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Abstract. We analyze a posteriori error estimation and adaptive refinement algorithms for stochastic
Galerkin Finite Element methods for countably-parametric, elliptic boundary value problems. A resid-
ual error estimator which separates the effects of gpc-Galerkin discretization in parameter space and of
the Finite Element discretization in physical space in energy norm is established. It is proved that the
adaptive algorithm converges. To this end, a contraction property of its iterates is proved. It is shown
that the sequences of triangulations which are produced by the algorithm in the FE discretization of
the active gpc coefficients are asymptotically optimal. Numerical experiments illustrate the theoretical
results.
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1. Introduction

The efficient numerical solution of high-dimensional, parametric elliptic partial differential equations (PDEs
for short) has attracted considerable attention in recent years, in particular in the context of uncertainty quan-
tification (UQ), but also in connection with reduced basis approximation, optimization, and other computational
techniques.

Depending on the particular goal of computation, numerical methods for parametric PDEs have particular
advantages: we mention only the computation of ensemble averages (which take the form of integrals over
the entire parameter space with respect to a probability measure on that space and which are treated by
high-dimensional numerical integration), but also questions of optimization where a parsimonious, parametric
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numerical representation of the parametric solution with uniform, guaranteed accuracy on the entire parameter
space is required.

A major issue in the design and analysis of efficient algorithms for these purposes has been the issue of
intrusive vs. nonintrusive algorithms: the former are, roughly speaking, methods which require some degree
of redesign of existing simulation code, whereas the latter rely on (possibly parallel) numerical solution with
existing (sometime referred to as “legacy”) code of the parametric PDEs in a number of (judiciously chosen)
parameter values from a possibly infinite-dimensional parameter domain Γ . Examples include methods for
numerical integration (e.g. [15, 19]) of mathematical expectations, and sparse, adaptive interpolation methods
aiming at the adaptive computation of interpolants of the parametric PDE solution with uniform accuracy over
the entire parameter spaces (e.g. [3, 4]).

As a rule, nonintrusive, collocation type methods are not amenable to reliable computable error bounds for
the parametric surrogate solutions, likewise the results of approximate numerical integration; in order to ensure
control of discretization errors in the context of UQ, therefore, the question of reliable or even guaranteed error
bounds (in particular upper bounds) in the numerical solution of high-dimensional parametric PDE problems
is of some interest. In the present paper, we continue our investigation [7] which analyzed intrusive so-called
stochastic Galerkin discretizations of parametric elliptic PDEs. Here, approximations with respect to the pa-
rameter are achieved by Galerkin projection in mean square with respect to a probability measure π on the
parameter domain Γ . Using Galerkin projections on generalized polynomial chaos bases on Γ instead of colloca-
tion of the parametric PDE problem requires modifications of the computational procedure which are, however,
manageable in the context of Finite Element Methods (FEMs) for elliptic problems as we explained in [7]: most
routines for generation of stiffness and mass matrices which are available in existing FE codes can be reused.
In particular, due to the tensor product structure, the stiffness matrix corresponding to stochastic Galerkin
discretization never needs to be formed explicitly, and efficient matrix-vector multiplications can be realized
for the factored form of the matrix. Again, we refer to [7] for details on this. In that reference also the issue
of numerical a posteriori discretization error control has been addressed and, in particular, reliable computable
a posteriori error estimators for the (mean-square) discretization error have been derived. The possibility to
treat high- or even infinite-dimensional problems efficiently by adaptive numerical methods is based on sparsity
of coefficient sequences in polynomial chaos type expansions of the parametric solutions; we refer to [5] for
sparsity results for the presently considered problems and to [10,16] for a general introduction to the stochastic
Galerkin FEM.

In the present work, we show that these error estimators have an intrinsic structure which allows to separate
(in the sense of mean square with regard to the probability measure π in Γ and with respect to the natural
energy inner product of the problem of interest) the contributions of the stochastic Galerkin discretization in the
parameter domain as well as of the Finite Element discretization in the physical domain. With this separation
at hand, we show that it is possible to design adaptive refinement strategies in both the parameter domain Γ
and the physical domain. Also, we prove in the present paper convergence and certain optimality properties of
such an adaptive refinement strategy. In particular, we show that the proposed strategy produces a sequence
of finitely supported stochastic Galerkin FE solutions which converges in mean square with respect to π in Γ
and with respect to the energy norm V in the physical domain, and we establish that the FE mesh sequences
generated by the proposed adaptive strategy for each of the gpc coefficients is, in a suitable sense, asymptotically
optimal.

The presented adaptive algorithm follows the SOLVE-ESTIMATE-MARK-REFINE paradigm which is well-
established in the context of adaptive deterministic FEM. In particular, the convergence and optimality proofs
are derived in the spirit of the seminal works [1,2,6,17,18,20]. In these references, the fundamentally important
concepts of oscillations, the contraction property and complexity classes were introduced.

As in [7], we consider here only an elementary, second order linearly elliptic problem in divergence form whose
dependence on the parameter vector is affine. We hasten to add, however, that the principal conclusions of the
present work also apply to more general, affine-parametric, linear elliptic problems, such as linear elasticity or
Stokes, or parabolic evolution problems with parametric uncertainty as considered in [11].
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The outline of the present paper is as follows: in Section 2, we specify the model problem and establish
basic properties of its solution. Tensor product bases of FE bases and generalized polynomial chaos bases are
introduced in Section 3. Section 4 then reviews the residual error estimator from [7] for the stochastic Galerkin
truncation error, whereas Section 5 is devoted to computable error estimators for the spatial discretization error;
here, we use a more or less standard residual error estimator, but remark that other error estimators can be
used here as well. In Section 6, we present the adaptive stochastic Galerkin FEM algorithm. The algorithm is
similar to the one proposed in [7], but differs from it in that a single finite element mesh is used for all active
modes of the solution, as well as in several details which we have found to yield quantitative improvements in
extensive numerical experiments which we performed since [7] (some of which are reported in the present paper’s
Sect. 9). Section 7 establishes the convergence of the adaptive algorithm (without rates), in particular the crucial
contraction property. Section 8 establishes an optimality property of the iterates which are produced by the
algorithm in the physical domain. The derivation of convergence and optimality mimics the results presented
in [2] transferred to the parametric problem considered here. Finally, Section 9 contains several illustrative
numerical examples.

2. Model problem

2.1. A parametric elliptic boundary value problem

For a bounded Lipschitz domain D ⊂ Rd and a function

a(y, x) = ā(x) +
∞∑

m=1

ymam(x), x ∈ D, (2.1)

depending on a sequence of scalar parameters ym, and a function f on D, we consider the elliptic boundary
value problem {−∇ · (a∇u) = f in D,

u = 0 on ∂D.
(2.2)

For example, (2.1) may come from a Karhunen–Loève expansion of a random field. In order to ensure convergence
in (2.1) and positivity of a, we assume |ym| ≤ 1, i.e. y := (ym)∞m=1 ∈ Γ := [−1, 1]∞, and ā, am ∈W 1,∞(D) with

ess inf
x∈D

ā(x) > 0,
∞∑

m=1

∥∥∥am

ā

∥∥∥
L∞(D)

≤ γ < 1. (2.3)

Let V := H1
0 (D) with the ā-dependent norm ‖v‖V :=

√
(v, v)V induced by the inner product

(w, v)V :=
∫

D

ā(x)∇w(x) · ∇v(x) dx. (2.4)

The parametric operator

A(y) : H1
0 (D)→ H−1(D), v �→ −∇ · (a(y)∇v), y ∈ Γ, (2.5)

can be expanded as

A(y) = Ā +
∞∑

m=1

ymAm, y ∈ Γ, (2.6)

with unconditional convergence in L(V, V ∗) for the components

Ā : H1
0 (D)→ H−1(D), v �→ −∇ · (ā∇v) (2.7)
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and

Am : H1
0 (D)→ H−1(D), v �→ −∇ · (am∇v), m ∈ N. (2.8)

The parametric operator equation

A(y)u(y) = f, y ∈ Γ, (2.9)

constitutes a weak formulation in space of the parametric boundary value problem (2.2).

2.2. Weak formulation

The weak formulation of (2.2) with respect to the parameter y requires a measure on the parameter domain
Γ = [−1, 1]∞. We consider symmetric product Borel measures; from a probabilistic point of view, this entails
that the parameters ym are independent and have symmetric distributions.

For each m ∈ N, let πm be a symmetric Borel probability measure5 on [−1, 1]; then

π :=
∞⊗

m=1

πm (2.10)

is a probability measure on Γ with the Borel σ-algebra. For the sake of clarity and ease of notation, we forbid
the measures πm from being finite convex combinations of Dirac measures, as this leads to finite instead of
countably infinite gpc bases in Section 3.1 below.

Integrating (2.9) with respect to π over Γ leads to the weak formulation

∫
Γ

〈A(y)u(y), v(y)〉dπ(y) =
∫

Γ

∫
D

f(x)v(y, x) dxdπ(y) ∀v ∈ L2
π(Γ ; V ) (2.11)

in the Lebesgue–Bochner space L2
π(Γ ; V ) of square-integrable, V -valued functions. The left hand side of (2.11)

is a scalar product

(w, v)A :=
∫

Γ

〈A(y)w(y), v(y)〉dπ(y) =
∫

Γ

∫
D

a(y, x)∇w(y, x) · ∇v(y, x) dxdπ(y) (2.12)

on L2
π(Γ ; V ), which induces the energy norm ‖·‖A on this space. In particular, existence and uniqueness of the

solution u of (2.11) are a consequence of the Riesz isomorphism, and u coincides with the solution of (2.9) for
π-a.e. y ∈ Γ .

The operator

A : L2
π(Γ ; V )→ L2

π(Γ ; V ∗), v �→ [y �→ A(y)v(y)] (2.13)

allows (2.11) to be written succinctly as Au = f , and the inner product (2.12) is (w, v)A = 〈Aw, v〉. Due to (2.6),

A = idL2
π(Γ )⊗Ā +

∞∑
m=1

Km ⊗Am, (2.14)

where6 Km : L2
π(Γ )→ L2

π(Γ ) refers to multiplication by ym, which has operator norm at most 1 since |ym| ≤ 1.

5i.e. πm is invariant under the transformation ym �→ −ym.
6The tensor product ⊗ is meant with regards to the usual representation of the Bochner space L2

π(Γ ; V ) as the Hilbert tensor
product space L2

π(Γ ) ⊗ V , and similarly for V ∗ in place of V .
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3. Galerkin approximation

3.1. Tensor product orthogonal polynomial basis

For each m, let (Pm
n )∞n=0 denote an orthonormal polynomial basis of L2

πm
([−1, 1]) with deg(Pm

n ) = n. As a
consequence of the symmetry of the measure πm, such bases satisfy recursion formulas

βm
n Pm

n (ym) = ymPm
n−1(ym)− βm

n−1P
m
n−2(ym), n ≥ 1, (3.1)

with the initialization Pm
0 := 1 and βm

0 := 0, and are unique e.g. if βm
n are chosen as positive for all n ≥ 1,

which we assume.
In case of a uniform distribution dπm(ym) = 1

2 dym, the polynomials (Pm
n )∞n=0 are Legendre polynomials, and

βm
n = (4−n−2)−1/2. Alternatively, if dπm(ym) = 1

π (1−y2
m)−1/2 dym, then (Pm

n )∞n=0 are Chebyshev polynomials
of the first kind, with βm

1 = 1/
√

2 and βm
n = 1/2 for n ≥ 2. Further examples are tabulated e.g. in [9, 12].

Tensor products of the orthonormal polynomials Pm
n across all dimensions m ∈ N are indexed by the set

F := {μ ∈ N
∞
0 ; # supp μ <∞} (3.2)

of finitely supported integer sequences, where supp(μ) := {m ∈ N ; μm �= 0}. For any μ ∈ F , the function
Pμ :=

⊗∞
m=1 Pm

μm
is expressed as the finite product

Pμ(y) =
∞∏

m=1

Pm
μm

(ym) =
∏

m∈suppμ

Pm
μm

(ym) (3.3)

for y = (ym)∞m=1 ∈ Γ since Pm
0 = 1 for all m due to the normalization of the measure πm. The recursion (3.1)

implies
ymPμ(y) = βm

μm+1Pμ+εm(y) + βm
μm

Pμ−εm(y), y ∈ Γ, (3.4)

where εm := (δmn)∞n=1 denotes the Kronecker sequence for the coordinate m, and we set Pμ := 0 if any μm < 0.
The tensorized polynomials (Pμ)μ∈F form an orthonormal basis of L2

π(Γ ). Equation (3.4) indicates the
representation of the multiplication operator Km in this basis.

