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OPTIMAL TRANSPORT WITH COULOMB COST. APPROXIMATION
AND DUALITY ∗, ∗∗, ∗∗∗

Luigi De Pascale1

Abstract. We revisit the duality theorem for multimarginal optimal transportation problems. In par-
ticular, we focus on the Coulomb cost. We use a discrete approximation to prove equality of the extremal
values and some careful estimates of the approximating sequence to prove existence of maximizers for
the dual problem (Kantorovich’s potentials). Finally we observe that the same strategy can be applied
to a more general class of costs and that a classical results on the topic cannot be applied here.
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1. Introduction

This paper deals with the following variational problem. Let ρ ∈ P(R3) be a probability measure (ρ will be
called electronic density) and let

c(x1, . . . , xN ) =
∑

1≤i<j≤N

1
|xi − xj |

be the Coulomb cost. Consider the set Π(ρ) = {P ∈ P(R3N) | πi�P = ρ}, where πi denotes the projection on
the ith copy of R

3 and πi�P is the push-forward measure. We aim to minimize

min
Π(ρ)

∫
RNd

c(x1, . . . , xN )dP (x1, . . . , xN ). (1.1)

This problem fits in the general framework of multimarginal optimal transportation problems. In particular
it is the multimarginal optimal transportation problem with all the N marginals coinciding with ρ and with
Coulomb cost.
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In contrast with the classical two-marginal optimal transportation problems, the theory of multimarginal
optimal transportation problems is still at the beginning and many relevant open problems need to be studied.
Some general results are available in [4, 17, 21–23], results for special costs are available, for example in [11] for
the quadratic cost with some generalization in [15], and in [5] for the determinant. Some new applications are
emerging for example in [12].

In the particular case of the Coulomb cost there are also many other questions related to the applications.
Recent results on the topic are contained in [3,6–8,10] and some of them will be described better in subsequent
sections.

The literature quoted so far is not at all exaustive and we refer the reader to the bibliographies of the cited
papers for a more detailed picture. However, in the author’s opinion, at the moment the wealth of problems
obscures the body of known results. In this paper we will focus on the Kantorovich duality for problem (1.1).
We denote by ρN the product measure ρ⊗ . . .⊗ ρ︸ ︷︷ ︸

N−times

. We will prove that

min
Π(ρ)

∫
RNd

c(x1, . . . , xN )dP (x1, . . . , xN )

= sup
{
N

∫
udρ : u ∈ L1

ρ, u(x1) + . . .+ u(xN ) ≤ c(x1, . . . , xN ), ρN − a.e.
}

(1.2)

and that the right-hand side of (1.2) admits a maximizer which is, in particular, bounded. Thanks to the
symmetries of the problem we also have that the right-hand side of (1.2) coincide with

sup

{
N∑
i=1

∫
uidρ : ui ∈ L1

ρ, u1(x1) + . . .+ uN(xN ) ≤ c(x1, . . . , xN ), ρN − a.e.

}
.

Infact, this last sup is a priori bigger then (1.2). Since for any admissible N -tuple (u1, . . . , uN ) the function

u(x) =
1
N

N∑
i=1

ui(x) is admissible for the previous problem, equality holds.

Some of the basic ideas originated in the paper [17]. However, in Remark 3.14, we will show that Theorem 2.21
of [17] does not apply to the Coulomb cost in order to prove that a maximizer of the dual problem exists. The
tools will be Γ -convergence and some careful estimates of the maximizers of the approximating problems.

We remark that a necessary but not sufficient assumption for (1.1) to be finite is that ρ is not concentrated
on a set of cardinality ≤ N − 1. We will assume this whenever needed.

We will adopt the notations x = (x1, . . . , xN ) ∈ R
3N so that xi ∈ R

3 for each i ∈ {1, . . . , N}. And ρ − inf
will denote both the essential ρ infimum or the essential ρN−1 infimum depending on the number of variables
involved.

1.1. Motivations

The main object in the quantum mechanical modeling of a particle with N electrons is a wave-function ψ,
i.e. an element of

A :=
{
ψ ∈ H1((R3 × Z2)N ,C) : ‖ψ‖L2 = 1

}
.

The space (R3 × Z2)N is the configuration space for the N electrons. In fact, the state of each electron is
individuated by the position in R

3 and the spin in Z2. While it is easy to understand the interpretation of the
position variable, the notion of spin is slightly more difficult to grasp. We may roughly explain it as follows:
when a magnetic field is applied to the electron of position x0 velocity v0, the electron may be deflected in two
different ways which are characterized by the two possible spins. The name is then reminiscent of the behavior
of a spinning top which hits a wall with a certain translational velocity in a point p0 and may rebound in two
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different directions depending on the whirling direction. However this analogy, although suggestive, is not the
historical one nor can be considered physically meaningful.

