satisfy Hypothesis 4.1, this last inequality implies that the operator T is coercive on V(Γ )
i.e. it exists C > 0 such that

|〈Tu,u〉V(Γ )∗,V(Γ )| ≥ C‖u‖2
V(Γ ) ∀ u ∈ V(Γ ).

Moreover, since the embeddings of V(Γ ) into L2
t (Γ ) and H−1/2(curlΓ , Γ ) are compact, we deduce that K :

V(Γ ) → V(Γ )∗ and SΓ : V(Γ ) → V(Γ )∗ are compact operators. Then, Theorem 3.5 concludes the proof. �

Remark 4.3. Using formulation (3.5) instead of formulation (3.2) to prove existence and uniqueness of the
solution to the scattering problem allows us to treat the case of coefficients η and γ with negative and positive
imaginary parts respectively. This could not be achieved with standard variational arguments on the variational
formulation (3.3) associated with the volume problem (3.2).

4.2. The case of Z = curlΓηcurlΓ + λ

Let λ and η be two L∞(Γ ) functions and let us define

Z = curlΓ ηcurlΓ + λ

which is bounded and continuous from V(Γ ) = H0(curlΓ , Γ ) into its dual. Similarly to the previous case, we
have for all v,w in V(Γ ):

〈Zv,w〉V(Γ )∗,V(Γ ) :=
∫

Γ

ηcurlΓv curlΓw + λv · wds.

We assume that λ and η satisfy the following sign hypothesis.
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Hypothesis 4.4. The functions (λ, η) ∈ (L∞(Γ ))2 are such that


(λ) ≤ 0, 
(η) ≤ 0 a.e. on Γ,

it exists c > 0 such that
|λ| ≥ c, |η| ≥ c a.e. on Γ

and the imaginary parts of λ and η do not change sign on Γ .

Under Hypothesis 4.4, we obtain the following result.

Theorem 4.5. Let (λ, η) ∈ (L∞(Γ ))2 be such that Hypothesis 4.4 is satisfied. Then for all f ∈ V(Γ )∗ prob-
lem (3.1) with Z = curlΓ ηcurlΓ + λ has a unique solution (E,H) and for every ball BR that contains Ω it
exists CR > 0 such that

‖E‖H(curl,ΩR) + ‖H‖VH,R ≤ CR‖f‖V(Γ )∗ .

First of all, if the imaginary parts of λ and η are of the same sign then the situation is very similar to the one in
the previous section. Actually, V(Γ ) is compactly embedded into H−1/2(curlΓ , Γ ) and we can use the surface
formulation (3.5) to prove that problem (3.1) is well-posed. Indeed, in this case Z : V(Γ ) → V(Γ )∗ is coercive
and since SΓ : V(Γ ) → V(Γ )∗ is compact we deduce well-posedness from the uniqueness Theorem 3.4.

If this is not the case, that is if the imaginary parts of λ and η are of opposite sign then we have to be much
more careful to prove existence of a solution to (3.1) (uniqueness is ensured by Thm. 3.4). As mentioned in the
introduction, this happens for example in the case where Z models a thin layer of metal. Actually, the λ part
of the impedance operator has to be treated as a compact perturbation of the curlΓ ηcurlΓ operator but it not
true. Actually, similarly to the volume spaces, H0(curlΓ , Γ ) is not compactly embedded into L2

t (Γ ) since, for
example, for all p ∈ H1(Γ ) we have

curlΓ∇Γ p = 0.

Nevertheless, we prove in what follows that Z + SΓ : V(Γ ) → V(Γ )∗ is an isomorphism by using a Helmholtz’
decomposition of V(Γ ). Before giving the actual decomposition we need to introduce some additional notations.
For any f ∈ V(Γ )∗, let us define the sesquilinear form aΓ on V(Γ )×V(Γ ) and the anti-linear form lΓ on V(Γ ) by

aΓ (u,v) :=
∫

Γ

(ηcurlΓ u curlΓv + λu · v) ds + 〈SΓ (u),v〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) ∀ (u,v) ∈ (V(Γ ))2,

lΓ (v) := 〈f,v〉V(Γ )∗,V(Γ ) ∀ v ∈ V(Γ ).

