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NUMERICAL SOLUTION OF THE VISCOUS SURFACE WAVE
WITH DISCONTINUOUS GALERKIN METHOD ∗

Lei Wu
1
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Abstract. We consider an incompressible viscous flow without surface tension in a finite-depth domain
of two dimensions, with free top boundary and fixed bottom boundary. This system is governed by the
Navier–Stokes equations in this moving domain and the transport equation on the moving boundary.
In this paper, we construct a stable numerical scheme to simulate the evolution of this system by
discontinuous Galerkin method, and discuss the error analysis of the fluid under certain assumptions.
Our formulation is mainly based on the geometric structure introduced in [Y. Guo and Ian Tice, Anal.
PDE 6 (2013) 287–369; Y. Guo and Ian Tice, Arch. Ration. Mech. Anal. 207 (2013) 459–531; L. Wu,
SIAM J. Math. Anal. 46 (2014) 2084–2135], and the natural energy estimate, which is rarely used in
the numerical study of this system before.
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1. Introduction

We consider an incompressible viscous flow in the moving domain

Λ(t) = {y = (y1, y2) ∈ T × R : −1 < y2 < η (y1, t)} , (1.1)

where T denotes the 1-torus. We denote the initial domain Λ(0) = Λ0. For each t, the flow is described by its
velocity and pressure (u, p) : Λ(t) �→ R

2 × R which satisfies the incompressible Navier–Stokes equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu+ u · ∇u+ ∇p = νΔu+ S in Λ(t),

∇ · u = 0 in Λ(t),

(pI − νD(u))μ = gημ on {y2 = η (y1, t)} ,
u = 0 on {y2 = −1},
∂tη = u2 − u1∂y1η on {y2 = η (y1, t)} ,

u(t = 0) = u0 in Λ0,

η(t = 0) = η0 on T,

(1.2)
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for μ the outward-pointing unit normal vector on {y2 = η}, I the 2 × 2 identity matrix, (Du)ij = ∂iuj + ∂jui

the symmetric gradient of u, g the gravitational constant, ν > 0 the viscosity and S = S(t, y1, y2) an external
source term. The fifth equation in (1.2) implies the free surface is convected with the fluid. Note in (1.2), we
have shifted the actual pressure p̄ by the constant atmosphere pressure patm according to p = p̄+ gy2 − patm.

We always assume the natural condition that there exists a positive number δ such that η0 +1 ≥ δ > 0 on Σ,
which means the initial free surface is strictly separated from the bottom.

Traditionally, based on the handling of the free surface, this type of problems can be solved via moving-grid
technique as in [17], marker-and-cell method as in [13], volume-of-fluid method as in [14] and level-set method
as in [9]. In each case, finite difference method, finite volume method and finite element method can be applied
to solve the Navier–Stokes equation in Λ(t). However, to the best of authors’ knowledge, there is very little in
the literature on solving this problem with discontinuous Galerkin method other than [9]. On the other hand,
in spite of many computational tests presented in the literature, there is very little discussion on the stability
and convergence of the numerical scheme. In this paper, we employ the idea from [10, 11, 20], to construct a
stable numerical scheme and give detailed analysis.

Our central idea is to flatten the free surface via a coordinates transform. First, we define a fixed domain

Ω = {x = (x1, x2) ∈ Σ × R | − 1 < x2 < 0} , (1.3)

for which we write the coordinates x ∈ Ω. In this slab, we take Σ : {x2 = 0} as the upper boundary and
Σb : {x2 = −1} as the lower boundary.

Consider the geometric transform from Ω to Λ(t), which is first introduced in [2] and further extended
in [10, 20]:

Φ : (x1, x2) �→ (x1, x2 + η (1 + x2)) = (y1, y2) . (1.4)

We may directly verify this transform maps Ω into Λ(t) with the Jacobi matrix

∇Φ =
(

1 0
A J

)
, (1.5)

and the transform matrix

A =
(
(∇Φ)−1

)T
=
(

1 −AK
0 K

)
, (1.6)

where

b̃ = 1 + x2, A = ∂1ηb̃,

J = 1 + η, K = 1/J. (1.7)

Here we denote the derivative with respect to x1 as ∂1 and with respect to x2 as ∂2. Define the transformed
operators as follows:

(∇A f)i = Aij∂jf,

∇A · g = Aij∂jgi,

ΔA f = ∇A · ∇A f,

N = (−∂1η, 1) ,

χ = ∂1η,

(DA u)ij = Aik∂kuj + Ajk∂kui,

SA (p, u) = pI − DA u, (1.8)
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where the summation index should be understood in the Einstein convention. If we extend the divergence ∇A ·
to act on symmetric tensors in the natural way, then a straightforward computation reveals ∇A · SA (p, u) =
∇A p−ΔA u for vector fields satisfying ∇A · u = 0.

In our new coordinates, the original system (1.2) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu− ∂tηb̃K∂2u+ u · ∇A u− νΔA u+ ∇A p = S in Ω,

∇A · u = 0 in Ω,

SA (p, u)N = gηN on Σ,

u = 0 on Σb,

u(x, 0) = u0(x) in Ω,

∂tη = u · N on Σ,

η(x′, 0) = η0(x′) on Σ.

(1.9)

Since A depends on η through the transform, most of the operators in the Navier–Stokes equations are related
to the free surface η. Hence, the Navier–Stokes equations and the transport equation are essentially coupled.

Based on [10], equation (1.9) with S = 0 possesses a natural energy equality as follows:∫
Ω

J(t) |u(t)|2 + g

∫
Σ

|η(t)|2 + ν

∫ t

0

∫
Ω

J(s) |DA u(s)|2 ds =
∫

Ω

J(0) |u(0)|2 + g

∫
Σ

|η(0)|2 . (1.10)

Hence, we try to construct a numerical scheme to recover this energy stability for the numerical solution.
In the following, we refer to the term “continuous case” when we consider the exact solution triple (u, p, η)

which is sufficiently smooth. On the other hand, we refer to the term “discrete case” when we consider the
numerical solution triple (uh, ph, ηh).

Throughout this paper, C > 0 denotes a positive constant that only depends on the parameters Ω, g and ν
of the problem, and the exact solution (u, p, η). It is referred as universal and can change from one inequality to
another. When we write C(z), it means a positive constant depending on the quantity z. a � b denotes a ≤ Cb,
where C is a universal constant as defined above.

The method we discuss in this paper belongs to the class of discontinuous Galerkin (DG) methods. DG
methods are finite element methods which use completely discontinuous piecewise polynomial solution and
test spaces. They are particularly useful for convection dominated wave problems, and have the advantage of
flexibility in adaptivity and efficient parallel implementation. We refer to the references [3–5,19] for more details.

2. Numerical scheme

2.1. Fundamental settings

In our construction and analysis of the numerical scheme, we focus on the semi-discrete form of the system.
The time discretization is based on the Runge–Kutta method for differential-algebraic equations of index 2, as
presented in [12]. We do not discuss the fully-discrete scheme in this paper.

We choose the bulk domain as Ω : (x1, x2) ∈ [0, 1] × [−1, 0] and the surface domain as Σ : x1 ∈ [0, 1], which
are 1-periodic in the x1 direction. The surface mesh is defined by dividing Σ into N uniform elements with
length h = 1/N . The bulk mesh construction can be divided into two steps: first we divide Ω into N×N uniform
squares, where each element is sized h×h. Then, we divide each square into two right triangles by cutting along
the diagonal from the left-up corner to the right-down corner. The bulk mesh is shown in Figure 1.

Remark 2.1. Since the discretization of the weighted differential operators ∇A , ∇A · and ΔA depends on η,
i.e. the surface variable, we need the bulk discretization to match the surface discretization in the vertical
direction. Hence, we need to first choose the strip-shape mesh as in Figure 2, whose projection on the upper
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Figure 1. Mesh distribution in N = 4. Figure 2. Strip–shape mesh distribu-
tion in N = 4.

boundary is exactly the surface mesh. Then in each strip, any triangulation is permitted. For convenience, we
made the choice as in Figure 1.

Let Eh be the set consisting of all the triangular elements in the bulk mesh and ∂Eh be the set of all the sides
of the triangular cells. Let Fh be the set consisting of all the interval elements in the surface mesh and ∂Fh be
the set of all the boundary points of intervals.

Define the usual Sobolev space in Ω as Hk(Ω) and in Σ as Hk(Σ). We define the space P k
h (Ω) where

f ∈ P k
h (Ω) if and only if f |E ∈ P k(E) for all E ∈ Eh (P k(E) denotes the set of polynomials of degree at most k

defined on E). Similarly, we can define the space P k
h (Σ).

We define the solution spaces as

Xk
h =

{
uh ∈ (L2(Ω)

)2
: uh ∈ (P k

h (Ω)
)2}

, (2.1)

Mk
h =

{
ph ∈ L2(Ω) : ph ∈ P k

h (Ω)
}
, (2.2)

Sk
h =

{
ηh ∈ L2(Σ) : ηh ∈ P k

h (Σ)
}
, (2.3)

for k ≥ 1.
For discrete functions fh ∈ Xk

h and gh ∈ Sk
h , we may define the Hh norms as follows:

‖fh‖2
Hh

=
∑

E∈Eh

‖fh‖2
H1(E) , (2.4)

‖gh‖2
Hh

=
∑

F∈Fh

‖gh‖2
H1(F ) . (2.5)

Define the Xh norm for vh ∈ Xk
h as

‖vh‖2
Xh

=
∑

E∈Eh

(
‖∇vh‖2

L2(E) +
∫

∂E

1
h

[vh]2
)
. (2.6)

Before stating the scheme, we announce the notations used below. For a given boundary belonging to a reference
cell E ∈ Eh and a function f defined in Ω, f ext(E) denotes the value of f read from the exterior direction on the
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boundary and f int(E) denotes that read from the interior direction. Also for the boundary shared by two cells,
we define

{f} =
1
2

(
f ext(E) + f int(E)

)
, (2.7)

[f ] = f int(E) − f ext(E). (2.8)

For the side on the boundary of Ω, we make a special definition that on Σb, f int(E) = {f} = [f ] and f ext(E) = 0,
while on Σ, f int(E) = f ext(E) = {f} and [f ] = 0. The definitions are reasonable, since the system (1.9) for u
gives Dirichlet-type condition on Σb and Neumann-type condition on Σ.