Lemma 3.1. The map Km : 
2(F) → 
2(F) given by (cμ)μ∈F �→ (βm
μm+1cμ+εm + βm

μm
cμ−εm)μ∈F has operator

norm at most one.

Proof. Due to (3.4), Km is the representation of multiplication by ym in the orthonormal basis (Pμ)μ∈F . By
Parseval’s identity, the operator norm of Km on 
2(F) coincides with that of Km on L2

π(Γ ), and this is at most
1 since |ym| ≤ 1. �

For any subset Λ ⊂ F , we define supp(Λ) ⊂ N as the set of active dimensions in Λ,

supp Λ :=
⋃
μ∈Λ

supp μ. (3.5)

The boundary of Λ is the infinite set

∂Λ := {ν ∈ F \ Λ ; ∃m ∈ N : ν − εm ∈ Λ ∨ ν + εm ∈ Λ}. (3.6)

Restricting m in (3.6) to the support supp(Λ) leads to the active boundary

∂◦Λ := {ν ∈ F \ Λ ; ∃m ∈ supp Λ : ν − εm ∈ Λ ∨ ν + εm ∈ Λ}, (3.7)

which is a finite set with cardinality at most 2(# supp Λ)#Λ if Λ is finite.
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A set Λ ⊂ F is monotone7 if μ− εm ∈ Λ for all μ ∈ Λ and m ∈ supp(μ). If Λ is monotone, then ∂Λ and ∂◦Λ
consist only of ν = μ+εm with μ ∈ Λ, and consequently the cardinality of ∂◦Λ is at most (# supp Λ)#Λ. Neither
our algorithm nor our convergence analysis require the monotonicity of the index sets of active gpc coefficients,
nor does the presently proposed algorithm necessarily generate monotone sets. However, it is easily modified in
order to ensure monotonicity, as indicated below. As shown in ([4], Thm. 4.3), for parametric diffusion problems
under consideration here, the constraint of monotonicity and nestedness on the sets of active gpc coefficients does
not reduce the N -term gpc approximation rate. Monotonicity of active index sets is desireable algorithmically,
as it entails a tree structure for the sets of active indices where the boundary of the set is easily accessible.

3.2. Polynomial expansion

The expansion of the solution u of (2.11) with respect to the basis (Pμ)μ∈F of L2
π(Γ ) has the form

u(y, x) =
∑
μ∈F

uμ(x)Pμ(y), (3.8)

with coefficients uμ in V = H1
0 (D) and convergence in L2

π(Γ ; V ). The vector of coefficients (uμ)μ∈F ∈ 
2(F ; V )
is determined by the infinite coupled system

Āuμ +
∞∑

m=1

Am(βm
μm+1uμ+εm + βm

μm
uμ−εm) = fδμ0 ∀μ ∈ F . (3.9)

The coefficients βm
n in this system are the coefficients in the recursion formula (3.1).

For any subset Λ ⊂ F , the Galerkin projection of u onto

V(Λ) :=
{

vΛ(y, x) =
∑
μ∈Λ

vΛ,μ(x)Pμ(y) ; vΛ,μ ∈ V ∀μ ∈ Λ

}
⊂ L2

π(Γ ; V ) (3.10)

is the unique uΛ ∈ V(Λ) satisfying∫
Γ

〈A(y)uΛ(y), vΛ(y)〉dπ(y) =
∫

Γ

∫
D

f(x)vΛ(y, x) dxdπ(y) ∀vΛ ∈ V(Λ). (3.11)

If Λ is finite, then the sequence of coefficients (uΛ,μ)μ∈Λ ∈ V Λ =
∏

μ∈Λ V of uΛ is determined by the finite
system

ĀuΛ,μ +
∞∑

m=1

Am(βm
μm+1uΛ,μ+εm + βm

μm
uΛ,μ−εm) = fδμ0 ∀μ ∈ Λ, (3.12)

where uΛ,ν := 0 for ν ∈ F \ Λ. The infinite sum in (3.12) can be restricted to the finite set supp(Λ) since
uΛ,μ±εm = 0 for all m ∈ N \ supp(Λ).

3.3. Finite element approximation

We discretize (2.11) further by restricting to a finite element space Vp(T ) of continuous piecewise polynomial
functions of a fixed degree p on a conforming simplicial mesh T of D. For any finite set Λ ⊂ F ,

Vp(Λ, T ) :=
{

vN (y, x) =
∑
μ∈Λ

vN,μ(x)Pμ(y) ; vN,μ ∈ Vp(T ) ∀μ ∈ Λ

}
⊂ V(Λ) (3.13)

7Monotone sets are sometimes termed lower sets or downward closed sets.
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is a finite-dimensional subspace of L2
π(Γ ; V ), and the Galerkin approximation of u in Vp(Λ, T ) is the unique

uN ∈ Vp(Λ, T ) satisfying∫
Γ

〈A(y)uN (y), vN (y)〉dπ(y) =
∫

Γ

∫
D

f(x)vN (y, x) dxdπ(y) ∀vN ∈ Vp(Λ, T ). (3.14)

The sequence of coefficients (uN,μ)μ∈Λ ∈ Vp(T )Λ =
∏

μ∈Λ Vp(T ) constitutes the finite element approximation
of the system (3.12), determined by

〈ĀuN,μ, vN 〉+
∞∑

m=1

〈Am(βm
μm+1uN,μ+εm + βm

μm
uN,μ−εm), vN 〉 = 〈fδμ0, vN 〉 (3.15)

for all vN ∈ Vp(T ) and all μ ∈ Λ, where uN,ν := 0 for ν ∈ F \ Λ.
More specifically, we consider meshes resulting from refinements of a prescribed conforming simplicial

mesh Tinit of D. For each cell T ∈ Tinit, let a sequence of bisections of T into uniformly shape regular simplices
be prescribed, and let T consist of all conforming simplicial meshes of D attainable through these bisections.
We assume T ∈ T.

We denote the set of facets of the mesh T by S = S(T ), which are divided into interior facets S ∩D and
exterior facets S ∩ ∂D. For any cell T ∈ T , the set S ∩ ∂T consists of the facets of T in the boundary of T .
Similarly, for any T ∈ T , ∂T ∩D denotes the facets in the boundary of T in the interior of D.

We define local mesh size parameters by hT := |T |1/d for T ∈ T , and the resulting piecewise constant
function hT on T taking the value hT (x) = hT for x ∈ T .

The set T is partially ordered by the relation T1 � T2 denoting that T2 is finer than T1, i.e. T2 can be obtained
from T1 through a suitable refinement. Furthermore, for any T1, T2 ∈ T, the overlay T := T1⊕T2 is the coarsest
mesh in T with T1 � T1 ⊕ T2 and T2 � T1 ⊕ T2. By ([2], Lem. 3.7), the cardinality of T1 ⊕ T2 is bounded by

#(T1 ⊕ T2) ≤ #T1 + #T2 −#T0 (3.16)

where T0 is any mesh T0 ∈ T with T0 � T1 and T0 � T2, e.g. T0 = Tinit.

4. Estimation of the truncation error

4.1. Expansion of the residual

The residual R(wΛ) ∈ L2
π(Γ ; V ∗) of any approximation wΛ of u in V(Λ) is

R(wΛ) := f −AwΛ = A(u − wΛ). (4.1)

It can be expanded as R(wΛ) =
∑

ν∈F rν(wΛ)Pν with convergence in L2
π(Γ ; V ∗) for the coefficients

rν(wΛ) = fδν0 − ĀwΛ,ν −
∞∑

m=1

Am(βm
νm+1wΛ,ν+εm + βm

νm
wΛ,ν−εm), ν ∈ F , (4.2)

i.e.
〈rν(wΛ), v〉 =

∫
D

fδν0v − σν(wΛ) · ∇v dx ∀v ∈ V (4.3)

for

σν(wΛ) := ā∇wΛ,ν +
∞∑

m=1

am∇(βm
νm+1wΛ,ν+εm + βm

νm
wΛ,ν−εm), ν ∈ F . (4.4)

Noting that rν(wΛ) is nonzero only for ν in Λ ∪ ∂Λ, we have the decomposition R(wΛ) = RΛ(wΛ) +R∂Λ(wΛ)
for

RΞ(wΛ) :=
∑
ν∈Ξ

rν(wΛ)Pν , Ξ ⊂ F , (4.5)
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and consequently
‖R(wΛ)‖2L2

π(Γ ;V ∗) = ‖RΛ(wΛ)‖2L2
π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2L2

π(Γ ;V ∗). (4.6)

Lemma 4.1. For any wΛ ∈ V(Λ),

‖wΛ − u‖2A ≥
1

1 + γ

(
‖RΛ(wΛ)‖2L2

π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2L2
π(Γ ;V ∗)

)
, (4.7)

‖wΛ − u‖2A ≤
1

1− γ

(
‖RΛ(wΛ)‖2L2

π(Γ ;V ∗) + ‖R∂Λ(wΛ)‖2L2
π(Γ ;V ∗)

)
. (4.8)

Proof. By the Riesz representation theorem in L2
π(Γ ; V ∗),

‖u− wΛ‖2A = sup
v∈L2

π(Γ ;V )

|〈A(u − wΛ), v〉|2
‖v‖2A

= sup
v∈L2

π(Γ ;V )

|〈R(wΛ), v〉|2
‖v‖2A

,

and (1− γ)‖v‖2L2
π(Γ ;V ) ≤ ‖v‖2A ≤ (1 + γ)‖v‖2L2

π(Γ ;V ) due to (2.3). The assertion follows with (4.6). �

The component ‖RΛ(wΛ)‖2L2
π(Γ ;V ∗) of (4.6) can be interpreted as an interior residual in the sense that it

gauges the distance of wΛ to uΛ.

Lemma 4.2. For any wΛ ∈ V(Λ),

1
1 + γ

‖RΛ(wΛ)‖2L2
π(Γ ;V ∗) ≤ ‖wΛ − uΛ‖2A ≤

1
1− γ

‖RΛ(wΛ)‖2L2
π(Γ ;V ∗). (4.9)

Proof. For any vΛ ∈ V(Λ),

〈A(uΛ − wΛ), vΛ〉 = 〈A(u − wΛ), vΛ〉 = 〈R(wΛ), vΛ〉 = 〈RΛ(wΛ), vΛ〉.

The assertion follows as in the proof of Lemma 4.1 using

‖uΛ − wΛ‖A = sup
vΛ∈V(Λ)

|〈A(uΛ − wΛ), v〉|
‖vΛ‖A

= sup
vΛ∈V(Λ)

|〈RΛ(wΛ), vΛ〉|
‖v‖A

· �

Remark 4.3. Using Lemma 4.2, a statement similar to that of Lemma 4.1 for the Galerkin projection wΛ = uN

in a subspace of V(Λ) could be derived by means of Galerkin orthogonality

‖uN − u‖2A = ‖uN − uΛ‖2A + ‖uΛ − u‖2A, (4.10)

with each term on the right corresponding to one component of the residual. However, this leads to R∂Λ(uΛ)
in place of R∂Λ(uN ), which is less accessible.

We estimate the two terms of (4.6) separately, beginning with R∂Λ(wΛ).

4.2. Upper bounds for the tail of the residual

Let Λ ⊂ F be a finite set. For any wΛ ∈ V(Λ) and any ν ∈ ∂Λ, let

ζν(wΛ) :=
∞∑

m=1

∥∥∥am

ā

∥∥∥
L∞(D)

(
βm

νm+1‖wΛ,ν+εm‖V + βm
νm
‖wΛ,ν−εm‖V

)
. (4.11)

The sum in (4.11) is a finite sum over supp(Λ) since all other terms are zero. For any subset Δ ⊂ ∂Λ, let

ζ(wΛ, Δ) :=

(∑
ν∈Δ

ζν(wΛ)2
)1/2

. (4.12)
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Lemma 4.4. If 0 ∈ Λ, then for any wΛ ∈ V(Λ),

‖R∂Λ(wΛ)‖L2
π(Γ ;V ∗) ≤ ζ(wΛ, ∂Λ). (4.13)

Proof. By Parseval’s identity,
‖R∂Λ(wΛ)‖2L2

π(Γ ;V ∗) =
∑

ν∈∂Λ

‖rν(wΛ)‖2V ∗ .