It is easy, once we free ourself from this last analogy, to imagine the possibility of a spin variable with values
in Zk or other spaces.

The quantity
|ψ((x1, α1), . . . , (xN , αN ))|2

represents the probability that the N electrons occupy the state ((x1, α1), . . . , (xN , αN )) and then, since the
electrons are indistinguishable ψ satisfies

|ψ((xσ(1), ασ(1)), . . . , (xσ(N), ασ(N)))|2 = |ψ((x1, α1), . . . , (xN , αN ))|2

for all permutations σ of the N electrons. This brings to introduce the distinction between Fermionic and
Bosonic particles, however such distinction will not have relevance here since we will discuss duality for a
relaxed problem. The distinction may be instead relevant when discussing the relaxation process. A particle is
Fermionic if

ψ((xσ(1), ασ(1)), . . . , (xσ(N), ασ(N))) = sgn(σ)ψ((x1, α1), . . . , (xN , αN )),

and Bosonic if
ψ((xσ(1), ασ(1)), . . . , (xσ(N), ασ(N))) = ψ((x1, α1), . . . , (xN , αN )).

Since the spin will not play any role in the rest of the paper we will consider wave-functions depending only
on the positions of the electrons. Including the dependence on the spin is just a matter of adding a summation
over the two possible values in the formulas (below we give an example in the case of kinetic energy). In the
simplest situation the electrons move with a certain velocity while interacting with the nuclei (or, equivalently,
with an external potential) and with each other. The interaction with the nuclei and the interaction between
electrons are of Coulombian nature. So if we assume that there are M nuclei with charge Zi and position Ri

the interaction potential in the position x will be v(x) = −
M∑
i=1

Zi
|x−Ri| . Then the energy of a particular state

of the particle is made of three parts:
the Kinetic energy2

T [ψ] =
1
2

∫
R3N

|∇ψ(x1), . . . , xN )|2dx1 . . . dxN ,

the electron-nuclei interaction energy

Vne[ψ] =
N∑
i=1

∫
R3N

v(xi)|ψ(x1, . . . xN )|2dx1 . . . dxN ,

the electron-electron interaction energy

Vee[ψ] =
∑

1≤i<j≤N

∫
R3N

1
|xi − xj | |ψ(x1, . . . , xN )|2dx1 . . .dxN .

A relevant quantity in quantum mechanics, quantum chemistry and other disciplines is the ground state
energy of an atom

E0 = min
ψ∈A

T [ψ] + Vee[ψ] + Vne[ψ].

2If we want to include the “spin coordinate” in the state of the particle then

T [ψ] =
1∑

α1,...,αn=0

1

2

∫
R3N

|∇ψ((x1, α1), . . . , (xN , αN ))|2dx1 . . .dxN .
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Remark 1.1. The special form of the electron-nuclei interaction is widely irrelevant in the expression of Vee
above. So one could just include a term of the same form with an external potential v.

In order to compute (numerically) E0 one needs to solve the Schrödinger equation in 3N dimensions and
this is very costly even for a small number of electrons. A less costly alternative is represented by the Density-
Functional Theory introduced first by Hohenberg and Kohn in [16] and then Kohn and Sham in [18]. At the
beginning of the theory the mathematical foundations of DFT were very weak. The paper which started to put
DFT on solid mathematical foundations is, to my knowledge, [19].

The main object in DFT is the electronic density ρ which is obtained by integrating out N − 1 particles

ρ(x) =
∫

R3(N−1)
|ψ(x, x2, . . . , xN )|2dx2 . . . dxN

and it represents the probability distribution of a single electron. The relation between ψ and ρ will be denoted
by ψ ↓ ρ. In particular ρ is always a probability density on R

3 independently of the number of electrons. The
basic idea of DFT is to express everything in term of the electronic density ρ instead of the wave function ψ. It
is easy to express the electron-nuclei interaction energy in terms of ρ. We have

Vne[ψ] = N

∫
R3
v(x)dρ(x).

