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WELL POSEDNESS AND FINITE ELEMENT APPROXIMABILITY
OF TWO-DIMENSIONAL TIME-HARMONIC ELECTROMAGNETIC PROBLEMS

INVOLVING NON-CONDUCTING MOVING OBJECTS WITH STATIONARY
BOUNDARIES

Massimo Brignone1 and Mirco Raffetto1

Abstract. A set of sufficient conditions for the well-posedness and the convergence of the finite element
approximation of two-dimensional time-harmonic electromagnetic boundary value problems involving
non-conducting moving objects with stationary boundaries is provided for the first time to the best
of authors’s knowledge. The set splits into two parts. The first of these is made up of traditional
conditions, which are not restrictive for practical applications and define the usual requirements for
the domain, its boundary, its subdomains and their boundaries, the boundary conditions and the
constitutive parameters. The second part consists of conditions which are specific for the problems
at hand. In particular, these conditions are expressed in terms of the constitutive parameters of the
media involved and of the velocity field. It is shown that it is not difficult to check the validity of these
conditions and that they hold true for broad classes of practically important problems which involve
axially moving media.
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1. Introduction

Electromagnetic waves interact with moving bodies in many applications [1]. In order to study or simulate
such an interaction one has usually to formulate problems in the time domain [1]. In some cases, however,
frequency domain formulations are still possible [1, 2]. This is the case, for example, when the movement takes
place in such a way that the boundaries of the moving objects are stationary [1, 2].

This class of problems includes those involving axially moving cylinders, which are of particular interest for
their important applications in nuclear and plasma physics, astrophysics, and engineering. Just to cite a few of
these applications, one could be interested in problems involving axially moving plasma columns [3–5], ionized
meteor trails [6], jet exhausts [7] or mass flows in pneumatic pipes [8].
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For the importance of these applications several series solutions have been deduced. This was possible for
time-harmonic electromagnetic scattering problems involving axially moving cylinders of simple cross-sections
like the half space [9, 10] or the homogeneous or multilayer circular or elliptical cylinder [4, 5, 7, 11].

In the presence of scatterers moving with a uniform axial speed in vacuum, the scattering problem can be
easily managed by transforming the incident field as it is seen from the reference frame in which the scatterers
are at rest, by solving the scattering problem with all matter at rest (the vacuum is at rest in any reference
frame), and by transforming back the solution to the field in the frame of interest [4].

However, in most cases of practical interest, which could involve multiple cylinders having irregular shapes,
constitutive parameters and velocity fields, no result seems to be available and numerical methods are required
to try to approximate the solutions of interest [12].

Unfortunately, when media in motion are involved, even in the cases of interest in which the boundaries
among different materials are stationary, the electromagnetic problems become quite complex. This is due to
the fact that even an isotropic medium appears as a bianisotropic material in any reference frame in which the
medium itself is not at rest [2, 13].

The available results on the well-posedness of time-harmonic electromagnetic boundary value problems in-
volving moving media or bianisotropic materials and on their numerical approximability are very few. For
example, in [14] we provide some of the indicated results on the well-posedness of the problems of interest and
the convergence of Galerkin finite element approximations. However, these results are deduced by exploiting in
a crucial way the losses of the media involved in the problem and do not provide, for example, any indication
in the presence of a lossless medium. Unfortunately, in astrophysics or in plasma physics it is rather common to
deal with models involving such media [4]. As it is clearly pointed out in the Introduction of that paper, at that
time no other well-posedness result for bianisotropic materials could be found by the authors in the open litera-
ture. In the last years the well-posedness of time-harmonic problems in the presence of moving or bianisotropic
materials has been tackled just in [15], to the best of the authors knowledge. However, in that paper the results
are obtained by assuming hypotheses preventing the presence of dielectric interfaces and cannot be applied to
many cases of interest for the present analysis. Finally, apart from the simple case indicated above of cylinders
moving with a uniform axial speed in vacuum, we cannot simply deduce the results of well-posedness and finite
element approximability for any specific problem of interest from what we know in the absence of motion, even
when the values of the velocities are exceedingly small with respect to the velocity of light, as it is often the
case in most problems [1]. This is because, on the one hand, even the smallest bianisotropic effect is sufficient to
prevent, as far as the authors are aware, the application of all techniques exploited so far to prove well-posedness
and convergence of finite element approximations in the presence of motionless anisotropic media. On the other
hand, a perturbation technique [16] could easily guarantee that, for any specific configuration of the media in
a given domain, there exists a sufficiently small upper bound for the magnitude of the axial speed such that
the results of interest hold true, but from such an approach it is extremely difficult to deduce explicit bounds
for the velocity field and, then, establish whether a specific problem of interest involving moving media is well
posed or not.

Thus the usual approach to tackle the problems of interest and deduce some of their properties is to use
numerical methods to approximate their solutions [12]. Unfortunately, as pointed out before, due to the lack
of theoretical results, this is done without any guarantee on the existence and uniqueness of the solutions
themselves and on the reliability of the numerical methods adopted.

For the indicated reasons, the aim of this work is to provide some results on the well-posedness and the
convergence of the finite element approximation for two-dimensional time-harmonic electromagnetic boundary
value problems involving non-conducting moving objects with stationary boundaries. In particular, these results
will be proved if a given set of sufficient conditions, expressed in terms of the constitutive parameters of the
media involved and of the velocity field, are satisfied. These conditions will be shown to enforce very weak
limitations on the magnitude of the axial speeds of the media involved. Finally, it will be shown that, with very
simple evaluations, anyone will be able to know in advance if a problem of interest is well posed and its solution
can be approximated by a converging finite element method.
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The indicated results will be deduced by assuming, in addition to the traditional hypotheses on the domain,
its boundary, its subdomains and their boundaries, the boundary conditions and the constitutive parameters,
that

• all the media involved are linear, time-invariant and isotropic in their rest frames. In such frames they are
characterized by their permittivity, permeability and electric conductivity. This assumption is considered
because of the lack of results for the problems of interest even in the simplest situations; it allows, moreover,
to avoid many technicalities;

• the velocity field is time-invariant. This assumption together with the linearity of the media and the time-
invariance of the media and the boundaries is considered in order to formulate the problem in the frequency
domain [2];

• the velocity field is piecewise analytic. The permittivity and the permeability are piecewise analytic for
all media in motion. On the one hand, since piecewise analyticity and not global analyticity is assumed,
discontinuities of the constitutive parameters and of the velocity field could be present in our models. On
the other hand, such a piecewise analyticity is required to exploit the results of [17] and prove a uniqueness
result in the presence of moving (bianisotropic) media. However, any new result of unique continuation [18]
(p. 92) requiring weaker assumptions than the indicated piecewise analyticity could be adopted and, in such
a case, the deductions of this paper will immediately hold true under these less restrictive hypotheses;

• all media in motion have an electric conductivity equal to zero. We do not assume any restrictive hypothesis
on media at rest. The essential reason behind this type of restriction is to avoid the difficulties related to
the convective currents which could also become surface electric currents [19,20]. It is important to observe
that, apart from the indicated effect on the convective currents, such an assumption does not simplify the
problem we have to deal with, since it is well known that losses are of help in proving, for example, the
well-posedness of the problems of interest [14, 18, 21, 22]. Moreover, in the presence of conduction losses in
the moving media one has usually to consider the no-slip condition for (lossy) viscous fluids [23]. Such a
condition neglects the possibility of having any discontinuity of the velocity field and, ultimately, prevents
the possibility of using pure two-dimensional models, like the ones we consider in this paper, because close
to a boundary the velocity is orthogonal to the boundary itself and this means that, in addition to the axial
velocity away from the boundaries, the transverse components of the velocity field are not equal to zero.
Finally, this type of assumption has been considered in many contributions dealing with two-dimensional
problems in the presence of axial movement [4, 5, 11, 12, 24, 25], with very few exceptions [3].

The paper is organized as follows. In Section 2 the class of problems of interest is defined and all hypotheses
giving a meaning to their standard (i.e., based on Maxwell’s equations) mathematical formulations are clearly
pointed out. In Section 3 any problem of interest is recast as a variational formulation, which is shown to be
equivalent to it. In Section 4 and its subsections sufficient conditions for the well posedness of the variational
formulation are found. Under which additional conditions it is possible to prove the convergence of Galerkin and
finite element approximations is discussed in Sections 5 and 6, respectively. Finally, before concluding the paper,
some practical implications are presented in Section 7. It is shown, in particular, that our sufficient conditions
hold true for broad classes of problems involving axially moving media.

2. Problem definition

In this paper, we are interested in dealing with problems having a cylindrical geometry. z will denote the
axis of such a geometry. The time-harmonic sources and the inhomogeneous boundary conditions involved are
independent of z, too, so that our problems can be formulated in a two-dimensional domain Ω contained in the
(x, y) plane.

Γ denotes the boundary of Ω. n and l are the unit vectors orthogonal (pointing outward) and tangential
to Γ , respectively (see [26], p. 34). We have n× l = ẑ ([26], p. 34).
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We assume that the domain and its boundary are such that:

HD1. Ω ⊂ R
2 is open, bounded and connected,

HD2. Γ is Lipschitz continuous ([26], p. 4).

The media involved in our problems can move in the axial direction with respect to the chosen reference frame.
In such a frame a velocity field vz is naturally defined, even though we will often refer to it in terms of the
usual ([27], p. 525) real-valued normalized field β = vz

c0
, being c0 the speed of light in vacuum. It is assumed

that

HV1. β is time-invariant.

Different inhomogeneous materials will be modelled in this work. We assume that

HM1. any material involved is linear and time-invariant

Due to the linearity of all media involved (HM1) and the time-invariance of the material characteristics (HM1),
of the moving object boundaries and of β (HV1), all fields in all media will be time-harmonic, as the considered
sources. A factor ejωt, common to all fields of interest, is assumed and suppressed.

In order to avoid many cumbersome developments, even though simple in principle, in the following we will
consider

HM2. any material involved is isotropic in its rest frame and is there characterized by its relative permittivity
εr, its relative permeability μr and its electric conductivity σ.

In the following, any reference to εr, μr or σ of a moving medium should be interpreted as a reference to the
corresponding quantity when the medium is at rest.

Since all moving objects have stationary boundaries, we can also assume, without loss of generality, that from
a geometrical point of view

HD3. Ω can be decomposed into m subdomains (non-empty, open and connected subsets of Ω having Lipschitz
continuous stationary boundaries) denoted Ωi, i ∈ M = {1, . . . , m}, satisfying Ω = Ω1 ∪ · · · ∪ Ωm (Ω is
the closure of Ω) and Ωi ∩ Ωj = ∅ for i �= j.

The meaning of this splitting of the domain is clarified by the following additional assumptions on the velocity
field and on the media involved
HV2. β|Ωk

, k ∈ M , is a restriction of a real-valued function which is analytic in an open set Uk, with Ωk ⊂ Uk.
HV3. we can find M0 ⊂ M , M0 �= ∅, such that β|Ωk

= 0 ∀k ∈ M0; Mβ = M \ M0 and β|Ωk
is not identically

zero ∀k ∈ Mβ,

Remark 2.1. When both HV2 and HV3 hold true one easily deduces that β is almost everywhere different
from zero in Ωk for all k ∈ Mβ .

HM3. εr|Ωk
, μr|Ωk

, σ|Ωk
∈ C2(Ωk) ∀k ∈ M0. Otherwise, εr|Ωk

, μr|Ωk
and σ|Ωk

are restrictions of real-valued
functions which are analytic in an open set Uk, with Ωk ⊂ Uk.

HV3 is considered just to give a meaning to the selected reference frame. The other technical assumptions,
HV2 and HM3, explain that the domain splitting is performed on the basis of regularity of the constitutive
parameters and of the velocity field. In particular, it is important to observe that the quantities involved in
HV2 and HM3 are just piecewise but not globally regular fields. The regularity required in HV2 and HM3 is
necessary in order to use some results of unique continuation [18,22] or analytic continuation [17]. In particular,
the parts of these hypotheses requiring the analyticity of the corresponding fields can be weakened as soon
as a unique continuation result for the electromagnetic field in the presence of moving or bianisotropic media
is available and the results of [17] are not anymore necessary. Finally, the constitutive parameters of moving
media are considered to be real-valued as it is usually the case in this type of studies [4, 28–30]. However, it is
important to point out that all moving media will be perceived as bianisotropic media in the selected reference
frame and this is the major difficulty to be overcome in this paper.
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Remark 2.2. For any given splitting of the domain satisfying HD3 and such that HV2, HV3 and HM3 are
verified, we can define a finer decomposition of Ω. As a matter of fact, it is sufficient to observe that any Ωi,
i ∈ M , can be split into subdomains without affecting the validity of the indicated hypotheses. This consideration
will be heavily exploited in Section 7, where a particular decomposition of the subdomains Ωi for i ∈ Mβ will
be considered.

Without some additional hypotheses on the constitutive parameters we would be forced to deal with convective
currents which could become surface electric currents in the presence of discontinuities of the velocity field [19,20].
This is what could happen, for example, when a cylinder with finite conductivity moves in the axial direction
with a uniform velocity and the background medium is considered to have a zero electric conductivity [3].
Other examples involving real media on both sides can be cited but the conclusions in these cases are more
controversial [23, 31]. For these reasons, in order to avoid these difficulties, in this paper we assume

HM4. σ|Ωk
= 0 if β|Ωk

�= 0.

The reader could observe that HM3 and HM4 imply that all moving media are lossless in their rest frames.
We hope to be able to relax this constraint in a future work, so as to include lossy moving materials in our
analysis. However, by considering that losses are usually of help in proving the well-posedness of the problem,
in this paper we have to deal with the most difficult cases. In particular, we will deal with cases which cannot
be managed by using the results provided in [14].

As usual for motionless media, we include the effects of the electric conductivity in their permittivity by
defining an equivalent relative permittivity, still denoted by εr and given by εr − j σ

ω ε0
([1], p. 359). Thus, taking

account of HM4, in the following we will have to deal just with permittivity and permeability (in the chosen
frame for media at rest and in their rest frames for moving media).

As pointed out by Cheng and Kong [2], a medium satisfying HM1, HM2, HM3 and HM4, which is in motion
with respect to the chosen reference frame according to HV1, can be studied as a stationary bianisotropic
material and this fact is especially useful in solving problems involving moving media with stationary boundaries,
as in the present work. In particular, by using the subscript “t” to denote the field quantities transverse to the
z direction we deduce [4, 28, 29]:

Dt =
1 + μrεr − ζ1

c2
0μ0μr

Et +
ζ2

c0μ0μr
ẑ × Bt (a.e.) in Ω, (2.1)

Dz = ε0εrEz in Ω, (2.2)

Ht =
ζ1

μ0μr
Bt +

ζ2

c0μ0μr
ẑ × Et in Ω, (2.3)

Hz =
1

μ0μr
Bz in Ω, (2.4)

where ε0 and μ0 are, respectively, the permittivity and permeability of vacuum and [4, 29]:

ζ1 =
1 − μrεrβ

2

1 − β2
in Ω, (2.5)

ζ2 =
β(μrεr − 1)

1 − β2
in Ω. (2.6)

In order to deal with bounded quantities we assume, in addition to HM3, the following additional hypothesis

HM5. we can find Cμm > 0 such that |μr| ≥ Cμm in Ωk, ∀k ∈ M .
HV4. we can find CβM : 0 ≤ |β| ≤ CβM < 1 in Ωk, ∀k ∈ M .
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The latter is closely related, even though stronger, to one of the best known conclusions of the special theory
of relativity. The deduced form of the constitutive relations is correct in Ω, even where the involved media are
motionless.