Since ν �= 0, (4.3) and the Cauchy–Schwarz and triangle inequalities lead to

‖rν(wΛ)‖V ∗ = sup
v∈V

1
‖v‖V

∣∣∣∣
∫

D

σν(wΛ) · ∇v dx

∣∣∣∣ ≤ ζν(wΛ). �

Due to the infinite cardinality of ∂Λ, ζ(wΛ, ∂Λ) is defined as an infinite sum in (4.12). However, for ν ∈
∂Λ \ ∂◦Λ, i.e. ν = μ + εm with μ ∈ Λ and m ∈ N \ supp(Λ),

ζν(wΛ) =
∥∥∥am

ā

∥∥∥
L∞(D)

βm
1 ‖wΛ,μ‖V . (4.14)

Summing these terms over all inactive dimensions m leads to the lumped error indicator

ζ̄μ(wΛ, Λ) :=

⎛
⎝ ∑

m∈N\supp Λ

ζμ+εm(wΛ)2

⎞
⎠

1/2

= ‖wΛ,μ‖V

⎛
⎝ ∑

m∈N\suppΛ

(∥∥∥am

ā

∥∥∥
L∞(D)

βm
1

)2

⎞
⎠

1/2

(4.15)

for μ ∈ Λ. The infinite sum remaining in ζ̄μ(wΛ, Λ) is independent of wΛ and μ, depending only on supp(Λ); we
assume that it can be computed. Then ζ(wΛ, ∂Λ) is represented by the finite sum

ζ(wΛ, ∂Λ)2 =
∑

ν∈∂◦Λ

ζν(wΛ)2 +
∑
μ∈Λ

ζ̄μ(wΛ, Λ)2. (4.16)

4.3. Lipschitz continuity of the error indicator

The error indicator ζ(wΛ, ∂Λ) depends Lipschitz-continuously on the approximation wΛ in V(Λ).

Lemma 4.5. For all vΛ, wΛ ∈ V(Λ),

|ζ(vΛ, ∂Λ)− ζ(wΛ, ∂Λ)| ≤ γ‖vΛ − wΛ‖L2
π(Γ ;V ). (4.17)

Proof. Let eΛ := vΛ − wΛ ∈ V(Λ). For any ν ∈ ∂Λ,∣∣ζν(vΛ)2 − ζν(wΛ)2
∣∣ =

∣∣ζν(vΛ)− ζν(wΛ)
∣∣(ζν(vΛ) + ζν(wΛ)

)
≤ ζν(eΛ)sν

with sν := ζν(vΛ) + ζν(wΛ). Appropriately rearranging terms and applying the Cauchy–Schwarz inequality,
Lemma 3.1 and (2.3),

∑
ν∈∂Λ

ζν(eΛ)sν ≤
∑
μ∈Λ

‖eΛ,μ‖V

[ ∞∑
m=1

∥∥∥am

ā

∥∥∥
L∞(D)

(
βm

μm+1sμ+εm + βm
μm

sμ−εm

)]

≤ γ

⎛
⎝∑

μ∈Λ

‖eΛ,μ‖2V

⎞
⎠

1/2(∑
ν∈∂Λ

s2
ν

)1/2

,
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and (
∑

ν∈∂Λ s2
ν)1/2 ≤ ζ(vΛ, ∂Λ) + ζ(wΛ, ∂Λ) by the triangle inequality. The error indicator ζ satisfies∣∣ζ(vΛ, ∂Λ)− ζ(wΛ, ∂Λ)

∣∣(ζ(vΛ, ∂Λ) + ζ(wΛ, ∂Λ)
)

=
∣∣ζ(vΛ, ∂Λ)2 − ζ(wΛ, ∂Λ)2

∣∣
≤
∑

ν∈∂Λ

∣∣ζν(vΛ)2 − ζν(wΛ)2
∣∣,

and the assertion follows by inserting the above estimate for |ζν(vΛ)2 − ζν(wΛ)2| and cancelling ζ(vΛ, ∂Λ) +
ζ(wΛ, ∂Λ) since

∑
μ∈Λ‖eΛ,μ‖2V = ‖eΛ‖2L2

π(Γ ;V ). �

5. A spatial error indicator

5.1. Residual-based estimation of the spatial error

For all wN ∈ Vp(Λ, T ), T ∈ T and μ ∈ Λ, let

ημ,T (wN ) :=
(
h2

T ‖ā−1/2(fδμ0 +∇ · σμ(wN ))‖2L2(T ) + hT ‖ā−1/2[[σμ(wN )]]‖2L2(∂T∩D)

)1/2
, (5.1)

where [[·]] denotes the normal jump over S ∈ S(T ), i.e. if S̄ = T̄1 ∩ T̄2 and ni is the exterior unit normal to Ti,
then

[[σ]] := σ|T1 · n1 + σ|T2 · n2. (5.2)

Summing over μ ∈ Λ, we define the error indicator for the cell T as

ηT (wN , Λ) :=

⎛
⎝∑

μ∈Λ

ημ,T (wN )2

⎞
⎠

1/2

, (5.3)

and for any subsetM⊂ T , these terms combine to

η(wN , Λ,M) :=

(∑
T∈M

ηT (wN , Λ)2
)1/2

. (5.4)

Similarly, we define the oscillation of wN ∈ Vp(Λ, T ) as

oscμ,T (wN ) :=
(
h2

T ‖ā−1/2(id−Π2p−2)(fδμ0 +∇ · σμ(wN ))‖2L2(T )

+ hT ‖ā−1/2(id−Π2p−1)[[σμ(wN )]]‖2L2(∂T∩D)

)1/2
,

(5.5)

where p is the local polynomial degree of the finite element space Vp(T ) and Πn denotes the orthogonal projection
in L2(T ) with respect to the weight ā−1 onto polynomials of degree n. Summing over μ ∈ Λ and T ∈ M ⊂ T
gives the total oscillations

oscT (wN , Λ) :=

⎛
⎝∑

μ∈Λ

oscμ,T (wN )2

⎞
⎠

1/2

, (5.6)

osc(wN , Λ,M) :=

(∑
T∈M

oscT (wN , Λ)2
)1/2

, (5.7)

where M is any nonempty subset of T . These terms are used only in our analysis, and do not need to be
computed in our adaptive algorithm. We note that the error indicator dominates the oscillation,

oscT (wN , Λ) ≤ ηT (wN , Λ) (5.8)

for all T ∈ T , see ([2], Rem. 2.1).



A CONVERGENT ADAPTIVE SGFEM 1377

5.2. Equivalence to the interior residual

Up to a term involving the oscillation in the lower bound, the spatial error indicator is equivalent to the
residual of the Galerkin projection in Vp(Λ, T ). The constants cη and Cη appearing in Theorem 5.1 are inde-
pendent of the set Λ of active indices since, as described in the proof, bounds for each coefficient of the residual
hold with uniform constants.

Theorem 5.1. The Galerkin projection uN of u onto Vp(Λ, T ) satisfies

cη

(
η(uN , Λ, T )2 − osc(uN , Λ, T )2

)
≤ ‖RΛ(uN )‖2L2

π(Γ ;V ∗) ≤ Cηη(uN , Λ, T )2 (5.9)

with constants cη, Cη > 0 depending only on ā, p and the shape regularity of T, but not on Λ.

Proof. For any μ ∈ Λ, the proof of ([7], Thm. 6.1) extends verbatim to arbitrary polynomial degrees p to show

|〈rμ(uN ), v − INv〉|2 ≤ Cη‖v‖2V
∑
T∈T

ημ,T (uN )2

for all v ∈ V , where IN denotes the Clément quasi-interpolation operator onto Vp(T ). By Galerkin orthogonality,
〈rμ(uN), v〉 = 〈rμ(uN ), v − INv〉, and thus

‖rμ(uN )‖2V ∗ ≤ Cη

∑
T∈T

ημ,T (uN)2.

Similarly, the standard estimates from [18, 21] based on cell and facet bubble functions lead to the lower
bound (∑

T∈T
ημ,T (uN )2

)1/2

≤ c

⎡
⎣‖rμ(uN )‖V ∗ +

(∑
T∈T

oscμ,T (uN )2
)1/2

⎤
⎦

for all μ ∈ Λ. Consequently,

cη

[∑
T∈T

ημ,T (uN )2 −
∑
T∈T

oscμ,T (uN )2
]
≤ ‖rμ(uN )‖2V ∗

for cη = 1/2c2, and the assertion follows by summing over μ ∈ Λ. �

Theorem 5.1 and Lemma 4.2 provide the following bounds for the spatial error of uN ∈ Vp(Λ, T ), i.e. the
energy norm of the difference between uN and the semidiscrete approximation uΛ.

Corollary 5.2. The Galerkin projection uN in Vp(Λ, T ) satisfies

cη

1 + γ

(
η(uN , Λ, T )2 − osc(uN , Λ, T )2

)
≤ ‖uN − uΛ‖2A ≤

Cη

1− γ
η(uN , Λ, T )2. (5.10)

Similarly, Lemmas 4.1, 4.4 and Theorem 5.1 lead to the following upper and lower bounds for the full error
of uN in the energy norm.

Corollary 5.3. The energy norm error of the Galerkin projection uN in Vp(Λ, T ) satisfies

‖uN − u‖2A ≥
cη

1 + γ

(
η(uN , Λ, T )2 − osc(uN , Λ, T )2

)
, (5.11)

‖uN − u‖2A ≤
Cη

1− γ

(
η(uN , Λ, T )2 + ζ(uN , ∂Λ)2

)
. (5.12)
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The upper bound from Corollary 5.2 can be refined to estimate the difference of two discrete solutions with
different spatial meshes. In this case, the error indicator is restricted to just the refined elements, and the
estimate can thus be viewed as a local upper bound. We refer to ([2], Lem. 3.6) for a proof.

Lemma 5.4. Let T , T ∗ ∈ T such that T ∗ is a refinement of T , and let uN ∈ Vp(Λ, T ) and u∗
N ∈ Vp(Λ, T ∗) be

the respective Galerkin projections. Then

‖uN − u∗
N‖2A ≤ C̄ηη(uN , Λ,M)2 (5.13)

where M = T \ (T ∗ ∩ T ) is the set of refined cells and C̄η is a uniform constant on T independent of Λ.

5.3. Lipschitz continuity of the spatial error indicator

Similarly to the error indicator ζ(wN , ∂Λ), the spatial error indicator ηT (wN , Λ) depends Lipschitz-
continuously on the argument wN in Vp(Λ, T ).

For any finite set Λ ⊂ F and any T ∈ T, we introduce the constant

ca,δ(Λ, T ) := max
{∥∥∥∥hT∇ϕ

ā

∥∥∥∥
L∞(D)

/∥∥∥ϕ

ā

∥∥∥
L∞(D)

; ϕ ∈ {ā} ∪ {am ; m ∈ supp Λ}
}

, (5.14)

i.e. the gradients of all am with m ∈ supp(Λ) satisfy∥∥∥∥hT∇am

ā

∥∥∥∥
L∞(D)

≤ ca,δ(Λ, T )
∥∥∥am

ā

∥∥∥
L∞(D)

(5.15)

and the same estimate holds for ā in place of am. This constant is always finite since supp(Λ) is a finite set, but
ca,δ(Λ, T ) may degenerate if Λ is enlarged without appropriate refinements of T .

The proof of the following statement mirrors that of Lemma 4.5. The seminorm |·|L2
π(Γ ;V |T ) refers to the

restriction of the Bochner norm in L2
π(Γ ; V ) to any subdomain T ⊂ D, which in the following will be a

triangular or tetrahedral element T ∈ T .