Then, uΓ ∈ V(Γ ) solves (3.5) if and only if

aΓ (uΓ ,v) = lΓ (v)

for all v ∈ V(Γ ).
Let us define

H̊1(Γ ) :=
{

p ∈ H1(Γ ) |
∫

Γ

p ds = 0
}

the space of H1(Γ ) functions with zero mean on Γ endowed with the H1(Γ ) norm and

X :=
{
v ∈ V(Γ ) |

∫
Γ

λv · ∇Γ ξ ds + 〈SΓ (v),∇Γ ξ〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) = 0 ∀ ξ ∈ H̊1(Γ )
}

endowed with the H0(curlΓ , Γ ) norm. These two spaces are Hilbert spaces and we denote by H̊1(Γ )∗ and X∗

their dual spaces. We prove in Lemma 4.7 that

V(Γ ) = ∇Γ H̊1(Γ ) ⊕ X
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and in Lemma 4.9 that the embedding of X in L2
t (Γ ) is compact. To this end, let us first introduce the linear

and continuous operator AS : H̊1(Γ ) → H̊1(Γ )∗ defined by

〈ASp, ξ〉H̊1(Γ )∗,H̊1(Γ ) := aΓ (∇Γ p,∇Γ ξ)

=
∫

Γ

λ∇Γ p · ∇Γ ξ ds + 〈SΓ (∇Γ p),∇Γ ξ〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ )

for all (p, ξ) ∈ (H̊1(Γ ))2. According to the next lemma, AS is an isomorphism.

Lemma 4.6. If λ satisfies Hypothesis 4.4 then AS : H̊1(Γ ) → H̊1(Γ )∗ is an isomorphism.

Proof. Let λ ∈ L∞(Γ ) be such that Hypothesis 4.4 is satisfied. Let CS and KS be the two bounded operators
from H̊1(Γ ) into H̊1(Γ )∗ defined by

〈CSp, ξ〉H̊1(Γ )∗,H̊1(Γ ) =
∫

Γ

λ(∇Γ p · ∇Γ ξ + pξ) ds ∀ (p, ξ) ∈ (H̊1(Γ ))2,

〈KSp, ξ〉H̊1(Γ )∗,H̊1(Γ ) = −
∫

Γ

λ p ξ ds + 〈SΓ (∇Γ p),∇Γ ξ〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) ∀ (p, ξ) ∈ (H̊1(Γ ))2,

then AS = CS + KS. First of all, from (4.1) and since the imaginary part of λ does not change sign, we have
for all p ∈ H̊1(Γ )

|〈CSp, p〉H̊1(Γ )∗,H̊1(Γ )| ≥
1√
2

∫
Γ

[−
(λ) + |�(λ)|](|∇Γ p|2 + |p|2) ds ≥ c√
2
‖p‖H1(Γ )

where c is the lower bound on the modulus of λ and c > 0 from Hypothesis 4.4. Hence CS is an isomorphism
from Lax–Milgram Lemma.

We prove that KS : H̊1(Γ ) → H̊1(Γ )∗ is compact. Let (pn)n be a bounded sequence of H̊1(Γ ), let us prove
that we can extract from (KSpn)n a subsequence that converges in H̊1(Γ )∗. From the definition of KS and
using the continuity of SΓ : H−1/2(curlΓ , Γ ) → H−1/2(divΓ , Γ ) we deduce that it exists a constant C > 0 such
that for all n ∈ N and for all ξ ∈ H̊1(Γ ) we have

〈KSpn, ξ〉H̊1(Γ )∗,H̊1(Γ ) ≤ ‖λ‖L∞(Γ )‖pn‖L2(Γ )‖ξ‖L2(Γ ) + C‖∇Γ pn‖H−1/2(curlΓ ,Γ )‖∇Γ ξ‖H−1/2(curlΓ ,Γ ).