In order to define the problem of interest we introduce the following additional notations. Let (L2(Ω))n be
the usual Hilbert space of square integrable vector fields on Ω with values in Cn, n = 2, 3, and with scalar
product given by (u,v)0,Ω =

∫
Ω

v∗u dV , where v∗ denotes the conjugate transpose of the column vector v. For
a given three-dimensional complex-valued vector field A = (Ax, Ay , Az) ∈ (L2(Ω))3 we consider the operators
curl2D and grad2D, defined according to ([32], p. 201),

curl2DAt =
∂Ay

∂x
− ∂Ax

∂y
, (2.7)

grad2DAz =
(

∂Az

∂x
,
∂Az

∂y

)
. (2.8)

Assumptions HM1, HM2, HM3, HM4 and the hypotheses that will follow on the impressed sources do not
allow the presence of surface electric or magnetic currents. For this reason, the Hilbert space where we will seek
the transverse part of the electric and magnetic fields is [33]

U2D =
{
At ∈ (L2(Ω))2 | curl2DAt ∈ L2(Ω) and At · l ∈ L2(Γ )

}
, (2.9)

where, for any At ∈ H(curl2D, Ω) =
{
At ∈ (L2(Ω))2 | curl2DAt ∈ L2(Ω)

}
, the meaning of the boundary values

At · l is defined in ([26], p. 34).
The inner product in this space is given by

(ut,vt)U2D
= (ut,vt)0,Ω + (curl2Dut, curl2Dvt)0,Ω + (ut · l,vt · l)0,Γ . (2.10)

The axial components of the same fields will be in the Hilbert space H1(Ω) ([26], p. 2) for the same reasons.
For any axial component Az ∈ H1(Ω) we denote by γ0Az its boundary values ([26], p. 8). ( , )1,Ω will indicate
the usual inner product in this space.

In order to shorten many formulas we define also

U = U2D × H1(Ω) (2.11)

which is a Hilbert space with inner product given by

(u,v)U = (ut,vt)U2D + (uz, vz)1,Ω. (2.12)

‖ ‖U will denote the corresponding norm.
The symbol ω represents the angular frequency. Without loss of generality for the problems of interest, we

assume that it is real and positive. Moreover, Je,Jm ∈ (L2(Ω))3 are the electric and magnetic current densities,
respectively, prescribed by the sources. We have already pointed out that the currents induced by the field could
be present just in motionless media and are taken into account in the displacement field D.

Y will be the scalar complex admittance involved in impedance boundary conditions; fRl and fRz will be
the corresponding inhomogeneous terms. Finally, the complex-valued admittance function Y with domain Γ is
assumed to satisfy

HB1. Y is piecewise continuous and |Y | is bounded.

We are now in a position to state the electromagnetic boundary value problem we will address in this paper.
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Problem 1. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM5, HB1, given ω > 0, Je,Jm ∈ (L2(Ω))3

and fRl, fRz ∈ L2(Γ ), find (E,B,H,D) ∈ U × (L2(Ω))3 ×U × (L2(Ω))3 which satisfies the following system of
Maxwell’s equations and impedance boundary conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

curl2DHt − jωDz = Jez in Ω

grad2DHz × ẑ − jωDt = Jet in Ω

curl2DEt + jωBz = −Jmz in Ω

grad2DEz × ẑ + jωBt = −Jmt in Ω

Ht · l + Y (γ0Ez) = −fRz on Γ

γ0Hz − Y (Et · l) = fRl on Γ

(2.13)

and the constitutive relations (2.1)–(2.4).

The reader should observe that equations (2.13)i, i = 5, 6, with hypothesis HB1 can be used, on the one hand,
to enforce lowest order absorbing boundary conditions ([34], p. 9), so that the above model can be thought of as
an approximation of a two-dimensional radiation or scattering problem involving objects moving in the direction
orthogonal to the domain. On the other hand, they can enforce boundary conditions at imperfectly conducting
surfaces ([35], pp. 384–385), so that the model of interest can be thought of as a realistic formulation of a
two-dimensional cavity problem involving again moving objects with stationary boundaries.

More complex boundary conditions could be considered as well. However, we chose the above simple model
since, on the one hand, the generality of our results is not reduced in a significant way and, on the other hand,
the mathematical developments can be limited to a reasonable extent.

3. Variational formulation

One of the targets of this contribution is to discuss under which conditions it is possible to prove the well-
posedness of Problem 1. In order to obtain such a result it is useful to deduce from Problem 1 a variational
formulation. This will also be of help to obtain another result: the convergence of Galerkin and finite element
approximations.

A variational finite element formulation of the problem of interest can be easily obtained by following the
developments reported in Section 3 of [14]. We report here the main steps in order to ease the reader and to
introduce many notations that will be heavily exploited later on.

In particular, in analogy to Lemma 1 of [14], we have

Lemma 3.1. Any solution of Problem 1 is fully determined by its E component through equation (2.2) and the
following relations

Bz = − 1
jω

Jmz −
1
jω

curl2DEt, (3.1)

Bt = − 1
jω

Jmt −
1
jω

grad2DEz × ẑ, (3.2)

Hz = − 1
jωμ0μr

Jmz −
1

jωμ0μr
curl2DEt, (3.3)

Ht =
ζ2

c0μ0μr
ẑ × Et −

ζ1

jωμ0μr
Jmt −

ζ1

jωμ0μr
grad2DEz × ẑ, (3.4)

Dt =
1 + μrεr − ζ1

c2
0μ0μr

Et −
ζ2

jωc0μ0μr
ẑ × Jmt −

ζ2

jωc0μ0μr
grad2DEz . (3.5)
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Proof. Suppose (E,B,H,D) satisfies Problem 1. Then, as ω > 0, from (2.13)3 we deduce (3.1) and from (2.13)4
we deduce (3.2). 1

μr
is bounded by HM5. Thus, from (2.4) and (3.1) we deduce (3.3). Analogously, from (2.3)

and (3.2) we deduce (3.4). Finally, we obtain (3.5) from (2.1) and (3.4). Note that Dz is directly given in terms
of Ez by (2.2). �

Now, according to [14] we take the L2 scalar products of (2.13)1 with any field wz ∈ H1(Ω) and of (2.13)2
with any vector field wt ∈ U2D. We get

{
(curl2DHt − jωDz, wz)0,Ω = (Jez , wz)0,Ω ∀wz ∈ H1(Ω)

(grad2DHz × ẑ − jωDt,wt)0,Ω = (Jet,wt)0,Ω ∀wt ∈ U2D.
(3.6)

Taking account of HD1 and HD2 we can manipulate the above formulas. In particular, since curl2Dut =
−div2D (ẑ× ut) for all ut ∈ (L2(Ω))2 ([32], p. 205), by using (1.10) of ([32], p. 206) and the additional regularity
of the boundary values of fields in U2D we obtain

(curl2DHt, wz)0,Ω = (ẑ × Ht, grad2Dwz)0,Ω + (Ht · l, γ0wz)0,Γ ∀wz ∈ H1(Ω). (3.7)

Moreover, since (grad2DHz × ẑ,wt)0,Ω = (grad2DHz, ẑ × wt)0,Ω, by using again (1.10) of ([32], p. 206) and the
additional regularity of the boundary values of fields in U2D we deduce

(grad2DHz × ẑ,wt)0,Ω = (Hz, curl2Dwt)0,Ω − (γ0Hz ,wt · l)0,Γ ∀wt ∈ U2D. (3.8)

By substituting (3.7) and (3.8) in (3.6) we get

{
(ẑ× Ht, grad2Dwz)0,Ω − jω (Dz, wz)0,Ω + (Ht · l, γ0wz)0,Γ = (Jez, wz)0,Ω ∀wz ∈ H1(Ω)

(Hz, curl2Dwt)0,Ω − jω (Dt,wt)0,Ω − (γ0Hz,wt · l)0,Γ = (Jet,wt)0,Ω ∀wt ∈ U2D.
(3.9)

Let us now substitute (3.4), (2.2) and (2.13)5 in equation (3.9)1 and multiply it by −jωμ0. Analogously, let us
substitute (3.3), (3.5) and (2.13)6 in equation (3.9)2 and multiply it by −jωμ0. We obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ζ1
μr

grad2DEz , grad2Dwz

)
0,Ω

− ω2

c2
0

(εr Ez, wz)0,Ω

+j ω
c0

(
ζ2
μr

Et, grad2Dwz

)
0,Ω

+ jωμ0 (Y (γ0Ez) , γ0wz)0,Γ

= −jωμ0 (Jez , wz)0,Ω −
(

ζ1
μr

ẑ × Jmt, grad2Dwz

)
0,Ω

−jωμ0 (fRz, γ0wz)0,Γ ∀wz ∈ H1(Ω)(
1

μr
curl2DEt, curl2Dwt

)
0,Ω

− ω2

c2
0

(
1+εrμr−ζ1

μr
Et,wt

)
0,Ω

−j ω
c0

(
ζ2
μr

grad2DEz ,wt

)
0,Ω

+ jωμ0 (Y (Et · l) ,wt · l)0,Γ

= −
(

1
μr

Jmz , curl2Dwt

)
0,Ω

− jωμ0 (Jet,wt)0,Ω

+j ω
c0

(
ζ2
μr

ẑ × Jmt,wt

)
0,Ω

− jωμ0 (fRl,wt · l)0,Γ ∀wt ∈ U2D,

(3.10)

where, taking account of HM3, HM5, HB1 and HV4, all terms have a meaning.
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Thus, by defining the sesquilinear form

a(u,w) =
(

ζ1

μr
grad2Duz, grad2Dwz

)
0,Ω

+
(

1
μr

curl2Dut, curl2Dwt

)
0,Ω

+ j
ω

c0

(
ζ2

μr
ut, grad2Dwz

)
0,Ω

− j
ω

c0

(
ζ2

μr
grad2Duz,wt

)
0,Ω

− ω2

c2
0

(εr uz, wz)0,Ω − ω2

c2
0

(
1 + εrμr − ζ1

μr
ut,wt

)
0,Ω

+ jωμ0 (Y (γ0uz) , γ0wz)0,Γ + jωμ0 (Y (ut · l) ,wt · l)0,Γ (3.11)

for all u,w ∈ U and the antilinear form

l(w) = −jωμ0 (Jez, wz)0,Ω −
(

ζ1

μr
ẑ × Jmt, grad2Dwz

)
0,Ω

− jωμ0 (fRz, γ0wz)0,Γ

−
(

1
μr

Jmz, curl2Dwt

)
0,Ω

− jωμ0 (Jet,wt)0,Ω + j
ω

c0

(
ζ2

μr
ẑ × Jmt,wt

)
0,Ω

− jωμ0 (fRl,wt · l)0,Γ (3.12)

for all w ∈ U , we deduce the variational formulation we were looking for

Problem 2. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM5, HB1, given ω > 0, Je,Jm ∈ (L2(Ω))3

and fRl, fRz ∈ L2(Γ ), find E ∈ U such that

a(E,w) = l(w) ∀w ∈ U. (3.13)

By using HM3, HM5, HB1 and HV4 the reader can easily check that the sesquilinear form a and the antilinear
form l are bounded.

In deducing Problem 2 from Problem 1, we have shown that the E component of any solution of Problem 1
satisfies Problem 2.

Vice versa, as shown in details in [14], we can prove that any solution of Problem 2 is the E component of
a solution of Problem 1, the other components being given by (3.1)–(3.5) and (2.2). These details are skipped
because, on the one hand, they can be easily deduced from [14], and, on the other hand, all notations of interest
have already been introduced.

We simply recall from [14] two important results for our analysis. Their deductions would be trivial because
all considerations related to these points and reported in [14] exactly apply in this case, too.

Theorem 3.2. If (E,B,H,D) satisfies Problem 1, then E satisfies Problem 2. Conversely, if E satisfies Prob-
lem 2 and B, H and D are obtained by (3.1)–(3.5) and (2.2), then (E,B,H,D) satisfies Problem 1.

Theorem 3.3. Problem 1 is well-posed if and only if Problem 2 is well-posed.

4. Well posedness of the problem

In this Section, by using the generalized Lax-Milgram lemma ([18], p. 21), we prove the well posedness of
Problem 2 and, by Theorem 3.3, the well posedness of Problem 1. In order to achieve this result, different
properties have to be deduced. Some of these deductions are long and, for this reason, we split this section into
some subsections. The first two of these deal with uniqueness. The third is related to the inf-sup condition ([18],
p. 21).
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4.1. Uniqueness of the solution of the problem

Since Problem 2 is linear, uniqueness can be addressed by showing that the homogeneous version of Problem 2
(i.e., the one with l = 0 in Eq. (3.13)) admits only the solution E = 0 ([36], p. 20, [18], p. 92).

In order to obtain the result of interest in this subsection some additional assumptions should be considered.
It is very well-known, for example, that the presence of some losses is crucial in order to obtain a uniqueness
result ([18], p. 92). As a matter of fact, if no losses are present in the model of interest uniqueness cannot
be guaranteed in general, even for simple problems involving a linear, homogeneous, passive and motionless
medium.

In our problem, losses can be modelled in the boundary or in the media. We require in any case that the
boundary and the media do not provide active power, that is

HM6. Im(εr) ≤ 0 and Im(μr) ≤ 0 in Ωk, ∀k ∈ M

HB2. Re(Y ) ≥ 0 on Γ .

To take account of some losses in the media we consider [37]

HM7. we can find CemM > 0, j ∈ M0 and D ⊂ Ωj , D open non-empty, such that Im(εr) ≤ −CemM or
Im(μr) ≤ −CemM in D,

where Im denotes the imaginary part. This hypothesis refers to polarization or conduction losses in motionless
media.

The other type of losses we could deal with is considered by:

HB3. we can find CY m > 0 and a non-empty open part Γl of Γ such that Re(Y ) ≥ CY m almost everywhere
on Γl,

where Re denotes the real part.
These hypotheses can be exploited to achieve a first intermediate result. Its deduction is easily got by using

the procedure defined in [22]. We will provide all details because we are in the presence of moving media and
we have to take account of a sesquilinear form having more terms than usual.

In addition to the previous assumptions, in order to complete the deduction of interest for motionless media,
we consider:

HM8. we can find Cεm > 0 such that |εr| ≥ Cεm in Ωk, ∀k ∈ M .

Finally, the next two hypotheses, expressed in terms of the constitutive parameters of the media involved and
of the velocity field, will be exploited to get another intermediate deduction related to a unique continuation
result in the presence of moving media:

HMV1. the fields μr, εr and β allow to find Cmv1 > 0 such that |μrεr − β2| ≥ Cmv1 in Ωi, ∀i ∈ M .