Lemma 5.5. For all vN , wN ∈ Vp(Λ, T ) and all T ∈ T ,

|ηT (vN , Λ)− ηT (wN , Λ)| ≤
(
ca,δ(Λ, T ) + ĉη

)
(1 + γ)|vN − wN |L2

π(Γ ;V |T ) (5.16)

with a uniform constant ĉη (depending only on T).

Proof. Let μ ∈ Λ and eN := vN −wN . We split ημ,T (wN ) into η0
μ,T (wN ) := hT ‖ā−1/2(fδμ0 +∇·σμ(wN ))‖L2(T )

and η1
μ,T (wN ) := h

1/2
T ‖ā−1/2[[σμ(wN )]]‖L2(∂T∩D).

Let cinv > 0 such that, uniformly for all T ∈ T and all T ∈ T , ‖ā1/2ΔvN‖L2(T ) ≤ cinvh
−1
T |vN |V,T and

‖ā1/2∇vN · nT ‖L2(∂T∩D) ≤ cinvh
−1/2
T |vN |V,T for all vN ∈ Vp(T ).

The first of the above inverse inequalities ‖ā1/2ΔvN‖L2(T ) ≤ cinvh
−1
T |vN |V,T for vN ∈ Vp(T ) implies

|η0
μ,T (vN )− η0

μ,T (wN )| ≤ hT ‖ā−1/2∇ · σμ(eN )‖L2(T )

≤ α0
0|eN,μ|V,T +

∞∑
m=1

α0
m

(
βm

μm+1|eN,μ+εm |V,T + βm
μm
|eN,μ−εm |V,T

)
for α0

0 := ca,δ(Λ, T ) + cinv and α0
m := (ca,δ(Λ, T ) + cinv)‖am/ā‖L∞(D). Furthermore, using that ‖ā1/2∇vN ·

nT ‖L2(∂T∩D) ≤ cinvh
−1/2
T |vN |V,T for all vN ∈ Vp(T ),

|η1
μ,T (vN )− η1

μ,T (wN )| ≤ h
1/2
T ‖ā−1/2[[σμ(eN )]]‖L2(∂T∩D)

≤ α1
0|eN,μ|V,T +

∞∑
m=1

α1
m

(
βm

μm+1|eN,μ+εm |V,T + βm
μm
|eN,μ−εm |V,T

)
with α1

0 := 2cinv and α1
m := 2cinv‖am/ā‖L∞(D).
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Noting that ∣∣ημ,T (vN )2 − ημ,T (wN )2
∣∣ =

∣∣η0
μ,T (vN )− η0

μ,T (wN )
∣∣s0

μ +
∣∣η1

μ,T (vN )− η1
μ,T (wN )

∣∣s1
μ

for si
μ := ηi

μ,T (vN ) + ηi
μ,T (wN ), the above estimates combine to

|ηT (vN , Λ)2 − ηT (wN , Λ)2| ≤
∑
μ∈Λ

∣∣ημ,T (vN )2 − ημ,T (wN )2
∣∣

≤
∑
μ∈Λ

|eN,μ|V,T Sμ ≤

⎛
⎝∑

μ∈Λ

|eN,μ|2V,T

⎞
⎠

1/2⎛
⎝∑

μ∈Λ

S2
μ

⎞
⎠

1/2

with

Sμ = α0
0s

0
μ +

∞∑
m=1

α0
m

(
βm

μm+1s
0
μ+εm

+ βm
μm

s0
μ−εm

)

+ α1
0s

1
μ +

∞∑
m=1

α1
m

(
βm

μm+1s
1
μ+εm

+ βm
μm

s1
μ−εm

)
and, due to Lemma 3.1,

⎛
⎝∑

μ∈Λ

S2
μ

⎞
⎠

1/2

≤
(

α0
0 +

∞∑
m=1

α0
m

)⎛⎝∑
μ∈Λ

(s0
μ)2

⎞
⎠

1/2

+
(

α1
0 +

∞∑
m=1

α1
m

)⎛⎝∑
μ∈Λ

(s1
μ)2

⎞
⎠

1/2

≤
(

α0
0 + α1

0 +
∞∑

m=1

α0
m + α1

m

)(
ηT (vN , Λ) + ηT (wN , Λ)

)
.

The assertion follows with ĉη = 3cinv using

|ηT (vN , Λ)2 − ηT (wN , Λ)2| =
∣∣ηT (vN , Λ)− ηT (wN , Λ)

∣∣(ηT (vN , Λ) + ηT (wN , Λ)
)
. �

The spatial error indicators are also continuous in their second argument, as described in the following
statement.

Lemma 5.6. Let 0 ∈ Λ ⊂ Λ∗ ⊂ F , T ∈ T and wN ∈ Vp(Λ, T ). Then

η(wN , Λ∗ \ Λ, T ) ≤
(
2ca,δ(Λ∗, T ) + ĉη,ζ

)
ζ(wN , ∂Λ ∩ Λ∗) (5.17)

with a uniform constant ĉη,ζ on T.

Proof. By definition, using ην,T (wN ) = 0 for ν ∈ Λ∗ \ (Λ ∪ ∂Λ),

η(wN , Λ∗ \ Λ, T )2 =
∑
T∈T

∑
ν∈∂Λ∩Λ∗

ην,T (wN )2

As in the proof of Lemma 5.5, we split ην,T (wN ) into η0
ν,T (wN ) := hT ‖ā−1/2(fδν0 + ∇ · σν(wN ))‖L2(T ) and

η1
ν,T (wN ) := h

1/2
T ‖ā−1/2[[σν(wN )]]‖L2(∂T∩D) for any ν ∈ ∂Λ ∩ Λ∗ and T ∈ T .

Let cinv > 0 such that the inverse inequalities ‖ā1/2hT ΔvN‖L2(D) ≤ cinv‖vN‖V and
∑

T∈T hT ‖ā1/2∇vN ·
nT ‖L2(∂T∩D) ≤ c2

inv‖vN‖V hold for all vN ∈ Vp(T ) uniformly on T.
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The former inverse inequality and wN,ν = 0 imply

(∑
T∈T

η0
ν,T (wN )2

)1/2

=
∥∥∥∥ā−1/2hT

∞∑
m=1

∇ ·
(
am(βm

νm+1∇wN,ν+εm + βm
νm
∇wN,ν−εm)

)∥∥∥∥
L2(D)

≤
∞∑

m=1

∥∥∥∥hT∇am

ā

∥∥∥∥
L∞(D)

(
βm

νm+1‖wN,ν+εm‖V + βm
νm
‖wN,ν−εm‖V

)

+ cinv

∞∑
m=1

∥∥∥am

ā

∥∥∥
L∞(D)

(
βm

νm+1‖wN,ν+εm‖V + βm
νm
‖wN,ν−εm‖V

)
.

With (5.15), the last term is bounded by (ca,δ(Λ∗, T ) + cinv)ζν(wN ). Similarly, the triangle inequality on the
skeleton S of T leads to(∑

T∈T
η1

ν,T (wN )2
)1/2

≤
∞∑

m=1

∥∥∥am

ā

∥∥∥
L∞(D)

βm
νm+1

(∑
T∈T

hT

∥∥ā1/2[[∇wN,ν+εm ]]
∥∥2

L2(∂T∩D)

)1/2

+
∞∑

m=1

∥∥∥am

ā

∥∥∥
L∞(D)

βm
νm

(∑
T∈T

hT

∥∥ā1/2[[∇wN,ν−εm ]]
∥∥2

L2(∂T∩D)

)1/2

and the inverse inequality
∑

T∈T hT ‖ā1/2∇vN · nT ‖L2(∂T∩D) ≤ c2
inv‖vN‖V for vN ∈ Vp(T ) implies

(∑
T∈T

η1
ν,T (wN )2

)1/2

≤ 2cinvζν(wN ).

Combining these bounds, we have

(∑
T∈T

ην,T (wN )2
)1/2

≤
(
(ca,δ(Λ∗, T ) + cinv)2 + 4c2

inv

)1/2
ζν(wN ),

and the assertion follows by summing over ν ∈ ∂Λ ∩ Λ∗. �

A continuity property similar to that in Lemma 5.5 holds for the oscillation oscT (wN , Λ). The proof of the
following lemma is analogous to the above argument (see also [2], Lem. 3.3).

Lemma 5.7. For all vN , wN ∈ Vp(Λ, T ) and all T ∈ T ,

|oscT (vN , Λ)− oscT (wN , Λ)| ≤
(
ca,δ(Λ, T ) + ĉosc

)
(1 + γ)|vN − wN |L2

π(Γ ;V |T ) (5.18)

with a uniform constant ĉosc on T.

6. The adaptive algorithm

6.1. Modules

Given a mesh T ∈ T and a finite set Λ ⊂ F containing 0, we assume that a routine

uN ← Solve[Λ, T ] (6.1)

is available which returns the exact Galerkin projection uN determined by (3.14) in the space Vp(Λ, T )
from (3.13), for a fixed local polynomial degree p.
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The error indicators from Sections 4.2 and 5.1 are computed by the modules

(ηT (uN , Λ))T∈T , η(uN , Λ, T )← Estimatex[uN , Λ, T ], (6.2)
(ζν(uN))ν∈∂◦Λ, ζ(uN , ∂Λ), (‖uN‖V )μ∈Λ ← Estimatey[uN , Λ], (6.3)

where (4.16) is used to compute ζ(uN , ∂Λ) as a finite sum. These error indicators are subsequently used to mark
cells of the spatial mesh T for refinement, and to activate indices in ∂Λ.

We consider separate marking and refinement procedures for T and Λ. For a parameter 0 < ϑx < 1, let the
routine

M← Markx[ϑx, (ηT (uN , Λ))T∈T , η(uN , Λ, T )] (6.4)

return a subsetM⊂ T satisfying the Dörfler property

η(uN , Λ,M) ≥ ϑxη(uN , Λ, T ), (6.5)

and let the module
T ∗ ← Refinex[T ,M] (6.6)

construct a conforming mesh T ∗ ∈ T in which at least all elements of M have been bisected at least once
compared to T . These methods are standard to adaptive finite element algorithms, and do not depend on
Λ ⊂ F .

A similar routine that constructs a finite set Δ ⊂ ∂Λ with

ζ(uN , Δ) ≥ ϑyζ(uN , ∂Λ) (6.7)

for a parameter 0 < ϑy < 1 is discussed in the next section. Let

Λ∗ ← Refiney[Λ, Δ] (6.8)

return a set Λ∪Δ ⊂ Λ∗ ⊂ Λ∪∂Λ. A simple choice is Λ∗ := Λ∪Δ, but we do not assume this particular definition,
and indeed a larger set may be chosen in order to ensure favorable properties of Λ∗, such as monotonicity, if
preserving such properties is deemed worth the potentially significant additional computational cost.

Finally, in order to control the constant ca,δ(Λ, T ) from (5.14), we select an arbitrary c̄a,δ > 0 and, for each
m ∈ N, presume that a mesh Ta,m ∈ T is given such that ‖hTa,m∇am/ā‖L∞(D) ≤ c̄a,δ‖am/ā‖L∞(D). Similarly,
let Tā ∈ T such that ‖hTā∇ā/ā‖L∞(D) ≤ c̄a,δ. For any subset S ⊂ N, let

Ta,S := Tā ⊕
⊕
m∈S

Ta,m (6.9)

be the overlay of the meshes corresponding to m ∈ S. Then ca,δ(Λ, Ta,suppΛ) ≤ c̄a,δ for any finite Λ ⊂ F .

6.2. Marking of parametric modes

A typical way to ensure the Dörfler property (6.7) while minimizing the size of Δ is to sort ν ∈ ∂Λ according
to ζν(uN ) and construct Δ by successively selecting those ν with maximal ζν(uN) until (6.7) is fulfilled. However,
this is infeasible due to the infinite cardinality of ∂Λ.