Then, following Hohenberg and Kohn, we write

E0 = min
ρ

{
FHK(ρ) +N

∫
R3
v(x)dρ(x)

}
(1.3)

where
FHK (ρ) = min

ψ↓ρ
{T [ψ] + Vee[ψ]} ,

is called the universal Hohenberg−Kohn functional (universal since it does not depends on the specific particle).
At the beginning of the DFT several mathematical questions needed to be settled in order to have a meaningful
mathematical theory. For example: which is the correct minimization domain? Does the functional FHK enjoy
some properties which make the variational problem amenable? And so on. As we said, Lieb in [19] started to
look at these questions. In particular, Lieb described the set of admissible ρ

H =
{
ρ | 0 ≤ ρ,

∫
ρ = 1,

√
ρ ∈ H1(R3)

}
.

Writing explicitly FHK is not possible, then Kohn and Sham considered

FKS(ρ) = min
ψ↓ρ

{T [ψ]}.

In the Bosonic case it is possible to express

FKS(ρ) = N

∫
|∇√

ρ|2dx.

In the fermionic case ∫
|∇√

ρ|2dx ≤ 1
N
FKS(ρ) ≤ (4π)2N2

∫
|∇√

ρ|2dx

(But the optimal constant in the inequality above, to my knowledge is still not known). Then one may rewrite

FHK = FKS + Fxc
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where Fxc is called exchange-correlation energy it needs to be determined or at least approximated and it is the
term which keeps into account the interaction between electrons.

Let us denote by C(ρ) the minimal value in (1.1). Since for every ψ ↓ ρ the measure |ψ|2dx1 . . .dxN ∈ Π(ρ)
we have

C(ρ) ≤ Vee[ψ].

The functional C(ρ) appear in DFT in several ways. The first and perhaps the most elementary appearance is
in the estimate from below

FKS(ρ) + C(ρ) ≤ FHK(ρ).

This estimate is useful in the variational study of DFT and is is also the basis for the so called KS-SCE DFT
(Kohn and Sham, Strictly Correlated Electrons Density-Functional Theory) in which C(ρ) is interpreted as an
approximation of Fxc for particles in which the electron-electron interaction is relevant. This is a very rapidly
developing domain started in [24] (see also [14, 25, 26] but we are far from being exhaustive).

Again C(ρ) appear when considering the SCE-DFT (Strictly Correlated Electrons-Density-Functional The-
ory), which is the analogous of DFT in a regime in which the electron-electron interaction is preponderant.
This means writing

FHK = C + Fkd,

where Fkd is called kinetic-decorrelation energy, it needs to be determined and it is the term which keeps into
account the kinetic energy of the particle (see, for example, [13, 14]).

The third appearance is given in [8] where the authors proved that C is the semiclassical limit of the DFT in
the case of a two electrons particle. It is not clear if this last result also holds for more than two electrons.

Finally we quote a direct application of the duality theorem we are considering. In the numerical approxi-
mations of all the problems above one need to compute C(ρ). Before the link with Optimal Transport problems
was discovered this approximation was done by computing the co-motion functions which are the analogue of
the optimal transport maps. However, more recently, Mendl and Lin in [20] introduced a numerical method
which use the Kantorovich potential to compute the value.

2. Preliminary results and tools

2.1. Definition of Γ -convergence and basic results

A crucial tool that we will use throughout this paper is Γ -convergence. All the details can be found, for
instance, in Braides’s book [2] or in the classical book by Dal Maso [9]. In what follows, (X, d) is a metric space
or a topological space equipped with a convergence.

Definition 2.1. Let (Fn)n be a sequence of functions X 	→ R̄. We say that (Fn)n Γ -converges to F and we
write Fn

Γ−→
n
F if for any x ∈ X we have

• for any sequence (xn)n of X converging to x

lim inf
n

Fn(xn) ≥ F (x) (Γ -liminf inequality);

• there exists a sequence (xn)n converging to x and such that

lim sup
n

Fn(xn) ≤ F (x) (Γ -limsup inequality).

This definition is actually equivalent to the following equalities for any x ∈ X :

F (x) = inf
{
lim inf

n
Fn(xn) : xn → x

}
= inf

{
lim sup

n
Fn(xn) : xn → x

}
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The function x 	→ inf{lim inf
n

Fn(xn) : xn → x} is called Γ -liminf of the sequence (Fn)n and the other one its

Γ -limsup. A useful result is the following (which for instance implies that a constant sequence of functions does
not Γ -converge to itself in general).

Proposition 2.2. The Γ -liminf and the Γ -limsup of a sequence of functions (Fn)n are both lower semi-
continuous on X.