The numerical scheme is based on the weak formulation of the system (1.9). Taking test functions vh ∈ Xk
h

and qh ∈ Mk−1
h . We multiply Jvh and Jqh respectively on both sides of the Navier–Stokes equations and

integrate over E ∈ Eh to obtain∫
E

J∂tu · vh −
∫

E

J
(
∂tηb̃K∂2u

)
· vh

+
∫

E

J(u · ∇A u) · vh − ν

∫
E

JΔA u · vh +
∫

E

J∇A p · vh =
∫

E

J (S · vh) , (2.9)

∫
E

J(∇A · u)qh = 0. (2.10)

Considering the transport equation in (1.9), we make an addition and subtraction to modify two terms in above
formulation as(∫

E

J∂tu · vh −
∫

E

J
(
∂tηb̃K∂2u

)
· vh +

1
2

∫
∂E∩Σ

∂tη (u · vh)
)

+
(∫

E

J(u · ∇A u) · vh− 1
2

∫
∂E∩Σ

(u · N ) (u · vh)
)
−ν
∫

E

JΔA u · vh+
∫

E

J∇A p · vh =
∫

E

J (S · vh) , (2.11)

∫
E

J(∇A · u)qh = 0, (2.12)

where ∂E denotes the boundary of the triangular element E. This trick is to enforce the transport relation and
shows its power in the stability proof.

Multiplying a test functions φh ∈ Sk
h on both sides of the transport equation and integrating over F ∈ Fh,

we obtain ∫
F

∂tηφh +
∫

F

ū1∂1ηφh −
∫

F

ū2φh = 0, (2.13)

where ū1 and ū2 denote the traces of u1 and u2 on Σ.
The weak formulations of the system (1.9) are based on the integration by parts of (2.11), (2.12) and (2.13).

In the following, we define and analyze the numerical scheme term by term.

2.2. Discretization

We define the semi-discrete scheme as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

κF (ηh, uh, φh) = 0,

λF (χh, ψh) = 0,

ζE (ηh, uh, vh) + γE (uh, ηh, uh, vh) + ναE (ηh, uh, ηh, vh)

+βE (ph, ηh, vh) + gμE (ηh, ηh, vh) = ωE (ηh, vh) ,

ρE (uh, ηh, qh) = 0,

(2.14)
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for any test functions φh ∈ Sk
h , ψh ∈ Sk

h, vh ∈ Xk
h and qh ∈ Mk−1

h , where the first two equations denote
the transport discretization and the last two equations denote the fluid discretization. This forms a complete
differential-algebraic system for ηh(t) ∈ Sk

h, χh(t) ∈ Sk
h , uh(t) ∈ Xk

h and ph(t) ∈Mk−1
h . The detailed definitions

of above multi-linear terms κ, λ, ζ, γ, α, β, μ, ω, and ρ are in the following.

2.2.1. Discretization of transport terms as κF and λF

We define

κF (ηh, uh, φh) =
∫

F

∂tηhφh −
∫

F

(ū2)h φh −
∫

F

∂1 (ū1)h ηhφh −
∫

F

(ū1)h ηh∂1φh

+ (û1)h η̂hφ
−
h |F+1/2−(û1)h η̂hφ

+
h |F−1/2+

1
2
(
η−h φ

−
h [uh] |F+1/2−η+

h φ
+
h [uh] |F−1/2

)
(2.15)

λF (χh, ψh) =
∫

F

χhψh +
∫

F

ηh∂1ψh − η+
h ψ

−
h |F+1/2 + η+

h ψ
+
h |F−1/2, (2.16)

where F − 1/2 and F +1/2 denote the left and right boundary points of F . Here, for each boundary point, “−”
means the value read from the left and “+” means the value read from the right. Also, (û1)h η̂h denotes the
numerical flux on the boundary. We always take

(û1)h = {(ū1)h} , (2.17)

and η̂h should be determined from the sign of {(ū1)h} following the upwinding rule as

η̂h =

{
η−h if {(ū1)h} ≥ 0,

η+
h if {(ū1)h} < 0,

(2.18)

where (ū1)h is the trace of (u1)h on Σ. Note 1
2

(
η−h φ

−
h [uh]|F+1/2 − η+

h φ
+
h [uh]|F−1/2

)
are extra penalty terms,

which helps to show the stability. Since uh is also discontinuous across the boundary point, these penalty terms
are used to transform uh into {uh} on the boundary after integrating by parts in (2.15).

In all the applications below, we use χh to discretize ∂1η, and ηh to discretize η. Hence, we denote Nh for
the vector (−χh, 1). Also, Ah, Jh, Kh and Ah can be defined in the same convention.

2.2.2. Spacial discretization of temporal terms as ζE
We define

ζE (ηh, uh, vh) =
∫

E

∂t (Jhuh) · vh +
∫

E

∂tηhb̃uh · ∂2vh −
∫

∂E

∂tηhb̃
(
ûh · vint(E)

h

)
n2

+
1
2

∫
∂E∩Σ

∂tηh (uh · vh) , (2.19)

where nE = (n1, n2) denotes the outward normal vector on ∂E. The last term in (2.19) is the newly-added
penalty term in the formulation (2.11). The argument ηh in ζE(ηh, uh, vh) denotes ηh and its derivatives. We
utilize the upwinding flux in this scheme, i.e.

ûh =

{
u+

h if ∂tηhb̃ ≥ 0,

u−h if ∂tηhb̃ < 0,
(2.20)

where “+” denotes the value read from the up direction and “−” denote that from the down direction. If a side
is vertical, then its contribution is zero.
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2.2.3. Discretization of convection terms as γE

We define

γE (uh, ηh, uh, vh) = −1
2

∫
∂E∩Σ

(uh · Nh) (uh · vh) +
∫

E

Jh (uh · ∇Ah
uh) · vh

+
1
2

∫
E

Jh (∇Ah
· uh) (uh · vh) − 1

2

∫
∂E\∂Ω

[uh · JhAh] · nE
u

int(E)
h · vint(E)

h

2

+
∫

∂E−
|{uh · JhAh} · nE |

(
u

int(E)
h − u

ext(E)
h

)
· vint(E)

h , (2.21)

where ∇Ah
is understood as in (1.8) with A replaced by Ah and

∂E− = {x ∈ ∂E : {uh · JhAh} · nE < 0} . (2.22)

The first term in (2.21) is the newly added penalty term in the formulation (2.11). Since

JhAh =
(
Jh −Ah

0 1

)
, (2.23)

we only need one ηh argument in γE(uh, ηh, uh, vh).

2.2.4. Discretization of diffusion terms as αE

We utilize the Symmetric Internal Penalty Galerkin Method (SIPG) or the Nonsymmetric Internal Penalty
Galerkin Method (NIPG) to define

αE (ηh, uh, ηh, vh) =
1
2

∫
E

JhDAh
uh : DAh

vh −
∫

∂E\Σ

{DAh
uhJhAh} · nE · vint(E)

h

±1
2

∫
∂E\Σ

D
A

int(E)
h

v
int(E)
h J

int(E)
h A

int(E)
h · nE · [uh] +

σ

h

∫
∂E

[uh] · vint(E)
h . (2.24)

For the third term, if we take +, it is NIPG and if we take −, it is SIPG. The penalty constant σ can always
be taken as 1 for NIPG and a sufficiently large number for SIPG. Note that we need two ηh arguments in
αE(ηh, uh, ηh, vh) to denote the dependence of Ah.

2.2.5. Discretization of pressure terms as βE

We define

βE (ph, ηh, vh) = −
∫

E

Jhph∇Ah
· vh +

∫
∂E\Σ

v
int(E)
h · {phJhAh} · nE . (2.25)

2.2.6. Discretization of forcing terms as μE

We define

μE (ηh, ηh, vh) =
∫

∂E∩Σ

ηh (v2)h −
∫

∂E∩Σ

ηh∂1ηh (v̄1)h +
1
4
[
η2

h

]
v̄−h |∂E∩Σ+1/2 − 1

4
[
η2

h

]
v̄+

h |∂E∩Σ−1/2, (2.26)

where ∂E ∩ Σ + 1/2 and ∂E ∩Σ − 1/2 denote the left and right boundary points of ∂E ∩ Σ respectively, i.e.
similar to F − 1/2 and F + 1/2. Note that the forcing term is nontrivial only for the top cells and for all other
cells it is zero, μE(ηh, ηh, vh) = 0. 1

4 [η2
h]v̄−h |∂E∩Σ+1/2− 1

4 [η2
h]v̄+

h |∂E∩Σ−1/2 are extra penalty terms, which help to
show the stability. Since ηh is discontinuous across the boundary, these penalty terms are used to transform η2

h

into {η2
h} on the boundary after integrating by parts in (2.26).
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2.2.7. Discretization of source terms as ωE

We define

ωE (ηh, vh) =
∫

E

JhS · vh. (2.27)

2.2.8. Discretization of divergence terms as ρE

We define

ρE (uh, ηh, qh) = −
∫

E

Jhqh∇Ah
· uh +

1
2

∫
∂E\Σ

[uh] · qint(E)
h J

int(E)
h A

int(E)
h · nE . (2.28)

2.3. Properties and estimates of discretization

2.3.1. Estimate of temporal terms

We consider the temporal terms, i.e.(∫
E

J∂tu · vh −
∫

E

J
(
∂tηb̃K∂2u

)
· vh +

1
2

∫
∂E∩Σ

∂tη (u · vh)
)
. (2.29)