The routine
Δ← Marky[ϑy, (ζν(uN ))ν∈∂◦Λ, ζ(uN , ∂Λ), (‖uN,μ‖V )μ∈Λ] (6.10)

functions by a slight extension of the above algorithm. Initially, only indices ν in the finite set ∂◦Λ are considered
for inclusion in Δ. Whenever an index of the form ν = μ + εm with μ ∈ Λ and m = max(supp Λ) is added
to Δ, the error indicator ζν′(uN ) = ‖am/ā‖L∞(D)β

m
1 ‖uN,μ‖V for ν′ = μ + εm′ with m′ = min(N \ supp Λ) is

constructed and inserted into the sorted list of error indicators. Similarly, whenever such a ν′ is added to Δ,
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the index ν′′ = μ + εm′′ is subsequently considered for the next larger m′′ in N \ supp(Λ). Thus, at every step,
only a finite subset of ∂Λ is considered for addition to Δ. The dynamic computation of ζν(uN ) for ν ∈ ∂Λ \ ∂◦Λ
is inexpensive due to the simple structure (4.14). This process is continued until the Dörfler property (6.7) is
satisfied.

Remark 6.1. If ‖am/ā‖L∞(D)β
m
1 are arranged in decreasing order and supp(Λ) = {1, . . . , M} for an M ∈ N,

then Marky constructs a set Δ of minimal cardinality subject to the Dörfler property (6.7) since indices ν ∈
∂Λ \ ∂◦Λ are considered in decreasing order of ζν(uN ), and these error indicators are bounded by ζν(uN ) with
ν ∈ ∂◦Λ. Furthermore, supp(Λ ∪ Δ) = {1, . . . , M ′} for an M ′ ∈ N, ensuring the optimality of a subsequent
marking, after the refinement to Λ∗ := Λ ∪Δ, or after applying some other reasonable refinement strategy.

6.3. Adaptive algorithm

The above modules combine to form the adaptive stochastic Galerkin finite element algorithm ASGFEM. In
each iteration, either a spatial refinement is performed or the set of active indices is enlarged, depending on
which error indicator is larger.

The following statement is a direct consequence of Corollary 5.3 and the termination criterion of the algorithm.

uε ← ASGFEM[ε, Λ0, T0, �, ϑx, ϑy]
for j = 0, 1, 2, . . . do

uj ← Solve[Λj , Tj ]
(ζj,ν)ν∈∂◦Λj , ζj , (‖uj,μ‖V )μ∈Λj ← Estimatey[uj , Λj ]
(ηj,T )T∈Tj , ηj ← Estimatex[uj , Λj , Tj ]

if η2
j + ζ2

j ≤ ε2 then
return uε ← uj

if ηj ≥ �ζj then
Λj+1 ← Λj

Mj+1 ← Markx[ϑx, (ηj,T )T∈Tj , ηj ]
Tj+1 ← Refinex[Tj ,Mj+1]

else
Δj ← Marky[ϑy, (ζj,ν)ν∈∂Λj , ζj , (‖uj,μ‖V )μ∈Λj ]
Λj+1 ← Refiney [Λj , Δj ]
Tj+1 ← Tj ⊕ Ta,supp Λj+1

Theorem 6.2. Let ε > 0, Λ0 ⊂ F be finite and contain 0, T0 ∈ T with Ta,supp Λ0 � T0, � > 0 and 0 < ϑx, ϑy < 1.
If ASGFEM[ε, Λ0, T0, �, ϑx, ϑy] terminates, it returns an approximate solution uε with

‖uε − u‖2A ≤
Cη

1− γ
ε2· (6.11)

We tacitly assume that the assumptions of Theorem 6.2 hold in the following. In particular, Λ0 ⊂ F is any
finite set containing 0, and T0 ∈ T is adapted to ā in the sense that Ta,supp Λ0 � T0.

7. Contraction property

7.1. A preliminary estimate

Our analysis is adapted from [2]. The following statement is an analogue to ([2], Cor. 3.4).
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Lemma 7.1. For any nonempty finite sets Λ ⊂ Λ∗ ⊂ F and any meshes T � T ∗ ∈ T, let M := T \ (T ∗ ∩ T )
denote the set of refined cells in T ∗ compared to T , and let Δ := ∂Λ ∩ Λ∗. For any vN ∈ Vp(Λ, T ), v∗N ∈
Vp(Λ∗, T ∗), χ, τ > 0 and κ ≥ 0,

η(v∗N , Λ∗, T ∗)2 + κζ(v∗N , ∂Λ∗)2 ≤ (1 + χ)
[
η(vN , Λ, T )2 − λη(vN , Λ,M)2

]
+ (1 + τ)κζ(vN , ∂Λ)2 −

[
(1 + τ)κ− c̄2

ζ(1 + χ)
]
ζ(vN , Δ)2

+ [(1 + χ−1)c̄2
η + (1 + τ−1)κγ2](1 − γ)−1‖vN − v∗N‖2A

with λ = 1− 21/d, c̄ζ := 2ca,δ(Λ∗, T ∗) + ĉη,ζ and c̄η := [ca,δ(Λ∗, T ∗) + ĉη](1 + γ).

Proof. Let vN ∈ Vp(Λ, T ) and v∗N ∈ Vp(Λ∗, T ∗). Since Vp(Λ, T ) ⊂ Vp(Λ∗, T ∗), Lemma 5.5 together with Young’s
inequality imply

η(v∗N , Λ∗, T ∗)2 ≤
∑

T∗∈T ∗

[
ηT∗(vN , Λ∗) + c̄η|vN − v∗N |L2

π(Γ ;V |T∗)

]2
≤ (1 + χ)η(vN , Λ∗, T ∗)2 + (1 + χ−1)c̄2

η‖vN − v∗N‖2L2
π(Γ ;V )

with c̄η := [ca,δ(Λ∗, T ∗) + ĉη](1 + γ). Due to Lemma 5.6, for c̄ζ := 2ca,δ(Λ∗, T ∗) + ĉη,ζ ,

η(vN , Λ∗, T ∗)2 ≤ η(vN , Λ, T ∗)2 + c̄2
ζζ(vN , Δ)2.

Let T ∈ M ⊂ T and let T ∗(T ) := {T ∗ ∈ T ∗ ; T ∗ ⊂ T }. For any μ ∈ Λ, [[σμ(vN )]] = 0 on all facets of T ∗

in the interior of T since vN is continuous on T . Furthermore, hT∗ = |T ∗|1/d ≤ (|T |/2)1/d = 2−1/dhT for all
T ∗ ∈ T ∗(T ). Thus

η(vN , Λ, T ∗)2 ≤ η(vN , Λ, T \M)2 + 2−1/dη(vN , Λ,M)2

= η(vN , Λ, T )2 − λη(vN , Λ,M)2

with λ = 1− 21/d.
Similarly, Lemma 4.5 and Young’s inequality imply

ζ(v∗N , Λ∗)2 ≤
(
ζ(vN , ∂Λ∗) + γ‖vN − v∗N‖L2

π(Γ ;V )

)2
≤ (1 + τ)ζ(vN , ∂Λ∗)2 + (1 + τ−1)γ2‖vN − v∗N‖2L2

π(Γ ;V ).

Since ζν(vN ) = 0 for ν ∈ ∂Λ∗ \ ∂Λ and Δ = ∂Λ ∩ Λ∗ = ∂Λ \ ∂Λ∗,

ζ(vN , ∂Λ∗)2 = ζ(vN , ∂Λ)2 − ζ(vN , ∂Λ \ ∂Λ∗)2 = ζ(vN , ∂Λ)2 − ζ(vN , Δ)2.

The assertion follows with ‖vN − v∗N‖2L2
π(Γ ;V ) ≤ (1− γ)−1‖vN − v∗N‖2A. �

7.2. Convergence of the adaptive algorithm

We show in Theorem 7.2 that for certain ωη, ωζ > 0, the adaptive algorithm ASGFEM is a contraction for the
quasi-error

‖uN − u‖2A + ωηη(uN , Λ, T )2 + ωζζ(uN , ∂Λ)2. (7.1)

As is evident from the proof, it is vital that ωη and ωζ may be distinct constants; indeed, ωζ may be larger than
ωη by a factor depending on c̄a,δ.

Theorem 7.2. Let � > 0 and 0 < ϑx, ϑy < 1, and let uj, Tj, Mj, Δj, ηj and ζj denote the sequences of
approximate solutions, finite element meshes, marked cells, marked indices and error indicators, respectively,
generated in ASGFEM. There exist constants 0 < δ < 1, ωη > 0 and ωζ > 0 such that

‖uj+1 − u‖2A + ωηη2
j+1 + ωζζ

2
j+1 ≤ δ

(
‖uj − u‖2A + ωηη2

j + ωζζ
2
j

)
(7.2)

for all j ∈ N0.
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Proof. We abbreviate ej := ‖uj − u‖A and dj := ‖uj − uj+1‖A. Lemma 7.1 implies

η2
j+1 + κζ2

j+1 ≤ (1 + χ)[η2
j − λη(uj , Λj ,Mj)2]

+ (1 + τ)κζ2
j − [(1 + τ) − (1 + χ)c̄2

ζκ
−1]κζ(uj , Δj)2

+ [(1 + χ−1)c̄2
η + (1 + τ−1)κγ2](1− γ)−1d2

j

with λ = 1 − 21/d, c̄ζ := 2c̄a,δ + ĉη,ζ and c̄η := (c̄a,δ + ĉη)(1 + γ) provided that (1 + τ) ≥ (1 + χ)c̄2
ζκ

−1. Using
Galerkin orthogonality to expand e2

j+1 = e2
j − d2

j leads to

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ e2

j −
[
1− ω

(
(1 + χ−1)c̄2

η + (1 + τ−1)κγ2
)
(1− γ)−1

]
d2

j

+ ω(1 + χ)[η2
j − λη(uj , Λj ,Mj)2]

+ ω(1 + τ)κζ2
j − ω[(1 + τ)− (1 + χ)c̄2

ζκ
−1]κζ(uj , Δj)2.

We set ω := ω(χ, τ, κ) := (1− γ)/[(1+ χ−1)c̄2
η +(1 + τ−1)κγ2] such that the term containing dj drops from this

estimate. We expand e2
j = (1− α)e2

j + αe2
j with 0 < α < 1 and apply the upper bound (5.12) to αe2

j to get

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1 − α)e2

j + αCη(1− γ)−1(η2
j + ζ2

j )

+ ω(1 + χ)[η2
j − λη(uj , Λj ,Mj)2]

+ ω(1 + τ)κζ2
j − ω[(1 + τ)− (1 + χ)c̄2

ζκ
−1]κζ(uj , Δj)2.

If ηj ≥ �ζj , then Δj = ∅, thus ζ(uj , Δj) = 0, and by the Dörfler property (6.5), using (1 + βx)τκζ2
j ≤

(1 + βx)τκ�−2η2
j for any βx > 0,

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1− α)e2

j

+ ω
[
(1 + χ)(1− λϑ2

x) + (1 + βx)τκ�−2 + αCη(1− γ)−1ω−1
]
η2

j

+ ω(1− βxτ + αCη(1 − γ)−1ω−1κ−1)κζ2
j .

Conversely, if ηj < �ζj , then Mj = ∅ and consequently η(uj , Λj ,Mj) = 0. The Dörfler property (6.7) along
with (1 + βy)χη2

j ≤ (1 + βy)χ�2ζ2
j for βy > 0 imply

e2
j+1 + ω(η2

j+1 + κζ2
j+1) ≤ (1 − α)e2

j + ω(1− βyχ + αCη(1− γ)−1ω−1)η2
j

+ ωκ
[
(1 + τ) − ϑ2

y

(
(1 + τ) − (1 + χ)c̄2

ζκ
−1
)

+ (1 + βy)χ�2κ−1

+ αCη(1− γ)−1ω−1κ−1
]
ζ2
j .