Remark 4.1. HMV1 could be written as HMV1i for any specific Ωi of interest. However, before obtaining the
final uniqueness result we have to ask that it holds true for all i ∈ Mβ . HM5 and HM8 directly imply the validity
of HMV1 in the subdomains where β = 0.

HMV2. the fields μr, εr and β are such that

16c2
0 max

x∈Ωi

(
β2 (μrεr − 1)2

(μrεr − β2)2

)

<
(
−Cκ,s,i +

√
C2

κ,s,i + 4 Cκ,d,i Cκ,r,i

) (
−Cν,s,i +

√
C2

ν,s,i + 4 Cν,d,i Cν,r,i

)
(4.1)
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∀i ∈ Mβ, where

Cκ,s,i =
1
ε0

max
x∈Ωi

(
max

(
2
∣∣∣∣μr(1 − β2)
μrεr − β2

∣∣∣∣ ,
∣∣∣∣μr(1 − β2)
μrεr − β2

∣∣∣∣ +
1
|εr|

))
, (4.2)

Cν,s,i =
1
μ0

max
x∈Ωi

(
max

(
2
∣∣∣∣εr(1 − β2)
μrεr − β2

∣∣∣∣ ,
∣∣∣∣εr(1 − β2)
μrεr − β2

∣∣∣∣ +
1

|μr|

))
, (4.3)

Cκ,d,i = min
x∈Ωi

(
μ2

r(1 − β2)2

ε3
0|εr|(μrεr − β2)2

)
, (4.4)

Cν,d,i = min
x∈Ωi

(
ε2

r(1 − β2)2

μ3
0|μr|(μrεr − β2)2

)
, (4.5)

Cκ,r,i = ε0 min
(

min
x∈Ωi

∣∣∣∣ μrεr − β2

μr(1 − β2)

∣∣∣∣ , min
x∈Ωi

|εr|
)

, (4.6)

Cν,r,i = μ0 min
(

min
x∈Ωi

∣∣∣∣ μrεr − β2

εr(1 − β2)

∣∣∣∣ , min
x∈Ωi

|μr|
)

. (4.7)

Remark 4.2. Hypotheses HM5, HM8 and HV4 imply Cκ,d,i > 0 and Cν,d,i > 0. Analogously, hypotheses HM5,
HM8 and HMV1 guarantee that Cκ,r,i > 0 and Cν,r,i > 0. Then the right-hand side of (4.1) is larger than zero.
Thus, HMV2 is trivially satisfied in the subdomains where β = 0 and we could consider it for all i ∈ M .

The main result of this subsection is given by:

Theorem 4.3. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HB1-HB2, HMV1 and HMV2,
Problem 2 admits a unique solution provided that at least one of HM7 and HB3 is satisfied.

In order to prove such a theorem the above indicated intermediate results are necessary. They are deduced
with the following lemmas.

Lemma 4.4. Any solution E of Problem 2 with l = 0 satisfies

• γ0Ez = 0 and Et · l = 0 on Γl if HM6, HB2 and HB3 hold true,
• Ez = 0, grad2DEz = 0 and Et = 0 in D if HM6, HB2 and the part relative to εr of HM7 hold true,
• grad2DEz = 0, Et = 0 and curl2DEt = 0 in D if HM6, HB2 and the part relative to μr of HM7 hold true.

Proof. Let us consider a solution E of the homogeneous problem. By choosing w = E we deduce a(E,E) = 0
and, then, Im(a(E,E)) = 0. But from equation (3.11) we deduce

0 = Im(a(E,E)) =
(

Im
(

ζ1

μr

)
grad2DEz , grad2DEz

)
0,Ω

+
(

Im
(

1
μr

)
curl2DEt, curl2DEt

)
0,Ω

+
ω

c0
Re

((
ζ2

μr
Et, grad2DEz

)
0,Ω

−
(

ζ2

μr
grad2DEz ,Et

)
0,Ω

)

− ω2

c2
0

(Im(εr)Ez , Ez)0,Ω − ω2

c2
0

(
Im

(
1 + εrμr − ζ1

μr

)
Et,Et

)
0,Ω

+ ωμ0 (Re(Y ) (γ0Ez) , γ0Ez)0,Γ + ωμ0 (Re(Y ) (Et · l) ,Et · l)0,Γ . (4.8)
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Taking into account that ω > 0 we easily see that the last two addends of the right-hand side member of (4.8)
are not negative whenever HB2 holds true and could be strictly positive if γ0Ez �= 0 or Et · l �= 0 on Γl and HB3
is satisfied. The addend involving Im(εr) is not negative by HM6. It is strictly positive whenever HM6 and the
part related to εr of HM7 hold true, if Ez �= 0 in D. The same result is deduced for the addend involving Im( 1

μr
)

because of the change of the sign of the imaginary part of 1
μr

with respect to that of μr. In particular, the
addend involving Im( 1

μr
) is not negative by HM6 and is strictly positive whenever HM6 and the part related

to μr of HM7 hold true, if curl2DEt �= 0 in D. In order to manage the remaining four addends of the right-hand
side member of (4.8), let us firstly observe that, by using (2.5), we can deduce

ζ1

μr
=

1 − μrεrβ
2

μr(1 − β2)
=

1
μr

1
1 − β2

− εr
β2

1 − β2

and

1 + εrμr − ζ1

μr
=

1
μr

+ εr −
ζ1

μr
=

1
μr

(
1 − 1

1 − β2

)
+ εr

(
1 +

β2

1 − β2

)
= − 1

μr

β2

1 − β2
+ εr

1
1 − β2

·

Moreover, by using (2.6) we obtain

ζ2

μr
=

β(μrεr − 1)
μr(1 − β2)

= − 1
μr

β

1 − β2
+ εr

β

1 − β2
·

Thus, (
ζ1

μr
grad2DEz , grad2DEz

)
0,Ω

+j
ω

c0

((
ζ2

μr
Et, grad2DEz

)
0,Ω

−
(

ζ2

μr
grad2DEz,Et

)
0,Ω

)

−ω2

c2
0

(
1 + εrμr − ζ1

μr
Et,Et

)
0,Ω

=
∫

Ω

1
μr

1
1 − β2

(
|grad2DEz |2 − j

ωβ

c0
((Et, grad2DEz)C2 − (grad2DEz,Et)C2) +

ω2β2

c2
0

|Et|2
)

−
∫

Ω

εr
1

1 − β2

(
β2|grad2DEz |2 − j

ωβ

c0
((Et, grad2DEz)C2 − (grad2DEz,Et)C2) +

ω2

c2
0

|Et|2
)

, (4.9)

where ( )C2 denotes the usual scalar product of vectors in C2. Thus, the corresponding imaginary parts of
interest in (4.8) are equal to∫

Ω

Im
(

1
μr

)
1

1 − β2

(
|grad2DEz|2 + 2

ωβ

c0
Im ((Et, grad2DEz)C2) +

ω2β2

c2
0

|Et|2
)

−
∫

Ω

Im(εr)
1

1 − β2

(
β2|grad2DEz|2 + 2

ωβ

c0
Im ((Et, grad2DEz)C2) +

ω2

c2
0

|Et|2
)

. (4.10)

By using the Cauchy-Schwarz inequality we deduce |Im((a1, a2)C2)| ≤ |(a1, a2)C2 | ≤ |a1||a2|. Thus, for any
real numbers C1, C2 and any a1,a2 ∈ C2 we have C2

1 |a1|2 + 2C1C2Im((a1, a2)C2) + C2
2 |a2|2 ≥ C2

1 |a1|2 −
2|C1||C2||Im((a1,a2)C2)| + C2

2 |a2|2 ≥ C2
1 |a1|2 − 2|C1||C2||a1||a2| + C2

2 |a2|2 = (C1|a1| − C2|a2|)2 ≥ 0. Thus,
by identifying in one case C1 with 1 and C2 with ωβ

c0
and, in the other case, C1 with β and C2 with ω

c0
we

conclude that the quantities contained in the large brackets in the two integrals in (4.10) are not negative.
Moreover, taking account of HV4, the considered integrals provide non-negative results whenever HM6 holds
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true. The same integrals give strictly positive contributions whenever HM6 and HM7 holds true, if Et �= 0 or
grad2DEz �= 0 in D.

We have verified that all terms appearing in (4.8) are not negative if HM6 and HB2 hold true. Moreover,
some of them could be strictly positive if, in addition to HB2, HB3 holds true, provided that γ0Ez �= 0 or
Et · l �= 0 on Γl. Finally, strictly positive contributions are obtained if, in addition to HM6, the part relative to
εr of HM7 holds true, provided that Ez �= 0 or grad2DEz �= 0 or Et �= 0 in D. Analogously, if the part relative
to μr of HM7 holds true, the same result is obtained provided that grad2DEz �= 0 or Et �= 0 or curl2DEt �= 0
in D. �

By using Lemma 4.4 one easily gets a stronger result for regions containing motionless media.

Lemma 4.5. Under the additional hypotheses HM6 and HB2, any solution E of Problem 2 with l = 0 satisfies
E = 0 in Ωk, k ∈ M0, if HB3 or HM7 and HM8 hold true whenever Ωk contains regions with lossy media or the
media in Ωk are lossless but Ωk has a non-empty, open, Lipschitz continuous part of its boundary in common
with Γl or with the boundary of a subregion Ωj where E = 0 has already been proved.

Proof. First of all, we show that E = 0 in D even if just the part relative to μr of HM7 holds true. As a matter
of fact, let us consider wz as a very regular function having support in D and wt = 0. Then, from (3.11), taking
account that grad2DEz = 0, Et = 0 and curl2DEt = 0 in D, we deduce 0 = a(E,w) = −ω2

c2
0
(εrEz , wz)0,D which

gives the desired result for the density of the space of the indicated test functions in L2(D), under the indicated
hypotheses.

Thus, overall, under hypotheses HM6 and HB2, the solution E of the homogeneous problem satisfies E = 0
in D if HM7 and HM8 hold true and γ0Ez = 0 and Et · l = 0 on Γl if HB3 holds true.

Now we proceed as in ([18], p. 92 and [22]) and apply unique continuation results. Our assumptions related
to the domain (HD1), its subdomains (HD3), their boundaries (HD2, HD3) and the material properties of
motionless media (HM1–HM3 and HM5–HM8) are taken from [22] and are slightly stronger that those considered
in ([18], p. 83 and p. 94) as far as the regularity of εr is concerned (HM3).

For this reason we can proceed exactly as in [18, 22]. In this way we can firstly show that E = 0 in any
subdomain Ωk, k ∈ M0, which contains regions with lossy motionless media, as considered in hypothesis HM7.
Then it is possible to prove that E = 0 in any subdomain Ωk, k ∈ M0, which contains lossless and motionless
media and having a non-empty, open Lipschitz continuous part of its boundary in common with Γl if HM6,
HB2 and HB3 hold true or with the boundary of a subregion Ωj where E = 0 has already been proved. �

Unfortunately, these considerations do not allow to obtain the uniqueness result of interest since we still have
to deal with subdomains Ωj where passive and lossless moving media are present. The reader should remember
that we do not consider the trivial case of scatterers moving with a uniform axial speed in vacuum, which can
be managed with all matter at rest, as pointed out in the Introduction.

The next lemma gives us the last intermediate result we need to prove Theorem 4.3.

Lemma 4.6. Under the additional hypotheses HB2, HM6, HM8, HMV1 and HMV2 any solution E of Problem 2
with l = 0 satisfies E = 0 in Ωi, i ∈ Mβ whenever Ωi is adjacent to a region Ωk, k ∈ M , where it has already
been proved that E = 0, or ∂Ωi shares a non-empty, open, Lipschitz continuous part with Γl and HB3 holds
true.

Proof. In order to deal with the subdomains involving moving media we study under which conditions it is
possible to apply the results proved in [17] and, then, deduce the analyticity of the fields. To the best of
authors’ knowledge, this is the only way to prove a unique continuation results in the presence of moving (and,
then, bianisotropic) media.

With this aim, let us consider the subdomain Ωi, i ∈ Mβ, containing moving media and suppose that E is
a solution of the homogeneous variational problem, as usual. From it we deduce, B, H and D by using (3.1)–
(3.5), with Jm = 0, and (2.2). We consider the three-dimensional domain Ωi3D = Ωi × (0, 1), i ∈ Mβ, and
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the three-dimensional fields, defined in the three-dimensional domain Ωi3D but independent of the z-coordinate
E3D = E, B3D = B, H3D = H and D3D = D in Ωi3D. Since E ∈ U , B ∈ (L2(Ω))3, H ∈ U and D ∈ (L2(Ω))3,
we easily get E3D ∈ H(curl, Ωi3D), B3D ∈ (L2(Ωi3D))3, H3D ∈ H(curl, Ωi3D), D3D ∈ (L2(Ωi3D))3. Moreover,
by using Theorem 3.2 it is almost immediate to deduce that the homogeneous equations (2.13)1, (2.13)2, (2.13)3
and (2.13)4 imply the validity of the three-dimensional homogeneous Maxwell equations{

∇× H3D − jω D3D = 0 in Ωi3D

∇× E3D + jω B3D = 0 in Ωi3D.
(4.11)

Then, since ω > 0, B3D ∈ H(div0, Ωi3D) and D3D ∈ H(div0, Ωi3D). Thus, (E3D,B3D,H3D,D3D) ∈
H(curl, Ωi3D) × H(div0, Ωi3D) × H(curl, Ωi3D) × H(div0, Ωi3D) as it was assumed in [17] (we identify Ωi3D

with Ω of [17]). Je and Jm are equal to zero in the homogeneous problem of interest in this section so that the
corresponding quantities in (4.11), which were considered in [17], are trivial and we easily get that they have
the regularity required by HS1 of [17], that is Je,Jm ∈ H(div0, Ωi3D), or by any other statement of that paper.

Moreover, from (2.1)–(2.4) one easily gets{
D3D = (1/c0)P E3D + LB3D in Ωi3D

H3D = M E3D + c0 QB3D in Ωi3D,
(4.12)

where

P =
√

ε0

μ0

⎡
⎢⎣

1+μrεr−ζ1
μr

0 0

0 1+μrεr−ζ1
μr

0

0 0 εr

⎤
⎥⎦, (4.13)

Q =
√

ε0

μ0

⎡
⎢⎢⎣

ζ1
μr

0 0

0 ζ1
μr

0

0 0 1
μr

⎤
⎥⎥⎦, (4.14)

L = M =
√

ε0

μ0

⎡
⎢⎣

0 − ζ2
μr

0
ζ2
μr

0 0

0 0 0

⎤
⎥⎦. (4.15)

In equations (4.13)–(4.15) we have not changed the symbols for the fields εr, μr, β, ζ1 and ζ2, but the reader
should consider that, in the indicated equations, these fields are defined on Ωi3D and are assumed to be in-
dependent of the z coordinate. In the following the reader should refer to the quantities defined on the three-
dimensional domain when they are involved in considerations aiming at the applications of the results of [17].