But since curlΓ (∇Γ pn) = 0 we deduce that ‖∇Γ pn‖H−1/2(curlΓ ,Γ ) = ‖∇Γ pn‖H
−1/2
t (Γ )

. Similarly, we obtain that
it exists C > 0 such that for all n ∈ N:

‖∇Γ ξ‖H−1/2(curlΓ ,Γ ) = ‖∇Γ ξ‖
H

−1/2
t (Γ )

≤ C‖ξ‖H1/2(Γ ).

Therefore, we obtain that it exists C > 0 such that for all n ∈ N:

‖KSpn‖H̊1(Γ )∗ ≤ C
(
‖pn‖L2(Γ ) + ‖∇Γ pn‖H

−1/2
t (Γ )

)
≤ C‖pn‖H1/2(Γ ). (4.2)

We recall that the sequence (pn)n is bounded in H1(Γ ) and therefore one can extract from (pn)n a subsequence
still denoted by (pn)n that is of Cauchy type in H1/2(Γ ). This observation together with inequality (4.2)
implies that KS is compact and therefore that AS = CS + KS is of Fredholm type with index 0 since CS is an
isomorphism.

To conclude the proof, let us prove that AS is injective. We take p ∈ H̊1(Γ ) such that ASp = 0. We then
have ∫

Γ

λ|∇Γ p|2 ds + 〈SΓ (∇Γ p),∇Γ p〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) = 0. (4.3)
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Let (E,H) be the unique solution to (3.4) with v = ∇Γ p on Γ . Integration by part formula (2.4) implies that


〈ν × E,HT 〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) = −

(∫

∂BR

x̂ × E · Hds

)
+

∫
Ωext∩BR


(iκμ)|H|2 + 
(iκε)|E|2 ds

for every ball BR that is such that Ω ⊂ BR. Since HT = ∇Γ p and ν × E = SΓ (HT ) on Γ , this last equality
becomes



(∫

∂BR

x̂ × E · Hds

)
= − 
〈SΓ (∇Γ p),∇Γ p〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ )

+
∫

Ωext∩BR


(iκμ)|H|2 + 
(iκε)|E|2 ds.

Therefore, by using (4.3) we obtain



(∫

∂BR

x̂ × E · Hds

)
=

∫
Γ


(λ)|∇Γ p|2 ds +
∫

Ωext∩BR


(iκμ)|H|2 + 
(iκε)|E|2 ds.

Since 
(λ) ≤ 0, 
(iκμ) ≤ 0 and 
(iκε) ≤ 0 we have



(∫

∂BR

x̂ × E ·H ds

)
≤ 0

and Rellich’s lemma together with the unique continuation principle (see [17]) implies that E = H = 0 in
Ωext and as a consequence ∇Γ p = 0. Since p has a zero mean on Γ , this implies p = 0 which concludes the
proof. �

We make use of the isomorphism AS to prove the following Helmholtz’ decomposition that has been obtained
in [10] for regular boundaries and functions λ.

Lemma 4.7. If λ satisfies Hypothesis 4.4 then V(Γ ) writes as the direct sum of ∇Γ H̊1(Γ ) and X:

V(Γ ) = ∇Γ H̊1(Γ ) ⊕ X,

and there exists C > 0 such that

‖w‖V(Γ ) + ‖∇Γ p‖V(Γ ) ≤ C‖∇Γ p + w‖V(Γ )

for all w ∈ X and p ∈ H̊1(Γ ).

Proof. Let us take u ∈ V(Γ ), and let us define F as being the unique element of H̊1(Γ )∗ that satisfies

〈F, ξ〉H̊1(Γ )∗,H̊1(Γ ) =
∫

Γ

λu · ∇Γ ξ ds + 〈SΓ (u),∇Γ ξ〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) ∀ ξ ∈ H̊1(Γ ).