In the continuous case, a direct integration by parts reveals∫
E

J∂tu · vh =
∫

E

∂t(Ju) · vh −
∫

E

∂tJ (u · vh) , (2.30)

−
∫

E

J
(
∂tηb̃K∂2u

)
· vh = −

∫
E

∂tηb̃∂2u · vh

=
∫

E

∂tηb̃u · ∂2vh +
∫

E

∂2

(
∂tηb̃

)
(u · vh) −

∫
∂E

∂tηb̃ (u · vh)n2. (2.31)

Since ∂tJ = ∂2(∂tηb̃), we can simplify above terms into∫
E

J∂tu · vh −
∫

E

J
(
∂tηb̃K∂2u

)
· vh =

∫
E

∂t(Ju) · vh +
∫

E

∂tηb̃u · ∂2vh −
∫

∂E

∂tηb̃ (u · vh)n2. (2.32)

Hence, we may define the discretization of the temporal term as (2.19). Since in our bulk mesh, there are only
two effective boundary integrals for each triangle, we may call them the upper boundary ∂E + 1/2 and lower
boundary ∂E − 1/2 without ambiguity. If we denote f(uh) = −∂tηhb̃uh, then (2.19) is actually

ζE (ηh, uh, vh) − 1
2

∫
∂E∩Σ

∂tηh (uh · vh)

=
∫

E

∂t (Jhuh) · vh −
∫

E

f (uh) · ∂2vh +
∫

∂E+1/2

f̂ (uh) · v−h −
∫

∂E−1/2

f̂ (uh) · v+
h , (2.33)

where the flux reduces to

f̂ (uh) = f (ûh) =

{
f
(
u+

h

)
if ∂tηhb̃ ≥ 0,

f
(
u−h
)

if ∂tηhb̃ < 0.
(2.34)

Lemma 2.2. If we take vh = uh, the discretized temporal term satisfies

∑
E∈Eh

ζE (ηh, uh, uh) ≥ 1
2
∂t

∫
Ω

Jh |uh|2 . (2.35)
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Proof. Note the fact that ∂tJh = ∂2(∂tηhb̃). We can directly compute

ζE (ηh, uh, uh) − 1
2

∫
∂E∩Σ

∂tηh |uh|2

=
∫

E

∂t (Jhuh) · uh −
∫

E

f (uh) · ∂2uh +
∫

∂E+1/2

f̂ (uh) · u−h −
∫

∂E−1/2

f̂ (uh) · u+
h

=
1
2
∂t

∫
E

Jh |uh|2 +
1
2

∫
E

∂tJh |uh|2 − 1
2

∫
E

∂2

(
∂tηhb̃

)
|uh|2

−1
2

∫
∂E+1/2

f
(
u−h
) · u−h +

1
2

∫
∂E−1/2

f
(
u+

h

) · u+
h +

∫
∂E+1/2

f̂ (uh) · u−h −
∫

∂E−1/2

f̂ (uh) · u+
h

=
1
2
∂t

∫
E

Jh |uh|2

−1
2

∫
∂E+1/2

f
(
u−h
) · u−h +

1
2

∫
∂E−1/2

f
(
u+

h

) · u+
h +

∫
∂E+1/2

f̂ (uh) · u−h −
∫

∂E−1/2

f̂ (uh) · u+
h

=
1
2
∂t

∫
E

Jh |uh|2 + F̂∂E+1/2 − F̂∂E−1/2 +ΘE , (2.36)

where

F̂∂E+1/2 = −1
2

∫
∂E+1/2

f
(
u−h
) · u−h +

∫
∂E+1/2

f̂ (uh) · u−h , (2.37)

F̂∂E−1/2 = −1
2

∫
∂E−1/2

f
(
u−h
) · u−h +

∫
∂E−1/2

f̂ (uh) · u−h , (2.38)

and

ΘE =
1
2

∫
∂E−1/2

(
f
(
u+

h

) · u+
h − f

(
u−h
) · u−h )+

∫
∂E−1/2

(
f̂ (uh) · u−h − f̂ (uh) · u+

h

)
. (2.39)

Based on the flux definition (2.34), we have the estimate

ΘE =
∫

∂E−1/2

(
∂tηhb̃

(
u+

h − u−h
) · (ûh − u+

h + u−h
2

))
≥ 0. (2.40)

Hence, combining with (2.36), we obtain

ζE (ηh, uh, uh) − 1
2

∫
∂E∩Σ

∂tηh |uh|2 ≥ 1
2
∂t

∫
E

Jh |uh|2 + F̂∂E+1/2 − F̂∂E−1/2. (2.41)

When summing up over all E ∈ Eh, we can easily see when ∂E ⊂ Ω, all the terms involving F̂ are canceled out.
Therefore, only the terms on ∂Ω remain, i.e.

∑
E∈Eh

ζE (ηh, uh, uh)− 1
2

∫
Σ

∂tηh |uh|2 ≥
∑

E∈Eh

1
2
∂t

∫
E

Jh |uh|2+
∑

∂E∩Σ �=∅
F̂∂E+1/2−

∑
∂E∩Σb �=∅

F̂∂E−1/2. (2.42)

On Σb we have u−h = 0, so −F̂∂E−1/2 = 0, i.e.∑
∂E∩Σb �=∅

F̂∂E−1/2 = 0. (2.43)
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On Σ we have u+
h = u−h = uh|Σ and we always take ûh = uh, so it implies

F̂∂E+1/2 = −1
2

∫
∂E+1/2

f
(
u−h
)
u−h +

∫
∂E+1/2

f̂ (uh) u−h = −1
2

∫
∂E∩Σ

∂tηh |uh|2 . (2.44)

Then summing up over E ∈ Eh gives a full integration over Σ, i.e.

∑
∂E∩Σ �=∅

F̂∂E+1/2 = −1
2

∫
Σ

∂tηh |uh|2 . (2.45)

Therefore, combining (2.42), (2.43) and (2.45), we deduce

∑
E∈Eh

ζE (ηh, uh, uh) − 1
2

∫
Σ

∂tηh |uh|2 ≥ 1
2
∂t

∫
E

Jh |uh|2 − 1
2

∫
Σ

∂tηh |uh|2 . (2.46)

Hence, our result easily follows. �

Remark 2.3. This proof is based on the mesh as in Figure 1. For general triangulation, it is possible to have
three effective boundaries for each element. However, it is easy to see Lemma 2.2 still holds.

2.3.2. Estimate of convection terms

We consider the convection term∫
E

J(u · ∇A u) · vh − 1
2

∫
F

(u · N ) (u · vh) . (2.47)

This is the key nonlinear term in the Navier–Stokes equations. Our discretization is inspired by the idea in [7].
In the continuous case, when summing up over all E ∈ Eh, we can see

∑
E∈Eh

γE (u, η, u, vh) =
∫

Ω

J (u · ∇A u) · vh +
1
2

∫
Ω

J (∇A · u) (u · vh) − 1
2

∫
Σ

(u · N ) (u · vh) , (2.48)

where all the other boundary terms vanish. Hence, considering the continuous A -divergence-free condition for u,
this discretization is consistent.

Lemma 2.4. If we take vh = uh, the discretized convection term satisfies
∑

E∈Eh

γE (uh, ηh, uh, uh) ≥ 0. (2.49)

Proof. We divide the proof into several steps:

Step 1: Direct integration by parts.
We plug the test function vh = uh into (2.21) to obtain

γE (uh, ηh, uh, uh) +
1
2

∫
F

(uh · Nh) |uh|2 =
∫

E

Jh (uh · ∇Ah
uh) · uh +

1
2

∫
E

Jh (∇Ah
· uh) (uh · uh)

−1
2

∫
∂E\∂Ω

[uh · JhAh] · nE
u

int(E)
h · uint(E)

h

2
+
∫

∂E−
|{uh · JhAh} · nE |

(
u

int(E)
h −uext(E)

h

)
· uint(E)

h . (2.50)
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A direct integration by parts yields∫
E

Jh (uh · ∇Ah
uh) · uh = −

∫
E

Jh (uh · ∇Ah
uh) · uh −

∫
E

Jh (∇Ah
· uh) (uh · uh)

+
∫

∂E

(
u

int(E)
h · J int(E)

h A
int(E)
h · nE

)(
u

int(E)
h · uint(E)

h

)
. (2.51)

Therefore, (2.50) can be simplified as

γE (uh, ηh, uh, uh) +
1
2

∫
∂E∩Σ

(uh · Nh) |uh|2

= −
(∫

E

Jh (uh · ∇Ah
uh) · uh +

1
2

∫
E

Jh (∇Ah
· uh) (uh · uh)

)

−1
2

∫
∂E\∂Ω

[uh · JhAh] · nE
u

int(E)
h · uint(E)

h

2

+
∫

∂E−
|{uh · JhAh} · nE |

(
u

int(E)
h − u

ext(E)
h

)
· uint(E)

h

+
∫

∂E

(
u

int(E)
h · J int(E)

h A
int(E)
h · nE

)(
u

int(E)
h · uint(E)

h

)
= I + II + III + IV, (2.52)

where

I = −
(∫

E

Jh (uh · ∇Ah
uh) · uh +

1
2

∫
E

Jh (∇Ah
· uh) (uh · uh)

)
, (2.53)

and II, III and IV can be understood respectively.