The main interest of Γ -convergence resides in its consequences in terms of convergence of minima:

Theorem 2.3. Let (Fn)n be a sequence of functions X → R̄ and assume that Fn
Γ−→
n
F . Assume moreover that

there exists a compact and non-empty subset K of X such that

∀n ∈ N, inf
X
Fn = inf

K
Fn

(we say that (Fn)n is equi-mildly coercive on X). Then F admits a minimum on X and the sequence (inf
X
Fn)n

converges to minF . Moreover, if (xn)n is a sequence of X such that

lim
n
Fn(xn) = lim

n
(inf
X
Fn)

and if (xφ(n))n is a subsequence of (xn)n having a limit x, then F (x) = inf
X
F .

Since we will deal also with dual problems we need the analogue of Γ -convergence for maxima, which is
sometimes called Γ+-convergence.

Definition 2.4. Let (Fn)n be a sequence of functions X 	→ R̄. We say that (Fn)n Γ+-converges to F , and we

write Fn
Γ+−−→
n

F if for any x ∈ X we have

• for any sequence (xn)n of X converging to x

lim sup
n

Fn(xn) ≤ F (x) (Γ+-limsup inequality);

• there exists a sequence (xn)n converging to x and such that

lim inf
n

Fn(xn) ≥ F (x) (Γ+-liminf inequality).

The natural generalizations of Proposition 2.2 and Theorem 2.3 hold with upper semicontinuity, maximum
values and maximum points replacing lower semicontinuity, minimum values and minimum points.

2.2. Permutation invariant costs

The Coulomb cost c as well as the approximations that we will consider are permutation invariant in the
sense that

c(xσ(1), . . . , xσ(N)) = c(x1, . . . , xN ), ∀σ ∈ SN .

Several simplifications are permitted by this invariance.
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3. Duality

Denote by

χK(x) =

{
1 if x ∈ K,

0 otherwise.

Introduce the set of elementary functions

E(R3N ) =

{
ϕ : R

3N → R measurable : ϕ(x) =
k∑
i=1

aiχA1
i×...×AN

i

}

for suitables constants ai and Borel sets Aik ⊂ R
3. We consider the following approximation of c.

Proposition 3.1. There exists a sequence of costs cn such that

(1) 0 ≤ cn ≤ c;
(2) cn ∈ E(R3N );
(3) cn ↗ c;
(4) cn is l.s.c.;
(5) cn is permutation invariant.

Proof. Let (a1, . . . , aN ) ∈ Z
3N and define a− 1 := (k − 1, p− 1, q − 1) for a = (k, p, q) ∈ Z

3 and (with a slight
abuse of notations) (x, y) := (x1, y1) × (x2, y2) × (x3, y3) for x, y ∈ R

3. Then ∀n ∈ N define the interior of the
diadyc cube by

Qn(a1, . . . , aN ) =
(
a1 − 1

2n
,
a1

2n

)
× . . .×

(
aN − 1

2n
,
aN
2n

)
·

and for all positives R
Q(R) = [−R,R] × . . .× [−R,R]︸ ︷︷ ︸

3N−times

.

Define cn as follows

cn(x) =

{
inf

Qn(a1,...,aN )
c(x) if x ∈ Qn (a1, . . . , aN ) and Qn (a1, . . . , aN ) ⊂ Q(n),

0 if x �∈ Q(n).

Then extend cn to the entire space by relaxation i.e.

cn(x) = inf
{

lim inf
k→∞

c(xk) : lim
k→∞

xk = x, and ∀k, xk ∈ Qn(a1, . . . , aN) for some (a1, . . . , aN ) ∈ Z
3N

}
.

With this definition properties (1), (3) and (4) above are straightforward. To prove (2) it is enough to remark
that cn is constant on i dimensional, relatively open faces of Qn(a1, . . . , aN ) and that such faces are products
of intervals (which may degenerate to a point). Finally (5) holds since

inf
Qn(a1,...,aN )

c = inf
Qn(aσ(1),...,aσ(N))

c

for every σ ∈ SN . �

Remark 3.2. Without loss of generality we can write

cn(x) =
kn∑
i=1

aiχA1
i
(x1) . . . χAN

i
(xN )

with sets Aki such that if Aki ∩Akj �= ∅ then Aki = Akj , for all k ∈ {1, . . . , N}.
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Define K(cn, ·) : P(R3N ) → [0,+∞] as

K(cn, P ) =

⎧⎨
⎩

∫
cndP if P ∈ Π(ρ),

+∞ otherwise,

and D(cn, ·) : L1
ρ → R as

D(cn, v) =

⎧⎨
⎩N

∫
vdρ if v(x1) + . . .+ v(xN ) ≤ cn(x1, . . . , xN ), ρN − a.e.

