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FINITE ELEMENT DECOMPOSITION AND MINIMAL
EXTENSION FOR FLOW EQUATIONS ∗

R. Altmann1 and J. Heiland2

Abstract. In the simulation of flows, the correct treatment of the pressure variable is the key to stable
time-integration schemes. This paper contributes a new approach based on the theory of differential-
algebraic equations. Motivated by the index reduction technique of minimal extension, a remodelling
of the flow equations is proposed. It is shown how this reformulation can be realized for standard finite
elements via a decomposition of the discrete spaces and that it ensures stable and accurate approxi-
mations. The presented decomposition preserves sparsity and does not call on variable transformations
which might change the meaning of the variables. Since the method is eventually an index reduction,
high index effects leading to instabilities are eliminated.
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1. Introduction

A semi-discretization in space of the Navier-Stokes equations (NSE) leads to differential-algebraic equations
(DAE) of differentiation index 2, cf. [42], that take the form

Mu̇+K(u)−BT p = f, u(0) = a, (1.1a)

Bu = 0. (1.1b)

For time integration one has to take care of the differential-algebraic structure that requires implicit schemes
and that can cause a reduction of the convergence order up to possible divergence [16,24]. To avoid divergence
for low-order schemes, a general approach is the remodelling of the equations as an equivalent or arbitrarily
close system of index 1 [16, 24, 42].
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For the semi-discrete NSE a variety of methods has been developed that are successfully applied in the
numerical approximation of unsteady flow. To illustrate the basic ideas and properties, we roughly classify the
most common approaches into penalty methods [20, 35], pressure correction or projection methods [16], and
divergence-free methods.

In penalization methods, one adds a term λ−1p, λ� 1, to the left-hand side of (1.1b) and obtains an ODE
for u via Mu̇ + K(u) − λBTBu = f . In projection methods, also referred to as operator splitting or pressure
correction methods, one uses a guess for the pressure to compute an approximate velocity update ũ via (1.1a)
in every time step. Then, one computes the components ũ = u0 + u⊥, with u0 satisfying Bu0 = 0 and u⊥ being
in the span of M−1BT .

The two mentioned approaches decouple the pressure and velocity computation. This is computationally
beneficial since (1.1) decomposes into two smaller systems. As elaborated in [42], this decoupling is incomplete
and depends strongly on the heuristic penalization parameter, cf. [35], or the time step. Also, as we will reason
in Chapter 3.1, the computation of the pressure from the velocities is ill-conditioned. Another common difficulty
of projection schemes is the need for boundary conditions for the pressure which are unphysical [16].

A complete decoupling is obtained in divergence-free formulations that reduce (1.1a) to an ODE for the
divergence-free components of u. The presence of a divergence-free basis for u is optimal for the approximation
of the velocity since the system is reduced to a subspace of the velocity space and the constraints (1.1b) are
fulfilled a priori. An overview of divergence-free elements is provided in ([16], Chap. 3.13.7). However, these
elements are rarely used in simulations because of their difficult implementation ([16], Chap. 3.12.2).

As an alternative, one may resolve the algebraic constraints numerically, e.g. via a QR-decomposition of B.
This approach is not taken in practice, because the variable transformation u← Qũ is computationally unfeasible
already for moderately sized systems. And again, and this holds also for divergence-free elements, the associated
equation for the pressure is ill-conditioned, as demonstrated in Section 3.1 below. Recent approaches [25] for
the numerical construction of sparse divergence-free bases, i.e., a null space of B, only tackle the problem of
infeasibility.

Note that the use of quasi divergence-free elements, see e.g. [29], reduces the system’s size but leaves the
DAE structure unchanged.

There are plenty of other sophisticated methods in computational fluid dynamics (CFD) that can cope
with the mentioned above difficulties in the stable and consistent approximation of flows, see, e.g., the review
article [33] or the DAE-based approach proposed in [26].

We present a new modelling approach which is appealing because of several reasons. In contrast to established
methods it neither depends on a heuristic parameter nor does it require boundary conditions for the pressure.
It is consistent, i.e. the solution set remains unaltered, and it has a valid representation on the operator level.
Additionally, this technique allows for more general constraints of the form Bu = g �= 0. Such a constraint
appears because of the incorporation of boundary conditions, or, e.g., in the dual equations of optimal control
problems where the pressure is included in the cost functional [21].

Basically, we propose a variant of minimal extension [23, 24] tailored to finite element discretizations of
flow equations. As for the analysis of the abstract setting, we adapt the ideas of [1] where problems from
elastodynamics were considered. In practice, the crucial part in minimal extensions is the right choice of what has
to be added to the equations. For mechanical systems, the needed dummy variables are easily determined [23].
For flow equations, the extension is readily determined only in theory. Considering particular but popular
discretization schemes, we provide algorithms that make the assembling of a minimally extended system feasible.

This new approach can be seen as resolving the algebraic constraints while at the same time avoiding the
difficulties mentioned above. The variables are transformed only via a permutation and thus, keep their physical
meaning. The sole application of a permutation preserves sparsity and is well conditioned. Since the so-called
hidden constraint Bu̇ = 0 is added to the system instead of implicitly eliminated, instabilities are reduced. In
particular, we will show that the method is robust with respect to an error due to the approximate solution of
the algebraic equations.
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Furthermore, the pressure p remains a physically valid part of the system, rather than being eliminated
or functioning as a velocity correction. The increase of the system size may be compensated by the direct
applicability of efficient time stepping schemes.

This paper is organized as follows. In Section 2, the unsteady NSE is formulated as a constrained operator
differential equation. Following the ideas of minimal extension, we reformulate the so-called operator DAE such
that a spatial discretization leads to a DAE of differentiation index 1. This property requires certain assumptions
on the finite element spaces which are presented in Section 3. In particular, a splitting of the velocity ansatz
space is necessary. We show the advantages of this method and give examples for such splittings for standard
discretization schemes such as Crouzeix−Raviart [13] and Taylor−Hood [37]. In Section 4, we present the
benefits of the presented approach for numerical time integration for a non-viscous two-dimensional internal
flow and for the two-dimensional cylinder wake.

2. Operator formulation

We consider the unsteady NSE on a domain Ω ⊂ R
n, n ∈ {2, 3} with twice differentiable boundary ∂Ω in a

time interval (0, T ),

u̇+ (u · ∇)u− 1
Re
�u+∇p = β in Ω × (0, T ), (2.1a)

div u = 0 in Ω × (0, T ), (2.1b)
u = 0 on ∂Ω × (0, T ), (2.1c)

u(·, 0) = a. (2.1d)

This system describes the evolution of the velocity field u(t) ∈ (Ω → R
n) and the pressure p(t) ∈ (Ω → R) for

a given parameter Re > 0, an initial value a ∈ (Ω → R
n) and a volume force β(t) ∈ (Ω → R

n).