Since AS : H̊1(Γ ) → H̊1(Γ )∗ is an isomorphism (Lem. 4.6), it exists a unique p ∈ H̊1(Γ ) such that ASp = F
and it exists C > 0 such that

‖p‖H1(Γ ) ≤ C‖u‖V(Γ ). (4.4)

Let us define w := u −∇Γ p, from the definition of AS and p, we have∫
Γ

λw · ∇Γ ξ ds + 〈SΓ (w),∇Γ ξ〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ ) = 〈F − ASp, ξ〉H̊1(Γ )∗,H̊1(Γ ) = 0 ∀ ξ ∈ H̊1(Γ )
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whence, w ∈ X and by (4.4) we have the following continuity relation

‖w‖V(Γ ) + ‖∇Γ p‖V(Γ ) ≤ ‖u‖V(Γ ) + 2‖∇Γp‖V(Γ ) ≤ (2C + 1)‖u‖V(Γ )

for C > 0. We have then proven that for any u ∈ V(Γ ) it exists p ∈ H̊1(Γ ) and w ∈ X such that u = ∇Γ p+w.
We now only have to prove that the sum between H̊1(Γ ) and X is direct. For u = ∇Γ p ∈ X ∩ ∇Γ H̊1(Γ ) we
have ASp = 0 since u ∈ X . Hence p = u = 0 since AS is injective. This concludes the proof. �

We now prove the compact embedding of X into L2
t (Γ ).

Lemma 4.8. Let σ be a L∞(Γ ) function such that |σ(x)| > c > 0 for almost all x ∈ Γ and that is such that
its real and imaginary parts do not change sign. Then, the space H1

t,σ(Γ ) := {u ∈ V(Γ ) | divΓ (σu) ∈ L2(Γ )} is
compactly embedded into L2

t (Γ ).

Proof. Let (un)n be a bounded sequence in H1
t,σ(Γ ), then there exists C > 0 such that for all n ∈ N we have

‖un‖L2
t (Γ ) ≤ C , ‖divΓ (σun)‖L2(Γ ) ≤ C and ‖curlΓ (un)‖L2(Γ ) ≤ C.

We define ϕn as being the unique function in H̊1(Γ ) that satisfies

divΓ (σ∇Γ ϕn) = divΓ (σun), (4.5)

then σ(un −∇Γ ϕn) has a vanishing surface divergence and is in L2
t (Γ ). As a consequence, it exists vn ∈ H̊1(Γ )

such that curlΓ vn = σ(un − ∇Γ ϕn) and then un = ∇Γ ϕn + 1
σcurlΓ vn. We now prove that we can extract a

subsequence from (curlΓ vn)n∈N and from (∇Γ ϕn)n∈N that converge in L2
t (Γ ).

First of all, since (4.5) has a unique solution in H̊1(Γ ) that depends continuously on the right-hand side, it
exists C > 0 such that ‖ϕn‖H1(Γ ) ≤ C‖divΓ (σun)‖L2(Γ ). The sequence (ϕn)n∈N is in particular bounded in
H1(Γ ) therefore we can extract from it a subsequence still denoted by (ϕn)n∈N that converges in L2(Γ ). We
prove next that it is of Cauchy type in H1(Γ ). Let us define ϕnm := ϕn−ϕm and fnm := divΓ (σun)−divΓ (σum),
then there exists C > 0 such that

‖∇Γ ϕnm‖2
L2

t (Γ ) ≤ C

∣∣∣∣∫
Γ

σ∇Γ ϕnm · ∇Γ ϕnm ds

∣∣∣∣ = C

∣∣∣∣∫
Γ

fnmϕnm ds

∣∣∣∣ .