−∞ otherwise.

Also in this case, maximizing D(cn, v) is equivalent to maximize⎧⎪⎨
⎪⎩

N∑
i=1

∫
vidρ if v1(x1) + . . .+ vN (xN ) ≤ cn(x1, . . . , xN ), ρN − a.e.

−∞ otherwise.

Proposition 3.3. The functionals K(cn, ·) are equicoercive and

K(cn, ·) Γ→ K(c, ·),
with respect to the w∗-convergence of measures.

Proof. Equicoercivity follows from the fact that Π(ρ) is w∗-compact. Since K(cn, )̇ is non-decreasing (in n) and
K(c, ·) is l.s.c., Γ -convergence is a standard fact. We report the proof for the sake of completeness. Let Pn

∗
⇀ P

and fix m ∈ N. For m < n
K(cm, Pn) ≤ K(cn, Pn).

Since cm is lower semi-continuous

K(cm, P ) ≤ lim inf
n→∞ K(cm, Pn) ≤ lim inf

n→∞ K(cn, Pn).

And since K(cm, P ) → K(c, P ) we obtain

K(c, P ) ≤ lim inf
n→∞ K(cn, Pn).

For what concerns the Γ -lim sup inequality, since cn ↗ c it is enough to consider Pn = P for all n ∈ N and to
apply the Monotone Convergence Theorem. �

Lemma 3.4. Assume that ρ is not concentrated on a set of cardinality ≤ N − 1. If u ∈ L1
ρ and

u(x1) + . . .+ u(xN ) ≤ c(x1, . . . , xN ), ρN − a.e.,

then there exists k ∈ R such that u ≤ k ρ-a.e.

Proof. We have
u(x) ≤ ρ− inf

x2,...,xN

{c(x, x2, . . . , xN ) − u(x2) − . . .− u(xN )}, ρ− a.e.

Since u ∈ L1
ρ and ρ has not ≤ N − 1 atoms, we may consider x1, . . . , xN with xi �= xj if i �= j such that

u(xi) ∈ R. We denote l = min{u(x1), . . . , u(xN )}. Consider 0 < r such that B(xi, r) ∩ B(xj , r) = ∅ if i �= j.
Then any x ∈ R

3 can belong to B(xi, r) for at most one i. We may suppose without loss of generality that
i = 1. It follows that

u(x) ≤ c(x, x2, . . . , xN ) − u(x2) − . . .− u(xN ) ≤ N(N − 1)
2

1
r
−Nl := k. �
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Remark 3.5. In the previous proof k clearly depends on u through the constant l and on ρ through the
constant r.

Proposition 3.6. The functionals

D(cn, ·) Γ
+→ D(c, ·),

with respect to the weak-L1 convergence.

Proof. We start with the Γ+-lim inf inequality. Let u ∈ L1
ρ such that −∞ < D(c, u) then

u(x1) + . . .+ u(xN ) ≤ c(x1, . . . , xN ), ρN − a.e.

and by Lemma 3.4 u is bounded above. For an arbitrary 0 < ε there holds

D(c, u) − ε < N

∫
R3
udρ.

Moreover by Lusin’s theorem there exists K ⊂ R
3 compact such that u|K is continuous, ρ(R3 \K) < ε and

D(c, u) − ε < N

∫
K

udρ.

Since cn ↗ c and are l.s.c we may apply a Dini’s type theorem and we obtain that there exists n0 such that if
n0 < n then

u(x1) + . . .+ u(xN ) − ε < cn(x1, . . . , xN ), ρN − a.e. (3.1)

on K × . . .×K. We consider
u(x) := u(x) − ε

N
−N(supu)χR3\K(x).

Since 0 ≤ cn and (3.1) holds we have, for n0 < n,

u(x1) + . . .+ u(xN ) ≤ cn(x1, . . . , xN ), ρN − a.e.

Moreover if M ∈ N and N2 supu < M then

D(c, u) − (2 +M)ε < N

∫
R3
udρ− ε−N2ε supu ≤ N

∫
R3
udρ− ε−N2ρ(R3 \K) supu = N

∫
R3
udρ. (3.2)

For what concernes the Γ+-lim sup inequality assume that un ⇀ u in L1
ρ and assume without loss of generality

that
un(x1) + . . .+ un(xN ) ≤ cn(x1, . . . , xN ), ρN − a.e.

Then
un(x1) + . . .+ un(xN ) ≤ c(x1, . . . , xN )

and

lim
n→∞N

∫
undρ = N

∫
udρ. �

In the next subsection we will prove the needed compactness property.