2.1. Preliminaries

For the basic definition of Sobolev spaces on a domain Ω, as the space H1(Ω) of square integrable functions
L2(Ω) that possess a weak derivative in L2(Ω), its subspace H1

0 (Ω) of functions that are weakly differentiable
and vanish on the boundary ∂Ω, and of Bochner spaces like L2(0, T ;L2(Ω)) or H1(0, T ;L2(Ω)), we refer the
reader to [36].

To shorten notation, we define the spaces

V := [H1
0 (Ω)]n, H := [L2(Ω)]n, and Q := L2(Ω)/R.

The space V is densely and continuously embedded in H and thus, the identification of H with its dual H′

via the Riesz isomorphism gives the evolution triple V ⊂ H ⊂ V ′. Let W1,2(0, T ) be the space of functions
u ∈ L2(0, T ;V) with weak time derivative u̇ ∈ L1(0, T ;V ′).

We consider a weak formulation of (2.1): given right-hand sides F ∈ L2(0, T ;V ′), G ∈ L2(0, T ;Q′), and an
initial condition a ∈ H, we seek for (u, p) ∈ W1,2(0, T )× L2(0, T ;Q) satisfying

u̇(t) +K(u(t)) − B′p(t) = F(t) in V ′, (2.2a)
Bu(t) = G(t) in Q′, (2.2b)

u(0) = a in H, (2.2c)

a.e. on (0, T ). Because of the differential-algebraic structure in an abstract setting, we call (2.2) an operator
DAE. Therein, the operators K : V → V ′ and B : V → Q′ are defined via

〈K(u), v〉 =
∫

Ω

(u · ∇)u · v dx+
1

Re

∫
Ω

∇u · ∇v dx (2.3)
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and

〈Bu, q〉 =
∫

Ω

(div u)q dx = 〈u,B′q〉, (2.4)

respectively, given u ∈ V and for all v ∈ V and q ∈ Q. Note that system (2.2) not only covers the NSE but also
more general flow equations since we have introduced an inhomogeneity G.

Since B is bounded, the ansatz space V can be decomposed into the divergence-free space Vdf and its orthog-
onal complement V⊥

df with respect to the inner product of V , i.e.,

Vdf := kerB = {u ∈ V | div u = 0}, V = Vdf ⊕ V⊥
df. (2.5)

This implies a unique decomposition of u ∈ V into u = u1 + u2 with u1 ∈ Vdf and u2 ∈ V⊥
df.

2.2. Existence of solutions

Classical existence results consider (2.2) with G(t) = 0 formulated on the subspace of divergence-free functions
Vdf ⊂ V . The problem then turns to: find u1 ∈ L2(0, T ;Vdf) with u̇1 ∈ L1(0, T ;V ′

df) satisfying

u̇1(t) +K1(u1(t)) = F1(t) in V ′
df, (2.6a)

u1(0) = a1 in H, (2.6b)

a.e. on (0, T ). Therein, let F1 ∈ L2(0, T ;V ′
df), a1 be in the closure of Vdf w.r.t. the norm of H, and K1 : Vdf → V ′

df

be defined as in (2.3). The formulation via divergence-free functions particularly eliminates the pressure from
the equations.

There exists a solution u1 ∈ L2(0, T ;Vdf) satisfying (2.6), see ([38], Thm. III.3.1), which is unique in the
two-dimensional case ([38], Thm. III.3.2). Given u, one can generally establish a corresponding pressure p as
a distribution on (0, T ) × Ω, (cf. [38], p. 307). However, the pair (u1, p) only solves (2.2) under additional
regularity conditions, cf. [32], and if a = a1. In particular, if the values in (2.2a) are in H rather than in V ′, then
system (2.2) can be split via the Helmholtz decomposition ([15], Cor. I.3.4) into a part defining u1 ∈ L2(0, T ;Vdf)
and a part that uniquely defines p ∈ L2(0, T ;Q). This additional regularity is given globally in 2D and locally
in time in 3D, if F ∈ L2(0, T ;H) and a ∈ Vdf, (cf. [36], Lems. 25.1, 25.2). Since a solution u1 to (2.2) always
solves (2.6), in 2D, it is unique.

An inhomogeneity G in the constraint (2.2b) is likely to appear in discretized schemes and for more general
boundary conditions. For maximal generality, we will consider it present, as it imposes restrictions on the
solvability of the equations.

Since B : V → Q′ has a right-inverse B−, see ([15], Lem. I.4.1), the complement to u1 is eventually given by
u2 = B−G. Plugging this relation into (2.2), we obtain the remainder system

u̇1(t) +K
(
u1(t) + B−G(t)

)
− B′p(t) = F(t)− B−Ġ(t) in V ′, (2.7a)

Bu1(t) = 0 in Q′, (2.7b)
u1(0) = a− B−G(0) in H, (2.7c)

which is well-posed, only if Ġ is at least in L1(0, T ;Q′). Then, solvability for (2.7) can be established analogously
to solvability for (2.2).

2.3. Index reduction

The spatial discretization of (2.2) leads to a DAE of index 2. Here we use the concept of the perturbation
index [17], that for semi-explicit systems as (2.2) and (2.8) coincides with the differentiation index [11]. Thus,
a system is of index d if d is the smallest integer such that a perturbation of the right hand side δ causes
a deviation in the solution that can be bounded via the first d − 1 time derivatives of δ, (cf. [17], Def. 1.1).
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In numerical simulations, the occurrence of derivatives of perturbations appears as divisions by powers of the
small discretization parameters ([17], p. 1).

Thus, it may be preferable to use equivalent formulations of lower index. The semi-explicit structure of the
NSE allows for minimal extension [23], which reduces the index without transforming the variables. This is
done by adding the time derivatives of the constraints, which leads to an overdetermined system, and then
introducing a minimal number of variables to make the system square again.

Following this idea, we reformulate the operator DAE (2.2) to index-1 form. By this we mean that a certain
discretization in space leads to a DAE of index 1. Using (2.5), we seek in system (2.2) for u1 and u2 instead of
u. The corresponding ansatz spaces read

u1 ∈ W1,2(0, T ) ∩ L2(0, T ;Vdf), u2 ∈ W1,2(0, T ) ∩ L2(0, T ;V⊥
df).

Assuming sufficient regularity, we add the derivative of the constraint, the so-called hidden constraint. Since the
operator B is independent of time, the hidden constraint reads

Bu̇2(t) = B
[
u̇1(t) + u̇2(t)

]
= Ġ(t).