Step 2: Estimates of II and IV .
In IV , for e ∈ ∂E\∂Ω, we have the decomposition

u
int(E)
h · J int(E)

h A
int(E)
h = {uh · JhAh} +

1
2

(
u

int(E)
h · J int(E)

h A
int(E)
h − u

ext(E)
h · Jext(E)

h A
ext(E)
h

)
. (2.54)

For e ⊂ ∂E\∂Ω, we can sum up the second term on the right-hand side of (2.54) over E and its neighboring
cells, which have the opposition outward normal vectors, to show∫

e

1
2

(
u

int(E)
h · J int(E)

h A
int(E)
h − u

ext(E)
h · Jext(E)

h A
ext(E)
h

)
· nE

(
u

int(E)
h · uint(E)

h

)

+
∫

e

1
2

(
u

ext(E)
h · Jext(E)

h A
ext(E)
h − u

int(E)
h · J int(E)

h A
int(E)
h

)
· (−nE)

(
u

ext(E)
h · uext(E)

h

)

=
∫

e

[uh · JhAh] · ne {uh · uh} , (2.55)

where ne denotes the normal vector read from the same reference cell as [uh · JhAh]. Note for e ⊂ ∂E ∩ ∂Ω,
u

int(E)
h · J int(E)

h A
int(E)
h = {uh · JhAh}. Therefore, we obtain

∑
E∈Eh

IV =
∑

e∈∂Eh

∫
e

{uh · JhAh} · nE

(
u

int(E)
h · uint(E)

h

)
+

∑
e∈∂Eh\∂Ω

∫
e

[uh · JhAh] · ne {uh · uh} . (2.56)
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Also, in II, for e ⊂ ∂E\∂Ω, we can sum up over E and its neighboring cells to achieve

− 1
2

∫
e

[uh · JhAh] · nE
u

int(E)
h · uint(E)

h

2
− 1

2

∫
e

(− [uh · JhAh]) · (−nE)
u

ext(E)
h · uext(E)

h

2

= −1
2

∫
e

[uh · JhAh] · ne {uh · uh} , (2.57)

which further leads to ∑
E∈Eh

II = −
∑

e∈∂Eh\∂Ω

1
2

∫
e

[uh · JhAh] · ne {uh · uh} . (2.58)

Step 3: Further estimates in (2.52).
Hence, summing over all E ∈ Eh in (2.52) and combining (2.56) and (2.58), we deduce

∑
E∈Eh

γE (uh, ηh, uh, uh) +
1
2

∫
Σ

(uh · Nh) |uh|2

= −
⎛
⎝∫

Ω

Jh (uh · ∇Ah
uh) · uh +

1
2

∫
Ω

Jh (∇Ah
· uh) (uh · uh) −

∑
e∈∂Eh\∂Ω

1
2

∫
e

[uh · JhAh] · nE {uh · uh}
⎞
⎠

+
∑

E∈Eh

(∫
∂E−

|{uh · JhAh} · nE |
(
u

int(E)
h −uext(E)

h

)
·uint(E)

h +
∫

∂E

{uh ·JhAh}·nE

(
u

int(E)
h ·uint(E)

h

))
. (2.59)

We can further estimate the last two terms in (2.59) as follows:

∑
E∈Eh

(∫
∂E−

|{uh · JhAh} · nE |
(
u

int(E)
h − u

ext(E)
h

)
· uint(E)

h +
∫

∂E

{uh · JhAh} · nE

(
u

int(E)
h · uint(E)

h

))

=
∑

E∈Eh

∫
∂E−

|{uh · JhAh} · nE |uext(E)
h ·

(
u

ext(E)
h − u

int(E)
h

)

+
∑

E∈Eh

∫
∂E+∩∂Ω

{uh ·JhAh}·nE

(
u

int(E)
h ·uint(E)

h

)
+ Z

∑
E∈Eh

∫
∂E−∩Σ

{uh ·JhAh}·nE

(
u

int(E)
h ·uint(E)

h

)
. (2.60)

Then combining (2.59) and (2.60), we have the complete form

∑
E∈Eh

γE (uh, ηh, uh, uh) +
1
2

∫
Σ

(uh · Nh) |uh|2

= −
(∫

Ω

Jh (uh · ∇Ah
uh) · uh +

1
2

∫
Ω

Jh (∇Ah
· uh) (uh · uh)

−
∑

e∈∂Eh

1
2

∫
e�∂Ω

[uh · JhAh] · nE {uh · uh}
)

+
∑

E∈Eh

∫
∂E−

|{uh · JhAh} · nE |uext(E)
h ·

(
u

ext(E)
h − u

int(E)
h

)

+
∑

E∈Eh

∫
∂E+∩∂Ω

{uh ·JhAh}·nE

(
u

int(E)
h ·uint(E)

h

)
+
∑

E∈Eh

∫
∂E−∩Σ

{uh ·JhAh}·nE

(
u

int(E)
h ·uint(E)

h

)
. (2.61)
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Step 4: Synthesis.
Summing up (2.50) over E ∈ Eh and adding it to (2.61) imply

∑
E∈Eh

γE (uh, ηh, uh, uh) +
1
2

∫
Σ

(uh · Nh) |uh|2

=
1
2

∑
E∈Eh

∫
∂E−

|{uh · JhAh} · nE |
∣∣∣uext(E)

h − u
int(E)
h

∣∣∣2 +
∑

E∈Eh

1
2

∫
∂E+∩∂Ω

{uh · JhAh} · nE

(
u

int(E)
h · uint(E)

h

)

+
∑

E∈Eh

1
2

∫
∂E−∩Σ

{uh · JhAh} · nE

(
u

int(E)
h · uint(E)

h

)

≥
∑

E∈Eh

1
2

∫
∂E+∩Σ

{uh · JhAh} · nE

(
u

int(E)
h · uint(E)

h

)
+
∑

E∈Eh

1
2

∫
∂E−∩Σ

{uh · JhAh} · nE

(
u

int(E)
h · uint(E)

h

)

=
1
2

∫
Σ

{uh · JhAh} · nE

(
u

int(E)
h · uint(E)

h

)

=
1
2

∫
Σ

(uh · Nh) |uh|2 , (2.62)

where the last equality can be directly verified by the definitions of Jh, Ah and Nh. Then our result naturally
follows. �

2.3.3. Estimate of diffusion terms

In order to show the coercivity of the diffusion term, we need the discrete form of Korn’s inequality. The
proof here is based on [18].

Lemma 2.5. Assume fh ∈ Xk
h satisfies for e ⊂ ∂Eh ∩ Σb, it holds that f ext

h |e = 0. Then for sufficiently large
σ0 > 0, we have

∑
E∈Eh

∫
E

|Dfh|2 +
∑

e∈∂Eh

σ0

h

∫
e

[fh]2 � ‖fh‖2
Xh

� ‖fh‖2
Hh
. (2.63)

Proof. The second inequality has been shown in [7], so we turn to the first one. It is easy to see the key part is
to show the derivatives of fh can be controlled. Hence, we only need to show

∑
E∈Eh

∫
E

|Dfh|2 +
∑

e∈∂Eh

σ0

h

∫
e

[fh]2 � ‖fh‖2
Hh
. (2.64)

If this is not true, then we can construct a sequence fn
h ∈ Xk

h satisfying

‖fn
h ‖Hh

= 1, (2.65)

and ∑
E∈Eh

‖Dfn
h ‖L2(E) +

∑
e∈∂Eh

σ0

h

∫
e

[fn
h ]2 ≤ 1

n
· (2.66)

To abuse the notations, we can extract the weakly convergent subsequence

fn
h ⇀ fh in H1(E) for ∀E ∈ Eh. (2.67)
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By the compact embedding theorem in each cell E and the weak lower semi-continuity of H1(E) norm, we have
the strongly convergent subsequence

fn
h → fh in L2(Ω). (2.68)

By (2.66), we also have ∑
E∈Eh

‖Dfn
h ‖L2(Ω) → 0. (2.69)

Notice the fact that in each cell E, we still have the continuous Korn’s inequality

‖fm
h − fn

h ‖H1(E) � ‖Dfm
h − Dfn

h )‖L2(E) + ‖fm
h − fn

h ‖L2(E) for ∀m,n ∈ N. (2.70)

Hence, combining all above, we know fn
h is a Cauchy’s sequence under the norm H1(E), which means it is a

Cauchy’s sequence under the norm Hh. Then

fn
h → fh in Hh. (2.71)

Thus this means

‖fh‖Hh
= 1, (2.72)

which further implies

Dfh = 0 in ∀E ∈ Eh, (2.73)

and ∑
e∈∂Eh

σ0

h

∫
e

[fh]2 = 0. (2.74)

This means

fh = (a, b) + c (−x1, x2) , (2.75)

for some constant a, b, c and fh is continuous in Ω̄. Certainly, the zero bottom implies fh = 0, which contradicts
‖fh‖Hh

= 1. Therefore, our hypothesis is invalid and (2.64) holds. �

Lemma 2.6. Assume fh satisfies for e ⊂ ∂Eh ∩ Σb, it holds that f ext
h |e = 0. Also, ηh satisfies ηh + 1 ≥ δ > 0

and

Q = sup
F∈Fh

‖ηh‖W 1,∞(F ) <∞. (2.76)

Then for sufficiently large σ0 > 0, we have

∑
E∈Eh

∫
E

Jh |DAh
fh|2 +

∑
e∈∂Eh

σ0

h

∫
e

[fh]2 � C(Q) ‖fh‖2
Xh

� C(Q) ‖fh‖2
Hh

. (2.77)

Proof. Note that in each cell E, the free surface ηh is smooth. Hence, we can change it back by the transform Φ−1
h

to a curved cell Φ−1
h E which satisfies∫

E

Jh(x)
∣∣DAh(x)fh(x)

∣∣2 dx =
∫

Φ−1
h E

|Dfh(y)|2 dy. (2.78)
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Hence, in this curved cell, we have the Korn’s inequality

‖fh‖H1(Φ−1
h E) � ‖Dfh‖L2(Φ−1

h E) + ‖fh‖L2(Φ−1
h E) . (2.79)

Since the transform Φ−1
h is a diffeomorphism between E and Φ−1

h (E), then the H1 norms in these two spaces
are comparable. Hence, we have

‖fh‖H1(E) � C(Q)
(∫

E

Jh |DAh
fh|2 + ‖fh‖L2(E)

)
. (2.80)