1652 L. DE PASCALE

3.1. Estimates of the approximating Kantorovich potentials and conclusions

Lemma 3.7. For all n ∈ N

maxD(cn, ·) = minK(cn, ·). (3.3)

Moreover D(cn, ·) admits a maximizer (un1 , . . . , u
n
N)

Proof. The proof is revisited from [17].

Since we have written cn(x) =
kn∑
i=1

aiχA1
i
(x1) . . . χAN

i
(xN ) we may find sets X1, . . . , XN each of kn +1 elements,

ϕi : R
3 → Xi

and
c̃n : X1 × . . .×XN → R

such that
cn(x) = c̃n(ϕ1(x1), . . . , ϕN (xN )).

If we define ϕ : R
3N → X1 × . . . × XN by ϕ = ⊗Ni=1ϕi and ρi = ϕi �ρ ∈ P(Xi), then we have that for all

γ ∈ Π(ρ) we may consider γ̃ := ϕ�γ ∈ Π(ρ1, . . . , ρN) and∫
R3N

cndγ =
∫

R3N

c̃n(ϕ(x))dγ =
∫
X1×...×XN

c̃ndγ̃.

We remark that since c̃n and γ̃n may be identified with elements of R
kn+1 ×· · ·×R

kn+1 and ρi with an element
of R

kn+1, the problem may be reformulated as follows:⎧⎪⎨
⎪⎩

min c̃ · γ̃,
Piγ̃ = ρi,

0 ≤ γ̃,

(3.4)

where the Pi form the projection matrix. Thus the problem is a linear programming problem whose minimum
value coincides with the maximum value of the dual problem{

max ρ̃T · ũ,
PT ũ ≤ c̃T .

(3.5)

It remains to identify ũ with a N -tuple (u1, . . . , uN ) of elementary functions in E(R3N ) which maximises

max

{
N∑
i=1

∫
uidρ : ui ∈ L1

ρ, u1(x1) + . . .+ uN (xN ) ≤ cn(x1, . . . , xN )

}
. (3.6)

�

We now prove a first property of minimiser P of K(c, ·). This requires additional assumptions on ρ.
Since the pointwise transportation cost diverges when two (3-dimensional) coordinates get too close it is

useful to introduce the following notations:

Dα := {x = (x1, . . . , xN ) : |xi − xj | ≤ α for some i, j},
will be the closed strip around the diagonals,

G := {x = (x1, . . . , xN ) : xi �= xj if i �= j}.
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For simplicity we pose D0 = D. Then G = R
3N \D. Finally we introduce a notation for a “cube” with rounds

3-dimensional faces
Q(x, r) := {y = (y1, . . . , yN) : max

i
|yi − xi| < r},

we will omit the center x when it is the origin.

Proposition 3.8. Assume that ρ does not have atoms. Let P ∈ Π(ρ) be a minimizer. Then, for all r > 0 there
exists α(r) such that

P
(
Dα(r) ∩Q(r)

)
= 0

We first prove an elementary lemma

Lemma 3.9. Assume that ρ does not have atoms. Let P ∈ Π(ρ) be a plan with finite cost and let x ∈ sptP .
Then there exist x2, . . . ,xN ∈ sptP such that

(1) x2, . . . ,xN ∈ G;
(2) xij �= xkσ if k �= i or σ �= j.

Proof. First remark that if P has finite cost then P (D) = 0 and then P -a.a. points belong to G. Then fix a
vector a ∈ R

3 and consider the set X i
a = {x ∈ R

3N : xi = a}. By definition of marginals and since ρ does not
have atoms

P (X i
a) = ρ ({a}) = 0.

Then, starting from x1 = x we may choose

xj ∈ sptP \
(
D ∪

(
∪k<j ∪ i=1,...,N

σ=1,...,N
X i
xk

σ

))
. �

Proof of Proposition 3.8. Assume that x1 = (x1
1, . . . , x

1
N ) ∈ D ∩ sptP and choose points x2, . . . ,xN in sptP as

in Lemma 3.9. For all choices of positive radii r1 . . . , rN

P (Q(xi, ri)) > 0.

And later on we will choose suitable ri’s. Denote by Pi = P|Q(xi,ri) and choose constants λi ∈ (0, 1] such that

λ1|P1| = . . . = λN |PN |.

We then write
P = λ1P1 + . . .+ λNPN + PR (PR is the remainder).