As a second step, we introduce a new variable ũ2 := u̇2. The reformulated and extended problem then reads:
find u1 ∈ W1,2 ∩ L2(0, T ;Vdf), u2, ũ2 ∈ L2(0, T ;V⊥

df), and p ∈ L2(0, T ;Q) such that

u̇1(t) + ũ2(t) +K
(
u1(t) + u2(t)

)
− B′p(t) = F(t) in V ′, (2.8a)

Bu2(t) = G(t) in Q′, (2.8b)

Bũ2(t) = Ġ(t) in Q′, (2.8c)

u1(0) = a1 in H. (2.8d)

Remark 2.1. Since B is constant in time, equations (2.8b) and (2.8c) imply that u2 is in H1(0, T ;V⊥
df) provided

that G ∈ H1(0, T ;Q′).

Remark 2.2. For the spatial discretization in Section 3, we add to (2.8b) and to (2.8c) the vanishing terms
Bu1(t) and Bu̇1(t), respectively. This is necessary since we will deal with nonconforming finite elements, where
the discrete version of u1 does not vanish under the action of B.

The derivation of system (2.8) gives rise to the following theorem.

Theorem 2.3. If G ∈ H1(0, T ;Q′) and a = a1 + B−G(0), then the operator DAEs (2.2) and (2.8) have the
same solution set.

For the proof that the extended operator DAE (2.8) leads to an index-1 DAE, we refer to Section 3.2.

Remark 2.4. For completeness, we want to mention that a straight forward index reduction can be obtained
by adding λBu̇ − λĠ to (2.2b), which is known as Baumgarte stabilization. We will not consider this method
here because of its strong dependence on the parameter λ, cf. [5, 30].

3. Discrete formulation

This section is devoted to the spatial and temporal discretization of the NSE in two space dimensions. We
show that the introduced splitting of the ansatz spaces provides an efficient simulation procedure. Furthermore,
we comment on possible extensions to the three-dimensional case.

We consider spatial discretizations by finite elements, i.e., we construct finite dimensional subspaces Vh

and Qh of V and Q, respectively, based on a triangulation T of the polygonal Lipschitz domain Ω. The tri-
angulation is assumed to be regular in the sense of Ciarlet [12]. Furthermore, we take for granted that the
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triangulation is shape regular ([8], Chap. II.5). In the sequel, N denotes the set of vertices of T and E the set of
edges. The latter consists of interior and boundary edges, namely Eint and Eext. We focus on triangular meshes
but will comment on quadrilateral elements in Section 3.6.

The finite dimensional approximation of the velocity u(t) is given by the coefficient vector q(t) ∈ R
n, which

corresponds to a function in Vh. The discrete representative of the pressure is again denoted by p(t) ∈ R
m. The

semi-discretized version of system (2.2) reads

Mq̇(t) +K(q(t))−BT p(t) = f(t), (3.1a)

Bq(t) = g(t). (3.1b)

Therein, for a given basis {Ψj} of Vh and {ϕi} of Qh,

M = [mjk] ∈ R
n×n, mjk :=

∫
Ω

Ψj · Ψk dx (3.2a)

denotes the positive definite mass matrix and the nonlinear function K is the discrete version of the operator K,

K(q(t)) = [Kj(q(t))], Kj(q(t)) :=
∫

Ω

(q(t) · ∇)q(t) · Ψj dx+
1

Re

∫
Ω

∇q(t) · ∇Ψj dx, (3.2b)

where we have assigned q(t) with its function representation in Vh. The matrix B = [bij ] ∈ R
m×n is defined via

bij =
∫

Ω

ϕi divΨj dx. (3.2c)

In the next subsection, we recall solution strategies of solving system (3.1) with the help of the QR algorithm
and divergence-free finite elements. Afterwards, we propose a different ansatz which is based on the index-1
formulation which arises from the discretization of the operator DAE (2.8). This includes a decomposition of
the finite element space Vh.

3.1. QR Decomposition and divergence-free elements

For completeness, we address the case of eliminating all algebraic constraints and reducing the system to the
so-called inherent or underlying ODE. In other words, we consider here the index-0 formulation of the NSE.

Numerically, this can be achieved by a QR decomposition of B = [0 R]Q, with R invertible and Q unitarian.
With the transformation q =: QT q̃ and the splitting q̃ = [q̃T

1 q̃T
2 ]T , the divergence constraint (3.1b) becomes

q̃2 = R−1g. Then, a scaling of the momentum equation (3.1a) by QT gives the decoupled system

M̃11
˙̃q1 + K̃11(q̃1) = f̃1, (3.3a)

−RT p = −M̃21
˙̃q1 − K̃21(q̃1) + f̃2. (3.3b)

The subscripts refer to the block structure corresponding to the splitting of q̃ and the tilde denotes the coefficients
after the transformation of the system and the substitution of q̃2 by R−1g.

Since M̃11 is invertible, (3.3a) is equivalent to a standard ODE for q̃1. Thus, one can expect stable approx-
imations of q = QT q̃. However, the pressure p as defined by (3.3b) requires ˙̃q1 and K̃21(q̃1), i.e., discrete time
and space derivatives. In a numerical realization, this amplifies a non-smooth error in q̃1 by τ−1 or h−2, where
τ and h are length scales of time and space discretization, respectively.

Any such decomposition would suffer from these instabilities in the pressure approximation for τ and h
tending to zero. In particular, divergence-free elements that directly provide a basis for q̃1, thus, come with the
same difficulties for the pressure reconstruction.
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3.2. Index-1 formulation

As announced above, in this subsection, we show that a proper semi-discretization in space of system (2.8)
leads to a DAE of index 1. Since V was decomposed in Section 2.3 into Vdf ⊕ V⊥

df, we also decompose the finite
dimensional space Vh. We denote the approximation space of Vdf by Vh,1, its complement V⊥

df is discretized
by Vh,2. Furthermore, we assume that the direct sum of Vh,1 and Vh,2 is again Vh. Note that we do not assume
the discretization to be conform, i.e., we allow for Vh,1 �⊂ Vdf and Vh,2 �⊂ V⊥

df, even if Vh ⊂ V .
With q1, q2, and q̃2 denoting the semi-discrete approximations of u1, u2, and ũ2, respectively, we obtain the

spatial discretization of system (2.8) which reads

M

[
q̇1(t)
q̃2(t)

]
+K

([
q1(t)
q2(t)

] )
−BT p(t) = f(t), (3.4a)

B

[
q1(t)
q2(t)

]
= g(t), (3.4b)

B

[
q̇1(t)
q̃2(t)

]
= ġ(t) (3.4c)

with M , K, and B as defined in (3.2) and with the basis of Vh ordered according to its decomposition into Vh,1

and Vh,2. In the sequel, we analyse for which discretizations the DAE (3.4) is of index 1.
We require the standard stability condition for the spatial discretizatio ([15], Chap. II), i.e., there exists a

positive constant c ∈ R such that

inf
qh∈Qh

sup
vh∈Vh

〈Bvh, qh〉
‖vh‖V‖qh‖Q

≥ c > 0. (3.5)

From (3.5) we infer that B has full row rank and that there is a decomposition Vh = Vh,1⊕Vh,2 such that the
submatrix of the columns accounting for Vh,2 is invertible. Formally, we put this into the following assumption.