Then a similar proof as that of Lemma 2.5 naturally yields the desired result. �

Lemma 2.7. Assume fh satisfies for e ⊂ ∂Eh∩Σb, it holds that f ext
h |e = 0. Also, ηh satisfies ηh+1 ≥ δ > 0 and

Q = sup
F∈Fh

‖ηh‖W 1,∞(F ) <∞. (2.81)

Then there exists a sufficiently small constant δ′ > 0 such that for η′ satisfying

sup
F∈Fh

‖η′h − ηh‖W 1,∞(F ) ≤ δ′, (2.82)

and for sufficiently large σ′
0 > 0, we have

∑
E∈Eh

∫
E

J ′
h

∣∣∣DA ′
h
fh

∣∣∣2 +
∑

e∈∂Eh

σ′
0

h

∫
e

[fh]2 � C(Q) ‖fh‖2
Xh

� C(Q) ‖fh‖2
Hh

. (2.83)

Proof. By Lemma 2.6, we know

∑
E∈Eh

∫
E

Jh |DAh
fh|2 +

∑
e∈∂Eh

σ0

h

∫
e

[fh]2 � C(Q) ‖fh‖2
Xh

� C(Q) ‖fh‖2
Hh

. (2.84)

We can rewrite our formula in a perturbed form as

∑
E∈Eh

∫
E

J ′
h

∣∣∣DA ′
h
fh

∣∣∣2 − ∑
E∈Eh

∫
E

Jh |DAh
fh|2

=
∑

E∈Eh

∫
E

J ′
h

(
DA ′

h−Ah
fh

)(
2DAh

fh + DA ′
h−Ah

fh

)
+
∑

E∈Eh

∫
E

(J ′
h − Jh) |DAh

fh|2

� δ′ ‖fh‖2
Hh
. (2.85)

Naturally, when taking δ′ sufficiently small, we can absorb the perturbation into the principle part. Then our
result easily follows. �

For the diffusion term

−
∫

E

JΔA u · vh, (2.86)

a direct integration by parts implies

−
∑

E∈Eh

∫
E

JΔA u·vh =
1
2

∫
Ω

JDA u : DA vh−
∑

e∈∂Eh\Σ

∫
e

{DA uJA ·nE}·[vh]−
∫

Σ

(DA u)N ·vint(E)
h . (2.87)



1034 L. WU AND C.-W. SHU

Also in the continuous case, our discretization yields

∑
E∈Eh

αE (η, u, η, vh) =
1
2

∫
Ω

JDA u : DA vh −
∑

e∈∂Eh\Σ

∫
e

{DA uJA · nE} · [vh] . (2.88)

We can notice the difference is the extra physical boundary term −
∫

Σ

(DA u)N · vint(E)
h , which contributes to

the boundary condition on Σ. This is separately added to the scheme as a forcing term later combined with the
pressure contribution. Hence, our scheme is consistent.

Lemma 2.8. Assume ηh satisfies ηh+1 ≥ δ > 0. If we take vh = uh and choose the penalty constant σ properly,
the discretized diffusion term with NIPG satisfies

∑
E∈Eh

αE (ηh, uh, ηh, uh) ≥
∫

Ω

Jh |DAh
uh|2 . (2.89)

If we further assume ηh satisfies

Q = sup
F∈Fh

‖ηh‖W 1,∞(F ) <∞, (2.90)

then the discretized diffusion term with SIPG or NIPG satisfies∑
E∈Eh

αE (ηh, uh, ηh, uh) � C(Q) ‖uh‖2
Xh

. (2.91)

Proof. We can directly compute

∑
E∈Eh

αE (ηh, uh, ηh, vh) =
1
2

∑
E∈Eh

∫
E

JhDAh
uh : DAh

vh −
∑

e∈∂Eh\Σ

∫
e

{DAh
uhJhAh · nE} · [vh]

±
∑

e∈∂Eh\Σ

∫
e

{DAh
vhJhAh · nE} · [uh] +

σ

h

∑
e∈∂Eh

[uh] [vh] . (2.92)

For NIPG, when vh = uh, (2.92) reduces to

∑
E∈Eh

αE (ηh, uh, ηh, uh) =
1
2

∫
Ω

Jh |DAh
uh|2 +

σ

h

∑
e

[uh]2 . (2.93)

Hence, we may simply take the penalty σ = 1 and by the discrete Korn’s inequality in Lemma 2.6, our result
naturally follows.

For SIPG, when vh = uh, (2.92) reduces to

∑
E∈Eh

αE (ηh, uh, ηh, uh) =
1
2

∫
Ω

Jh |DAh
uh|2−2

∑
e∈∂Eh\Σ

∫
e

{DAh
uhJhAh · nE} · [uh]+

σ

h

∑
e∈∂Eh

[uh]2 . (2.94)

By the discrete Korn’s inequality in Lemma 2.6, we have

∑
E∈Eh

∫
E

Jh |DAh
uh|2 +

∑
e∈∂Eh

σ0

h

∫
e

[uh]2 � C(Q) ‖uh‖2
Xh

� C(Q) ‖uh‖2
Hh

. (2.95)
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Then we utilize Hölder’s inequality, the trace theorem and Cauchy’s inequality to estimate

∑
e∈∂Eh\∂Ω

∫
e

{DAh
uhJhAh · nE} · [uh] ≤ C(Q)

∑
e∈∂Eh\∂Ω

‖∇uh‖L2(e) ‖[uh]‖L2(e)

≤ C(Q)
∑

e∈∂Eh\∂Ω

‖uh‖H1(e) ‖[uh]‖L2(e)

≤ CC(Q)
∑

e∈∂Eh\∂Ω

h ‖uh‖2
H1(e) +

C(Q)
4C

1
h

∑
e∈∂Eh\∂Ω

‖[uh]‖2
L2(e)

≤ CC(Q)
∑

E∈Eh

h ‖uh‖2
H3/2(E) +

C(Q)
4C

1
h

∑
e∈∂Eh\∂Ω

‖[uh]‖2
L2(e)

≤ CC(Q) ‖uh‖2
Hh

+
C(Q)
4C

1
h

∑
e∈∂Eh\∂Ω

‖[uh]‖2
L2(e) . (2.96)

The last inequality is valid since uh ∈ P k
h . Then we take C sufficiently small, and σ ≥ σ + C(Q)/(4C) to

absorb (2.96) into (2.95). Hence, our result easily follows. �

2.3.4. Estimate of pressure terms

For the pressure term ∫
E

J∇A p · vh, (2.97)

a direct integration by parts reveals the following equality in the continuous case

∑
E∈Eh

∫
E

J∇A p · vh = −
∫

Ω

Jp∇A · vh +
∑

e∈∂Eh\Σ

∫
e

[vh] · (pJA ) · ne) +
∫

Σ

pN · vint(E)
h . (2.98)

It is easy to see in the continuous case, our discretization reduces to

∑
E∈Eh

βE (p, η, vh) = −
∫

Ω

Jp∇A · vh +
∑

e∈∂Eh\Σ

∫
e

[vh] · (pJA ) · ne. (2.99)

We can notice the difference is the extra physical boundary term
∫
Σ

pN · vint(E), which contributes to the

boundary condition on Σ. This is separately added to the scheme as a forcing term later combined with the
diffusion contribution. Hence, our scheme is consistent.

Lemma 2.9. When we take vh = uh, the discretized pressure term satisfies

∑
E∈Eh

βE (ph, ηh, uh) = −
∫

Ω

Jhph∇Ah
· uh +

∑
e∈∂Eh\Σ

∫
e

[uh] · {phJhAh} · ne, (2.100)

where ne denotes the outward normal vector read from the same direction as [uh].

Proof. This is a direct corollary of the definition, so we omit the proof here. �
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2.3.5. Estimate of forcing terms

Considering the physical boundary condition on Σ of the system (1.9), we need to take the upper boundary
condition as a forcing term, i.e.

(pI − DA u)N = ηN on Σ. (2.101)

Multiplying the test function vh and integrating over F yield∫
F

ηN vh =
∫

F

η (v̄2)h −
∫

F

η∂1η (v̄1)h . (2.102)

In the continuous case, our discretization reduces to

∑
E∈Eh

μE (η, η, vh) =
∫

Σ

η (v̄2)h −
∫

Σ

η∂1η (v̄1)h , (2.103)

and the penalty terms vanish. Hence, this discretization is consistent.

Lemma 2.10. When we take vh = uh, the discretized forcing term satisfies

∑
E∈Eh

μE (ηh, ηh, uh) ≥ 1
2

∫
Σ

∂t |ηh|2 . (2.104)

Proof. We may sum up over E ∈ Eh to obtain∑
E∈Eh

μE (ηh, ηh, vh)

=
∫

Σ

ηh (v̄2)h +
∫

Σ

ηh∂1ηh (v̄1)h +
1
2

∑
F∈Fh

(
{(ū1)h}

(
η−h
)2 |F+1/2 − {(ū1)h}

(
η+

h

)2 |F−1/2

)
. (2.105)

Taking φh = ηh in the transport discretization (2.15) and integrating by parts imply

1
2

∫
F

∂t |ηh|2 −
∫

F

(ū2)h ηh +
∫

F

(ū1)h ηh∂1ηh − (ū1)
−
h

(
η−h
)2 |F+1/2 + (ū1)

+
h

(
η+

h

)2 |F−1/2

+ (û1)h η̂hη
−
h |F+1/2 − (û1)h η̂hη

+
h |F−1/2 +

1
2

((
η−h
)2

[uh] |F+1/2 −
(
η+

h

)2
[uh] |F−1/2

)
= 0, (2.106)

which further leads to

1
2

∫
F

∂t |ηh|2 −
∫

F

(ū2)h ηh +
∫

F

(ū1)h ηh∂1ηh

−{(ū1)h}
(
η−h
)2 |F+1/2 + {(ū1)h}

(
η+

h

)2 |F−1/2 + (û1)h η̂hη
−
h |F+1/2 − (û1)h η̂hη

+
h |F−1/2 = 0. (2.107)