By using (5.5) of [17], after some trivial calculation we obtain

κ =
1
ε0

⎡
⎢⎣

μr

1+μrεr−ζ1
0 0

0 μr

1+μrεr−ζ1
0

0 0 1
εr

⎤
⎥⎦, (4.16)

ν =
1
μ0

⎡
⎢⎢⎣

ζ1
μr

+ ζ2
2

μr(1+μrεr−ζ1) 0 0

0 ζ1
μr

+ ζ2
2

μr(1+μrεr−ζ1) 0
0 0 1

μr

⎤
⎥⎥⎦, (4.17)

γ = −χ = c0

⎡
⎢⎣

0 − ζ2
1+μrεr−ζ1

0

− ζ2
1+μrεr−ζ1

0 0
0 0 0

⎤
⎥⎦. (4.18)
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In [17] it has been assumed that κ, χ, γ and ν satisfy HM1 of [17], that is they have continuous and bounded
entries in the subdomain where the regularity of the field is of interest. We know that μr, 1

μr
, 1

εr
are very

regular and bounded by HM3, HM5 and HM8. ζ1 and ζ2 are very regular and bounded, too, by HV2, HM3
and HV4. Thus we achieve the result of interest if (1 + μrεr − ζ1)−1 is bounded. By using (2.5) we have
1 + μrεr − ζ1 = 1 +μrεr − 1−μrεrβ2

1−β2 = μrεr−β2

1−β2 . Thus, the required boundedness is guaranteed whenever HMV1
holds true.

From (4.16) and (4.17) it is easy to check that

determinant(κ) =
μ2

r

ε3
0εr(1 + μrεr − ζ1)2

=
μ2

r(1 − β2)2

ε3
0εr(μrεr − β2)2

(4.19)

determinant(ν) =
1

μ3
0μ

3
r

(
ζ1 +

ζ2
2

1 + μrεr − ζ1

)2

=
ε2

r(1 − β2)2

μ3
0μr(μrεr − β2)2

. (4.20)

The entries of κ and ν together with the corresponding determinants, determinant(κ) and determinant(ν), can
be extended by continuity to Ωi3D, for all i ∈ M , under hypotheses HV2, HM3, HM5, HM8, HMV1. Thus
we can define the constant quantities Cκ,d and Cν,d of [17] as Cκ,d,i = minx∈Ωi3D

(|determinant(κ)|), Cν,d,i =
minx∈Ωi3D

(|determinant(ν)|), i ∈ Mβ. By using (4.19) and (4.20) we easily get (4.4) and (4.5), respectively.
Then HM8 of [17], which requires the existence of Cκ,d and Cν,d, both larger than zero, such that Cκ,d ≤
|determinant(κ)|, Cν,d ≤ |determinant(ν)| everywhere in the domain of interest, holds true in Ωi3D for all
i ∈ Mβ under hypotheses HV2, HM3, HM5, HM8, HMV1 and HV4 (see also Rem. 4.2).

Exploiting again the diagonal structure of κ and ν and the continuity on Ωi3D of their entries, for all i ∈ M ,
we can define the constant quantities Cκ,s and Cν,s of [17] as

Cκ,s,i =
1
ε0

max
x∈Ωi3D

(
max

(
2
∣∣∣∣ μr

1 + μrεr − ζ1

∣∣∣∣ ,
∣∣∣∣ μr

1 + μrεr − ζ1

∣∣∣∣ +
1
|εr|

))
, (4.21)

Cν,s,i =
1
μ0

max
x∈Ωi3D

(
max

(
2
∣∣∣∣ ζ1

μr
+

ζ2
2

μr(1 + μrεr − ζ1)

∣∣∣∣ ,
∣∣∣∣ ζ1

μr
+

ζ2
2

μr(1 + μrεr − ζ1)

∣∣∣∣ +
1

|μr|

))
, (4.22)

i ∈ Mβ, and, by using (2.5) and (2.6), we get expressions (4.2) and (4.3), respectively.
Again from (4.16) and (4.17) we easily deduce that κ−1 and ν−1 are diagonal matrices with continuous entries

which can be extended by continuity to Ωi3D, for all i ∈ M , under hypotheses HV2, HM3, HM5 and HV4. For
this reason we can define the constant quantities Cκ,r and Cν,r of [17] as

Cκ,r,i = ε0 min
(

min
x∈Ωi3D

∣∣∣∣1 + μrεr − ζ1

μr

∣∣∣∣ , min
x∈Ωi3D

|εr|
)

, (4.23)

Cν,r,i = μ0 min

⎛
⎝ min

x∈Ωi3D

∣∣∣∣∣∣
μr

ζ1 + ζ2
2

1+μrεr−ζ1

∣∣∣∣∣∣ , min
x∈Ωi3D

|μr|

⎞
⎠, (4.24)

i ∈ Mβ. Once more, by using (2.5) and (2.6), we get expressions (4.6) and (4.7), respectively. Then HM9 of [17],
that is ∃∃Cκ,r > 0, Cν,r > 0 : |lT1,3,n κ−1 l1,3,n| ≥ Cκ,r, |lT1,3,n ν−1 l1,3,n| ≥ Cν,r everywhere in the domain of
interest, ∀l1,3,n ∈ R3 having a unit Euclidean norm, holds true in Ωi3D for all i ∈ Mβ under assumptions HV2,
HM3, HM5, HM8, HMV1 and HV4 (see also Rem. 4.2).

Having already verified that HM1, HS1, HM8 and HM9 of [17] hold true in Ωi3D for all i ∈ Mβ, in order to
be able to apply Theorem 7.3 of [17], we have to consider condition (7.11) of the same paper. We report here
this condition to ease the reader task

4
((∑3

i,j=1 |γij |
)
− mini=1,2,3 |γii|

)((∑3
i,j=1 |χij |

)
− mini=1,2,3 |χii|

)
(
− Cκ,s,i +

√
C2

κ,s,i + 4 Cκ,d,i Cκ,r,i

) (
− Cν,s,i +

√
C2

ν,s,i + 4 Cν,d,i Cν,r,i

) < 1 in Ωi3D, ∀i ∈ Mβ. (4.25)
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In the case of interest, by using (4.18) we deduce γii = χii = 0, i = 1, 2, 3, and

3∑
i,j=1

|γij | =
3∑

i,j=1

|χij | = 2c0

∣∣∣∣ ζ2

1 + μrεr − ζ1

∣∣∣∣ = 2c0

∣∣∣∣β(μrεr − 1)
μrεr − β2

∣∣∣∣ · (4.26)

Taking account of (4.26) condition (4.25) (that is condition (7.11) of [17]) becomes condition (4.1).
Now we can fully exploit the results of [17] and prove that (E3D,B3D,H3D,D3D) is done of fields equal to

zero in Ωi3D, i ∈ Mβ, if

• Ωi is adjacent to a region Ωk, k ∈ M , where it has already been proved that E = 0; or
• ∂Ωi shares a non-empty, open, Lipschitz continuous part with Γl.

As a matter of fact, we proceed as in ([18], p. 94). In both cases we introduce a sufficiently small open ball
B ⊂ R2 centered on a point of Ωi ∩ Ωk or on a point of ∂Ωi ∩ Γl.

First of all, we remember that E is a solution of the homogeneous version of Problem 2 (i.e., the one with
l = 0 in Eq. (3.13)). From this solution, by using (3.1)–(3.5) and (2.2), we deduce B, H and D. By Theorem 3.2
(E,B,H,D) is a solution of the homogeneous version of Problem 1 (i.e., the one Je = 0, Jm = 0, fRl = 0,
fRz = 0 in Eq. (2.13)). Since in both cases we have to deal with we have γ0Ez = 0 and Et · l = 0 on B ∩ ∂Ωi,
by (2.13)5 and (2.13)6 (with fRl = 0 and fRz = 0), we deduce γ0Hz = 0 and Ht · l = 0 on B ∩ ∂Ωi.

Moreover, taking account of (2.13)2 and (2.13)4 with Jet = 0 and Jmt = 0, the conditions γ0Ez = 0 and
γ0Hz = 0 on B ∩ ∂Ωi imply γnDt = 0 and γnBt = 0 on B ∩ ∂Ωi, where γnAt denotes the boundary values
of the normal component to the boundary of a sufficiently regular At ([32], p. 204). The indicated boundary
conditions have a meaning because ẑ × Dt = 1

jω grad2DHz and ẑ × Bt = − 1
jω grad2DEz are in (L2(Ω))2 and

have a well defined curl2D (equal to 0 in Ω).
Finally, let us define B3D = B× (0, 1) and extend in an analytical way from Ωi3D to B3D \Ωi3D the fields εr,

μr and β (this is possible by HV2 and HM3 and by taking account of HM4). In both cases we have to consider
E3D, B3D, H3D, and D3D are either trivial fields in B3D \Ωi3D (in the first of the two cases) or can be extended
to B3D \Ωi3D as trivial fields (in the second of the two cases). Then, by Theorem 7.3 of [17] we obtain E3D = 0,
B3D = 0, H3D = 0, and D3D = 0 in B3D since these fields are analytic in B3D and they are equal to zero in
B3D \ Ωi3D. We can deduce the analyticity of the fields in B3D if HMV1 and HMV2 are satisfied because:

• the fields E3D, B3D, H3D, D3D satisfy (4.11) in B3D since (4.11) holds true in Ωi3D and in B3D \ Ωi3D;
• the fields E3D, B3D, H3D, D3D satisfy (4.12) in B3D since (4.12) holds true in Ωi3D and in B3D \ Ωi3D;
• by using the properties of the boundary values deduced above we easily conclude that in both cases of

interest (E3D,B3D,H3D,D3D) ∈ H(curl, B3D) × H(div0, B3D) × H(curl, B3D) × H(div0, B3D);
• HS1 of [17] is satisfied in any case;
• HM1, HM8 and HM9 of [17] are satisfied by the fields εr, μr and β extended as indicated above in any

sufficiently small ball B3D since we have verified them in Ωi3D and all the extended quantities involved are
at least C2(Ωi3D);

• HMV2 implies that (7.11) of [17] is satisfied by the fields εr, μr and β extended as indicated above in any
sufficiently small ball B3D since we have verified it in Ωi3D and all the extended quantities involved are at
least C2(Ωi3D).

Once the fields E3D, B3D, H3D, D3D are proved to be equal to zero in B3D we easily get E3D = 0, B3D = 0,
H3D = 0, and D3D = 0 in Ωi3D by the analyticity of the indicated fields in Ωi3D. This property is easily
deduced under hypotheses HMV1 and HMV2 by a direct and easier application of Theorem 7.3 of [17] since in
Ωi3D all its hypotheses have been directly verified. Then E = 0, B = 0, H = 0, and D = 0 in Ωi. �

Thus we have shown that we are able to manage regions involving motionless or moving media. Therefore,
the result of interest, that is E = 0 in Ω, can be deduced by considering all subdomains, as shown in ([18],
p. 95). This completes the proof of Theorem 4.3.
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4.2. Uniqueness of the solution for the problem defined by the adjoint sesquilinear
form a∗

The adjoint sesquilinear form a∗ is defined by ([38], p. 353)

a∗(w,u) = (a(u,w))∗ ∀u,w ∈ U, (4.27)

where (p)∗ denotes the complex conjugate of p ∈ C. In the particular case of interest we have

a∗(w,u) =
((

ζ1

μr

)∗
grad2Dwz , grad2Duz

)
0,Ω

+
((

1
μr

)∗
curl2Dwt, curl2Dut

)
0,Ω

− j
ω

c0

((
ζ2

μr

)∗
wt, grad2Duz

)
0,Ω

+ j
ω

c0

((
ζ2

μr

)∗
grad2Dwz ,ut

)
0,Ω

− ω2

c2
0

(
(εr)

∗
wz , uz

)
0,Ω

− ω2

c2
0

((
1 + εrμr − ζ1

μr

)∗
wt,ut

)
0,Ω

− jωμ0

(
(Y )∗ (γ0wz) , γ0uz

)
0,Γ

− jωμ0

(
(Y )∗ (wt · l) ,ut · l

)
0,Γ

. (4.28)

With this definition one can refer to the following adjoint homogeneous problem.

Problem 3. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM4, HB1, given ω > 0, find w ∈ U such that

a∗(w,u) = 0 ∀u ∈ U. (4.29)

Like in [22], it is now extremely simple to deduce

Theorem 4.7. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HB1-HB2, HMV1 and HMV2,
Problem 3 admits a unique solution w = 0 provided that at least one of HM7 and HB3 is satisfied.

Proof. If HB3 is satisfied we deduce γ0Ez = 0 and Et · l = 0 on Γl because all imaginary parts of a∗ retain the
same signs as before (even though all these signs are opposite with respect to those of a). In the subdomains
involving motionless and lossy media, where HM7 holds true, we can proceed exactly as in [22] and deduce w = 0
there (essentially, for the common sign of the imaginary parts of a∗ as before). In the other regions, including
those where the media are in motion, all constitutive parameters are real-valued fields and all deductions
obtained in Section 4.1 apply in this case, too. �

With this result we immediately deduce that

Theorem 4.8. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HB1-HB2, HMV1 and HMV2,
the following condition holds true

for every w ∈ U,w �= 0, sup
u∈U

|a(u,w)| > 0 (4.30)

provided that at least one of HM7 and HB3 is satisfied.

Proof. Suppose that (4.30) is not satisfied. Then we can find w ∈ U,w �= 0 such that supu∈U |a(u,w)| = 0.
But by using (4.27) |a(u,w)| =

∣∣(a(u,w))∗
∣∣ = |a∗(w,u)|. Then, if (4.30) does not hold true, we can find

w ∈ U,w �= 0 such that supu∈U |a∗(w,u)| = 0. Thus, for the indicated w �= 0, |a∗(w,u)| = 0 ∀u ∈ U . This is
at odds with Theorem 4.7, since we have assumed the same hypotheses. �
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4.3. Additional hypotheses for proving the inf-sup condition

The first of the new hypotheses we will consider in this subsection is:

HMV3. the fields μr, εr and β allow to find Cmv3 > 0 such that μrεr−β2

μr(1−β2) ≥ Cmv3 in Ωk, ∀k ∈ Mβ, and
Re(εr) ≥ Cmv3 in Ωk, ∀k ∈ M0.

Remark 4.9. Where the media are at rest we have 1+εrμr−ζ1
μr

= μrεr−β2

μr(1−β2) = εr. In Ωk, ∀k ∈ Mβ, μrεr−β2

μr(1−β2) is
real valued by HM3 and HV2.

Remark 4.10. HMV3 is a new independent hypothesis. For example, it prevents the presence of traditional
media and the so-called epsilon-negative or double-negative materials [37] among those which are at rest in
the selected reference frame. All other hypotheses encountered so far do not exclude such a combination of
materials.

Remark 4.11. Hypothesis HMV3 could also be written to include cases in which the fields μr, εr and β are
such that μrεr−β2

μr(1−β2) ≤ −Cmv3 in Ωk, ∀k ∈ Mβ, and Re(εr) ≤ −Cmv3 in Ωk, ∀k ∈ M0. We do not consider these
cases because, on the one hand, the generality of our results is not reduced in a significant way and, on the
other hand, the mathematical developments can be limited to a reasonable extent. An analogous consideration
applies, for example, to the following condition HM9.

The following two additional hypotheses refer, respectively, to the relative permeability and to the admittance
involved in boundary conditions:

HM9. the field μr is such that Re
(

1
μr

)
≥ CμMk > 0 in Ωk, k ∈ M . CμM = mink∈M CμMk.