We estimate from below the cost of P as follows

C(P ) = C(PR) +
N∑
i=1

λiC(Pi) ≥ C(PR) +
N∑
i=1

λi

⎛
⎝ N∑
k=1

∑
k<j

1
|xik − xij | + 2ri

⎞
⎠ |Pi|.

Consider now the marginals νi1, . . . , ν
i
N of λiPi and build the new local plans

P̃1 = ν1
1 × ν2

2 × . . . νNN , P̃2 = ν2
1 × ν3

2 × . . . ν1
N , . . . P̃N = νN1 × ν1

2 × . . . νN−1
N .

To write the estimates from below it is convenient to remark that we may also write: P̃i = νi1 × . . . νi+k−1
k ×

. . . νi+N−1
N where we consider the upper index (mod N). Then consider the new transport plan

P̃ := PR + P̃1 + . . .+ P̃N .
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It is straightforward to check that the marginals of P̃ are the same as the marginals of P . Moreover |P̃i| = λi|Pi|.
So we can estimate the cost of P̃ from above.

C(P̃ ) = C(PR) +
N∑
i=1

C(P̃i) ≤ C(PR) +
N∑
i=1

⎛
⎝ N∑
k=1

∑
k<j

1
|xkk+i−1 − xjj+i−1| − rk − rj

⎞
⎠ |P̃i|.

The final step is to choose ri for i = 1, . . . , N so that the 3-dimensional faces of the cubes Q(xi, ri) do not
overlap and

N∑
i=1

⎛
⎝ N∑
k=1

∑
k<j

1
|xkk+i−1 − xjj+i−1| − rk − rj

⎞
⎠ <

N∑
i=1

⎛
⎝ N∑
k=1

∑
k<j

1
|xik − xij | + 2ri

⎞
⎠ ·

This final condition contradicts the minimality of P and it is feasible because, since x1
i = x1

j for some i and j
the right hand side is unbounded for r1 → 0 while the left hand side is bounded above for ri sufficiently small.

It follows that the diagonal D and the sptP do not intersect and since both sets are compact inside Q(r),
they must have positive distance in Q(r) �

Let Pn denote a sequence of minimisers of K(cn, ·) converging to a minimiser P of K(c, ·). We choose 0 < R
such that P (Q(R)) = M > 0 and we consider α(R) according to Proposition 3.8 above. Since Q(R) is open we
have,

lim inf
n→∞ Pn(Q(R)) ≥M

and then for n big enough Pn(Q(R)) ≥ M

2
. Since Dα(R) ∩Q(R) is closed we have

lim
n→∞Pn(Dα(R) ∩Q(R)) = 0.

Then for n big enough
M

4
< Pn(Q(R) \Dα(R)). (3.7)

Proposition 3.10. Assume that ρ does not have atoms and let n satisfies (3.7) above, then there exists a
maximiser u of D(cn, ·) and two positive constants rn and kn such that

|u| ≤ 2N(N − 1)2

rn
− (N − 1)2kn.

We will later show that we can control rn and kn uniformly in n.

Proof. Consider a point (x1, . . . , xN ) ∈ sptPn \Dα(R) and in Q(R).
We start from a maximiser (u1, . . . , uN) of (3.6) and we remark that without loss of generality we may assume

that ui(xi) =
c(x1, . . . , xN )

N
:= kn for all i and that

ui(x) = inf

⎧⎨
⎩c(y1, . . . , x, yi+1 . . . , yN) −

∑
k �=i

uk(yk)

⎫⎬
⎭ ,

for all i and x. Then we begin by choosing rn <
α(R)

2
and we have the following estimate. If x �∈ ∪Ni=2B(xi, rn)

then

u1(x) ≤ cn(x, x2, . . . , xN ) − u2(x2) − . . .− uN(xN )
≤ c(x, x2, . . . , xN ) − u2(x2) − . . .− uN (xN )

≤ N(N − 1)
rn

− (N − 1)kn. (3.8)
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We now select a, possibly smaller, rn so that

ρ(B(x1, rn)) + . . .+ ρ(B(xN , rn)) < ε� M

4
· (3.9)

It follows that the set

{y ∈ Q(R) ∩ sptPn | y �∈ Dα(R), yi �∈ B(xj , rn) for i, j = 1, . . . , N}

has positive Pn measure. Next, take (y1, . . . , yN ) in this last set. Since y1 does not belong to the balls centered
at xi the estimate above holds and then

u2(y2) + . . .+ uN (yN ) = cn(y1, . . . , yN ) − u1(y1) ≥ −
(
N(N − 1)

rn
− (N − 1)kn

)
·

Finally, up to a division by 2 of rn we have that for all x ∈ ∪Ni=2B(xi, rn)

u1(x) ≤ cn(x, y2, . . . , yN ) − u2(y2) − . . .− uN(yN )

