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DISCRETIZATION BY RATIONAL AND QUASI-RATIONAL FUNCTIONS
OF MULTI-DIMENSIONAL ELLIPTIC PROBLEMS

IN THE WHOLE SPACE
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Abstract. We propose a new spectral method for solving multi-dimensional second order elliptic
equations with varying coefficients in the whole space. This method employs an orthogonal family of
quasi-rational functions recently discovered by Arar and Boulmezaoud. After proving an error estimate,
we present some computational tests which demonstrate the efficiency of the method and the significance
of its developmental potential.
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1. Introduction

Among the existing approaches for solving partial differential equations in unbounded regions, one can un-
derline the emergence of spectral methods based on the use of polynomials (see, e.g., [32,43]), gaussian functions
(see, e.g., [33, 39]) or rational functions (see, e.g., [17, 18, 22, 37]). Although it is frequently used in bounded
domains, global approximation by polynomials has proven not efficient in unbounded regions, especially in the
context of second order elliptic equations. This is chiefly due to the fact that solutions are often required to be
bounded at infinity and do not have a polynomial growth. On the contrary, rational functions give the possibil-
ity to take into account the decay of functions at large distances, but their disadvantage is that they are often
difficult to deploy. In any case, the description of the evanescence of quantities at infinity arises to be crucial in
almost all practical problems in physics and engineering for which the considered region has an infinite extent.

Of course, other methods exist for discretizing PDEs in unbounded domains. The most popular approaches
consist in truncating the computational domain in a reasonable way. This is typically the case for ABC (Ab-
sorbing Boundary Conditions) methods which date back to the sixties (see [5,30,31,42]). This is also the case for
PML (Perfectly Matched Layer) methods (see [6,7]). There are also some methods which preserve the unbound-
edness of the domain. We can mention the so-called Boundary Element Methods (BEM) (see, e.g., [19, 26, 36]
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1 Laboratoire de Mathématiques de Versailles, Université de Versailles Saint-Quentin-en-Yvelines 45, avenue des Etats-Unis,
78035, Versailles, cedex, France. tahar.boulmezaoud@uvsq.fr
2 Department of Mathematics, University Constantine 1, Constantine, Algeria. nour.arar@yahoo.fr; a.kourta@yahoo.fr
3 IMSIU, College of Sciences, Department of Mathematics and Statistics, PO-Box 90950, 11623 Riyadh, KSA.
nabil kerdid@yahoo.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2016

http://dx.doi.org/10.1051/m2an/2015042
http://www.esaim-m2an.org
http://www.edpsciences.org


264 T.Z. BOULMEZAOUD ET AL.

and references therein), the BEF-FEM coupling methods (see, e.g., [20,23,28,29,40]), the IFEM (Inverted Finite
Element Method) introduced by one of the authors of this paper (see [13] or [16]) and the IEM (Infinite Element
Method) introduced first in [9] (see also [10, 21] or [34] and references therein).

Our aim in this paper is to propose a multi-dimensional spectral method based on the use of a special kind
of rational or quasirational functions for solving second order elliptic problems with varying coefficients in the
whole space. The model problem is

−
d∑

i,j=1

∂

∂xi
aij(x)

∂u

∂xj
(x) +

d∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ �d, (1.1)

where ai,j , bi, 1 ≤ i, j ≤ d and c are variable coefficients and f a given function of a certain regularity specified
later. The approximation we propose is based on the use of functions of the form

N∑
m=0

pm(x)
(|x|2 + 1)(2m+d−2)/2

,

when d ≥ 2, and of the form
N∑

m=0

pm(x)
(x2 + 1)m/2

,

when d = 1. In both the expressions pm, 0 ≤ m ≤ N , is a polynomial function of degree less than or equal to m.
In addition, when d = 1, pm has the same parity as m, that is pm(−x) = (−1)mpm(x) for all x ∈ �.

Furthermore, inspired by the work of Arar and Boulmezaoud [3], in which a special family of eigenfunctions
of the operator (1+ |.|2)−2Δ is discovered and given explicitly, we prove that the method is convergent and that
error decreases algebraically for functions with a moderate decay at large distances. We also show that the use of
orthogonal Arar–Boulmezaoud functions, defined by the forthcoming formula (3.13), makes the implementation
of the method easier, especially for Poisson’s equation for which the obtained linear system is diagonal.

The remaining is organized as follows. In Section 2, we recall some definitions and some properties of the
underlying functional spaces. A weak formulation of equation (1.1) is given. Section 3 is devoted to the approx-
imation of (1.1); we outline a new spectral method to approximate (1.1) and we prove its convergence. Besides
this method, we propose the use of an adequate family of orthogonal rational or quasirational functions as a
basis. Details of implementation and numerical results are given in Section 4.

2. Weak formulation of the continuous problem. The underlying functional

spaces

In what follows d ≥ 1 denotes an integer. Given a real number p, 1 ≤ p < +∞, we denote as usual by Lp(�d)
(resp. L∞(�d)) the space of (equivalence classes of) all measurable functions that are pth power integrable (resp.
essentially bounded) on �d.

Given an arbitrary measurable and positive function ρ, L∞
ρ (�d) denotes the space of measurable functions v

satisfying ρv ∈ L∞(�d). This space is equipped with the norm

‖v‖L∞
ρ (�d) = ‖ρv‖L∞(�d).