Summing over F ∈ Fh implies

1
2

∫
Σ

∂t |ηh|2 −
∫

Σ

(ū2)h ηh +
∫

Σ

(ū1)h ηh∂1ηh −
∑

F∈Fh

{(ū1)h}
(
η−h
)2 |F+1/2

+
∑

F∈Fh

{(ū1)h}
(
η+

h

)2 |F−1/2 −
∑

F∈Fh

(û1)h η̂hη
−
h |F+1/2 +

∑
F∈Fh

(û1)h η̂hη
+
h |F−1/2 = 0. (2.108)
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Since we always take û1 = {(ū1)h}, combining (2.105) and (2.108) yields

∑
E∈Eh

μE (ηh, ηh, vh) =
1
2

∫
Σ

∂t |ηh|2 +
∑

F∈Fh

(
− 1

2
{(ū1)h}

(
η−h
)2 |F+1/2 +

1
2
{(ū1)h}

(
η+

h

)2 |F−1/2

+ {(ū1)h} η̂hη
−
h |F+1/2 − {(ū1)h} η̂hη

+
h |F−1/2

)
. (2.109)

We can decompose the boundary terms in (2.109) to obtain

− 1
2
{(ū1)h}

(
η−h
)2 |F+1/2 +

1
2
{(ū1)h}

(
η+

h

)2 |F−1/2 + {(ū1)h} η̂hη
−
h |F+1/2 − {(ū1)h} η̂hη

+
h |F−1/2

= ΨF+1/2 − ΨF−1/2 +ΘF , (2.110)

where

ΨF+1/2 = −1
2
{(ū1)h}

(
η−h
)2 |F+1/2 + {(ū1)h} η̂hη

−
h |F+1/2, (2.111)

ΨF−1/2 = −1
2
{(ū1)h}

(
η−h
)2 |F−1/2 + {(ū1)h} η̂hη

−
h |F−1/2, (2.112)

and

ΘF =
1
2
{(ū1)h}

(
η+

h

)2 |F−1/2− 1
2
{(ū1)h}

(
η−h
)2 |F−1/2−{(ū1)h} η̂hη

+
h |F−1/2+{(ū1)h} η̂hη

−
h |F−1/2. (2.113)

By the flux definition (2.18), we can derive

ΘF = {(ū1)h}
(
η+

h − η−h
)(η+

h + η−h
2

− η̂h

)
≥ 0. (2.114)

When we sum up (2.110) over F ∈ Fh, all ΨF+1/2 are canceled out due to the periodicity. Then we have

∑
F∈Fh

(
− 1

2
{(ū1)h}

(
η−h
)2 |F+1/2 +

1
2
{(ū1)h}

(
η+

h

)2 |F−1/2

+ {(ū1)h} η̂hη
−
h |F+1/2 − {(ū1)h} η̂hη

+
h |F−1/2

)
≥ 0. (2.115)

Hence, combining (2.109) and (2.115), we can obtain the desired result. �

2.3.6. Estimate of divergence terms

In the continuous case, our discretization reduces to∑
E∈Eh

ρE (u, η, qh) = −
∫

Ω

J (∇A · u) qh. (2.116)

Hence, this discretization is consistent.

Lemma 2.11. When we take qh = ph, the discretized divergence term satisfies∑
E∈Eh

ρE (uh, ηh, ph) = −
∫

Ω

Jhph∇Ah
· uh +

∑
e∈∂Eh\Σ

∫
e

[uh] · {phJhAh} · ne. (2.117)

Proof. This is a natural corollary of the definition, so we omit the proof here. �



1038 L. WU AND C.-W. SHU

3. Stability analysis

Condition 3.1. The free surface ηh(t) satisfies 1 + ηh(t) ≥ δ > 0 for some δ > 0 independent of h and t.

Condition 3.2. The free surface ηh(t) satisfies supF∈Fh
‖ηh(t)‖W 1,∞(F ) ≤ Q for some Q > 0 independent of h

and t.

Theorem 3.3. If S = 0, suppose Condition 3.1 is valid in t ∈ [0, T ] for some T > 0. Then there exists a unique
numerical solution triple (uh, ph, ηh) ∈ Xk

h ×Mk−1
h × Sk

h to the scheme (2.14) with NIPG, which satisfies the
estimate

∥∥∥√Jh(t)uh(t)
∥∥∥2

L2(Ω)
+ g ‖ηh(t)‖2

L2(Σ) + ν

∫ t

0

∫
Ω

Jh(s)
∣∣DAh(s)uh(s)

∣∣2 ds

≤
∥∥∥√Jh(0)uh(0)

∥∥∥2

L2(Ω)
+ g ‖ηh(0)‖2

L2(Σ) , (3.1)

for any t ∈ [0, T ].
For general S, suppose Conditions 3.1 and 3.2 are valid in t ∈ [0, T ] for some T > 0. Then there exists a

unique numerical solution triple (uh, ph, ηh) ∈ Xk
h ×Mk−1

h ×Sk
h to the scheme (2.14) with SIPG or NIPG, which

satisfies the estimate

∥∥∥√Jh(t)uh(t)
∥∥∥2

L2(Ω)
+ ‖ηh(t)‖2

L2(Σ) +
∫ t

0

‖uh(s)‖2
Xh

ds

� C(Q)
(∥∥∥√Jh(0)uh(0)

∥∥∥2

L2(Ω)
+ ‖ηh(0)‖2

L2(Σ) +
∫ t

0

∫
Ω

|S(r)|2 dr
)
, (3.2)

for any t ∈ [0, T ].

Proof. The existence and uniqueness follow from a standard argument for the differential-algebraic equations,
so we omit it here and focus on the energy estimate. In the system (2.14), we take the test function vh = uh

and qh = ph, and sum up over E ∈ Eh. Then it yields∑
E∈Eh

ζE (ηh, uh, uh) +
∑

E∈Eh

γE (uh, ηh, uh, uh)

+ν
∑

E∈Eh

αE (ηh, uh, ηh, uh) +
∑

E∈Eh

βE (ph, ηh, uh) + g
∑

E∈Eh

μE (ηh, ηh, uh) =
∑

E∈Eh

ωE (ηh, uh) , (3.3)

∑
E∈Eh

ρE (uh, ηh, ph) = 0. (3.4)

By Lemmas 2.9 and 2.11, we have∑
E∈Eh

βE (ph, ηh, uh) =
∑

E∈Eh

ρE (uh, ηh, ph) = 0. (3.5)

Hence, we can simplify (3.3) into
∑

E∈Eh

ζE(ηh, uh, uh)+
∑

E∈Eh

γE(uh, ηh, uh, uh)+ν
∑

E∈Eh

αE(ηh, uh, ηh, uh)+g
∑

E∈Eh

μE(ηh, ηh, uh) =
∑

E∈Eh

ωE(ηh, uh).

(3.6)
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Then by Lemmas 2.2, 2.4, 2.8 and 2.10, we have

1
2
∂t

∫
Ω

Jh |uh|2 +
g

2
∂t

∫
Σ

|ηh|2 + CC(Q) ‖uh‖2
Xh

≤
∑

E∈Eh

ωE (uh) . (3.7)

Note Conditions 3.1 and 3.2 guarantee the existence of C(Q) > 0 which is independent of t. An application of
Cauchy’s inequality implies

∑
E∈Eh

ωE (uh) ≤ C′
∫

Ω

J2
h |uh|2 +

1
4C′

∫
Ω

|S|2 ≤ Q2C′ ‖uh‖2
Xh

+
1

4C′

∫
Ω

|S|2 . (3.8)

In (3.8), when taking C′ sufficiently small, we can always absorb it into CC(Q) ‖uh‖2
Xh

in (3.7). Hence, we have

1
2
∂t

∫
Ω

Jh |uh|2 +
g

2
∂t

∫
Σ

|ηh|2 +
CC(Q)

2
‖uh‖2

Xh
≤ C(Q)

∫
Ω

|S|2 . (3.9)

Then integrating over [0, t] leads to the desired result. The S = 0 case is easily derived from the general case
without discussion of the source term. �

Remark 3.4. Conditions 3.1 and 3.2 are not always satisfied a priori. In [1, 15, 16], this type of assumptions
were also introduced in the numerical analysis.

4. Discussion on the error analysis

For the continuous solution (u, η), the analysis in [20] reveals in the Navier–Stokes equations of (1.9), we
need H1 norm of η(t) to bound L2 norm of u(t). However, the result in [6] implies in the transport equation
of (1.9), we need H2 norm of u(t) to control H1 norm of η(t). This type of inconsistent coupling cannot be
improved even if we go to higher order derivatives. Hence, this implies the coupled system in (1.9) is not closed in
the usual Sobolev norms, which means we cannot expect to obtain the error estimates for the whole system (1.9).

In the following, we mainly analyze the error in the Navier–Stokes equations provided we have the error
estimates of the free surface.

Condition 4.1. The free surface ηh satisfies the error estimates

‖ηh − η‖L2 � hk+1, (4.1)

‖ηh − η‖L∞ � hk, (4.2)

‖χh − χ‖L2 � hk, (4.3)

‖χh − χ‖L∞ � hk−1, (4.4)

‖∂t(ηh − η)‖L2 � hk, (4.5)

‖∂t(ηh − η)‖L∞ � hk−1. (4.6)

4.1. Velocity error analysis

We decompose the velocity error and the pressure error as follows:

uh − u = (uh − Pu) + (Pu− u) = εu + δu, (4.7)

ph − p = (ph − Pp) + (Pp− p) = εp + δp, (4.8)
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where P is some projection such that Pu ∈ Xk
h and Pp ∈Mk−1

h achieving the optimal accuracy, i.e.

‖δu‖L2 � hk+1, (4.9)

‖δp‖L2 � hk. (4.10)

Hence, the key part of the error estimates is εu and εp.