≤ c(x, y2, . . . , yN ) − u2(y2) − . . .− uN(yN )

≤ N(N − 1)
rn

+
N(N − 1)

rn
− (N − 1)kn. (3.10)

This completes the estimate from above of u1. The same computation holds for the other ui. The estimate from
above of the ui given by (3.8) and (3.10) translates in an estimates from below which holds ρ-a.e.. Indeed for
ρ-a.e. x there holds

u1(x) = inf{cn(x, x2, . . . , xn) − u2(x2) − . . .− uN(xN )} ≥ (N − 1)2kn − 2N(N − 1)2

rn
·

It remains to remark that

u(x) =
1
N

N∑
i=1

ui(x)

is a Kantorovich potential for cn and it satisfies the required estimate. �

Proposition 3.11. The constants rn and kn in Proposition 3.10 can be controlled uniformly in n.

Proof. Consider a point x = (x1, . . . , xN ) ∈ sptP \Dα(R) and in Q(R). Then consider r such that

(1) r <
α(R)

2
,

(2) N
∑
i

ρ(B(xi, r) <
M

4
·

Now we will show that in the construction of Proposition 3.10 we may choose kn → c(x1, . . . , xN)
N

and rn =
r

4
.

Infact, since Pn
∗
⇀ P we may choose in the estimates of Proposition 3.10 a sequence of points xn =

(xn1 , . . . , x
n
N ) → (x1, . . . , xN ). The convergence of xn to x already gives the required convergence of kn. More-

over, we also have that for n big enough B(xni ,
r

2
) ⊂ B(xi, r) for all i and then (3.9) is satisfied. Finally in

Proposition 3.10 we divided rn by 2 to have some distance between xi and yj and this last division brings us

to rn =
r

4
. �
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3.2. Conclusion and remarks

Theorem 3.12. The following duality holds

min
Π(ρ)

∫
RNd

∑
1≤i<j≤N

1
|xi − xj |dP (x1, . . . , xN )

= sup
{
N

∫
u(x)dρ(x) : u ∈ L1

ρ and u(x1) + . . .+ u(xn) ≤ c(x1, . . . , xn)
}
, (3.11)

and the right-hand side of equation (3.11) above admits a bounded maximizer.

Proof. By Proposition 3.3

min
Π(ρ)

∫
RNd

∑
1≤i<j≤N

1
|xi − xj |dP (x1, . . . , xN ) = lim

n→∞minK(cn, P ).

By Propositions 3.6, 3.7, 3.10 and 3.11

minK(cn, P ) = maxD(cn, u),

sup
{
N

∫
u(x)dρ(x)

∣∣∣∣ u ∈ L1
ρ and

u(x1) + . . .+ u(xn) ≤ c(x1, . . . , xn)

}
= lim

n→∞maxD(cn, u),

and there exists a sequence {un} where un is a maximizer of D(cn, u) and where |un| is uniformly bounded,
thus weakly compact in L1

ρ. �

Corollary 3.13. Assume that ρ does not have atoms then there exists 0 < α such that for every minimizer P
of K(c, ·)

P (Dα) = 0.

Proof. For every Kantorovich potential u exploiting the duality (or complementary slackness) relations we
obtains that for every minimizer P of K(c, ·)

u(x1) + . . .+ u(xN ) = c(x1, . . . , xN ) P − a.e.

Since there exists a bounded Kantorovich potential we obtain the conclusion. �

Remark 3.14. Driven by the interest in some application we have chosen to present the result in the case in
the case of Coulomb cost. However fixing some constants and exponent (in particular in Lem. 3.4, Prop. 3.7
and Sect. 3.1) and the definition of bad set the same result may be proved for several costs which are lower
semi-continuous and bounded from below. Among them∑

1≤i<j≤N

1
|xi − xj |s ·

The case of even less regular costs has been considered in [1] but in that case it is necessary to give a different
interpretation of the problems.

In [17] Kellerer considered a duality theory for multimarginal problems for a very wide class of costs. However
in order to have existence of maximizers for the dual problems (see Thm. 2.21 in [17]) it is required that the
cost c be controlled by a direct sum of functions in L1

ρ also from above. In the case of the Coulomb cost this
would read ∑

1≤i<j≤N

1
|xi − xj | ≤ u(x1) + . . .+ u(xN )

and this is not possible since the right-hand side allows for x1 = . . . = xn.
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