This hypothesis prevents the involvement of the so-called mu-negative or double-negative materials [37] in the
class of problems we deal with. Together with HMV3 (see also Rem. 4.10) it prevents the possibility of dealing
with all types of isotropic metamaterials [37]. However, the reader should notice that the main difficulties we
had to overcome in this paper are not due to the type of materials but to their axial movements (which make
these media appear as bianisotropic materials in the chosen reference frame). Moreover, it is now very well-
known [39–44], that the presence of traditional media and metamaterials can give rise to ill-posed problems
even when all media are at rest in the selected reference frame.

HB3S. we can find CY m > 0 such that Re(Y ) ≥ CY m almost everywhere on Γ .

This condition is a strengthened version of hypothesis HB3, which does not introduce any significant restriction
for practical applications, since it allows the considerations of absorbing boundary condition and boundary
conditions at imperfectly conducting surfaces [14, 37].

The last two conditions introduced in this subsection are expressed in terms of the constitutive parameters
of the media involved and of the velocity field. In particular, the first of these is:

HMV4. the fields μr, εr and β allow to find Cmv4 > 0 such that 1−μrεrβ2

μr(1−β2) ≥ Cmv4 in Ωk, ∀k ∈ Mβ.

Remark 4.12. Where the media are at rest we have ζ1
μr

= 1−μrεrβ2

μr(1−β2) = 1
μr

. Then, in these media Re( ζ1
μr

) =

Re( 1
μr

) ≥ CμM by HM9. In Ωk, ∀k ∈ Mβ , ζ1
μr

= 1−μrεrβ2

μr(1−β2) is real valued by HM3.

Before stating the last condition of interest in this subsection we define

Cmv4m = min
((

min
k∈M0

CμMk

)
, Cmv4

)
(4.31)
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and observe that, by using HM3, HM5 and HV4

∃Cgl2 ∈ R :
∣∣∣∣ ζ2

μr

∣∣∣∣ ≤ Cgl2 in Ωi, ∀i ∈ M. (4.32)

Now the last hypothesis we require in this subsection reads

HMV5. the fields μr, εr and β are such that
(
1 − C2

gl2
Cmv3Cmv4m

)
> 0.

For the next developments it is also important to introduce a decomposition of U2D. In order to do so, let us
consider the function space

U2D0 = {At ∈ U2D | curl2DAt = 0 and At · l = 0} . (4.33)

It is a closed subspace of U2D and of (L2(Ω))2 [45].
The sesquilinear form

(
1+εrμr−ζ1

μr
ut,vt

)
0,Ω

=
(

μrεr−β2

μr(1−β2)ut,vt

)
0,Ω

, defined on (L2(Ω))2 × (L2(Ω))2, is con-

tinuous if we assume HM3, HM5 and HV4. In particular, by assuming HM3, HM5 and HV4 we get∣∣∣∣1 + εrμr − ζ1

μr

∣∣∣∣ ≤ Cl4 in Ωi, ∀i ∈ M. (4.34)

The indicated sesquilinear form is coercive ([18], p. 20) whenever HMV3 is satisfied. As a matter of fact,∣∣∣∣∣
(

μrεr − β2

μr(1 − β2)
ut,ut

)
0,Ω

∣∣∣∣∣
2

=
∣∣∣∣
∫

Ω

μrεr − β2

μr(1 − β2)
|ut|2

∣∣∣∣
2

=
∣∣∣∣
∫

Ω

Re
(

μrεr − β2

μr(1 − β2)

)
|ut|2 + j

∫
Ω

Im
(

μrεr − β2

μr(1 − β2)

)
|ut|2

∣∣∣∣
2

≥
∣∣∣∣
∫

Ω

Re
(

μrεr − β2

μr(1 − β2)

)
|ut|2

∣∣∣∣
2

≥ C2
mv3‖ut‖4

0,Ω. (4.35)

Then, under hypotheses HD1, HM3, HM5, HV4 and HMV3, we easily obtain the following Helmholtz decom-
position ([18], Lem. 4.5, p. 86)

U2D = U2D0 ⊕ U2D1, (4.36)

where

U2D1 =

{
ut ∈ U2D

∣∣∣∣∣
(

1 + εrμr − ζ1

μr
ut,vt

)
0,Ω

= 0 ∀vt ∈ U2D0

}
(4.37)

is a closed subspace of U2D.
The main conclusion of this subsection is given by

Theorem 4.13. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2, HB3S, HMV1-
HMV5 the sesquilinear form a satisfies the so-called “inf-sup” condition ([18], p. 21)

we can find α : inf
u∈U, ‖u‖U=1

sup
v∈U, ‖v‖U≤1

|a(u,v)| ≥ α > 0. (4.38)

We will prove Theorem 4.13 by contradiction, that is by assuming that under the indicated hypotheses condi-
tion (4.38) does not hold true. One can easily deduce that when (4.38) is not satisfied

∃{un},un ∈ U and ‖un‖U = 1 ∀n ∈ N, such that lim
n→∞

sup
v∈U, ‖v‖U≤1

|a(un,v)| = 0. (4.39)

The proof is split into several parts. Most of these are proved with the following lemmas.
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Lemma 4.14. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HB1-HB2, HMV1, HMV2, HMV3
and HM7 or HB3, for any sequence {un} satisfying (4.39) we can find, on a common subsequence of indeces,
{unt0} weakly converging to zero in U2D, {unz} weakly converging to zero in H1(Ω) and strongly converging to
zero in L2(Ω), and {unt1} weakly converging to zero in U2D and strongly converging to zero in (L2(Ω))2.

Proof. Let us consider a sequence {un} satisfying (4.39) and the sesquilinear form a defined in (3.11). In
Section 3 we deduced that under hypotheses HM3, HM5, HB1 and HV4 the sesquilinear form a is bounded.
Then, for any given v ∈ U we have that a(u,v) define a linear and bounded functional on U . By a classical
property of Hilbert spaces ([38], pp. 287, 289 and 303), {un} contains a subsequence (still denoted by {un})
weakly converging in U to ũ ∈ U , so that

∀v ∈ U : lim
n→∞

a(un,v) = a (ũ,v) . (4.40)

One can wonder if ũ could be different from zero. This is not possible, however, under the additional hypotheses
which guarantee uniqueness of the solution. As a matter of fact, under these hypotheses we have, for ũ �= 0

∃ṽ ∈ U such that a (ũ, ṽ) �= 0 (4.41)

and, by (4.40)
lim

n→∞
a(un, ṽ) �= 0, (4.42)

which is at odds with (4.39). Then, under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HB1-HB2,
HMV1, HMV2, and HM7 or HB3, for any sequence {un} satisfying (4.39) we can find a subsequence weakly
converging to zero in U , that is the subsequence {unt} weakly converges to zero in U2D and {unz} weakly
converges to zero in H1(Ω).

Under hypotheses HD1 and HD2 it is very well-known ([26], pp. 5 and 7) that H1(Ω) is compactly imbedded
in L2(Ω). Thus, from the previous subsequence of {unz} we can extract another subsequence which converges
strongly in L2(Ω) to ûz. Since both weak convergence in H1(Ω) and strong convergence in L2(Ω) imply weak
convergence in L2(Ω) to the same limit, we immediately deduce ûz = 0.

A similar result can be achieved on a part of {unt}. As a matter of fact, by using hypotheses HD1, HD2,
HM3, HM5, HV4 and HMV3 one can easily prove that U2D1 is compactly imbedded in (L2(Ω))2 ([18], pp. 87–
88, [45]). But by using the Helmholtz decomposition (4.36) and the inequalities (4.34) and (4.35), from any
sequence {un} satisfying condition (4.39) we obtain two bounded sequences {unt0}, {unt1}, unt0 ∈ U2D0,
unt1 ∈ U2D1, ‖unt0‖U2D ≤ Cl4

Cmv3
, ‖unt1‖U2D ≤ Cmv3+Cl4

Cmv3
for all n ∈ N. Then, from {unt1} we can extract a

subsequence which converges strongly in (L2(Ω))2 to ût1. But we know that {unt} weakly converges to zero
in U2D and this implies that both {unt0} and {unt1} weakly converge to zero in U2D. Now, since both weak
convergence in U2D and strong convergence in (L2(Ω))2 imply weak convergence in (L2(Ω))2 to the same limit,
we immediately deduce ût1 = 0. �

Another property of any sequence {un} satisfying (4.39) is given by the next lemma.

Lemma 4.15. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2, HMV1, HMV2,
HMV3 and HB3S, we deduce that for any sequence {un} satisfying (4.39) we can find a subsequence {unt1}
strongly converging to zero in U2D.

Proof. By using v ∈ U such that vt = unt1, vz = 0, from (3.11), (4.36) and (4.33) we deduce, for any n of the
sequence

a(un, (unt1, 0)) =
(

1
μr

curl2Dunt1, curl2Dunt1

)
0,Ω

−j
ω

c0

(
ζ2

μr
grad2Dunz,unt1

)
0,Ω

− ω2

c2
0

(
1 + εrμr − ζ1

μr
unt,unt1

)
0,Ω

+jωμ0 (Y (unt1 · l) ,unt1 · l)0,Γ . (4.43)
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Then

CμM‖curl2Dunt1‖2
0,Ω ≤

∣∣∣∣∣
(

1
μr

curl2Dunt1, curl2Dunt1

)
0,Ω

∣∣∣∣∣
≤ |a(un, (unt1, 0))| +

∣∣∣∣∣ ω

c0

(
ζ2

μr
grad2Dunz,unt1

)
0,Ω

∣∣∣∣∣
+

∣∣∣∣∣ω
2

c2
0

(
1 + εrμr − ζ1

μr
unt,unt1

)
0,Ω

∣∣∣∣∣ +
∣∣∣ωμ0 (Y (unt1 · l) ,unt1 · l)0,Γ

∣∣∣ . (4.44)

Taking account that our hypotheses guarantee the validity of (4.32) and that, by HB1, we have

|Y | ≤ CY M on Γ, (4.45)

we deduce

CμM‖curl2Dunt1‖2
0,Ω

≤ |a(un, (unt1, 0))| + ω

c0
Cgl2‖grad2Dunz‖0,Ω‖unt1‖0,Ω

+
ω2

c2
0

Cl4‖unt‖0,Ω‖unt1‖0,Ω + ωμ0CY M‖unt · l‖2
0,Γ . (4.46)

But under hypothesis HB3S, HM6 and HV4 we immediately obtain

|a(un,un)|
≥ ωμ0 (Re(Y )(γ0unz), γ0unz)0,Γ + ωμ0 (Re(Y )(unt · l),unt · l)0,Γ

≥ ωμ0CY m

(
‖γ0unz‖2

0,Γ + ‖unt · l‖2
0,Γ

)
(4.47)

so that, since ω > 0 and CY m > 0, for any sequence {un} satisfying (4.39)

lim
n→∞

‖γ0unz‖0,Γ = 0 (4.48)

and
lim

n→∞
‖unt · l‖0,Γ = 0. (4.49)

If we now consider the terms on the right-hand side of inequality (4.46) we can easily verify that all of them
converge to zero on a subsequence. As a matter of fact, {un} satisfies (4.39), {unt1} is bounded in U2D and then
|a(un, (unt1, 0))| → 0 as n → ∞; moreover, ‖un‖U = 1 so that ‖grad2Dunz‖0,Ω ≤ 1 and ‖unt‖0,Ω ≤ 1; since
we know that ‖unt1‖0,Ω → 0 as n → ∞ on the indicated subsequence the second and the third addend on the
right-hand side of inequality (4.46) becomes smaller and smaller; finally, by (4.49), the fourth addend goes to
zero. Then, by inequality (4.46) we deduce that, for any {un} satisfying (4.39), we have ‖curl2Dunt1‖2

0,Ω → 0
as n → ∞ on a subsequence. �

At the moment the deduced properties for {unt0} and {grad2Dunz} are not enough for our purpose. To overcome
this difficulty, we state the third lemma of this subsection.

Lemma 4.16. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2, HMV1, HMV2,
HMV3, HB3S and HMV4 we have that for any sequence {un} satisfying (4.39) we can find a subsequence such
that ‖unt0‖0,Ω → 0 as n → ∞ if and only if ‖grad2Dunz‖0,Ω → 0 as n → ∞.
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Proof. Let us consider v ∈ U such that vt = unt0, vz = 0. From (3.11) and (4.33) we deduce, for any n of the
sequence

a(un, (unt0, 0)) = −j
ω

c0

(
ζ2

μr
grad2Dunz,unt0

)
0,Ω

− ω2

c2
0

(
1 + εrμr − ζ1

μr
unt,unt0

)
0,Ω

, (4.50)

so that, by considering (4.36) and (4.37)

Cmv3‖unt0‖2
0,Ω ≤

∣∣∣∣∣
(

1 + εrμr − ζ1

μr
unt0,unt0

)
0,Ω

∣∣∣∣∣
≤ c2

0

ω2
|a(un, (unt0, 0))| + c0

ω

∣∣∣∣∣
(

ζ2

μr
grad2Dunz,unt0

)
0,Ω

∣∣∣∣∣
≤ c2

0

ω2
|a(un, (unt0, 0))| + c0

ω
Cgl2‖grad2Dunz‖0,Ω‖unt0‖0,Ω. (4.51)

Then, since {unt0} is bounded in U2D and then also in (L2(Ω))2, for any sequence {un} satisfying (4.39) we have
that ‖grad2Dunz‖0,Ω → 0 on any subsequence implies ‖unt0‖0,Ω → 0 on the same subsequence. It is possible to
show that the opposite implication holds true as well. As a matter of fact, we consider v ∈ U such that vt = 0
and vz = unz. From (3.11) we deduce, for any n of the sequence

a(un, (0, unz)) =
(

ζ1

μr
grad2Dunz, grad2Dunz

)
0,Ω

+ j
ω

c0

(
ζ2

μr
unt, grad2Dunz

)
0,Ω

− ω2

c2
0

(εr unz, unz)0,Ω + jωμ0 (Y (γ0unz) , γ0unz)0,Γ . (4.52)

From (4.31) we get

Cmv4m‖grad2Dunz‖2
0,Ω ≤

∣∣∣∣∣
(

ζ1

μr
grad2Dunz, grad2Dunz

)
0,Ω

∣∣∣∣∣
≤ |a(un, (0, unz))| +

ω

c0

∣∣∣∣∣
(

ζ2

μr
(unt0 + unt1), grad2Dunz

)
0,Ω

∣∣∣∣∣
+

ω2

c2
0

∣∣∣(εr unz, unz)0,Ω

∣∣∣ + ωμ0

∣∣∣(Y (γ0unz) , γ0unz)0,Γ

∣∣∣
≤ |a(un, (0, unz))| +

ω

c0
Cgl2‖unt0‖0,Ω‖grad2Dunz‖0,Ω

+
ω

c0
Cgl2‖unt1‖0,Ω‖grad2Dunz‖0,Ω +

ω2

c2
0

CεM‖unz‖2
0,Ω + ωμ0CY M‖γ0unz‖2

0,Γ ,

(4.53)

where, by HM3, we can find CεM such that |εr| ≤ CεM in Ωi, ∀i ∈ M . By using (4.48), the strong convergence to
zero in L2(Ω) of a subsequence of {unz}, the strong convergence to zero in U2D of the same subsequence of {unt1}
and the convergence to zero of |a(un, (0, unz))|, we deduce that ‖unt0‖0,Ω → 0 implies ‖grad2Dunz‖0,Ω → 0 on
the same subsequence. �

With these results it is easy to complete the proof of Theorem 4.13. As a matter of fact, the set of hypotheses
considered in the statement of the theorem contains those considered in all the above lemmas and we can
use all their conclusions for any sequence {un} satisfying (4.39). Let us now consider a subsequence having
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all properties guaranteed by Lemmas 4.14–4.16. Suppose that both ‖unt0‖0,Ω → 0 and ‖grad2Dunz‖0,Ω → 0
as n → ∞ on the indicated subsequence. By taking account also of (4.48), we immediately deduce that the
indicated subsequence of {un} converges strongly to zero in U and this is at odds with (4.39). Then, we deduce
that on the indicated subsequence (giving the strong convergence to zero in L2(Ω) of {unz} and the strong
convergence to zero in U2D of {unt1}) both {unt0} and {grad2Dunz} do not converge to zero in (L2(Ω))2.