All of the factors in the above estimates must be made less than one while ensuring (1 + τ) ≥ (1 + χ)c̄2
ζκ

−1. We
select κ > c̄2

ζ and

0 < τ < min
(
ϑ2

y(1 − c̄2
ζκ

−1)(1− ϑ2
y)−1, λϑ2

x�2κ−1
)

such that 1+τ−ϑ2
y(1+τ−c̄2

ζκ
−1) < 1 and 1−λϑ2

x+τκ�−2 < 1. Next, we choose χ > 0 sufficiently small such that
χ ≤ (1+τ)κc̄−2

ζ −1, which implies (1+τ) ≥ (1+χ)c̄2
ζκ

−1, simultaneously with 1+τ−ϑ2
y((1+τ)−(1+χ)c̄2

ζκ
−1)+

χ�2κ−1 < 1 and (1 + χ)(1− λϑ2
x) + τκ�−2 < 1. This permits βx > 0 with (1 + χ)(1−λϑ2

x) + (1 + βx)τκ�−2 < 1
and βy > 0 with 1 + τ − ϑ2

y((1 + τ)− (1 + χ)c̄2
ζκ

−1) + (1 + βy)χ�2κ−1 < 1. Finally, we choose α > 0 sufficiently
small such that all the factors in the above estimates remain smaller than one. The assertion follows with δ
equal to the maximum of these factors, ωη := ω and ωζ := κω. �
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7.3. Contraction of the spatial error

Theorem 7.2 achieves a contraction of the quasi-error (7.1) by balancing a potential increase in one error
indicator with a decrease in the other. If the adaptive algorithm ASGFEM performs only spatial refinements
within a succession of iterations, and the set Λ of active indices in F therefore remains fixed, then a similar
contraction property holds for just the spatial error, with constants independent of Λ. This is elaborated in
following theorem, which follows ([2], Thm. 4.1).

Theorem 7.3. Let � > 0 and 0 < ϑx < 1, and let uj, Tj, Mj, Λj and ηj denote the sequences of approximate
solutions, finite element meshes, marked cells, active indices and error indicators, respectively, generated in
ASGFEM. There exist constants 0 < δx < 1 and ωx > 0 such that for any j ∈ N0 with Λj+1 = Λj =: Λ,

‖uj+1 − uΛ‖2A + ωxη2
j+1 ≤ δx

(
‖uj − uΛ‖2A + ωxη2

j

)
. (7.3)

Proof. We abbreviate ej := ‖uj − uΛ‖A and dj := ‖uj − uj+1‖A. Lemma 7.1 with κ = 0 and Δ = ∅ implies

η2
j+1 ≤ (1 + χ)[η2

j − λη(uj , Λj ,Mj)2] + (1 + χ−1)c̄2
η(1 − γ)−1d2

j ,

with c̄ζ := 2c̄a,δ + ĉη,ζ for any χ > 0. Since e2
j+1 = e2

j − d2
j by Galerkin orthogonality, and using the Dörfler

property (6.5), we have

e2
j+1 + ωxη2

j+1 ≤ e2
j − [1− ωx(1 + χ−1)c̄2

η(1− γ)−1]d2
j + ωx(1 + χ)(1− λϑ2

x)η2
j

for any ωx > 0. We choose ωx := (1− γ)/[(1 + χ−1)c̄2
η], depending on χ, such that the term involving dj drops.

Expanding e2
j as (1− α)e2

j + αe2
j with 0 < α < 1 and applying Corollary 5.2 to αe2

j leads to

e2
j+1 + ωxη2

j+1 ≤ (1 − α)e2
j + ωx[C1(χ) + C2(χ, α)]η2

j

with C1(χ) = (1 + χ)(1 − λϑ2
x) and C2(χ, α) = α(1 + χ−1)Cη c̄2

η(1 − γ)−2. Estimate (7.3) follows with δx =
max(1− α, C1(χ) + C2(χ, α)) < 1 by selecting χ > 0 sufficiently small such that C1(χ) < 1, and then choosing
α > 0 sufficiently small such that C2(χ, α) < 1− C1(χ). �

8. Quasi-optimality of the spatial discretization

8.1. The total spatial error

Let wN ∈ Vp(Λ, T ) be any approximation of u for a finite set Λ ∈ F and a mesh T ∈ T. The total spatial
error (

‖wN − uΛ‖2A +
cη

1 + γ
osc(wN , Λ, T )2

)1/2

(8.1)

combines the energy-norm error with the oscillation. Due to Corollary 5.2 and (5.8), for the Galerkin projection
uN ∈ Vp(Λ, T ),

cη

1 + γ
η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2A +

cη

1 + γ
osc(uN , Λ, T )2

≤
(

cη

1 + γ
+

Cη

1− γ

)
η(uN , Λ, T )2, (8.2)

i.e. the total spatial error is equivalent to the spatial error indicator. Furthermore, uN is a quasi-optimal
approximation of uΛ in Vp(Λ, T ) with respect to the total spatial error.
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Lemma 8.1. If ca,δ(Λ, T ) ≤ c̄a,δ, then the Galerkin projection uN ∈ Vp(Λ, T ) satisfies

‖uN − uΛ‖2A +
cη

1 + γ
osc(uN , Λ, T )2 ≤ Ĉ inf

wN∈Vp(Λ,T )

(
‖wN − uΛ‖2A +

cη

1 + γ
osc(wN , Λ, T )2

)
(8.3)

with a constant Ĉ := 2 max(1, cη(c̄a,δ + ĉosc)2(1 + γ)(1− γ)−1) independent of T and Λ.

Proof. Let wN ∈ Vp(Λ, T ). Due to Lemma 5.7,

osc(uN , Λ, T )2 ≤ 2 osc(wN , Λ, T )2 +
2(c̄a,δ + ĉosc)2(1 + γ)2

1− γ
‖wN − uN‖2A.

By Galerkin orthogonality, ‖wN − uN‖2A ≤ ‖wN − uΛ‖2A and ‖uN − uΛ‖2A ≤ ‖wN − uΛ‖2A. Consequently,

‖uN − uΛ‖2A +
cη

1 + γ
osc(uN , Λ, T )2 ≤ Ĉ

(
‖wN − uΛ‖2A +

cη

1 + γ
osc(wN , Λ, T )2

)

with Ĉ as in the statement of the lemma, and the assertion follows by taking the infimum over wN ∈
Vp(Λ, T ). �

Similar to ([2], Lem. 5.9), there is an intimate connection between a reduction of the total spatial error and
the Dörfler property (6.5).

Lemma 8.2. Let uN , u∗
N denote the Galerkin solutions in Vp(Λ, T ) and Vp(Λ, T ∗), respectively, for meshes

T , T ∗ with T � T ∗ and ca,δ(Λ, T ∗) ≤ c̄a,δ, and let

‖u∗
N − uΛ‖2A +

cη

1 + γ
osc(u∗

N , Λ, T ∗)2 ≤ cred

(
‖uN − uΛ‖2A +

cη

1 + γ
osc(uN , Λ, T )2

)
(8.4)

with cred < 1/2. Then
η(uN , Λ,M) ≥ ϑxη(uN , Λ, T ) (8.5)

for the set M := T \ (T ∗ ∩ T ) of refined cells and ϑ2
x = (1− 2cred)ϑ̂2

x, where

ϑ̂x :=
(

1 + C̄η

(1 + γ

cη
+ 2(c̄a,δ + ĉosc)

1 + γ

1− γ

))−1/2

. (8.6)

Proof. Due to the lower bound in Corollary 5.2,

cη

1 + γ
η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2A +

cη

1 + γ
osc(uN , Λ, T )2.

Inserting the estimate (8.4), we have

(1 − 2cred)
cη

1 + γ
η(uN , Λ, T )2 ≤ ‖uN − uΛ‖2A +

cη

1 + γ
osc(uN , Λ, T )2

− 2‖u∗
N − uΛ‖2A − 2

cη

1 + γ
osc(u∗

N , Λ, T ∗)2.

By Galerkin orthogonality and Lemma 5.4,

‖uN − uΛ‖2A − 2‖u∗
N − uΛ‖2A ≤ ‖uN − u∗

N‖2A ≤ C̄ηη(uN , Λ,M)2.

Furthermore, since oscT (uN , Λ) ≤ ηT (uN , Λ) for all T ∈M by (5.8) and

oscT (uN , Λ)2 ≤ 2 oscT (u∗
N , Λ)2 + 2(c̄a,δ + ĉosc)(1 + γ)|uN − u∗

N |L2
π(Γ ;V |T )
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by Lemma 5.7 for T ∈ T \M, employing the local upper bound Lemma 5.4 again, we have

osc(uN , Λ, T )2 − 2 osc(u∗
N , Λ, T ∗)2 ≤ η(uN , Λ,M)2 + 2(c̄a,δ + ĉosc)

1 + γ

1− γ
‖uN − u∗

N‖2A

≤
(
1 + 2C̄η(c̄a,δ + ĉosc)

1 + γ

1 − γ

)
η(uN , Λ,M)2.

Thus

(1− 2cred)
cη

1 + γ
η(uN , Λ, T )2 ≤

(
C̄η +

cη

1 + γ

(
1 + 2C̄η(c̄a,δ + ĉosc)

1 + γ

1 − γ

))
η(uN , Λ,M)2,

which is (8.5). �

8.2. An approximation class

For any finite set Λ ⊂ F and any N ∈ N, let

ΣN (u, Λ) := inf
(
‖w∗

N − uΛ‖2A +
cη

1 + γ
osc(w∗

N , Λ, T ∗)2
)1/2

(8.7)

where the infimum is taken over all meshes T ∗ ∈ T with #T ∗ − #Tinit ≤ N and ca,δ(Λ, T ∗) ≤ c̄a,δ, and all
w∗

N ∈ Vp(Λ, T ∗). Furthermore, for any s > 0, let

|u|s,Λ := sup
{
ε
(
min{N ∈ N0 ; ΣN (u, Λ) < ε}

)s
; ε ≥ č‖uΛ − u‖A

}
(8.8)

for a constant č > 0 specified in (8.14) below. We consider u to be in the approximation class As if

|u|As := sup{|u|s,Λ ; Λ ⊂ F finite, 0 ∈ Λ} <∞. (8.9)

In this case, for any finite set Λ ⊂ F containing 0 and any error tolerance ε ≥ č‖uΛ−u‖A, i.e. no smaller than the
error effected by the restriction to the set Λ, up to a constant factor, there is an approximation w∗

N ∈ Vp(Λ, T ∗)
with total spatial error

‖w∗
N − uΛ‖2A +

cη

1 + γ
osc(w∗

N , Λ, T ∗)2 ≤ ε2 (8.10)

for a mesh T ∗ ∈ T of size
#T ∗ −#Tinit ≤ ε−1/s|u|1/s

As
(8.11)

satisfying ca,δ(Λ, T ∗) ≤ c̄a,δ, i.e. the total spatial error decays as

(
‖w∗

N − uΛ‖2A +
cη

1 + γ
osc(w∗

N , Λ, T ∗)2
)1/2

≤ |u|As(#T ∗ −#Tinit)−s. (8.12)

The full error of this approximation is bounded by ‖w∗
N − u‖A ≤ (1 + č−2)1/2ε and decays at the same rate s

with respect to the size of the mesh T ∗ as Λ is suitably enlarged to maintain ‖uΛ − u‖A ≤ č−1ε.

8.3. Quasi-optimal convergence

We make the following assumptions:

(1) The routine M← Markx[ϑx, (ηT (uN , Λ))T∈T , η(uN , Λ, T )] constructs a set M ⊂ T of minimal cardinality
satisfying the Dörfler property (6.5).

(2) The Dörfler constant ϑx from (6.5) satisfies 0 < ϑx < ϑ̂x for ϑ̂x from (8.6).
(3) The distribution of refinement facets in Tinit satisfies (b) of ([20], Sect. 4).
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Lemma 8.2 and the assumed optimal marking lead to a bound on the cardinality of the sets Mj of marked
cells in ASGFEM, following ([2], Lem. 5.10). We abbreviate

cred :=
1
2

(
1− ϑ2

x

ϑ̂2
x

)
> 0 (8.13)

and specify the constant č left arbitrary in Section 8.2 as

č :=
(

credcη(1− γ)
(1 + �−2)ĈCη(1 + γ)

)1/2

· (8.14)

Lemma 8.3. If u ∈ As, then

#Mj ≤ |u|1/s
As

c
−1/2s
red Ĉ1/2s

(
‖uj − uΛj‖2A +

cη

1 + γ
osc(uj , Λj, Tj)2

)−1/2s

(8.15)

for all j ∈ N0 with ηj ≥ �ζj .