Since fnm is bounded in L2(Γ ) and (ϕn)n∈N is a Cauchy sequence in L2(Γ ), we obtain that (∇Γ ϕn)n∈N is a
Cauchy sequence in L2

t (Γ ) whence (ϕn)n∈N converges in H1(Γ ).
Concerning (vn)n∈N we proceed in a similar way. First of all, it exists C > 0 such that ‖curlΓ vn‖L2

t (Γ ) =
‖∇Γ vn‖L2

t (Γ ) ≥ C‖vn‖H1(Γ ) since Γ is C1,1 (this is still true for a Lipschitz boundary). But, we recall that
curlΓ vn = σ(un−∇Γ ϕn), therefore it is a bounded sequence in L2

t (Γ ). From the compact embedding of H1(Γ )
in L2(Γ ), we deduce that we can extract from (vn)n∈N a subsequence still denoted (vn)n∈N that converges in
L2(Γ ). As previously, we conclude by proving that (curlΓ vn)n∈N is a Cauchy sequence in L2

t (Γ ). Let us denote
fnm := curlΓ (un) − curlΓ (um), there exists C > 0 such that

‖curlΓ vnm‖2
(L2

t (Γ ))3 ≤ C

∣∣∣∣∫
Γ

σ−1curlΓ vnm · curlΓ vnm ds

∣∣∣∣ = C

∣∣∣∣∫
Γ

fnmvnm, ds

∣∣∣∣
whence curlΓ vn is a Cauchy sequence in L2

t (Γ ) and it converges in L2
t (Γ ). This concludes the proof since we

have proven that one can extract a sequence of (un)n∈N that converges in L2
t (Γ ). �

The following lemma definitely justifies the use of the Helmholtz’ decomposition introduced in Lemma 4.7.

Lemma 4.9. If λ ∈ L∞(Γ ) satisfies Hypothesis 4.4 then the embedding of X into L2
t (Γ ) is compact.
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Proof. Let (un)n be a bounded sequence of X , then it exists C > 0 such that for all n ∈ N

‖un‖V(Γ ) ≤ C

and since un ∈ X , we also have
divΓ (λun) = −divΓ (SΓ (un))

in the sense of distributions. We define (En,Hn) as being the unique solution to (3.4) with v = un on Γ . By
using (2.3) we have that

divΓ (λun) = −divΓ (ν × En) = ν · curlEn = iκμν · Hn.

Whence, since Hn,T = un, it exists C > 0 such that

‖Hn‖H(curl,Ω) ≤ C and ‖Hn,T ‖L2
t (Γ ) ≤ C

and since div(μHn) = 0 in Ωext and μ is in C1(R3 \ Ω), we also have

‖Hn‖H(div,Ω) ≤ C.

From [9] we deduce that it exists C > 0 such that for all n ∈ N

‖divΓ (λun)‖L2(Γ ) = κ‖μν ·Hn‖L2(Γ ) ≤ C.

Lemma 4.8 proves then that we can extract a sequence of (un)n that converges in L2
t (Γ ) which finishes the

proof. �

We now conclude with the proof of Theorem 4.5.

Proof of Theorem 4.5. We take f ∈ V(Γ )∗ and (λ, η) ∈ (L∞(Γ ))2 such that Hypothesis 4.4 is satisfied. Since
V(Γ ) = H0(curlΓ , Γ ) ⊂ H−1/2(curlΓ , Γ ), we know from Lemma 3.2 that problem (3.1) is equivalent to prob-
lem (3.5). As a consequence, it is sufficient to prove that (3.5) is well-posed. Theorem 3.4, gives uniqueness, we
only have to prove existence. We look for a solution u that writes u = u0 + ∇Γ p with u0 ∈ X and p ∈ H̊1(Γ ).
The function u has to satisfiy

aΓ (u,v) = lΓ (v) for all v ∈ V(Γ )

which if we use test functions being gradients of functions of H̊1(Γ ) implies that p has to satisfy