It is then possible to find ε > 0 such that for any ñ ∈ N there exist an integer n ≥ ñ such that ‖unt0‖0,Ω ≥ ε.
This permits to define a subsequence of the previous subsequence guaranteeing strong convergence to zero in
L2(Ω) of {unz}, strong convergence to zero in U2D of {unt1} and such that ‖unt0‖0,Ω ≥ ε for any n of this
subsequence.

On this subsequence, from (4.51) we obtain

Cmv3‖unt0‖0,Ω ≤ c2
0

ω2

∣∣∣∣a
(
un,

(
unt0

‖unt0‖0,Ω
, 0

))∣∣∣∣ +
c0

ω
Cgl2‖grad2Dunz‖0,Ω. (4.54)

Let us substitute this result in inequality (4.53)

‖grad2Dunz‖2
0,Ω ≤ 1

Cmv4m
|a(un, (0, unz))| +

ωCgl2

c0Cmv4m
‖grad2Dunz‖0,Ω

×
(

c2
0

ω2Cmv3

∣∣∣∣a
(
un,

(
unt0

‖unt0‖0,Ω
, 0

))∣∣∣∣ +
c0Cgl2

ωCmv3
‖grad2Dunz‖0,Ω

)

+
ωCgl2

c0Cmv4m
‖unt1‖0,Ω‖grad2Dunz‖0,Ω +

ω2CεM

c2
0Cmv4m

‖unz‖2
0,Ω +

ωμ0CY M

Cmv4m
‖γ0unz‖2

0,Γ

=
1

Cmv4m
|a(un, (0, unz))| +

c0Cgl2

ωCmv3Cmv4m
‖grad2Dunz‖0,Ω

∣∣∣∣a
(
un,

(
unt0

‖unt0‖0,Ω
, 0

))∣∣∣∣
+

C2
gl2

Cmv3Cmv4m
‖grad2Dunz‖2

0,Ω

+
ωCgl2

c0Cmv4m
‖unt1‖0,Ω‖grad2Dunz‖0,Ω +

ω2CεM

c2
0Cmv4m

‖unz‖2
0,Ω +

ωμ0CY M

Cmv4m
‖γ0unz‖2

0,Γ . (4.55)

Then (
1 −

C2
gl2

Cmv3Cmv4m

)
‖grad2Dunz‖2

0,Ω

≤ 1
Cmv4m

|a(un, (0, unz))| +
c0Cgl2

ωCmv3Cmv4m
‖grad2Dunz‖0,Ω

∣∣∣∣a
(
un,

(
unt0

‖unt0‖0,Ω
, 0

))∣∣∣∣
+

ωCgl2

c0Cmv4m
‖unt1‖0,Ω‖grad2Dunz‖0,Ω +

ω2CεM

c2
0Cmv4m

‖unz‖2
0,Ω +

ωμ0CY M

Cmv4m
‖γ0unz‖2

0,Γ . (4.56)

Since the right-hand side goes to zero on the indicated subsequence, by using HMV5 we again conclude
‖grad2Dunz‖2

0,Ω → 0 as n → ∞ and this is at odds with our starting hypothesis.
This completes the proof of Theorem 4.13 since there are no other possibilities to consider.
We are now in a position to state the main Theorem of this section.

Theorem 4.17. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2, HB3S, HMV1-
HMV5 Problem 2 is well posed.

Proof. Under the indicated hypotheses the sesquilinear form involved in Problem 2 is bounded. Moreover, it
satisfies (4.30). Finally, condition (4.38) is satisfied as well. Thus, we can apply the generalized Lax–Milgram
lemma ([18], p. 21) to obtain the result of interest. �
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5. Galerkin approximation

In order to approximate Problem 2 Galerkin’s method ([46], p. 59) is widely adopted. In this method Problem 2
is substituted by a similar problem, the so-called discrete problem. It is posed in a finite dimensional subspace
Uh of U .

Any satisfactory approximation should at least guarantee convergence ([46], p. 112). Such a property is
defined in terms of sequences of solutions of the discrete problems. These sequences of solutions are obtained
by considering sequences {Uh}, h ∈ I, of finite dimensional subspaces of U , where the set I is a denumerable
and bounded set of strictly positive indexes having zero as the only limit point ([46], p. 112).

For any h ∈ I and for any set of approximate sources Jeh,Jmh ∈ (L2(Ω))3 and fRlh, fRzh ∈ L2(Γ ) we define
the antilinear form

lh(w) = −jωμ0 (Jezh, wz)0,Ω −
(

ζ1

μr
ẑ × Jmth, grad2Dwz

)
0,Ω

− jωμ0 (fRzh, γ0wz)0,Γ

−
(

1
μr

Jmzh, curl2Dwt

)
0,Ω

− jωμ0 (Jeth,wt)0,Ω + j
ω

c0

(
ζ2

μr
ẑ × Jmth,wt

)
0,Ω

− jωμ0 (fRlh,wt · l)0,Γ w ∈ U. (5.1)

Then, the aforementioned discrete version of Problem 2 reads as follows

Problem 4. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM5, HB1, given ω > 0, Jeh,Jmh ∈ (L2(Ω))3

and fRlh, fRzh ∈ L2(Γ ), find Eh ∈ Uh such that

a(Eh,wh) = lh(wh) ∀wh ∈ Uh. (5.2)

Remark 5.1. In order to avoid additional difficulties in this work we assume that the sesquilinear form used
in the definition of Problem 4 is identical to that of Problem 2 ([46], p. 183). By the same token, the weights
appearing in the (L2(Ω))2 scalar products defining lh are identical to those used in the definition of l.

At this point one usually has to prove that for sufficiently small values of h (that is ∃h0 > 0 such that ∀h ∈ I,
h < h0 ([18], p. 169)) the solution of the discrete problem is unique. We skip this part, however, and, under
some additional hypotheses related to the sequence {Uh} of approximating spaces, we prove that the so-called
discrete inf-sup condition holds uniformly in h for the sesquilinear form a, that is

∃∃α, h0 such that ∀h ∈ I, h < h0, inf
uh∈Uh, ‖uh‖U=1

sup
vh∈Uh, ‖vh‖U≤1

|a(uh,vh)| ≥ α > 0. (5.3)

In order to obtain this result, we need to introduce some additional notations and conditions. In particular, we
define

U2Dh = {uht|uh ∈ Uh} ⊂ U2D, (5.4)
Uhz = {uhz|uh ∈ Uh} ⊂ H1(Ω). (5.5)

For the subspace U2Dh, under hypotheses HD1, HM3, HM5, HV4 and HMV3, we easily obtain the Helmholtz
decomposition [45] corresponding to (4.36)

U2Dh = U2D0h ⊕ U2D1h, (5.6)

where
U2D0h = {Aht ∈ U2Dh | curl2DAht = 0 and Aht · l = 0} ⊂ U2D0 (5.7)

and

U2D1h =

{
uht ∈ U2Dh

∣∣∣∣∣
(

1 + εrμr − ζ1

μr
uht,vht

)
0,Ω

= 0 ∀vht ∈ U2D0h

}
. (5.8)

We assume that the sequence {Uh} of approximating spaces satisfies
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HSAS1. limh→0 infuh∈Uh
‖u− uh‖U = 0, ∀u ∈ U ,

denoted by (CAS) in [45], and

HSAS2. from any subsequence of elements uht ∈ U2D1h which is bounded in U2D, one can extract a subsequence
converging strongly in (L2(Ω))2 to an element of U2D,

denoted by (DCP) in [45] (see also [47–49]). We are now ready to state the result of interest related to the
discrete inf-sup condition

Theorem 5.2. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2, HB3S, HMV1-
HMV5, HSAS1 and HSAS2 the sesquilinear form a satisfies condition (5.3).

Proof. By contradiction, we assume it does not. Then, in analogy to what we have seen in Section 4.3, we know
that

∃{uh}h∈J⊂I ,uh ∈ Uh and ‖uh‖U = 1 ∀h ∈ J, such that lim
h→0

sup
vh∈Uh, ‖vh‖U≤1

|a(uh,vh)| = 0. (5.9)

As in Section 4.3, taking account of its boundedness, we can find a subsequence of {uh}h∈J (still denoted
by {uh}h∈J) weakly converging in U to ũ ∈ U . If ũ �= 0, since our hypotheses guarantee uniqueness of the
solution of the continuous problem, we can find, as in Section 4.3, ṽ ∈ U such that a(ũ, ṽ) �= 0. Then, the
weak convergence implies limh→0 a(uh, ṽ) �= 0 (on the indicated subsequence). By using HSAS1 we can define
{wh} strongly converging in U to ṽ and then, by the continuity of the sesquilinear form, C‖wh − ṽ‖U =
C‖uh‖U‖wh − ṽ‖U ≥ |a(uh,wh − ṽ)| = |a(uh,wh) − a(uh, ṽ)| and we see that the left-hand side goes to zero
while the right-hand side does not (on the indicated subsequence). Thus ũ �= 0 is wrong and, then, ũ = 0.

The consequences of the compact imbeddings of Section 4.3 can be achieved in this case, too, as a consequence
of (5.5) and of HSAS2 (the boundedness of the subsequence of uht1 ∈ U2D1h is deduced exactly as in Sect. 4.3).
Then, as before, we can find a common subsequence of indeces such that {uhz} and {uht1} strongly converge
to zero in L2(Ω) and (L2(Ω))2, respectively.

Finally, all other considerations of Section 4.3 hold provided that we replace the subscript n with h every-
where, since all hypotheses considered in that subsection are assumed to hold true here, as well. In particular,
equations (4.46) and (4.49) hold true with the indicated substitution and we deduce that we can find a sub-
sequence {uht1} strongly converging to zero in U2D. Equations (4.48), (4.50)–(4.56) hold true as well with the
same substitution. Then on a subsequence we have that {uh} converges strongly to zero in U and this is at
odds with (5.9). Thus condition (5.3) holds true for the sesquilinear form a. �

One can immediately verify that condition (5.3) guarantees that the solution of the discrete problem is unique
in the sense indicated above, that is ∃h0 such that ∀h ∈ I, h < h0, the solution of the discrete problem is unique.
We denote by I1 such a subset of I. Since Uh is finite dimensional for all values of h ∈ I, from uniqueness we
deduce existence of the solution of the discrete problem, under the same conditions.

From now on, under the hypotheses assumed in Theorem 5.2, we can talk of a uniquely defined sequence
{Eh}h∈I1 of solutions of the discrete problems, for any set of sequences ({Jeh}, {Jmh}, {fRlh}, {fRzh}), h ∈ I1.

Moreover, if we assume, in addition to the hypotheses of Theorem 5.2, that the sequences of discrete sources
satisfy

HSDS1. {Jeh}, {Jmh} are bounded in (L2(Ω))2 and {fRlh}, {fRzh} are bounded in L2(Γ ),

we easily conclude, again by contradiction, that the sequence {Eh}h∈I1 of solutions of the discrete problems
is bounded. If it was not we could define a subsequence satisfying condition (5.9) and this is at odds with the
assumptions guaranteeing the validity of Theorem 5.2.

In order to consider Problem 4 as an approximation of Problem 2 one usually assumes that the sources of
the discrete problem satisfy

HSDS2. limh→0 ‖Je − Jeh‖0,Ω = 0,
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HSDS3. limh→0 ‖Jm − Jmh‖0,Ω = 0,
HSDS4. limh→0 ‖fRl − fRlh‖0,Γ = 0,
HSDS5. limh→0 ‖fRz − fRzh‖0,Γ = 0,

so that HSDS1 is satisfied and, by the triangle and Cauchy–Schwartz inequalities, from (3.12) and (5.1) one
gets

lim
h→0

sup
w∈U, ‖w‖U≤1

|l(w) − lh(w)| = 0. (5.10)

Thus, if we assume that all the hypotheses of Theorem 5.2 are satisfied and suppose, moreover, that HSDS2-
HSDS5 hold true for the considered sequences of discrete sources, we can consider the well defined and bounded
(in U) sequence {E−Eh}h∈I1 , where E is the solution of Problem 2 and {Eh}h∈I1 is the sequence of solutions
of Problem 4 for the indicated sequences of sources. As before, for the indicated boundedness in U , from the
sequence {E− Eh} it is possible to extract a subsequence which converges weakly in U to ũ ∈ U , so that

∀w ∈ U : lim
h→0

a(E− Eh,w) = a(ũ,w). (5.11)

But by using (5.10), (3.13), (5.2) and Uh ⊂ U , ∀h ∈ I, one finds for h ∈ I1

lim
h→0

sup
wh∈Uh, ‖wh‖U≤1

|a(E,wh) − a(Eh,wh)| = 0. (5.12)

Then, as in the proof of Theorem 5.2, by the uniqueness of the solution of the continuous problem, HSAS1 and
the continuity of the sesquilinear form a, we immediately obtain that {E− Eh} weakly converges to zero in U
on a subsequence.

If {E−Eh} does not converge strongly in U to zero, taking account of (5.11) with the right-hand side equal
to zero and of (5.12), it is easy to deduce

∃ε > 0 and a subsequence {E− Eh}h∈J⊂I1 , with ‖E− Eh‖U > ε ∀h ∈ J,

such that ∀w ∈ U : lim
h→0

sup
wh∈Uh, ‖wh‖U≤1

|a(E− Eh,w − wh)| = 0. (5.13)

This property allows us to repeat once more our procedure of Section 4.3 (see also the proof of Thm. 5.2). As
a matter of fact, from the previous weak convergence it is easy to deduce that {Ez −Ehz} weakly converges to
zero in H1(Ω) and {Et −Eht} weakly converges to zero in U2D on the same subsequence. Then, taking account
of (5.5), we can find a subsequence of {Ez − Ehz} strongly converging to zero in L2(Ω). Moreover, by using
the Helmholtz decompositions (4.36) and (5.6) we get, for any h ∈ I1, Et − Eht = Et0 + Et1 − Eht0 − Eht1 =
(Et0 − Eht0) + (Et1 − Eht1), where Et0 ∈ U2D0, Eht0 ∈ U2D0h ⊂ U2D0, Et1 ∈ U2D1 and Eht1 ∈ U2D1h, so that
if to the previous assumptions we add

HSAS3. limh→0 infuht∈U2D0h
‖u− uht‖U = 0, ∀u ∈ U2D0,

which was denoted by (CDK) in [45], we can deduce that, on a subsequence, {Et1−Eht1} strongly converges to
zero in (L2(Ω))2 [18,45]. As a matter of fact, HSAS2 and HSAS3 imply [18,45] that a subsequence of {Et1−Eht1}
strongly converges in (L2(Ω))2 to Ẽt1 ∈ U2D1. This deduction and the already proved weak convergence to zero
in U2D of {Et − Eht} give the anticipated result.