Lemma 4.2. Suppose Conditions 3.1, 3.2 and 4.1 are valid. Assume the exact solution satisfies u ∈ C2(Ω),
p ∈ C1(Ω) and η ∈ C1(Σ). Then for h sufficiently small, the numerical solution to the scheme (2.14) satisfies
the estimate

∂t

∫
Ω

Jh |εu|2 + ‖εu‖2
Hh

� C(Q)
(
hk−1−r ‖εu‖Hh

+ hk−r ‖εp‖L2 + ‖εu‖2
L2

)
for 1/2 < r < 1. (4.11)

Proof. The discretization of the Navier–Stokes equations is

ζE(ηh, uh, vh)+γE(uh, ηh, uh, vh)+ναE(ηh, uh, ηh, vh)+βE(ph, ηh, vh)+gμE(ηh, ηh, vh)=ωE(ηh, vh), (4.12)

ρE(uh, ηh, qh)=0. (4.13)

The consistency of the scheme (2.14) implies the exact solution (u, p, η) also satisfies this scheme, i.e.

ζE (η, u, vh) + γE (u, η, u, vh) + ναE (η, u, η, vh) + βE (p, η, vh) + gμE (η, η, vh) = ωE(η, vh), (4.14)

ρE (u, η, qh) = 0. (4.15)

Therefore, taking the difference of above two sets of equations, we obtain the error equations

(ζE (ηh, uh, vh) − ζE (η, u, vh)) + (γE (uh, ηh, uh, vh) − γE (u, η, u, vh))

+ν (αE (ηh, uh, ηh, vh) − αE (η, u, η, vh))

+ (βE (ph, ηh, vh)−βE (p, η, vh))+g (μE (ηh, ηh, vh)−μE (η, η, vh)) = (ωE (ηh, vh)−ωE (η, vh)) , (4.16)

(ρE (uh, ηh, qh) − ρE (u, η, qh)) = 0. (4.17)

Now we need to analyze each term in the error equations (4.16) and (4.17). We always decompose the difference
of the bilinear forms into two parts: the energy part W∗ and the remaining part R∗, such that

Difference = W∗ +R∗, (4.18)

where W∗ builds the main body of the error equations and is put in the left-hand side (LHS), and R∗ is moved
to the right-hand side (RHS) and can be taken as the perturbed source term. The ∗ can be ζ, γ or α, etc. For
example, we can decompose the convection difference γ(uh, ηh, uh, vh) =

∑
E∈Eh

γE(uh, ηh, uh, vh) as follows:

γ (uh, ηh, uh, vh) − γ (u, η, u, vh)

= γ (uh, ηh, uh − u, vh) + γ (uh, ηh − η, u, vh) + γ (uh − u, η, u, vh)

= γ (uh, ηh, εu, vh) + γ (uh, ηh, δu, vh) + γ (uh, ηh − η, u, vh) + γ (uh − u, η, u, vh)

= γ (uh, ηh, εu, εu) + (γ (uh, ηh, δu, εu) + γ (uh, ηh − η, u, εu) + γ (uh − u, η, u, εu))

= Wγ +Rγ , (4.19)
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where

Wγ = γ (uh, ηh, εu, εu) , (4.20)

Rγ = γ (uh, ηh, δu, εu) + γ (uh, ηh − η, u, εu) + γ (uh − u, η, u, εu) . (4.21)

W∗ can be bounded as in Theorem 3.3 and R∗ can be estimated based on the following rules:

Rule 1:
For the estimates of the product terms as ∫

F1F2 . . . Fk, (4.22)

we apply Hölder’s inequality to obtain two terms in the L2 norm and other terms in the L∞ norm. The priority
of taking the L∞ norm is as follows:

(1) Fi only containing the exact solution (u, p, η) has the highest priority.
(2) Fi containing the free surface error ηh − η, χh − χ or ∂t(ηh − η), or the numerical solution ηh, χh or ∂tηh

has the second priority.
(3) Fi containing the projection error u− Pu or p− Pp for some P has the third priority.
(4) Fi only containing the velocity error uh − Pu or the pressure error ph − Pp for some projection P , or the

numerical solution uh or ph, has the lowest priority.

In this fashion, we can make the best use of the regularity of the exact solutions and the known error estimates
in the free surface to avoid the estimates of (uh, ph) in undesired norms due to the embedding theorem.

Rule 2:
For the boundary term, we apply the trace theorem

‖F‖L2(∂E) � ‖F‖Hr(E) , (4.23)

for r > 1/2. This introduces more regularity in the estimates, so we should always try to avoid to use it directly
and apply certain projection property to eliminate the boundary terms.

Rule 3:
Note the simple fact that for r > 0, we have

hr ‖fh‖Hr(E) � ‖fh‖L2(E) , (4.24)

where h is the mesh size and fh ∈ P k
h . This can bound the higher order Sobolev norm by the lower norm at

the price of some order of h.

In the error equations (4.16) and (4.17), we always take the test functions vh = εu and qh = εp. Since
the estimates are standard, we omit the details here and just present the results. We can simplify the error
equations (4.16) and (4.17) as:

Wζ +Wγ +Wα +Wβ = −Rζ −Rγ −Rα −Rβ −Rμ −Rω (4.25)

Wρ = −Rρ. (4.26)

Then we can utilize a similar argument as in the proof of Theorem 3.3 to bound the energy part as

1
2
∂t

∫
Ω

Jh |εu|2 + C(Q) ‖εu‖2
Hh

� Rρ −Rζ −Rγ −Rα −Rβ −Rμ −Rω. (4.27)
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Utilizing the estimates about the remaining part, we can further obtain

1
2
∂t

∫
Ω

Jh |εu|2 + C(Q) ‖εu‖2
Hh

�

hk−1−r ‖εu‖Hh
+ hk−r ‖εp‖L2 + hk−1(1 + ‖εu‖L2) ‖εu‖Hh

+ ‖εu‖L2 ‖εu‖Hh
for 1/2 < r < 1. (4.28)

The stability shows both uh and u are bounded in L2, so εu is also bounded in L2. Then we get

1
2
∂t

∫
Ω

Jh |εu|2 + C(Q) ‖εu‖2
Hh

� hk−1−r ‖εu‖Hh
+ hk−r ‖εp‖L2 + ‖εu‖L2 ‖εu‖Hh

for 1/2 < r < 1. (4.29)

Applying Cauchy’s inequality to the last term of (4.29) implies

1
2
∂t

∫
Ω

Jh |εu|2 + C(Q) ‖εu‖2
Hh

� hk−1−r ‖εu‖Hh
+ hk−r ‖εp‖L2 +

1
4C′ ‖εu‖

2
L2 + C′ ‖εu‖2

Hh

for 1/2 < r < 1 . (4.30)

Taking C′ sufficiently small, we can absorb it into the left-hand side to achieve

1
2
∂t

∫
Ω

Jh |εu|2 +
C(Q)

2
‖εu‖2

Hh
� hk−1−r ‖εu‖Hh

+ hk−r ‖εp‖L2 + C(Q) ‖εu‖2
L2 for 1/2 < r < 1. (4.31)

This is the desired result. �

4.2. Pressure error analysis

In order for further analysis, we first need to show the inf-sup condition of our pressure discretization.

Lemma 4.3. In the pressure discretization β(ph, ηh, vh) =
∑

E∈Eh
βE(ph, ηh, vh), suppose Conditions 3.1, 3.2

and 4.1 are valid. Assume the exact solution satisfies η(t) ∈ C1(Σ). Then for sufficiently small time T which is
independent of h, there exists a constant Ξ > 0 such that

inf
ph∈Mk−1

h

sup
vh∈Xk

h

β (ph, ηh, vh)
‖ph‖L2 ‖vh‖Hh

≥ Ξ, (4.32)

for t ∈ [0, T ], where Ξ is independent of h.

Proof. This result is similar to ([8], Thm. 4.5), so we omit the details here. Note the fact that for J0A0 which
is the value of JA at t = 0, and J̄0Ā0 the average of J0A0 in each cell E which is piecewise constants, we
naturally have ∥∥J0A0 − J̄0Ā0

∥∥
L∞ � h. (4.33)

Hence, the weight functions in the differential operators is only a small perturbation, which can be absorbed
into the main part. �

Lemma 4.4. Suppose Conditions 3.1, 3.2 and 4.1 are valid. Assume the exact solution satisfies u ∈ C2(Ω),
p ∈ C1(Ω) and η ∈ C1(Σ). Then for sufficiently small T and h, the numerical solution to the scheme (2.14)
satisfies the estimate∫ t

0

‖εp‖L2 � C(Q)
(
hk−1−r +

∫ t

0

‖εu‖L2 + ‖εu(t)‖L2 +
1
h

∫ t

0

‖εu‖Hh

)
for 1/2 < r < 1, (4.34)

within t ∈ [0, T ].
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Proof. We can take any test function vh ∈ Xk
h in the error equation (4.16) and integrate over time [0, t]. Here

we do not distinguish between the energy part and remaining part, but only concentrate on∫ t

0

β (ph, ηh, vh) . (4.35)

All the other terms can be moved into the right-hand side and estimated in terms of ‖vh‖Hh
. Basically, the

estimates are similar to the velocity error estimates in the proof of Lemma 4.2, so we omit the details here.
Based on the inf-sup condition in Lemma 4.3, we can deduce the desired result. �

4.3. Error analysis of the fluid

Theorem 4.5. Suppose Conditions 3.1, 3.2 and 4.1 are valid. Assume the exact solution satisfies u ∈ C2(Ω),
p ∈ C1(Ω) and η ∈ C1(Σ). Then for sufficiently small T and h, the numerical solution to the scheme (2.14)
satisfies the estimates

‖uh − u‖L2 � C(Q)hk−1−r , (4.36)(∫ t

0

‖uh − u‖2
Hh

)1/2

� C(Q)hk−1−r , (4.37)

∫ t

0

‖ph − p‖L2 � C(Q)hk−1−r for 1/2 < r < 1, (4.38)

in t ∈ [0, T ].