〈ASp, ξ〉H̊1(Γ )∗,H̊1(Ω)〉 = lΓ (∇Γ ξ) for all ξ ∈ H̊1(Γ ). (4.6)

Let us recall that AS is an isomorphism between H̊1(Γ ) and H̊1(Γ )∗, therefore (4.6) has a unique solution
p ∈ H̊1(Γ ). If now we use test functions in X , we obtain that u0 has to satisfy

aΓ (u0,v0) = lΓ (v0) − aΓ (∇Γ p,v0) for all v0 ∈ X. (4.7)

Let us prove that (4.7) has a unique solution in the Hilbert space X . We define CX : X → X∗ and KX : X → X∗

the bounded and linear operators that satisfy

〈CXv,w〉X∗,X =
∫

Γ

η (curlΓ v curlΓ w + v · w) ds

〈KXv,w〉X∗,X =
∫

Γ

(−η + λ)v w ds + 〈SΓ (v),w〉H−1/2(divΓ ,Γ ),H−1/2(curlΓ ,Γ )
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for all v,w ∈ X . With these definitions 〈(CX + KX)v,w〉X∗,X = aΓ (v,w) for all v,w ∈ X . From Theorem 3.4
we know that CX + KX is injective, let us prove that CX + KX is a Fredholm type operator of index 0. First
of all, since η satisfies Hypothesis 4.4 and in particulars since its imaginary and real parts do not change sign
on Γ , by using inequality (4.1) we have for all v ∈ X

|〈CXv,v〉X∗,X | ≥ 1√
2

∫
Γ

(−
(η) + |�(η)|) (|curlΓ v|2 + |v|2) ds ≥ c‖v‖2
H0(curlΓ ,Γ ),

therefore CX is coercive on X . Moreover, SΓ : V(Γ ) → V(Γ )∗ is compact and since the injection of X in
L2

t (Γ ) is compact (Lem. 4.9) we deduce that KX is a compact operator. This guaranties well-posedness of (4.7)
which has a unique solution u0 ∈ X that depends continuously on p and f. To conclude, we built a function
u = u0+∇Γ p that solves (3.5). We obtain the continuous dependence of u with respect to f by using Lemma 4.7
together with the fact that AS : H̊1(Ω) → H̊1(Ω)∗ and CX + KX : X → X∗ are isomorphisms. �

4.3. The case of Z = ∇ΓγdivΓ + λ

We conclude this serie of examples with a third one for which we cannot use the surface formulation (3.5).
Let us consider

Z = ∇Γ γdivΓ + λ

for (λ, γ) two functions of L∞(Γ ). It is a continuous operator from V(Γ ) := H0(curlΓ , Γ ) into its dual and for
v,w in V(Γ ) we have:

〈Zv,w〉V(Γ )∗,V(Γ ) =
∫

Γ

−γdivΓ v divΓw + λv · wds.

Since V(Γ ) is not included into H−1/2(curlΓ , Γ ) we cannot use the formulation (3.5) in this case. Nevertheless,
we show that under appropriate sign assumptions on λ and γ we can apply Theorem 3.6.

Hypothesis 4.10. The functions (λ, γ) ∈ (L∞(Γ ))2 are such that


(λ) ≤ 0, 
(γ) ≥ 0 a.e. on Γ,

and it exists c > 0 such that
�(λ) ≤ c, �(γ) ≥ −c a.e. on Γ.

Under these restrictive sign assumptions (compare to the two previous examples) Z satisfies assumptions of
Theorem 3.6 and we have the following result.

Theorem 4.11. Let (λ, γ) ∈ (L∞(Γ ))2 be such that Hypothesis 4.10 is satisfied. Then for all f ∈ V(Γ )∗

problem (3.1) has a unique solution (E,H) and for every ball BR that contains Ω it exists CR > 0 such that

‖Es‖H(curl,ΩR) + ‖Hs‖VH,R ≤ C‖f‖V(Γ )∗ .