Now, we can consider inequality (4.47) with un substituted by E − Eh and deduce, by using (5.13) with
w − wh replaced by E− Eh, the conditions corresponding to (4.48) and (4.49), that is

lim
h→0

‖γ0 (Ez − Ehz) ‖0,Γ = 0 (5.14)

and
lim
h→0

‖ (Et − Eht) · l‖0,Γ = 0. (5.15)
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Analogously, from equation (4.43), with un and (unt1, 0) substituted by E−Eh and (Et1 −Eht1, 0), respec-
tively, one gets (4.44) and (4.46) with the same substitutions, so that, taking account of (5.13) with w−wh sub-
stituted by (Et1−Eht1, 0) and of (5.15) it is possible to deduce that one can find a subsequence of {Et1−Eht1}h∈I1

strongly converging to zero in U2D.
Finally, we consider equations (4.50) and (4.52), with un substituted by E − Eh. In the former we consider

(unt0, 0) replaced by (Et0 − Eht0, 0). It is easy to deduce, taking account of the strong convergence to zero of
{Et1−Eht1}h∈I1 (in (L2(Ω))2 is enough), that inequality (4.51) holds true with the same substitutions. In (4.52)
(0, Ez − Ehz) substitutes (0, unz) so that we obtain inequality (4.53), again with the same replacements. By
using (5.13) with w − wh replaced by (Et0 − Eht0, 0) in one case and again (5.13) with w − wh replaced by
(0, Ez−Ehz) one can proceed as in Section 4.3. In particular, we know that the considered subsequence is always
larger than ε and we can achieve the results corresponding to inequality (4.55) and then to inequality (4.56)
with unz, un, unt0 and unt1 replaced respectively by Ez − Ehz, E−Eh, Et0 −Eht0 and Et1 −Eht1. The latter
and the previously deduced inequalities give a result which is at odds with (5.13) under the assumed hypotheses,
showing convergence of the Galerkin approximation.

Thus, in particular, we can state

Theorem 5.3. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2, HB3S, HMV1-
HMV5, HSAS1-HSAS3, HSDS2-HSDS5 the sequence {Eh}h∈I1 of solutions of Problem 4 strongly converges to
E in U , being E the unique solution of Problem 2.

As we did in [14] it is worth spending a few words about the approximability of Problem 1. In particular,
if Bh, Hh and Dh are obtained as functions of Eh and Jmh through formulas that exactly parallel (3.1)–(3.5)
and (2.2), then we get Bh → B, Hh → H and Dh → D strongly in (L2(Ω))3 as h → 0. Notice that, even
if H ∈ U , in general, Hh does not converge to H in U because, in general, Hhz /∈ H1(Ω) (see Eq. (3.3)) and
Hht /∈ U2D (see Eq. (3.4)). Hence, the convergence of (Eh,Bh,Hh,Dh) to the solution (E,B,H,D) of Problem
1 takes place in U × (L2(Ω))3 × (L2(Ω))3 × (L2(Ω))3, even if (E,B,H,D) ∈ U × (L2(Ω))3 ×U × (L2(Ω))3 and
Problem 1 is well posed in this space.

6. Finite element approximation

Very often in practice the sequence of finite dimensional subspaces considered in Galerkin method is built
by using the finite element method [46]. This is done, as usual, by considering a sequence of triangulations
{Th}, h ∈ I, of Ω ([46], p. 59) and a specific finite element on each triangulation Th [46].

In order to avoid the many technicalities involved when curved boundaries are considered ([46], Chap. VI)
we assume that ([46], p. 65)

HD4. Ω is a polygon (i.e., Ω =
⋃

T∈Th
T ).

For finite element approximations it is usual to make the following basic assumption ([46], p. 131) meaning that
no element of the triangulation degenerates as h → 0

HFE1. the family {Th} of triangulations is regular.

Finally, the computational electromagnetics community is well aware that Lagrangian and edge elements defined
on triangles [18,34] are often the best choices to approximate, respectively, scalar fields belonging to H1(Ω) and
vector fields in any subspace of H(curl2D, Ω). For these reasons we assume

HFE2. Th is made up of triangles ∀h ∈ I,
HFE3. edge elements of a given order defined on triangles are used to build U2Dh, ∀h ∈ I.
HFE4. Lagrangian elements of a given order defined on triangles are used to build Uhz, ∀h ∈ I.

Now by using classical finite element results we conclude that
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Theorem 6.1. Whenever HD1, HD2, HD4, HFE1, HFE2, HFE3 and HFE4 are satisfied, the space sequence
{Uh} satisfies condition HSAS1 and HSAS3.

Condition HSAS2 requires additional considerations. In particular, HSAS2 is known to be satisfied for edge
elements whenever εr = μr = 1 everywhere in Ω ([18], p. 180). However, it is possible to prove that it holds true
for all problems of interest provided that condition HMV3 is satisfied. This is an almost trivial consequence of
Proposition 2.27 of ([45], see also pp. 184–185 of [18] taking account that εr in those pages should be replaced
by 1+εrμr−ζ1

μr
= μrεr−β2

μr(1−β2) ).
Taking account of these results, by using Theorem 5.3, we draw the following conclusion for the finite element

approximations considered.

Theorem 6.2. Whenever hypotheses HD1-HD4, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2, HB3S, HMV1-
HMV5, HSDS2-HSDS5, HFE1-HFE4 are satisfied, Problem 4 is a convergent approximation of Problem 2.

Remark 6.3. In the above statement we refer to the classical h-version of the finite element method. However,
the same conclusions can be achieved also for the p- and hp-version [50] of the finite element method. The
interested reader should refer for example to [48, 51].

7. Practical implications

In this section we would like to show that the developed theory can be used to prove, for the first time to
the best of authors’s knowledge, the well posedness and finite element approximability of two-dimensional time-
harmonic electromagnetic boundary value problems involving non-conducting moving objects with stationary
boundaries. The considerations that follow could be useful to show, on the one hand, how such a theory can
be exploited. In particular, how one can check the validity of the crucial yet complex conditions HMV2 and
HMV5 in cases of practical interest. On the other hand, the same considerations prove that our theory cover
broad classes of problems, requiring very weak limitations on the magnitude of the axial velocities of the media
involved.

In order to achieve such an outcome we need to deduce some upper or lower bounds for the quantities involved
in the indicated conditions. These bounds are obtained by the following lemmas for problems characterized by
μr = 1 and Re(εr) ≥ 1 in Ωi, ∀i ∈ M . The same results can be achieved in general, with simple even though
much longer calculations.

We start from lemmas which could be of help in understanding when HMV5 holds true.

Lemma 7.1. Let εr ≥ 1 in Ωi, i ∈ Mβ. Then, under hypotheses HV2, HM3 and HV4 an upper bound for
|β|(εr−1)

1−β2 |Ωi , i ∈ Mβ, is given by
maxx∈Ωi

|β|
1−maxx∈Ωi

β2

(
−1 + maxx∈Ωi

εr

)
.

Proof. Let us define the function of two real variables

f : [0, 1) × [1, +∞) � (x, y) �→ x(y − 1)
1 − x2

∈ R. (7.1)

We deduce that ∂f
∂x = (1+x2)(y−1)

(1−x2)2 and∂f
∂y = x

1−x2 . Then, in the indicated domain f is not decreasing as a function
of x and y.

By HV2 (HM3) β (εr) is a real-valued function in Ωi, ∀i ∈ Mβ. Moreover, 0 ≤ |β| ≤ CβM < 1 by HV4 and
we have assumed εr ≥ 1 in Ωi, ∀i ∈ Mβ . Thus, we can replace x with |β|, y with εr and β2 with x2. Moreover,
by HV2 (HM3) we know that β (εr) has a maximum in Ωi, ∀i ∈ Mβ, so that

|β|(εr − 1)
1 − β2

|Ωi = f(|β|, εr) ≤
maxx∈Ωi

|β|
1 − maxx∈Ωi

β2

(
−1 + max

x∈Ωi

εr

)
, i ∈ Mβ . (7.2)

�
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Then, for all problems characterized by μr = 1 and Re(εr) ≥ 1 in Ωi, ∀i ∈ M , we can immediately define
(see (4.32), (2.6) and HV4)

Cgl2 =
CβM

1 − C2
βM

(
−1 + max

i∈Mβ

(
max
x∈Ωi

εr

))
, (7.3)

since β|Ωk
= 0 and, then, ζ2|Ωk

= 0 ∀k ∈ M0.
The proofs of the next two lemmas are very similar to the one of Lemma 3 and, for this reason, they are

omitted.

Lemma 7.2. Let εr ≥ 1 in Ωi, i ∈ Mβ. Then, under hypotheses HV2, HM3 and HV4 a lower bound for
εr−β2

1−β2 |Ωi , i ∈ Mβ, is given by
(

minx∈Ωi
εr−minx∈Ωi

β2

1−minx∈Ωi
β2

)
≥ minx∈Ωi

εr.

In this case, taking account of the definition of Cmv3 in hypothesis HMV3 and of the fact that the moving
media are characterized by real-valued εr, we set

Cmv3 = min
i∈M

(
min
x∈Ωi

Re(εr)
)

, (7.4)

again for problems characterized by μr = 1 and Re(εr) ≥ 1 in Ωi, ∀i ∈ M .

Lemma 7.3. Let εr ≥ 1 in Ωi, i ∈ Mβ. Then, under hypotheses HV2, HM3 and HV4 a lower bound for
1−εrβ2

1−β2 |Ωi , i ∈ Mβ, is given by
1−

(
maxx∈Ωi

β2
)

maxx∈Ωi
εr

1−maxx∈Ωi
β2 ≤ 1.

By using Lemma 7.3, whenever μr = 1 and εr ≥ 1 in Ωi, ∀i ∈ Mβ , and

C2
βM max

i∈Mβ

(
max
x∈Ωi

εr

)
< 1, (7.5)

we define (see hypothesis HMV4)

0 < Cmv4 =
1 − C2

βM maxi∈Mβ

(
maxx∈Ωi

εr

)
1 − C2

βM

≤ 1. (7.6)

Moreover, whenever μr = 1 in Ωi, ∀i ∈ M0, we can choose CμMk = 1 ∀k ∈ M0 and, by using (4.31), we define

Cmv4m = Cmv4. (7.7)

We are now ready to deduce one of the most important lemmas of this section.

Lemma 7.4. Let us assume that the hypotheses we have considered in the definitions of Problems 1 and 2 are
satisfied. Then, if μr = 1 and Re(εr) ≥ 1 in Ωi, ∀i ∈ M , condition HMV5 is satisfied if the following inequality,
involving just maxi∈Mβ

(
maxx∈Ωi

εr

)
, mini∈M

(
minx∈Ωi

Re(εr)
)

and CβM , holds true

C2
βM

(
−1 + maxi∈Mβ

(
maxx∈Ωi

εr

))2(
1 − C2

βM

)(
1 − C2

βM maxi∈Mβ

(
maxx∈Ωi

εr

))
mini∈M

(
minx∈Ωi

Re(εr)
) < 1, (7.8)

provided that CβM and εr satisfy (7.5).

Proof. Our assumptions allows us to exploit the previous results. Then, (7.8) is a direct consequence of the
definition of HMV5, where Cgl2, Cmv3 and Cmv4 are replaced by the quantities provided by (7.3), (7.4) and (7.7)
(see also (7.6)), respectively. �



1186 M. BRIGNONE AND M. RAFFETTO

Now we focus on lemmas which will be useful to show that HMV2 holds true. Their proofs are not reported
since they are very similar to the one of Lemma 3.

Lemma 7.5. Let εr ≥ 1 in Ωi, i ∈ Mβ. Then, under hypotheses HV2, HM3 and HV4 a lower bound for
(1−β2)2

εr(εr−β2)2 |Ωi , i ∈ Mβ, is given by
(1−maxx∈Ωi

β2)2(
maxx∈Ωi

εr

)(
maxx∈Ωi

β2−maxx∈Ωi
εr

)2 .

Then, for all problems characterized by μr = 1 and εr ≥ 1 in Ωi, ∀i ∈ Mβ , we immediately deduce (see (4.4))

Ck,d,i ≥
(1 − maxx∈Ωi

β2)2

ε3
0

(
maxx∈Ωi

εr

) (
maxx∈Ωi

β2 − maxx∈Ωi
εr

)2 , i ∈ Mβ . (7.9)

Moreover, under the same conditions (that is μr = 1, εr ≥ 1 in Ωi, ∀i ∈ Mβ), from Definitions (4.6) and (4.2),
taking account of Lemma 7.2, we get

Ck,r,i ≥ ε0 min
x∈Ωi

εr, i ∈ Mβ, (7.10)

and

Ck,s,i ≤
1
ε0

(
1 − minx∈Ωi

β2

minx∈Ωi
εr − minx∈Ωi

β2
+

1
minx∈Ωi

εr

)
, i ∈ Mβ . (7.11)

We now deduce the corresponding results for Cν,d,i, Cν,r,i and Cν,s,i.

Lemma 7.6. Let εr ≥ 1 in Ωi, i ∈ Mβ. Then, under hypotheses HV2, HM3 and HV4 a lower bound for
εr(1−β2)

εr−β2 |Ωi , i ∈ Mβ, is given by

(
maxx∈Ωi

εr

)
(1−maxx∈Ωi

β2)

maxx∈Ωi
εr−maxx∈Ωi

β2 . An upper bound for the same function is given by(
minx∈Ωi

εr

)(
1−minx∈Ωi

β2
)

minx∈Ωi
εr−minx∈Ωi

β2 ≤ 1.

Then, in analogy to what we have seen before, for all problems characterized by μr = 1 and εr ≥ 1 in Ωi,
∀i ∈ Mβ, we get (see (4.5))

Cν,d,i ≥
(
maxx∈Ωi

εr

)2 (1 − maxx∈Ωi
β2

)2

μ3
0

(
maxx∈Ωi

β2 − maxx∈Ωi
εr

)2 , i ∈ Mβ. (7.12)

As before, under the same conditions (that is μr = 1, εr ≥ 1 in Ωi, ∀i ∈ Mβ), from Definitions (4.7) and (4.3),
taking account of Lemma 7.6, we get

Cν,r,i ≥ μ0, i ∈ Mβ, (7.13)

and

Cν,s,i ≤
1
μ0

(
1 +

(
minx∈Ωi

εr

) (
1 − minx∈Ωi

β2
)

minx∈Ωi
εr − minx∈Ωi

β2

)
≤ 2

μ0
, i ∈ Mβ. (7.14)

Finally, for the left-hand side of inequality (4.1) we have:

Lemma 7.7. Let εr ≥ 1 in Ωi, i ∈ Mβ. Then, under hypotheses HV2, HM3 and HV4 an upper bound for
|β|(εr−1)

εr−β2 |Ωi , i ∈ Mβ, is given by
(maxx∈Ωi

|β|)(1−maxx∈Ωi
εr)

maxx∈Ωi
β2−maxx∈Ωi

εr
.