Assumption 3.1. The finite element spaces Vh,1, Vh,2, and Qh satisfy that the matrix representation B as
defined in (3.2c) has the block structure B = [B1 B2] with a nonsingular square matrix B2 that contains the
columns corresponding to Vh,2.

As a direct consequence of Assumption 3.1, we have that dimVh,2 = dimQh. In Section 3.5 we give examples
how to decompose Vh for certain finite element spaces used in CFD to meet Assumption 3.1.

Theorem 3.2. Every finite element discretization of (2.8) with spaces Vh,1, Vh,2, and Qh satisfying Assump-
tion 3.1 leads to a DAE of index 1.

Proof. We follow the proof of ([24], Thm. 6.12) and show that under Assumption 3.1 the DAE (3.4) has index 1.
A multiplication of (3.4a) by BM−1 from the left and the relation (3.4c) give

−BM−1BT p = BM−1f −BM−1K

([
q1
q2

])
− ġ. (3.6)

Since M is positive definite and B is of full rank by Assumption 3.1, BM−1BT is invertible. Thus, we can
express the pressure p in terms of f , ġ, q1, and q2. By Assumption 3.1 and (3.4b), we have

q2 = B−1
2 g −B−1

2 B1q1. (3.7)

Finally, if we insert (3.6) and (3.7) into equation (3.4a), we obtain

M

[
q̇1
q̃2

]
= f +BT p−K

([
q1
q2

])
=: f∗(f, g, ġ, q1).

Since M is invertible, this provides an ODE in q1. Thus, we can solve for q1, q2 (by (3.7)), q̃2 (by (3.4c)), and
p (by (3.6)), i.e. the DAE (3.4) is of index 1. �
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Remark 3.3. The inf-sup condition (3.5) ensures a bound on the inverse of BM−1BT from equation (3.6)
independent of the discretization parameter h and thus, stability in the spatial approximation of the pressure.

Remark 3.4. The reordering of the basis of Vh, that ensures Assumption 3.1, always exists – if (3.5) holds –
and is basically a permutation of the velocity variables. This time-independent transformation is applied and
inverted in exact arithmetics and preserves sparsity of the coefficient matrices.

3.3. Time integration

The spatially discretized NSE (3.1) represents a semi-explicit index-2 DAE. For these systems, implicit time-
stepping schemes such as the Radau IIa or backward differencing methods provide stable approximations of
arbitrary order, provided that the inhomogeneities are sufficiently smooth [18]. These methods, however, require
the solution of the full coupled nonlinear system at every stage. A compromise of the stability of implicit and
the low computational load of explicit schemes is given by half-explicit schemes, that are explicit in the dynamic
equations and implicit in the algebraic part.

Half-explicit Runge−Kutta (RK) methods were investigated for index-1 DAEs in [4, 27]. Methods for the
index-2 case are provided e.g. in [3, 18]. Generally speaking, the application to index-1 problems is straight-
forward while index-2 problems require specific treatments and possibly additional stages in the RK method.

We illustrate the different behavior with respect to inaccuracies of the index-1 and index-2 formulation of the
NSE, using an explicit Euler method ([16], Chap. 3.16.1) for the dynamical part. Superscripts +, c, and − denote
the next, current, and previous iterates, respectively. For the index-2 equation (3.1), the update to (q+, pc) from
the current iterate (qc, p−) via a time step of length τ is obtained via

[
1
τM −BT

B 0

] [
q+

pc

]
=

[
1
τMqc + f c −K(qc)

g+

]
. (3.8)

For the update of the index-1 formulation (3.4), we propose the solution of

⎡
⎢⎢⎣

1
τM11 M12 −BT

1 0
1
τM21 M22 −BT

2 0
1
τB1 B2 0 0
B1 0 0 B2

⎤
⎥⎥⎦

⎡
⎢⎣
q+1
q̃c
2

pc

q+2

⎤
⎥⎦ =

⎡
⎢⎢⎣

1
τM11q

c
1 + f c

1 −K1(qc
1, q

c
2)

1
τM21q

c
1 + f c

2 −K2(qc
1, q

c
2)

1
τB1q

c
1 + ġc

g+

⎤
⎥⎥⎦ . (3.9)

The different stability properties become evident, if one examines the inherent equation for the pressure up-
date pc, derived via premultiplying the upper part of the equations by BM−1. In the index-2 case (3.8), this
leads to

−BM−1BT pc =
Bqc −Bq+

τ
+BM−1[f c −K(qc)]. (3.10)

The index-1 formulation yields for the pressure

−BM−1BT pc =
1
τ
B

[
qc
1 − q+1
−τ q̃c

2

]
+BM−1[f c −K(qc

1, q
c
2)]. (3.11)

If the equations are solved up to a residual of size εc, the dominating difference in the pressure definition in the
index-1 and index-2 formulation lies in the terms

Bqc − Bq+
τ

=
gc − g+

τ
+
εc − ε+

τ
and

1
τ
B

[
qc
1 − q+1
−τ q̃c

2

]
= −ġ+ + εc. (3.12)

Thus, unlike for the index-1 case, in the index-2 formulation an error in the algebraic constraints is amplified
by 1/τ . This instability is observed in the numerical example in Section 4.
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3.4. Stable discretization schemes

In this section we summarize the most common finite element schemes used in CFD. All mentioned schemes
satisfy the inf-sup (also called Ladyzhenskaya−Babuška−Brezzi) condition (3.5) which is necessary to ensure
stability of the pressure variable ([10], Chap. VI.3). Additional stable schemes are addressed in ([15], Chap. II)
as well as in ([16], Chap. 3).

Using standard notation, we denote by Pk(T ) the space of piecewise polynomials of degree k. The space of
piecewise polynomials which are globally continuous is denoted by

Sk(T ) := Pk(T ) ∩H1(Ω).