Remark 4.12. We can generalise further the results of this section to the case of a vanishing functions λ and
γ on Γ . In this case we use

V(Γ ) :=
{
v ∈ H−1/2(curlΓ , Γ )

∣∣∣∣ ∫
Γ

|λ||v|2 + |γ||divΓv|2 ds < +∞
}

endowed with the norm

‖v‖2
V(Γ ) := ‖v‖2

H−1/2(curlΓ ,Γ )
+

∫
Γ

|λ||v|2 + |γ||divΓ v|2 ds.

Existence and uniqueness is then ensured as soon as


(λ) ≤ 0, 
(γ) ≥ 0 a.e. on Γ,
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and
�(λ) ≤ 0, �(γ) ≥ 0 a.e. on Γ.

The question of existence of a solution when λ or γ have a negative imaginary part cannot be treated in this
way and to the knowledge of the author is still open.

Appendix – proof of Theorem 3.6

First of all, uniqueness holds from Theorem 3.4. To prove existence we adapt the procedure presented in
([15], Chap. 10) in the case of a Dirichlet type boundary condition to the volume formulation (3.2). We do not
give a precise proof but we only highlight the main steps since it is rather classical. As stated in Section 3.1, the
electromagnetic field (E,H) solves (3.2) if and only if H solves the variational formulation (3.3). Let R > R0

be such that the ball BR contains Ω. To study equation (3.3) we introduce a Helmholtz’ decomposition for
H(curl, ΩR) in order to handle the L2(ΩR) contribution that is not a compact perturbation of the principal
part. Let us introduce the space of functions in H1(ΩR) with vanishing trace on Γ

H1
0,Γ (ΩR) :=

{
p ∈ H1(ΩR) | p = 0 on Γ

}
and the following Hilbert space

XR :=
{
u ∈ VH,R

∣∣∣∣∫
ΩR

κ2μu · ∇ξ dx + iκ〈SR(x̂ × u),∇∂BRξ〉H−1/2(div∂BR
,∂BR),H−1/2(curl∂BR

,∂BR) = 0 ∀ξ ∈ H1
0,Γ (ΩR)

}
.

Let us define the operator AR : H1
0,Γ (ΩR) → H1

0,Γ (ΩR)∗ characterised by

〈ARp, ξ〉H1
0,Γ (ΩR)∗,H1

0,Γ (ΩR) :=∫
ΩR

κ2μ∇p · ∇ξ dx + iκ〈SR(x̂ ×∇∂BRp),∇∂BRξ〉H−1/2(div∂BR
,∂BR),H−1/2(curl∂BR

,∂BR)

for all p, ξ in H1
0,Γ (ΩR). Due to the symmetry of Maxwell’s equations, the Magnetic-to-Electric map SR is equal

to −GR where GR is the Electric-to-Magnetic map which maps ET to x̂ × H where (E,H) solves Maxwell’s
equations outside BR together with the Silver–Müller radiation condition. As a consequence, we can use the
results of [15] Lemmas 9.23 and 9.24 that state that it exists S̃R : H−1/2(div∂BR , ∂BR) → H−1/2(div∂BR , ∂BR)
such that for all u ∈ H−1/2(div∂BR , ∂BR) we have

〈S̃Ru,u × x̂〉H−1/2(div∂BR
,∂BR),H−1/2(curl∂BR

,∂BR) ≥ c‖u‖2
H−1/2(div∂BR

,∂BR)

for c > 0 and SR + iκS̃R : H−1/2(div∂BR , ∂BR) → H−1/2(div∂BR , ∂BR) is a compact operator. We deduce that
AR is an isomorphism and similarly to the proof of Lemma 4.7 we obtain the following Helmholtz’ decomposition

VH,R = XR ⊕∇H1
0,Γ (ΩR).