Thus, for all problems characterized by μr = 1 and εr ≥ 1 in Ωi, ∀i ∈ Mβ , we deduce

max
x∈Ωi

(
β2 (μrεr − 1)2

(μrεr − β2)2

)
≤

(
maxx∈Ωi

β2
) (

1 − maxx∈Ωi
εr

)2

(
maxx∈Ωi

β2 − maxx∈Ωi
εr

)2 , i ∈ Mβ. (7.15)

With these results we can easily obtain
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Lemma 7.8. Let us assume that the hypotheses we have considered in the definitions of Problems 1 and 2 are
satisfied. Then, if μr = 1 and εr ≥ 1 in Ωi, ∀i ∈ Mβ, condition HMV2 is satisfied if the following inequality
holds true for all i ∈ Mβ

16
(
maxx∈Ωi

β2
) (

1 − maxx∈Ωi
εr

)2

(
maxx∈Ωi

β2 − maxx∈Ωi
εr

)2

<

(
−

1 − minx∈Ωi
β2

minx∈Ωi
εr − minx∈Ωi

β2
− 1

minx∈Ωi
εr

+

√√√√(
1 − minx∈Ωi

β2

minx∈Ωi
εr − minx∈Ωi

β2
+

1
minx∈Ωi

εr

)2

+
4
(
1 − maxx∈Ωi

β2
)2

minx∈Ωi
εr(

maxx∈Ωi
εr

) (
maxx∈Ωi

β2 − maxx∈Ωi
εr

)2

⎞
⎠

×
(
−1 −

(
minx∈Ωi

εr

) (
1 − minx∈Ωi

β2
)

minx∈Ωi
εr − minx∈Ωi

β2

+

√√√√(
1 +

(
minx∈Ωi

εr

) (
1 − minx∈Ωi

β2
)

minx∈Ωi
εr − minx∈Ωi

β2

)2

+
4
(
1 − maxx∈Ωi

β2
)2 (maxx∈Ωi

εr

)2

(
maxx∈Ωi

β2 − maxx∈Ωi
εr

)2

⎞
⎠ · (7.16)

Proof. Our assumptions allows us to exploit the previous results. Moreover, if we define the function of three
real variables

f : (0, +∞)3 � (x, y, z) �→ −x +
√

x2 + 4yz ∈ R (7.17)

we can easily deduce that ∂f
∂x = −1 + x√

x2+4yz
, ∂f

∂y = 2z√
x2+4yz

and ∂f
∂z = 2y√

x2+4yz
. Therefore, in the indicated

domain f is increasing as a function of the variable y and z and decreasing as a function of the variable x. From
this property, taking account of (7.9)–(7.14), we get that for any i ∈ Mβ the right-hand side of equation (7.16)
is smaller than the right-hand side of (4.1). Moreover, by using (7.15), the left-hand side of equation (7.16) is
larger than or equal to the left-hand side of (4.1). Thus, if condition (7.16) is satisfied for all i ∈ Mβ, the validity
of HMV2 is guaranteed. �

Now we observe that, whenever μr = 1 and Re(εr) ≥ 1 in Ωi, ∀i ∈ M , and (7.5) holds true, conditions HMV3
and HMV4 are satisfied (see, respectively, (7.4) and (7.6)). Moreover, μr = 1 and Re(εr) ≥ 1 in Ωi, ∀i ∈ M ,
together with HV4, imply that HMV1 holds true as well.

With these results, by recalling Theorems 4.17 and 6.2, it is now trivial to deduce

Corollary 7.9. Under the hypotheses HD1-HD3, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2 and HB3S,
Problem 2 is well posed whenever μr = 1 and Re(εr) ≥ 1 in Ωi, ∀i ∈ M , and εr and β satisfy (7.5), (7.8)
and (7.16).

Corollary 7.10. Under the hypotheses HD1-HD4, HV1-HV4, HM1-HM6, HM8, HM9, HB1-HB2, HB3S,
HSDS2-HSDS5 and HFE1-HFE4 Problem 4 is a convergent approximation of Problem 2 whenever μr = 1
and Re(εr) ≥ 1 in Ωi, ∀i ∈ M , and εr and β satisfy (7.5), (7.8) and (7.16).

The three conditions (7.5), (7.8) and (7.16) are still rather complex and abstract. We now focus on more
practical applications and propose a simple approach to manage them, which allows to deduce very interesting
results. In particular, for any specific problem of interest and any fixed value of n, n ∈ N, n ≥ 1, by using
Remark 2.2, we introduce a possibly finer decomposition of Ω satisfying HD3 and such that

max
i∈Mβ

(
max
x∈Ωi

εr − min
x∈Ωi

εr

)
≤ 1

n
· (7.18)
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Our aim is to find a set of values, CβMi = maxx∈Ωi
|β| (≤ CβM < 1 by HV4) i ∈ Mβ, allowing to apply our

theory whenever 0 ≤ |β|Ωi | ≤ CβMi ∀i ∈ Mβ.
To fix the ideas, we assume that mini∈M0(minx∈Ωi

Re(εr)) = 1 (having in mind scattering problems in free
space), in addition to μr = 1 and Re(εr) ≥ 1 in Ωi, ∀i ∈ M .

As the reader can easily check, the bounds provided by the global inequalities (7.5) and (7.8) deter-
mines the upper bound CβM in terms of the maximum of the relative permittivity in the moving media,
when mini∈M0(minx∈Ωi

Re(εr)) = 1. This is completely independent of the possibly finer decomposition of
Ω introduced above since, by definition, any additional splitting of Ωi for i ∈ Mβ is not able to change
maxi∈Mβ

(maxx∈Ωi
εr).

On the contrary, inequality (7.16) provides a bound for any specific i ∈ Mβ. Since we assume no restriction
on minx∈Ωi

β2 in order to carry out a worst-case analysis we set this quantity to zero, for all i ∈ Mβ. Then, if
we substitute CεMi for maxx∈Ωi

εr, i ∈ Mβ, inequality (7.16) reduces to

4C2
βMi(1 − CεMi)2(

C2
βMi − CεMi

)2 <

⎛
⎜⎜⎝− 1

minx∈Ωi
εr

+

√√√√√ 1
(minx∈Ωi

εr)2
+

(1 − C2
βMi)2 minx∈Ωi

εr

CεMi

(
C2

βMi − CεMi

)2

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝−1 +

√√√√√1 +
(1 − C2

βMi)2C
2
εMi(

C2
βMi − CεMi

)2

⎞
⎟⎟⎠ , i ∈ Mβ . (7.19)

Moreover, taking account of (7.18), we get minx∈Ωi
εr ≥ CεMi − 1

n . Thus, by using again the same arguments
adopted in the proof of Lemma 7.8, we perform a worst-case analysis by replacing minx∈Ωi

εr with CεMi − 1
n .

After the substitution, the following sufficient condition for the validity of inequality (7.19) is obtained

4C2
βMi (1 − CεMi)

2(
C2

βMi − CεMi

)2 <

⎛
⎜⎜⎝− 1

CεMi − 1
n

+

√√√√√√ 1(
CεMi − 1

n

)2 +

(
1 − C2

βMi

)2 (
CεMi − 1

n

)
CεMi

(
C2

βMi − CεMi

)2

⎞
⎟⎟⎠

×

⎛
⎜⎜⎝−1 +

√√√√√√1 +

(
1 − C2

βMi

)2

C2
εMi(

C2
βMi − CεMi

)2

⎞
⎟⎟⎠ , i ∈ Mβ. (7.20)

The results deduced by using this approach are shown in Figure 1. The two plots deduced from inequali-
ties (7.5) and (7.8) provides CβM as a function of maxi∈Mβ

CεMi (indicated as maxi CεMi in Fig. 1), while the
three plots obtained by using inequality (7.20) gives CβMi versus CεMi.

As it is trivial to check, we can neglect the plot due to inequality (7.5), since inequality (7.8) provides in any
case more restrictive results.

On the contrary, all plots deduced by inequality (7.20) are very similar. The only significant differences can
be noticed for small values of CεMi between the plot deduced when n = 1 and the ones obtained when n = 10 or
n = 100. This is related to the fact that when CεMi is small n = 1 allows the moving media to be significantly
inhomogeneous (i.e., CεMi = 2 and n = 1 means that minx∈Ωi

εr could be equal to 1) while this is not possible
when n = 10 or n = 100. Moreover, for n = 1 the plot starts from CεMi ≥ 2, in order to satisfy the hypothesis
Re(εr) ≥ 1 in Ωi. However, it is important to notice that, on the one hand, for any problem of interest we
can always set n = 10 or n = 100 and that, on the other hand, it is almost useless to consider larger values of
n. Thus, of the three plots of Figure 1 related to inequality (7.20) we can focus just on the one obtained for
n = 100.
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Figure 1. Different upper bounds for |β| required by inequalities (7.5), (7.8) and (7.20).
Inequalities (7.5) and (7.8) provide CβM versus maxi∈Mβ

CεMi, while inequality (7.20) gives
CβMi versus CεMi for different values of n.

For these reasons, our next comments will be related just to the two plots deduced from inequality (7.20) for
n = 100 and inequality (7.8).

The first trivial comment we deduce from Figure 1 is that for almost all non-conducting media we can
find in nature (satisfying the hypotheses considered in this section, that is μr = 1 and Re(εr) ≥ 1 in Ωi,
∀i ∈ M) we can apply our theory whenever |β| ≤ 0.01, that is to say when the axial velocity is not larger than
0.01c0 � 3000 km/s, since εr ≤ 100 is not at all restrictive. This speed limit is already so large to cover most
problems of practical interest without any additional consideration.

In order to find sharper results it is crucial to observe that the lines deduced from inequalities (7.8) and (7.20)
for n = 100 meet when CεMi = maxi∈Mβ

CεMi � 22.36.
For problems involving media having maxi∈Mβ

CεMi ≥ 22.36 we deduce one global upper bound for the
magnitude of the axial speed of all moving materials: the one given by inequality (7.8). To give an example, if
maxi∈Mβ

CεMi = 46 we deduce CβM � 0.022 and CβMi = CβM for all i ∈ Mβ even though in a subdomain Ωj ,
j ∈ Mβ, we have CεMi = 2.

On the contrary, if maxi∈Mβ
CεMi < 22.36 we can deduce different values for CβMi, i ∈ Mβ. In these cases

we have a global bound, again given by inequality (7.8), and more specific bounds given by inequality (7.20)
for n = 100. For example, if maxi∈Mβ

CεMi = 10 we get CβM ≤ 0.104 (from inequality (7.8)). However, all
subdomains Ωj , j ∈ Mβ, where εr reaches its maximum value the right bound for the magnitude of the axial
speed is CβMj = 0.072 (from inequality (7.20) for n = 100). If, in the same problem, we have a subdomain Ωk,
k ∈ Mβ, where CεMk is equal to 6, then we get CβMk = 0.1 (from (7.20) for n = 100). But in case we had also
subdomains Ωl, l ∈ Mβ, characterized by CεMk = 2 we are not allowed to deduce CβMl = 0.26 (from (7.20) for
n = 100) because the upper bound determined by inequality (7.8) gives, as already pointed out, CβMi ≤ 0.104
for all i ∈ Mβ.
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|curl2DEt(r = 0.41λ0, ϕ)|, β = 0.1

Figure 2. Behaviours of |Ez | and |curl2DEt| for different values of β along the circle of radius
0.41λ0. r and ϕ are the usual polar coordinates.

Remark 7.11. So far in this section we have considered εr as a quantity defined in advance and have deduced
the set of bounds CβMi, i ∈ Mβ . However, analogous results can be deduced if one considers β as a field defined
in advance and look for the set of bounds CεMi, i ∈ Mβ .

Finally, in order to conclude our work, we present some additional results for problems involving canonical
scatterers in axial movement [11]. These results will be useful, on the one hand, to show the qualitative effects
of the presence of axially moving materials and, on the other hand, to point out that in many cases covered
by our theory the solutions which can be obtained by neglecting all axial movements cannot be considered as
approximations of the solutions of interest, not even as rough ones.

We consider, in particular, an elliptic pipe, that is a two-layer elliptic cylinder hosted in free space. The center
of gravity of the cylinder is placed at the origin of the coordinate system and the semimajor axes are assumed
to lay on the x-axis. The semifocal distance is set to 0.2λ0 and the semimajor axes are 0.4λ0 and 0.5λ0, where
λ0 is the wavelength in vacuum. The constitutive parameters of the involved media are (in their rest frames)
εr = 5.0, μr = 1.0, σ = 0.0 for the inner layer of the scatterer and εr = 2.0, μr = 1.0, σ = 0.0 for the exterior
one. In any case the exterior layer of the scatterer is at rest in the selected reference frame (the pipe is at rest)
while the interior one can move at different velocities so that |β| varies in the range [0, 0.1] (the material inside
the pipe is in motion). For the indicated parameters our theory applies. As a matter of fact, we can apply
the approach presented in this section. Since we are in the presence of piecewise homogeneous materials, no
additional subdomains need to be defined, even for n → +∞. Therefore, from Figure 1 we get CβM = 0.113.
We assume that the scatterer is illuminated by a plane wave having E = Ezẑ, with Ez = e−j 2πx

λ0 . With this
illumination we get Et = 0 everywhere whenever all materials are at rest. However, in the presence of an axial
movement, this is not true anymore. In particular, in Figure 2 we show the behaviours of |Ez| and |curl2DEt|
along the circle of radius 0.41λ0 (in the pipe region) for different values of β. The results clearly show the effect
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of the motion. Such an effect is relatively small for |Ez | and, for this reason, just two plots related to |Ez | are
shown in Figure 2: one for β = 0 and the other for β equal to the maximum value considered. On the contrary,
the effect of β on |curl2DEt| is really impressive. In particular, |curl2DEt| is equal to zero when all media are
motionless, is not negligible for all values of β considered in Figure 2, at least in parts of the considered circle,
and becomes even larger than |Ez | for β = 0.1, again on a subset of the circle. Now, we easily get the result
we looked for. As a matter of fact, |curl2DEt| determines a part of the U norm of the difference between the
solution obtained when the motion is neglected and the one computed by considering it.

8. Conclusions

In this work we have dealt with a two-dimensional time-harmonic electromagnetic boundary value problem
involving non-conducting moving objects with stationary boundaries. Sufficient conditions for well-posedness
and finite element approximability of this problem have been presented. The crucial constraints of this set
of sufficient conditions involve just the constitutive parameters of the media and the velocity field. Practical
implications of the developed theory have been discussed. It has been shown, in particular, that many problems
of practical interest are covered by the proposed theory.
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