With zero boundary conditions, we write Sk,0(T ). For the pressure variable, we introduce the space

P0
0 (T ) := P0(T )/R = P0(T \ {T0}) (3.13)

for some triangle T0 ∈ T , i.e., we fix the pressure by setting it to zero at one triangle T0. Similarly, we define
S0

1 (T ) := S1(T )/R. The discontinuous Crouzeix−Raviart finite element space [13] with zero boundary conditions
is given by

CR0(T ) := P1(T ) ∩ C({mid(E) | E ∈ E}) ∩ {v | v(mid(Eext)) = 0}.
This space contains piecewise affine functions which are continuous at the midpoints of interior edges and vanish
at the midpoints of boundary edges. It is well-known that the [S1,0(T )]2 − P0

0 (T ) scheme is not stable ([10],
Ex. VI.3.1). An alternative low-order scheme was introduced in [13] and is given by

Vh =
[
CR0(T )

]2
, Qh = P0

0 (T ). (3.14)

In [22] yet another finite element space is introduced with less degrees of freedom by the mixture of continuous
and discontinuous velocity components. An alternative approach is to enrich the discrete velocity space S1,0(T )
by bubble functions [41]. Bernardi and Raugel [7] use edge-bubble functions multiplied by the outer normal
vector of the corresponding edge. Such an edge-bubble function is defined as scaled product of the two nodal
hat functions corresponding to the two nodes of an edge. Thus, its support is locally bounded by the two
adjacent triangles. In this way, the fluxes through interior edges provide additional degrees of freedom. This
ansatz is analysed in more detail in Section 3.5.2.

Quite popular are approaches of Taylor−Hood type [37]. Therein, the velocities are approximated by poly-
nomials of one degree higher than the pressure. The Taylor−Hood element of lowest order is defined by

Vh =
[
S2,0(T )

]2
, Qh = S0

1 (T ). (3.15)

Note that the ansatz for the pressure is continuous which yields a more natural model.

3.5. Decompositions of Vh

In this subsection, we derive decompositions of the finite elements schemes mentioned above such that As-
sumption 3.1 is satisfied. Since we do not deal with divergence-free elements, all resulting discretizations schemes
for system (3.4) will be of nonconforming nature. Nonconforming finite element methods, for which the discrete
space is no subspace of the continuous ansatz space, are analysed in ([9], Chap. 10).

We show the construction of Vh,1 and Vh,2 by means of three examples.

3.5.1. Discontinuous velocity

As first example, we consider the discontinuous Crouzeix−Raviart ansatz, introduced in (3.14). This ansatz is
often used since it provides an efficient tool for CFD [6]. A proof of the inf-sup condition (3.5) is given in [6,13].

Let T0 ∈ T denote the triangle on which the pressure is fixed. The following algorithm defines a one-to-one
mapping ι : T \ {T0} → Eint which allows to define the discrete space Vh,2.
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E1
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E3
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E5

Figure 1. Illustration of Algorithm 3.5, ι(Ti) = Ei for i = 1, . . . , 5. Step 2b of the algorithm
is applied once to reset T := T0.

Algorithm 3.5 (Mapping ι).

Step 1. Choose any T ∈ T \ {T0} which shares an edge with T0 and denote this edge by E := T0 ∩ T ∈ Eint.
Then, define ι(T ) := E and TR := T \ {T0, T }. If TR = ∅, then stop.

Step 2. If T from the previous step has an edge-neighbour in TR, then continue with Step 2a. Otherwise, go
to Step 2b.

Step 2a. Select such a neighbouring triangle S ∈ TR and set E := T ∩ S ∈ Eint. Furthermore, set ι(S) := E
and TR := TR \ {S}. If TR = ∅, then stop. Otherwise, return to Step 2 with T := S.

Step 2b: Reset T ∈ T \ TR such that there exists an edge-neighbour in TR and return to Step 2.

An illustration of the algorithm is shown in Figure 1.

Remark 3.6. Step 2b of Algorithm 3.5 is realizable since TR �= ∅ and Ω is assumed to be connected with
Lipschitz boundary. Furthermore, the algorithm terminates in finite time since the number of triangles is finite
and Step 2a reduces the set of triangles TR by one in at least every second iteration.

Remark 3.7. In the sequel, we will benefit of an order of the triangles T \{T0}, given by their first appearance
in Algorithm 3.5, namely {Tj}j=1,...,|T |−1.

Let φE denote the Crouzeix−Raviart basis function for an edge E ∈ Range(ι) ⊂ Eint, i.e., φE is piecewise
linear with the value 1 at the midpoint of E and 0 at the midpoint of any other edge. The corresponding triangle
T = ι−1(E) lies in the support of φE and thus, φE |T cannot be constant. As a consequence, the divergence of
either [

φE

0

]
or

[
0
φE

]

has to be nonzero. Let ΦE denote one of these basis functions with div(ΦE |T ) �= 0. In the same manner, we
select a basis function for every edge in the range of ι and obtain the ansatz space

Vh,2 := span{ΦE | E ∈ Range(ι)}. (3.16)

All remaining basis functions span the discrete space Vh,1. With the given decomposition of Vh, we obtain the
following result.
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Lemma 3.8 (Decomposition for Crouzeix−Raviart). The discretization scheme Vh −Qh from (3.14) with the
decomposition Vh = Vh,1 ⊕ Vh,2 defined in (3.16) satisfies Assumption 3.1.

Proof. The matrix B2 from Assumption 3.1 corresponds to the discrete space Vh,2 and is defined by

B2,ij =
∫

Ω

χi div(Φj) dx =
∫

Ti

div(Φj) dx. (3.17)

Therein, {Φj} denote the basis functions of Vh,2 and {χi} the basis functions of Qh, i.e., χi = 1 on the triangle Ti

and 0 elsewhere. Note that χ0, where the pressure is fixed to be 0, is not a basis function ofQh and, thus, excluded
from the considerations. Also, note that we assume an order of the basis functions according to Remark 3.7.
Since div(Φi) �= 0 on Ti by construction, the diagonal entries of B2 are nonzero. Furthermore, every column can
only have two entries because of the support of edge-bubble functions. By the construction of Algorithm 3.5,
the second entry can only be above the diagonal and thus, B2 is upper triangular and nonsingular. �

Remark 3.9 (Outflow boundary conditions). For flow problems that have an outflow with homogeneous
Neumann or do nothing conditions, the pressure must not be fixed, cf. (3.13). In this case, Algorithm 3.5
defines Vh,2 if one starts with a T0 that shares an edge E0 with the outflow boundary. Then, the inclusion of
χ0 in the definition (3.17) leads to a B2 ∈ R

m,m−1 that is Hessenberg with the last column missing and with
nonzero entries on the subdiagonal. Adding the ΦE0 to Vh,2 for which div(ΦE0 |T0) �= 0, we add a column that
is zero except from the first row’s entry and that makes B2 square and invertible.

Remark 3.10 (Condition number). The condition number of the matrix B2 obtained by Algorithm 3.5 and
Lemma 3.8 scales as h−1 where h denotes the mesh-size. For a uniform mesh of the unit square where Algo-
rithm 3.5 runs without reset, i.e., without entering step 2b, the matrix B2 has the structure

B2 =

⎡
⎢⎢⎢⎢⎣

h h
. . .

. . .

. . . h
h

⎤
⎥⎥⎥⎥⎦ , B2B

T
2 = h

⎡
⎢⎢⎢⎢⎣

h 1

1
. . .