Moreover, XR is compactly embedded into (L2(ΩR))3 (see the proof of [15], Lem. 10.4). We also remark that
from the sign assumption on the real part of iκZ and the real part of ε, it exists C > 0 such that∣∣∣∣∫

ΩR

ε−1|curl u|2 + |u|2 dx + iκ〈ZuT ,uT 〉V(Γ )∗,V(Γ )

∣∣∣∣ ≥ C‖u‖2
VH,R

(4.8)

for all u ∈ VH,R. Finally, let us recall the result of Lemma 10.5 in [15] that states that SR can be decomposed
as SR = S1 + S2 where S1 : H−1/2(div∂BR , ∂BR) → H−1/2(div∂BR , ∂BR) has a positive imaginary part and
S2 ◦ γt,R : XR → H−1/2(div∂BR , ∂BR) is compact where γt,Ru = x̂ × u|∂BR for all u ∈ VH,R.
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We now have all the tools we need to conclude the proof. Let us build a solution that decomposes as
H = H0 +∇p where p ∈ H1

0,Γ (ΩR). If H solves (3.3) then p has to solve ARp = 0 (there is no source term in Ω)
and therefore, p = 0. As a consequence, H0 has to solve

(CR + KR)H0 = F (4.9)

where the operators CR : XR → X∗
R and KR : XR → X∗

R are defined by

〈CRv,w〉X∗
R,XR :=

∫
ΩR

ε−1curl v · curl w + v · w dx + iκ〈Zv,w〉V(Γ )∗,V(Γ )

− iκ〈S1(x̂ × v),w〉H−1/2(div∂BR
,∂BR),H−1/2(curl∂BR

,∂BR)

〈KRv,w〉X∗
R,XR := −

∫
ΩR

(κ2μ + 1)v · w dx − iκ〈S2(x̂ × v),w〉H−1/2(div∂BR
,∂BR),H−1/2(curl∂BR

,∂BR)

for all v,w ∈ XR and F is such that 〈F,w〉X∗
R,XR := iκ〈f,w〉V(Γ )∗,V(Γ ) for all w ∈ XR. From (4.8) and the

properties of S1 and S2 we deduce that CR is coercive and KR is compact. The general uniqueness result
Theorem 3.4 ensures that it exists H0 that solves (4.9) and that depends continuously on F . Therefore, it exists
a unique H = H0 that solves the variational formulation (3.3) and we obtain the desired result.

References

[1] A. Bendali and K. Lemrabet, Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly
conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57 (2008) 199–227.

[2] L. Bourgeois, N. Chaulet and H. Haddar, Stable reconstruction of generalized impedance boundary conditions. Inverse Probl.
27 (2011).

[3] L. Bourgeois, N. Chaulet and H. Haddar, On simultaneous identification of the shape and generalized impedance boundary
condition in obstacle scattering. SIAM J. Sci. Comput. 34 (2012).

[4] F. Cakoni and R. Kress, Integral equation methods for the inverse obstacle problem with generalized impedance boundary
condition. Inverse Probl. 29 (2013) 015005.

[5] M. Cessenat, Mathematical Methods in Electromagnetism: Linear Theory and Applications. World scientific publishing com-
pagny (1996).

[6] M. Chamaillard, N. Chaulet and H. Haddar, Analysis of the factorization method for a general class of boundary conditions.
J. Inverse Ill-Posed Probl. 22 (2014) 643–670.

[7] S. Chun, H. Haddar and J.S. Hesthaven, High-order accurate thin layer approximations for time-domain electromagnetics,
PartII: Transmission layers. J. Comput. Appl. Math. 234 (2010) 25787–2608.

[8] D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory. In vol. 93 of Appl. Math. Sci., 3rd edition.
Springer-Verlag (1998).

[9] M. Costabel. A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci.
(1990) 365–368.

[10] B. Delourme, H. Haddar and P. Joly, On the well-posedness, stability and accuracy of an asymptotic model for thin periodic
interfaces in electromagnetic scattering problems. Math. Models Methods Appl. Sci. 23 (2013) 2433–2646.
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