Proof. Let j ∈ N0 with ηj ≥ �ζj , such that a spatial refinement is performed and thusMj is defined in ASGFEM.
Let ε2 = credĈ

−1[‖uj − uΛj‖2A + cη(1 + γ)−1 osc(uj , Λj, Tj)2], which satisfies

ε2 ≥ credcη

Ĉ(1 + γ)
η2

j ≥
credcη

Ĉ(1 + γ)(1 + �−2)
(η2

j + ζ2
j )

≥ credcη(1− γ)
Ĉ(1 + γ)(1 + �−2)Cη

‖uj − u‖2A ≥ č2‖uΛj − u‖2A

due to (8.2), (5.12) and Galerkin orthogonality. Thus the assumption u ∈ As implies that there exist T ε ∈ T

and wε
N ∈ Vp(Λj , T ε) such that ca,δ(Λj , T ε) ≤ c̄a,δ, #T ε −#Tinit ≤ ε−1/s|u|1/s

As
and

‖wε
N − uΛj‖2A +

cη

1 + γ
osc(wε

N , Λj , T ε)2 ≤ ε2.

Let u∗
N be the Galerkin solution in Vp(Λj , T ∗) for the overlay T ∗ := T ε⊕Tj . Since T ε � T ∗, Lemma 8.1 implies

‖u∗
N − uΛj‖2A +

cη

1 + γ
osc(u∗

N , Λj , T ∗)2 ≤ Ĉ
(
‖wε

N − uΛj‖2A +
cη

1 + γ
osc(wε

N , Λj , T ∗)2
)

≤ Ĉε2 = cred

(
‖uj − uΛj‖2A +

cη

1 + γ
osc(uj , Λj , Tj)2

)
,

where we used the monotonicity of the oscillation with respect to the mesh T ∈ T in the second estimate.
Consequently, Lemma 8.2 implies that the setM∗ := T \(T ∗∩T ) satisfies the Dörfler property η(uj , Λj ,M∗) ≥
ϑxη(uj , Λj , Tj). Due to the minimality of #Mj and using (3.16) in the last step,

#Mj ≤ #M∗ ≤ #T ∗ −#Tj ≤ #T ε −#Tinit.

The assertion follows by applying the bound #T ε −#Tinit ≤ ε−1/s|u|1/s
As

and inserting the definition of ε. �

Using the above tools, we derive the following optimality statement by an argument similar to ([2], Thm. 5.11).
As illustrated by a comparison with (8.12), within any succession of spatial refinements in ASGFEM, the conver-
gence of the total spatial error achieves the maximal rate s afforded by the approximation class As.

Theorem 8.4. If u ∈ As, then for any j0 ∈ N0 and any j ≥ j0 with Λj = Λj0 =: Λ,(
‖uj − uΛ‖2A +

cη

1 + γ
osc(uj, Λ, Tj)2

)1/2

≤ C|u|As

(
#Tj −#Tj0

)−s (8.16)

with a constant C depending only on T, ϑx/ϑ̂x, cη, Cη, c̄a,δ, γ, ωx, δx and �.
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Proof. Let j ≥ j0 with Λj = Λj0 . Due to ([1], Thm. 2.4, [20], Thm. 6.1), and Lemma 8.3,

#Tj −#Tj0 ≤ cT

j−1∑
k=0

#Mk ≤M

j−1∑
k=0

(
‖uk − uΛ‖2A +

cη

1 + γ
osc(uk, Λ, Tk)2

)−1/2s

with M = |u|1/s
As

cTc
−1/2s
red Ĉ1/2s and a constant cT depending only on T. For any j0 ≤ k ≤ j− 1, the lower bound

in Corollary 5.2 implies

‖uk − uΛ‖2A + ωxη2
k ≤

(
1 + ωx

1 + γ

cη

)
‖uk − uΛ‖2A + ωx osc(uk, Λ, Tk)2

≤
(
1 + ωx

1 + γ

cη

)(
‖uk − uΛ‖2A +

cη

1 + γ
osc(uk, Λ, Tk)2

)
.

Furthermore, the contraction property from Theorem 7.3 implies

‖uk − uΛ‖2A + ωxη2
k ≥ δk−j

x

(
‖uj − uΛ‖2A + ωxη2

j

)
.

Consequently,

#Tj −#Tj0 ≤M
(
1 + ωx

1 + γ

cη

)1/2s(
‖uj − uΛ‖2A + ωxη2

j

)−1/2s
j−1∑
k=0

δ(j−k)/2s
x

and since 0 < δx < 1, the remaining sum is

j−1∑
k=0

δ(j−k)/2s
x ≤

∞∑
i=1

δi/2s
x =

δ
1/2s
x

1− δ
1/2s
x

=: D.

The assertion follows with the estimate

‖uj − uΛ‖2A +
cη

1 + γ
osc(uj , Λ, Tj)2 ≤ max

(
1,

cη

ωx(1 + γ)

)(
‖uj − uΛ‖2A + ωxη2

j

)
from (5.8). �

By a similar argument as in Theorem 8.4 leveraging the contraction property in Theorem 7.2 of the full
error, we derive in Theorem 8.6 a statement concerning the convergence behavior of ASGFEM across both types
of refinements.

Lemma 8.5. For all j ∈ N,

#Tj ≤ #T0 + #Ta,supp Λj + cT

j−1∑
k=0

#Mk (8.17)

with a constant cT depending only on T, where we define Mk := ∅ if ηk < �ζk.

Proof. If ηk ≥ ζk, then ([1], Thm. 2.4) and ([20], Thm. 6.1) imply

#Tk+1 −#Tk ≤ cT#Mk.

Conversely, if ηk < �ζk, then Tk+1 = Tk ⊕ Ta,supp Λk+1 , and thus (3.16) implies

#Tk+1 −#Tk ≤ #Ta,supp Λk+1 −#Ta,supp Λk

since Ta,supp Λk
� Tk and Ta,supp Λk

� Ta,supp Λk+1 . The assertion follows by summing over k = 0, . . . , j − 1. �
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Theorem 8.6. If u ∈ As, then for all j ∈ N0,

(
‖uj − u‖2A + ωηη2

j + ωζζ
2
j

)1/2 ≤ C|u|As

(
#Tj −#T0 −#Ta,supp Λj

)−s (8.18)

with a constant C depending only on T, ϑx/ϑ̂x, cη, Cη, c̄a,δ, γ, ωη, ωζ , δ and �.

Proof. Lemmas 8.5 and 8.3 imply

#Tj −#T0 −#Ta,supp Λj ≤ cT

j−1∑
k=0

#Mk

with #Mk = 0 if ηk < �ζk and

#Mk ≤ |u|1/s
As

c
−1/2s
red Ĉ1/2s

(
‖uk − uΛ‖2A +

cη

1 + γ
osc(uk, Λ, Tk)2

)−1/2s

if ηk ≥ �ζk. In this latter case, we use the upper bound in Corollary 5.3 and the lower bound in Corollary 5.2
to estimate

‖uk − u‖2A + ωηη2
k + ωζζ

2
k ≤

(Cη(1 + �−2)
1− γ

+ ωη + ωζ�
−2
)
η2

k

≤ E
(
‖uk − uΛ‖2A +

cη

1 + γ
osc(uk, Λ, Tk)2

)

with E := cη(1 + γ)−1[Cη(1 + �−2)(1 − γ)−1 + ωη + ωζ�
−2]. Theorem 7.2 provides the bound

‖uk − u‖2A + ωηη2
k + ωζζ

2
k ≥ δj−k

(
‖uj − u‖2A + ωηη2

j + ωζζ
2
j

)
,

and thus

#Tj −#T0 −#Ta,supp Λj ≤ |u|
1/s
As

cTc
−1/2s
red Ĉ1/2sE1/2sD

(
‖uj − u‖2A + ωηη2

j + ωζζ
2
j

)−1/2s

with D = δ1/2s(1− δ1/2s)−1. �

Since the error indicator ηj alone is equivalent to the total spatial error by (8.2), the estimate in Theorem 8.6
carries over to the total spatial error with a different constant, thereby extending Theorem 8.4 to the full set of
approximations generated in ASGFEM.

Remark 8.7. Theorem 8.6 can be interpreted as a bound on the number of cells in the mesh Tj ,

#Tj ≤ #T0 + #Ta,suppΛj
+ C1/s|u|1/s

As

(
‖uj − u‖2A + ωηη2

j + ωζζ
2
j

)1/2s
. (8.19)

If the meshes Tā and Ta,m are minimal in T with respect to the partial order � subject to the conditions
‖hTā∇ā/ā‖L∞(D) ≤ c̄a,δ and ‖hTa,m∇am/ā‖L∞(D) ≤ c̄a,δ‖am/ā‖L∞(D), then Ta,suppΛj is minimal in T subject
to ca,δ(Λj , Ta,suppΛj ) ≤ c̄a,δ, i.e. for any mesh T ∈ T, ca,δ(Λj , T ) ≤ c̄a,δ implies Ta,supp Λ � T . In particular,
the term #Ta,suppΛj

in (8.19) is minimal subject to ca,δ(Λj , Tj) ≤ c̄a,δ, and the spatial refinement performed in
ASGFEM in the case ηj−1 < �ζj−1 is the minimal refinement required to ensure this property.
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9. Numerical examples

The implementation of the proposed adaptive algorithm of Section 6 uses the open source framework ALEA [8]
which was already the basis for the ASGFEM in [7]. In comparison to that paper, the main difference here is
the use of a single adaptively refined mesh for all gpc modes. Moreover, higher order conforming finite element
spaces are employed. By the restriction to a single mesh, the projection of solutions between different meshes is
no longer required which was one of the main computational tasks of the first adaptive algorithm. Hence, this
approach represents a substantial simplification for the actual implementation and evaluation of the numerical
solution. In order to distinguish the two approaches, we denote by ASGFEM2 the algorithm presented in this
paper and the preceding algorithm by ASGFEM1. The implementation of ASGFEM2 is based on the code of
ASGFEM1 and follows to a large extend the description given in [7]. There, the construction of the operator
and the treatment of inhomogeneous Dirichlet boundary conditions in the given setting was discussed. For the
adaptive algorithm of Section 6, a different bound for the tail estimation and a modified marking strategy had
to be implemented. Apart from these extensions, only minor adjustments of the existing code were required.

The evaluation of the energy error of the numerical solution with regard to some reference solution is described
in Section 9.1. The performance of the new algorithm applied to some of the benchmark problems from [7] is
assessed in Section 9.2.

Since the construction of different adapted meshes with ASGFEM1 results in an optimised sparse represen-
tation of the problem, it is interesting to compare the adaptive approaches for multi (sparse) and single mesh
adaptivity. This is done in Section 9.3. A central observation in [14] is that higher order approximations can
(under certain conditions) compensate for sparsity which is illustrated by the results, for sufficiently regular
solutions.

9.1. Evaluation of the error

For experimental verification of the reliability of the error estimator, a reference error is computed by Monte
Carlo simulations. For this, a set of M independent realizations {y(i)}Mi=1 of the stochastic parameters is com-
puted. The y

(i)
m are sampled according to the probability measure πm of the random variable ym. The mean-

square error e of the parametric SGFEM solution uN ∈ VN is approximated by a Monte Carlo sample average

‖e‖2V =
∫

Γ

‖u(y)− uN (y)‖2V dπ(y) ≈ 1
M

M∑
i=1

‖ũ(y(i))− uN (y(i))‖2V . (9.1)

Here, the samples y(i) ∈ Γ of parameter sequences are assumed to be statistically independent and identically
distributed with law π. Note that the sampled solutions ũ(y(i)) are approximations of the exact u(y(i)) =
A−1(y(i))f since the operator is discretized on a reference mesh. This mesh is determined as the union of the
finest meshes, i.e., the meshes of the respective last iteration of all polynomial degrees in each experiment, and
a subsequent uniform refinement. Moreover, the expansion (2.1) of the random field a(y, x) is truncated to the
maximal length occuring in the approximate parametric solutions with another 20 gpc modes added to the tail.
We choose M = 150 for the Monte Carlo approximation of the reference error (9.1) which proved to be sufficient
to assess the reliability of the error estimator.

9.2. The stochastic diffusion problem

We examine numerical simulations for the stationary diffusion problem (2.2) in a plane, polygonal domain
D ⊂ R2. Recall from Section 2 that x = (x1, x2) ∈ D denotes points in D and y = (y1, y2, . . . ) ∈ Γ denotes the
parameter sequence in the coefficient (2.1).