. . .
. . .

. . . 1
1 h

⎤
⎥⎥⎥⎥⎦ .

The eigenvalues of h−1B2B
T
2 are given by

λj = h+ 2 cos
(
jπh2/2

)
, j = 1, . . . , n = 2h−2 − 1.

Hence, a rough estimate of the condition number yields

condB2 =
λmax

λmin
≈ h+ 2

h
≈ 2
h
·

Note, however, that a degeneration of the mesh may lead to large deviations.

Remark 3.11 (Extension to three space dimensions). The finite element spaces Vh and Qh of this subsection
have a straighforward analogon in three space dimensions [13]. Also Algorithm 3.5 can easily be adapted by
the use of tetrahedra and faces in place of triangles and edges. Hence, the given results also apply for three-
dimensional simulations.

3.5.2. Continuous velocity

The second example applies a continuous approximation of the velocity but keeps the piecewise constants
for the pressure as in (3.14). Since the [S1,0(T )]2 −P0

0 (T ) scheme is known to be unstable, the ansatz space Vh
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E

Figure 2. Illustration of the vector-valued function ΥE = ϕ1ϕ2νE .

is enriched by a special type of edge-bubble functions. As in [7, 15], we define for an interior edge E ∈ Eint the
function

ΥE := ϕ1ϕ2νE ∈ V .
Therein, νE denotes the outer normal vector and ϕ1, ϕ2 the hat-functions corresponding the vertices of the
edge E. For an illustration of ΥE see Figure 2. This yields as ansatz spaces for the velocity and the pressure,

Vh = [S1,0(T )]2 ⊕ {ΥE | E ∈ Eint}, Qh = P0
0 (T ). (3.18)

The proof of the corresponding inf-sup condition can be found in [7]. In order to define the subspace Vh,2, we
again use the mapping ι : T \ {T0} → Eint given by Algorithm 3.5. Therewith, we define

Vh,2 = {ΥE | E ∈ Range(ι)} (3.19)

and Vh,1 as the span of all remaining basis functions of Vh.

Lemma 3.12 (Decomposition for Bernardi–Raugel). The discretization scheme Vh −Qh from (3.18) with the
given decomposition Vh = Vh,1 ⊕ Vh,2 defined in (3.19) satisfies Assumption 3.1.

Proof. Note that the structure of B2 is as in Lemma 3.8. Thus, it remains to show that the integral of div ΥE

does not vanish. By definition of ΥE , it holds that

div ΥE = ∇(ϕ1ϕ2) · νE = ϕ1∇ϕ2 · νE + ϕ2∇ϕ1 · νE .

Hence, for a triangle T with edge E,∫
T

div ΥE dx = ∇ϕ2 · νE

∫
T

ϕ1 dx+∇ϕ1 · νE

∫
T

ϕ2 dx

=
|T |
3

(
∇ϕ2 +∇ϕ1

)
· νE .

Let [xi, yi]T , i = 1, 2, denote the coordinates of the nodes corresponding to ϕ1 and ϕ2, respectively. Without
loss of generality, we assume that the third node is located in [0, 0]T . Then, the outer normal vector for E is,
up to a constant, given by νE =

[
y1 − y2, x2 − x1

]T . The hat-functions are defined by

ϕ1(x, y) =
1
d

(
y2x− x2y

)
, ϕ2(x, y) =

1
d

(
− y1x+ x1y

)
with d = x1y2 − x2y1 �= 0 since the triangle is part of a regular triangulation. Thus, we obtain

(
∇ϕ2 +∇ϕ1

)
· νE = −1

d

(
(x1 − x2)2 + (y1 − y2)2

)
�= 0

and therefore the claim
∫

T
div ΥE dx �= 0. �

Remark 3.13. As for the Crouzeix−Raviart case, the scheme (3.18) can be extended to the three-dimensional
case [7]. Accordingly to Lemma 3.12, one can show that the integral of the divergence of the basis functions
does not vanish on certain tetrahedra. The full-rank property of B2 then follows as in the two-dimensional case.
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Figure 3. Sample of a triangulation T and its decomposition into three macro elements.

3.5.3. Continuous pressure

This subsection is devoted to the decomposition of the popular Taylor−Hood element [37] in which the
discretized pressure is continuous and the velocity is of higher order. The finite element spaces for this case are
given in (3.15). The proof of the inf-sup condition is given in [40] or, using local arguments and macro elements,
in ([15], Chap. 2.4.2). In the sequel, vp denotes the boundary node on which the pressure has no degree of
freedom.

As in ([15], Chap. II.4), we consider a triangulation T which can be decomposed into macro elements in
the form of node patches (of interior nodes), see Figure 3. Thus, we assume that there exist macro elements
{Ωr}r=1,...,R, each with exactly one interior node, which form a partition of Ω̄. The triangulation of Ωr is given
by the restriction of T on Ω̄r and is denoted by Tr. In addition, we assume that the macro elements are ordered
such that vp is a node of T1 and that Tr, 2 ≤ r ≤ R, has a common node with at least one Tk for some k ≤ r−1.
In order to decompose the finite element space Vh such that Assumption 3.1 is fulfilled, we establish a one-to-one
map j : N \ {vp} → Eint. We define j by the following algorithm, which additionally introduces sets of nodes
Ir ⊂ N (Tr).

Algorithm 3.14 (Mapping j). Set NR := N \ {vp}. Iterate over macro elements, i.e., over 1 ≤ r ≤ R:

Step 1. Consider the nodes Ir := NR ∩ N (Tr) = {v0, . . . , vk(r)} where v0 denotes the middle node, as shown
in Figure 4.

Step 2. Define Ej as the edge between v0 and vj for j = 1, . . . , k(r) and E0 as any other edge of E(Tr) which
has v0 as an endpoint.

Step 3. Set j(vj) := Ej for j = 0, . . . , k(r) and reset NR := NR \ Ir. If r �= R, return to Step 1 with
r := r + 1.

Remark 3.15. The order of the macro elements and the fact that vp ∈ N (T1) guarantees that at least one
node of N (Tr) is not included in NR ∩ N (Tr). As a consequence, the second step of Algorithm 3.14 is always
realizable.

It remains to define the subspaces Vh,1 and Vh,2. Similar to the previous decompositions, let ΨE denote a
function which vanishes in one component and equals the corresponding edge-bubble function ψE in the other
component. The precise order of the two components depends on the geometry, see the discussion for n-gons
below. We then define

Vh,2 := span{ΨE | E ∈ Range(j)}
and Vh,1 as the span of all remaining basis functions of Vh.