Proof. In Lemmas 4.2 and 4.4, we have shown

∂t

∫
Ω

Jh |εu|2 + ‖εu‖2
Hh

� C(Q)
(
hk−1−r ‖εu‖Hh

+ hk−r ‖εp‖L2 + ‖εu‖2
L2

)
for 1/2 < r < 1, (4.39)

and ∫ t

0

‖εp‖L2 � C(Q)
(
hk−1−r +

∫ t

0

‖εu‖L2 + ‖εu(t)‖L2 +
1
h

∫ t

0

‖εu‖Hh

)
for 1/2 < r < 1. (4.40)

Integrating over [0, t] for any t ∈ [0, T ] in (4.39), we obtain∫
Ω

Jh(t) |εu(t)|2 +
∫ t

0

‖εu‖2
Hh

� C(Q)
(
hk+2 + hk−1−r

∫ t

0

‖εu‖Hh
+ hk−r

∫ t

0

‖εp‖L2 +
∫ t

0

‖εu‖2
L2

)
. (4.41)

Then we plug (4.40) into (4.41) to eliminate εp and obtain∫
Ω

Jh(t) |εu(t)|2 +
∫ t

0

‖εu‖2
Hh

� C(Q)
(
h2k−1−2r + hk−1−r

∫ t

0

‖εu‖Hh
+ hk−r ‖εu(t)‖L2 +

∫ t

0

‖εu‖2
L2

)

� C(Q)

(
h2k−1−2r + h2k−2−2r +

(∫ t

0

‖εu‖Hh

)2

+ hk−r ‖εu(t)‖L2 +
∫ t

0

‖εu‖2
L2

)

� C(Q)
(
h2k−2−2r +

√
t

∫ t

0

‖εu‖2
Hh

+ hk−r ‖εu(t)‖L2 +
∫ t

0

‖εu‖2
L2

)
. (4.42)

When T is sufficiently small, we can absorb C(Q)
√
t
∫ t

0 ‖εu‖2
Hh

into the left-hand side of (4.42) to achieve∫
Ω

Jh(t) |εu(t)|2 +
∫ t

0

‖εu‖2
Hh

� C(Q)
(
h2k−2−2r + hk−r ‖εu(t)‖L2 +

∫ t

0

‖εu‖2
L2

)
. (4.43)
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Since (4.43) holds for any t ∈ [0, T ], we can take the maximum to get

max
t∈[0,T ]

‖εu(t)‖2
L2 � C(Q)

(
h2k−2−2r + hk−r max

t∈[0,T ]
‖εu(t)‖L2 + T max

t∈[0,T ]
‖εu(t)‖2

L2

)
. (4.44)

When T and h are sufficiently small, we can absorb C(Q)(hk−r + T )maxt∈[0,T ] ‖εu‖2
L2 into the left-hand side

of (4.44) to obtain
max

t∈[0,T ]
‖εu(t)‖2

L2 � C(Q)h2k−2−2r . (4.45)

Then this leads to
max

t∈[0,T ]
‖εu(t)‖L2 � C(Q)hk−1−r. (4.46)

Hence, we plug (4.46) into (4.43) and (4.40) to achieve

∫ t

0

‖εu‖2
Hh

� C(Q)h2k−2−2r , (4.47)

∫ t

0

‖εp‖L2 � C(Q)hk−1−r. (4.48)

Combining with the projection errors δu and δp, we show the desired result. �

Remark 4.6. The convergent rate k − 1 − r is not optimal. If we can obtain a nicer error estimate of the
temporal term, then this rate can be further improved.

5. Numerical tests

We perform the accuracy tests for our numerical scheme. Our tests are based on a set of exact solutions

η = Z sin (2π (x1 − t)) , (5.1)

u1 = Z
(
6x5

2 + 15x4
2 + 12x3

2 + 3x2
2

)
sin (2π (x1 − t)) +

(
6x5

2 + 5x4
2 + 1

)
, (5.2)

u2 = πZ2
(
4x6

2 + 15x5
2 + 21x4

2 + 13x3
2 + 3x2

2

)
sin (4π (x1 − t)) (5.3)

+ 2πZ
(
4x6

2 + 7x5
2 + 2x4

2 − x3
2

)
cos (2π (x1 − t)) ,

p = Z sin (2π (x1 − t)) , (5.4)

with the source term

S1 = (u1)t − ηt (1 + x2)K∂2u1 + (u1 (∂1u1 −AK∂2u1) +Ku2∂2u1)

−ν (∂11u1 +
(
1 +A2

)
K2∂22u1 − 2AK∂12u1 +

(
AK2∂2A−A∂1K −K∂1A

)
∂2u1

)
+ (∂1p−AK∂2p) , (5.5)

S2 = (u2)t − ηt (1 + x2)K∂2u2 + (u1 (∂1u2 −AK∂2u2) +Ku2∂2u2)

−ν (∂11u2 +
(
1 +A2

)
K2∂22u2 − 2AK∂12u2 +

(
AK2∂2A−A∂1K −K∂1A

)
∂2u2

)
+K∂2p, (5.6)

where 0 < Z < 1 can be any fixed constant, A and K are defined as in (1.7), and differential operators ∂t, ∂i

and ∂ij are defined in the usual sense. In the following test, we always take Z = 0.1, ν = 0.05 and T = 1/8.



NUMERICAL SOLUTION OF THE VISCOUS SURFACE WAVE WITH DISCONTINUOUS GALERKIN METHOD 1045

5.1. Accuracy tests with SIPG
The following are the error tables for our numerical scheme with SIPG:

Table 1. L2 error table for X1
h −M0

h − S1
h formulation with SIPG.

(a) Free Surface Error η − ηh

N Error Order
4 9.4028E-4 –
8 2.5493E-4 1.8830
16 6.6612E-5 1.9362
32 1.7409E-5 1.9359
64 4.9397E-6 1.8173

(b) Velocity Error u − uh

N Error Order
4 4.8233E-2 –
8 1.3863E-2 1.7988
16 3.6182E-3 1.9378
32 9.4871E-4 1.9312
64 2.4593E-4 1.9477

(c) Pressure Error p − ph

N Error Order
4 3.1028E-3 –
8 1.6255E-3 0.9327
16 8.2709E-4 0.9748
32 4.1570E-4 0.9925
64 2.0818E-4 0.9977

Table 2. L2 error table for X2
h −M1

h − S2
h formulation with SIPG.

(a) Free Surface Error η − ηh

N Error Order
4 1.4435E-4 –
8 1.6283E-5 3.1481
16 2.1495E-6 2.9213
32 2.9961E-7 2.8428

(b) Velocity Error u − uh

N Error Order
4 5.8590E-3 –
8 7.7408E-4 2.9201
16 9.8674E-5 2.9717
32 1.2586E-5 2.9709

(c) Pressure Error p − ph

N Error Order
4 9.6076E-4 –
8 2.3182E-4 2.0512
16 5.4527E-5 2.0880
32 1.2942E-5 2.0749

5.2. Accuracy tests with NIPG

The following are the error tables for our numerical scheme with NIPG:

Table 3. L2 error table for X1
h −M0

h − S1
h formulation with NIPG.

(a) Free Surface Error η − ηh

N Error Order
4 9.3809E-4 –
8 2.5179E-4 1.8975
16 6.5861E-5 1.9347
32 1.7258E-5 1.9322
64 4.9108E-6 1.8132

(b) Velocity Error u − uh

N Error Order
4 4.5428E-2 –
8 1.8218E-2 1.3182
16 6.7565E-3 1.4310
32 2.1758E-3 1.6347
64 7.5074E-4 1.5352

(c) Pressure Error p − ph

N Error Order
4 3.2035E-3 –
8 1.6481E-3 0.9588
16 8.4487E-4 0.9640
32 4.2453E-4 0.9929
64 2.1239E-4 0.9992

Table 4. L2 error table for X2
h −M1

h − S2
h formulation with NIPG.

(a) Free Surface Error η − ηh

N Error Order
4 1.4810E-4 –
8 1.7895E-5 3.0489
16 3.3218E-6 2.4295
32 8.5392E-7 1.9598

(b) Velocity Error u − uh

N Error Order
4 6.0580E-3 –
8 1.2693E-3 2.2548
16 1.9305E-4 2.7170
32 2.7534E-5 2.8097

(c) Pressure Error p − ph

N Error Order
4 9.2305E-4 –
8 2.8213E-4 1.7100
16 7.5701E-5 1.8980
32 2.0531E-5 1.8825

5.3. Discussion on the numerical tests

In above accuracy tests, we can obtain the optimal order of convergence when applying scheme (2.14) with
SIPG, and the sub-optimal order with NIPG. However, in both cases, our numerical results are much better
than the analytical result obtained in Theorem 4.5.
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6. Conclusions and remarks

In this paper, we construct a stable numerical scheme to solve the system (1.9) with discontinuous Galerkin
method, and discuss the error analysis in the fluid with certain assumptions.

Although we focus on the 2-D fluid throughout this paper, it is easy to see this scheme can be naturally
extended to the 3-D case with periodic settings for two horizontal directions. The main restriction to our
scheme is that we require the free surface to be a single-valued function of the horizontal variables, which is not
always true in practice, especially when the topological structure of the free surface varies during the evolution.
Our scheme is non-conservative. Hence, it might not give the qualitatively correct simulation if the exact solution
possesses singularities. However, for smooth exact solutions, our scheme can give a quite good approximation.
Here we use the piecewise polynomial P k due to the connection between the bulk discretization and surface
discretization. Note that Qk, which denotes the piecewise polynomials of degree at most k for each variables,
is acceptable in the scheme, but not suitable in analysis since it cannot satisfy the desired inf-sup condition for
pressure term in the error analysis.

Acknowledgements. The author thanks the editor and referees for their constructive comments and suggestions.
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