As in [7], the expansion coefficients of the stochastic field (2.1) are chosen to be

am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2) (9.2)



1392 M. EIGEL ET AL.

103 104 105

10− 3

10− 2

10− 1

100

101

total degrees of freedom

er
ro

r
es

tim
at

or
(e

ffi
ci

en
cy

)

estimator P 1 efficiency P 1
estimator P 2 efficiency P 2
estimator P 3 efficiency P 3

103 104 105

10− 3

10− 2

10− 1

100

total degrees of freedom

estimator P 1 efficiency P 1
estimator P 2 efficiency P 2
estimator P 3 efficiency P 3

Figure 1. Convergence of the error estimator in the energy norm with FEM of degree 1, 2
and 3 for the stationary diffusion problem on the square with homogeneous Dirichlet boundary
conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total number of degrees of
freedom and efficiency of the error estimator with respect to the MC reference error.

where αm is of the form ᾱm−σ̃ with σ̃ > 1 and some 0 < ᾱ < 1/ζ(σ̃) with the Riemann zeta function ζ.
Then, (2.3) holds with γ = ᾱζ(σ̃). Moreover,

β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m) (9.3)

with k(m) := �−1/2+
√

1/4 + 2m�, i.e., the coefficient functions am enumerate all planar Fourier sine modes in
increasing total order. To illustrate the influence which the stochastic coefficient plays in the adaptive algorithm,
we examine the expansion with slow and fast decay of αm, setting σ̃ in (9.2) to either 2 or 4. The computations
are carried out with conforming FEM spaces of polynomial degree 1, 2 and 3.

For the adaptive algorithm of Section 6.3 the parameters are chosen as

ϑx = 2/5, ϑy = 10 and ε = 10−8 .

The employed quadrature is exact for polynomials up to degree 20.

9.2.1. Square domain

The first example is the stationary diffusion equation (2.2) on the unit square D = (0, 1)2 with homogeneous
Dirichlet boundary conditions and with right-hand side f = 1. The results of the adaptive algorithm of Sec-
tion 6.3 for a slow decay of the coefficients with σ̃ = 2 and a fast decay with σ̃ = 4 are shown in Figures 1 and 2.
The amplitude ᾱ in (9.2) was chosen as γ/ζ(σ̃) with γ = 0.9, resulting in ᾱ ≈ 0.547 for σ̃ = 2 and ᾱ ≈ 0.832 for
σ̃ = 4. Depicted is the residual estimator, the reference error obtained by Monte Carlo sampling, the efficiency
of the estimator and the number of active multi-indices. The observed convergence rate of 1/2 for P1 FEM with
respect to the total number of degrees of freedom, which is the convergence rate for a single non-parametric
problem, coincides with the approximation rates predicted by [5, 13]. Both σ̃ = 2 and σ̃ = 4 afford sufficient
summability of the coefficients of the solution to attain the convergence rate of the spatial discretization for a
single non-parametric problem, as elaborated in [5, 13]. For quadratic and cubic FEM spaces, the convergence
rate increases, also see Figure 9. However, the rate achieved with P3 is not consistently better than that of a
P2 discretisation as the error estimator in Figure 1 might suggest.

The efficiency indices for the different polynomial degrees are similar and lie between 1 and 10. Since the
reliability bound of the error estimator contains unknown constants, the purpose of the efficiency graphs in
this and the next subsection is mainly to illustrate the progression of the estimator/error ratio for polynomial
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Figure 2. Convergence of the error in the energy norm with FEM of degree 1, 2 and 3 for the
stationary diffusion problem on the square with homogeneous Dirichlet boundary conditions
for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total number of degrees of freedom and
active multi-indices.
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Figure 3. Number of mesh cells and active multi-indices with FEM of degree 1, 2 and 3 for the
stationary diffusion problem on the square with homogeneous Dirichlet boundary conditions
for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with respect to total number of degrees of
freedom.

FE degrees 1−3 and not to show the accuracy of the error estimator. We further observe that the number of
activated gpc modes increases substantially with the polynomial degree of the FE approximation. At the same
time, the grids remain relatively coarse in comparison to the P1 FEM. This feature is illustrated in Figure 3
which depicts the number of mesh cells and active multi-indices in the course of the adaptive algorithm. On
the one hand, higher order FEM activate significantly more multi-indices (more than 100) while the mesh is
kept relatively coarse at the same time. On the other hand, P1 FEM leads to a strongly refined mesh and only
few activated multi-indices (less than 10). Of course, higher order finite elements methods compensate for the
coarser mesh through the higher local polynomial degree. The relation of active multi-indices to total energy
error is depicted in Figure 4. This illustrates the independence of the multi-index activation with regard to the
polynomial degree of the spatial approximation.
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Figure 4. Number of active multi-indices with FEM of degree 1, 2 and 3 for the stationary
diffusion problem on the square domain with homogeneous Dirichlet boundary conditions for
slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with respect to the energy error.
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Figure 5. Convergence of the error estimator in the energy norm with FEM of degree 1, 2
and 3 for the stationary diffusion problem on the L-shaped domain with homogeneous Dirichlet
boundary conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total number of degrees
of freedom and efficiency of the error estimator with respect to the MC reference error.

A comparison with regard to the two decay rates reveals that the adaptive algorithm activates more multi-
indices in the case of slower decay (left-hand side in all figures with σ̃ = 2) since more terms in (2.1) are required
for an accurate representation than for faster decay (right-hand side in all figures with σ̃ = 4).

9.2.2. L-shaped domain

A standard benchmark problem for deterministic a posteriori error estimators is the stationary diffusion
problem (2.2) on the L-shaped domain D = (−1, 1)2 \ (0, 1)× (−1, 0). It is well-known that the solution exhibits
a singularity at the reentrant corner at (0, 0) which is resolved by a pronounced mesh refinement in its vicinity.
The convergence of the error estimator and its efficiency with regard to the error determined by (9.1) are
depicted in Figure 5. In Figure 6, the error and the number of active multi-indices are shown. The relation of
active multi-indices to total energy error is depicted in Figure 8. As before, the multi-index activation is (nearly)
independent of the polynomial degree of the spatial approximation.
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Figure 6. Convergence of the error in the energy norm with FEM of degree 1, 2 and 3 for the
stationary diffusion problem on the L-shaped domain with homogeneous Dirichlet boundary
conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay. Total number of degrees of
freedom and active multi-indices.
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Figure 7. Number of mesh cells and active multi-indices with FEM of degree 1, 2 and 3 for the
stationary diffusion problem on the L-shaped domain with homogeneous Dirichlet boundary
conditions for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with respect to total number of
degrees of freedom.

In order to assess the relation between deterministic and stochastic refinement, Figure 7 depicts the number
of mesh cells and active multi-indices in the course of the adaptive algorithm. As compared to the experiment
on the square in Subsection 9.2.1, now the mesh is strongly refined for all polynomial degrees up to about 103

degrees of freedom to resolve the singularity at the reentrant corner. Subsequently, the higher order spatial
discretisations favour the refinement of the stochastic space by activation of new multi-indices while the P1
FEM results in a continued strong refinement of the mesh. Similar to the previous experiment, the efficiency
indices lie closely together between 1 and 10. Preasymptotically, the difference between the two decay rates
with regard to the activated multi-indices is less pronounced than before. This is due to the delayed stochastic
refinement which is an effect of the initial singularity resolution of the adaptive algorithm. The P3 FEM only
leads to marginal improvements of the empirical error convergence as compared to P2 FEM, also see Figure 10.
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Figure 8. Number of active multi-indices with FEM of degree 1, 2 and 3 for the stationary
diffusion problem on the L-shaped domain with homogeneous Dirichlet boundary conditions
for slow (σ̃ = 2, left) and fast (σ̃ = 4, right) decay with respect to the energy error.
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Figure 9. Convergence of the error in the energy norm for the stationary diffusion problem on
the square domain with homogeneous Dirichlet boundary conditions for slow (σ̃ = 2, left) and
fast (σ̃ = 4, right) decay. Comparison of ASGFEM1 (sparse) and ASGFEM2 for polynomial
degrees 1, 2 and 3.

9.3. Comparison of adaptive algorithms

This section is devoted to the comparison of the adaptive algorithms ASGFEM1 of [7] and ASGFEM2 of
Section 6.

In Figure 9, the error graphs for the stationary diffusion problem of Section 9.2.1 for σ̃ = 2 and σ̃ = 4
are depicted for the sparse ASGEM1 and ASGFEM2 with polynomial degrees 1, 2 and 3. The parameters for
ASGFEM1 are set to

c̄Q = 1, c̄η = 1, ϑη = 2/5, ϑζ = 10−1, ϑδ = 10, χ = 1/10, ε = 10−8

with the same ASGFEM2 parameters as above.
It can be observed that the sparse ASGFEM1 with different adapted meshes performs better than ASGEM2

with affine FEM. In particular, the error reduction seems more uniform and the error is smaller than the
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Figure 10. Convergence of the error in the energy norm for the stationary diffusion problem
on the L-shaped domain with homogeneous Dirichlet boundary conditions for slow (σ̃ = 2, left)
and fast (σ̃ = 4, right) decay. Comparison of ASGFEM1 (sparse) and ASGFEM2 for polynomial
degrees 1, 2 and 3.

one obtained with ASGFEM2 for affine FEM. However, for higher order approximations, the new adaptive
algorithm with a single joint mesh outperforms the adapted sparse ASGFEM1 approximations by nearly an
order of magnitude for P3 FEM. Moreover, in terms of the total number of degrees of freedom, the error
reduction rate increases as the polynomial degree used is increased.

In the next experiment, whose results are shown in Figure 10, we examine the two adaptive algorithms
for the stationary diffusion problem on the L-shaped domain introduced in Section 9.2.2. The parameters for
ASGFEM1 are set to

c̄Q = 1, c̄η = 1, ϑη = 3/5, ϑζ = 10−2, ϑδ = 1, χ = 1/10, ε = 10−8

with the parameters of ASGFEM2 as before.
We observe that for this example, ASGFEM1 and ASGFEM2 exhibit nearly identical convergence of the

error for affine finite element spaces. Unlike what we found in the previous comparison, the error graphs for
the P1 FEM lie closely together. Again, for higher order FEM, both the convergence rate and the constants
exhibited with ASGFEM2 are improved over ASGFEM1. However, as mentioned earlier, the error reduction
rate of P3 does not appear to improve significantly over P2 FEM.

10. Conclusions

We analyzed the convergence for a class of adaptive Galerkin discretizations of countably-parametric, self-
adjoint scalar diffusion problems. The Galerkin discretizations are based on a mean-square (with respect to
a probability measure on the infinite-dimensional parameter space) energy (with respect to a variational for-
mulation of the problem in physical space) projection of the parametric solution onto a tensor product of a
polynomial chaos on parameter space and standard, H1-conforming Finite Element spaces on families of adap-
tively refined, regular simplicial triangulations of the physical domain D, subject to the constraint that the same
Finite Element subspaces of H1

0 (D) are used for the approximation of all active polynomial chaos coefficients.
A residual error estimator was proposed which allows to distinguish between error contributions from the poly-
nomial chaos discretization in the parameter space and the Finite Element discretization in physical space. The
estimator was shown to be reliable and, for any fixed set of active gpc modes, efficient (up to a suitable data
oscillation term).
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Based on the splitting of the error contributions in the residual error estimator, we proposed modules
Estimatex, Estimatey and corresponding modules Markx, Marky and Refinex, Refiney in a novel, anisotropic
refinement algorithm. We proved that the proposed algorithm is convergent, i.e. that it produces sequences of
finitely supported iterates and that it terminates after a finite number of iterations for any prescribed tolerance.
We showed quasi-optimality of the spatial adaptations at any fixed, finite set of activated gpc modes in the
Galerkin approximation. On a set of test problems with varying degrees of sparsity in the coefficient sequence
of the gpc expansion of the exact solution and with corner singularities in the physical domain D, the proposed
strategy identifies correctly the sparsity in the gpc expansion and the corner singularities in the physical domain.
The optimality of the combined adaptive algorithm is the subject of further research.
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