In the sequel, we denote by BIr the submatrix of B which corresponds to the pressure nodes Ir (defined in
Algorithm 3.14) and the edge-bubble functions of edges in j(Ir).
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v1
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v3

v4v0

E1

E2
E3

E4

E0

Figure 4. A single macro element Ωr with an illustration of the map j : N \ {vp} → Eint,
j(vk) = Ek. Nodes of the type ◦ are not part of Nr and thus, already covered by previous macro
elements.

Lemma 3.16 (Localization of Taylor−Hood). Let T be a triangulation which can be decomposed into macro
elements as illustrated in Figure 3. If all submatrices BIr , 1 ≤ r ≤ R, are invertible, then the discretization
scheme (3.15) with the decomposition Vh = Vh,1 ⊕ Vh,2 satisfies Assumption 3.1.

Proof. We show that the invertibility of the matrix B2 from Assumption 3.1 follows from the invertibility of
the local matrices. For this, the essential observation is that the ordering of macro elements together with
Algorithm 3.14 leads to the block structure

B2 =

⎡
⎢⎢⎢⎣
BI1 ∗ ∗ ∗

BI2 ∗ ∗
. . . ∗

0 BIR

⎤
⎥⎥⎥⎦ .

Thus, the invertibility of BIr , 1 ≤ r ≤ R, gives the assertion. �
Remark 3.17 (n-gons). On equlilateral n-gons, the invertibility of the submatrix BIr depends on a single
parameter, namely the angle enclosed by an interior edge and the x-axis. Let αj denote the angle enclosed by
the interior edge Ej and the x-axis. Then, the decision rule

ΨEj =
[

0
ψEj

]
, if − π

6
< αj + �π <

π

3
, ΨEj =

[
ψEj

0

]
otherwise

for � ∈ Z and j = 0, 1, . . . , k(r) renders the via Algorithm 3.14 obtained matrix BIr invertible. This observation
has been numerically proven correct for 3 ≤ n ≤ 9 using the code available from the author’s github account [19].

Lemma 3.18 (Anisotropic scaling). Consider a patch Ωr with nonsingular matrix BIr . Then, BIr remains
nonsingular under anisotropic scalings of Ωr, i.e., transformations of the form S(x, y) = (ax, by) with a, b > 0.

Proof. Let Ω̂r = S(Ωr) denote the transformed patch and ϕ̂i, Ψ̂j the corresponding basis functions. Since
| detDS| = ab �= 0, the transformation formula gives for a transformed entry of BIr ,

B̂Ir,ij =
∫

Ω̂r

ϕ̂i div Ψ̂j dx = ab

∫
Ωr

ϕi

(
a
∂

∂x
Ψj + b

∂

∂y
Ψj

)
dx.

Since Ψj vanishes in one component, it holds B̂Ir,ij = c ·BIr,ij with either c = a2b or c = ab2. In any case, this
constant is the same for the entire column of BIr and thus, just a nonzero factor of the determinant. �



FINITE ELEMENT DECOMPOSITION AND MINIMAL EXTENSION FOR FLOW EQUATIONS 1503

Remark 3.19 (Extension to three space dimensions). Also the Taylor−Hood scheme (3.15) has an extension
in three space dimensions. However, the algorithm to find an invertible block of the B matrix is much more
involved.

3.6. Quadrilateral meshes

We close this section with a brief overview of stable finite element schemes on quadrilateral meshes and
corresponding decompositions of the velocity space. Here, the triangulation T is supposed to be a partition of
Ω̄ into convex quadrilaterals. For quadrilateral elements, one considers the space of piecewise polynomials of
partial degree k which are globally continuous.

As for the triangular case, there are finite element schemes of Taylor−Hood type ([15], Chap. II.3.2)
and Bernardi−Raugel type where the velocity space is enriched by the fluxes through interior edges ([15],
Chap. II.3.1). The analog of the discontinuous approach of Crouzeix−Raviart was introduced by Rannacher
and Turek [34] and is given by

Vh = [Q̃1,0(T )]2, Qh = P0
0 (T ). (3.20)

Therein, Q̃1,0 denotes the nonconforming space which has one degree of freedom per interior edge. In contrast
to the Crouzeix−Raviart element, functions in Vh are not piecewise affine. Piecewise affine functions which are
continuous in the midpoints of edges were introduced by Park and Sheen [31], see also [2]. Unfortunately, there
is no known stability result for this kind of element.

In a thorough analysis by Turek, the nonconforming element (3.20) was found superior over comparable
conforming elements in terms of stability, accuracy, and efficiency ([39], Chap. 3.1.1). The higher stability
and accuracy of the nonconforming scheme is ascribed to the robustness of the inf-sup constant against mesh
deformations.

A decomposition of Vh from (3.20) into Vh,1 and Vh,2 in the sense of Assumption 3.1 works exactly as in
Section 3.5.1.

4. Numerical examples

This section illustrates the benefits of the index-1 formulation (3.4) for numerical time integration by means
of two examples.

4.1. Flow in a square

As a first example we consider a flow in a square with a constructed solution. To isolate the high index effects,
we consider a variant of (2.1) without the term 1

ReΔu which introduces stiffness to the spatially discretized
system and thus, step size restrictions for explicit schemes. As exact solution for the velocity field and the
pressure in time and the two spatial coordinates, we set

u1(t;x1, x2) = 2 sin(8t) · x2
1(1 − x1)2x2(1 − x2)(2x2 − 1),

u2(t;x1, x2) = 2 sin(8t) · x2
2(1 − x2)2x1(1 − x1)(1 − 2x1),

p(t;x1, x2) = sin(8t) · x1(1 − x1)x2(1− x2).

The corresponding right-hand sides as well as the boundary and initial values are constructed accordingly. On
the computational domain (0, T ) × Ω := (0, 1) × [0, 1]2, this gives zero initial and zero Dirichlet boundary
conditions.

The triangulation TN of the spatial domain is characterized by the parameter N , meaning that the unit
square is uniformly divided into (N − 1)2 squares that are clusters of four triangles each, see Figure 5. Besides,
we choose as velocity and pressure state space the Taylor−Hood discretization (3.15).

This criss-cross triangulation and the Taylor−Hood elements enable the splitting Vh = Vh,1 ⊕ Vh,2 via Algo-
rithm 3.14, cf. also Lemma 3.16 and Remark 3.17. Thus, the square matrix B2 as defined in Assumption 3.1 is
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Figure 5. Illustration of the velocity field at t = 1
4 and of the criss-cross triangulation for N = 5.

invertible and the index-1 formulation (3.4) is applicable. To investigate the time integration error, we discretize
the time interval into 2k + 1, k = 4, . . . , 10, time instances and apply the semi-explicit Euler method. For the
index-1 and index-2 formulations, this leads to the update formulas (3.9) and (3.8), respectively.

The resulting linear systems are solved iteratively up to an absolute residual smaller than tol. Since the solver
considers relative residuals, in every iteration we corrected the tolerance by the factor 1/‖ rhsc ‖, where rhsc is
the current right-hand side. For computing ‖ rhsc ‖ and the residuals, we use the norms induced by the inner
product of the discrete L2-spaces. For the index-2 system, this is the inner product with respect to the inverses
of the mass matrices of the finite element bases. In the solution of the index-1 update (3.9), where we used the
block preconditioner with [M−1

D , B−1
2 MD,2B

−T
2 , B−1

2 ] on the diagonal with MD denoting the diagonal of the
mass matrix of the velocity space, this was approximated by the scalar product weighted by the mass matrices.
Note, that the use of B−1

2 is cheap, because of the blockdiagonal structure, cf. the proof of Lemma 3.16. It has
turned out that for the numerical approximation of the index-2 formulation (3.8), it is beneficial to scale the
differential equation by τ .

By construction, the exact solution is known. The error of the numerical approximation is measured by taking
the L2-norm in space and evaluating the L2-norm in time with the piecewise trapezoidal rule.

The numerical experiments show the improvements of the index-1 formulation for the pressure approximation,
see Figure 6. As predicted by the theoretical considerations in (3.12), in the index-2 formulation, a numerical
error in the algebraic constraints leads to a linear growth in the pressure error with decreasing time step sizes.
A smaller residual in the continuity equation only postpones this instability. In the index-1 formulation, this
systematic instability is not observed.

Remark 4.1. As it can be expected from (3.12), the pressure is better approximated for the index-1 formulation
despite the fact that the residuals in the continuity constraint are larger. This difference in the residuals can be
explained by two factors. First, different preconditioning leads to different residuals considered by the solver.
Second, the continuity constraint residual as a part of the overall residual has a stronger weight in (3.8) than
in (3.9).

The expected linear convergence in the pressure approximation, see ([18], Chap. VII.4), is not observed
here. This is due to the dominance of the algebraic (for tol = 9.8 · 10−4) or the spatial discretization error
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Figure 6. The evolution of the errors or residuals of the index-2 (left) and index-1 (right)
formulation for varying time discretization parameter τ and tol for the flow on the square. The
space discretization is fixed with N = 40. The dashed lines are the linear fit.

(for lower tolerances in the linear system solves). This guess is backed by the convergence plot for a finer spatial
discretization (N = 100) and direct solves of the linear systems showing linear convergence for coarser time
discretizations, see Figure 7.

4.2. Cylinder wake

As second example we consider the Navier-Stokes equations for the simulation of a cylinder wake as illustrated
in Figure 8. As boundary conditions we set no-slip at the walls, a parabola as the inflow profile at the left
boundary, and do-nothing conditions at the outflow at the right. We consider the flow at Re = 60, calculated
with the cylinder diameter and the peak inflow velocity. We consider the time evolution of the flow in [0, 0.2],
starting with the steady-state Stokes solution.

For the spatial discretization, we use Crouzeix−Raviart elements on a nonuniform mesh with about 15 000 ve-
locity nodes and 5000 pressure nodes. We employ Algorithm 3.5 with the modification proposed in Remark 3.9
to compute the splitting Vh = Vh,1 ⊕ Vh,2 that we need for the index-1 formulation (3.4).
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Figure 7. The evolution of the errors in the pressure approximation for various time step
lengths τ , for the spatial discretizationN = 100, and for direct solves of the algebraic equations.
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Figure 8. Illustration of the cylinder wake with Re = 60, started at the steady-state Stokes
solution, at time t = 0.2.

To account for the stiffness, we now consider an implicit-explicit Euler scheme for the discretization which
treats the linear diffusion implicitly and the nonlinear convection explicitly. Thus, we consider the update
formulas (3.8) and (3.9) but with the discretized diffusion operator appearing in the coefficient matrix.

As in the previous example, we compute the approximation error for various time steps τ and for various
accuracy levels tol for the iterative solution of the resulting linear systems. Since there is no analytical solution,
we take the result of solving (1.1) with the implicit trapezoidal rule with direct solves and with τ = 0.2 · 2−11 ≈
10−4 as the reference.

The results of the numerical investigation are illustrated in Figure 9. Again, the inherent instability of the
index-2 formulation is obvious in the plots of the pressure error. Furthermore, since for the cylinder wake
the velocity is not discretely divergence free, i.e., g in (3.1b) is not zero due to the boundary conditions, the
poor pressure approximation directly affects the velocity approximation. On the other hand, in the index-1
formulation, the expected linear convergence with respect to the time discretization is confirmed both for the
velocity and the pressure approximation. A breakdown due to the algebraic error is only observed for a rough
tolerance for the linear solver.

The difference in the residual levels in the continuity equation is due to the different preconditioning and
different weighting of the overall residuals, cf. Remark 4.1. In the numerical tests for the index-1 case, we first
observed a steady decrease with τ in the residual. This was due to fact that a factor of 1/τ enters the tolerance
correction 1/‖ rhsc ‖ through the third line in equation (3.9). Therefore, in the computation of the correction
we have scaled this equation by

√
τ which only worsens the approximation of the linear system.

The code used for the numerical investigations is available from the author’s github account [19]. The finite
element implementation uses FEniCS, Version 1.3.0, [28], the linear systems are solved with Krypy [14].
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Figure 9. The evolution of the errors or residuals of the index-2 (left) and index-1 (right)
formulation for varying time discretization parameter τ and tol for the cylinder wake. The
dashed lines are the linear fit. The additional data points for the index-1 case are calculated
for the much rougher tolerance tol = 3.9 · 10−3. The additional data points in the index-2 plots
are the results for exact solves of the algebraic equations.

5. Conclusion

We have presented a new numerical approach to the unsteady NSE by a remodelling of the governing equa-
tions. Using analytical insight into the discrete spaces, we made the principles of the index reduction technique
of minimal extension applicable to finite element schemes. In particular, the proposed variant preserves sparsity
and maintains the physical meaning of the variables since only a permutation is applied. Unlike in penalization
or in projection methods, our approach does not require time step restrictions or artificial boundary conditions
for the pressure.

The necessary splitting of the finite element space is operated for commonly used Taylor−Hood and
Crouzeix−Raviart finite element discretizations. We showed applicability of the proposed algorithms in two
numerical examples that backed our theoretical findings. It has also turned out, that for stiff systems as the
NSE for viscous fluids, one can consider a combination of our method with IMEX schemes that are implicit in
the stiff linear part and explicit in the nonlinearity.
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We remark that the presented theory ensures consistency and stability of the half-explicit method. In view of
efficiency, for practical computations, suitable preconditioners will be necessary which are not yet available for
the newly developed index-1 formulation (3.9). However, probably due to the gained stability, for the viscous
flow around the cylinder, the GMRes iterations for the index-1 system converged significantly faster despite the
increased system size if compared to the index-2 formulation.
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