For each integer m ≥ 0 and each real α ≥ 0, define �m
α (�d) as the space of all the real measurable functions

satisfying
(|x|2 + 1)(α−m+|λ|)/2∂λu ∈ L2(�d),
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for any multi-index λ ∈ �d such that 0 ≤ |λ| ≤ m (with |λ| = λ1 + . . . λm). This is a Hilbert space equipped
with the scalar product

〈u, v〉�m
α (�d) =

∑
|λ|≤m

∫
�d

(|x|2 + 1)α−m+|λ|∂λu(x).∂λv(x)dx.

The reader interested in properties of the spaces �m
α can consult, e.g., [2, 11, 12, 15, 35, 38].

In the sequel, given x = (x1, . . . , xd) ∈ �d, we set 〈x〉 = (|x|2 + 1)1/2 = (x2
1 + . . . x2

d + 1)1/2 and we consider
the weight function

w(x) =

⎧⎪⎨⎪⎩
1

|x|2 + 1
if d 	= 2,

1
(|x|2 + 1)(log(2 + |x|2))2 if d = 2.

Define W 1
w(�d) as the space all the (generalized) functions v satisfying∫

�d

w(x)|v(x)|2dx < ∞,

∫
�d

|∇v(x)|2dx < ∞,

and endowed with the norm

‖v‖2
W 1

w(�d) =
∫
�d

w(x)|v(x)|2dx +
∫
�d

|∇v(x)|2dx.

Set W−1
w (�d) the dual of W 1

w(�d). When d 	= 2, W 1
w(�d) = �1

0(�
d).

When d ≥ 3, the semi-norm

|v|W 1
w(�d) =

(∫
�d

|∇v(x)|2dx

)1/2

is a norm on W 1
w(�d) and there exists a constant κ0 > 0 such that

∀v ∈ W 1
w(�d),

∫
�d

w(x)|v(x)|2dx ≤ κ0

∫
�d

|∇v(x)|2dx, (2.1)

(see [2,38] or [3]). When d ∈ {1, 2}, (2.1) is no longer valid since constant functions belong to W 1
w(�d). However,

in the latter case there exists a positive constant still denoted by κ0 such that

∀v ∈ W 1
w(�d), inf

k∈�

∫
�d

w(x)|v(x) − k|2dx ≤ κ0

∫
�d

|∇v(x)|2dx. (2.2)

The best value of k in this inequality corresponds to the weighted mean value of v, given by

k =
1
w

∫
�d

w(x)v(x)dx, with w =
∫
�d

w(x)dx.

Thus, one can rewrite (2.2) into the form

∀v ∈ W 1
w(�d),

∫
�d

w(x)|v(x)|2dx ≤ κ0

∫
�d

|∇v(x)|2dx +
1
w

(∫
�d

w(x)v(x)dx

)2

. (2.3)



266 T.Z. BOULMEZAOUD ET AL.

Here and subsequently, we assume the following

(H1) f belongs to W−1
w (�d). In particular, this assumption holds true when∫

�d

|f(x)|2
w(x)

dx < +∞. (2.4)

(H2) (aij)1≤i,j≤d ∈ L∞(�d)d×d and there exists a constant α > 0 such that

∀ξ = (ξ1, . . . , ξd) ∈ �d,

d∑
i,j=1

ai,j(x)ξiξj ≥ α|ξ|2, a.e. in �d. (2.5)

(H3) b = (b1, . . . , bd) ∈ L∞
w−1/2(�d)d, div b ∈ L∞

w−1(�d) and c ∈ L∞
w−1(�d), that is there exists a constant C > 0

such that
|b(x)|2 + |div b(x)| + |c(x)| ≤ Cw(x) a.e. in �

d. (2.6)

(H4) there exists a constant ε satisfying

ε > − α

κ0
if d ≥ 3, ε > 0 if d ∈ {1, 2},

and such that
c(x) − 1

2
div b(x) ≥ εw(x) a.e. in �d. (2.7)

Assumptions (H3) and (H4) are automatically fullfiled if b = 0, c = 0 and d ≥ 3.

Let us now come back to equation (1.1). We look for solutions satisfying∫
�d

w(x)|u(x)|2dx < ∞,

∫
�d

|∇u(x)|2dx < ∞.

This problem can be rewritten into the weak form: find u ∈ W 1
w(�d) such that

∀v ∈ W 1
w(�d), A (u, v) = 〈f, v〉, (2.8)

with A the bilinear form

A (u, v) =
d∑

i,j=1

∫
�d

ai,j(x)
∂u

∂xi
(x)

∂v

∂xj
(x)dx +

d∑
i=1

∫
�d

bi(x)
∂u

∂xj
(x)v(x)dx

+
∫
�d

c(x)u(x)v(x)dx.

Assumptions (H2) and (H3) ensure the continuity of the bilinear form A (., .). Moreover, integration by parts
gives

A (v, v) =
d∑

i,j=1

∫
�d

ai,j(x)
∂v

∂xi
(x)

∂v

∂xj
(x)dx +

∫
�d

(c(x) − 1
2
div b(x))v(x)2dx

≥ α

∫
�d

|∇v(x)|2dx + ε

∫
�d

w(x)v(x)2dx,

where we used assumptions (H2), (H3) and (H4) and Hardy inequality (2.1). In view of Lax−Milgram theorem
we get

Proposition 2.1. Assume that assumptions (H1)−(H4) hold. Then, the problem (2.8) (or equivalently equa-
tion (1.1)) admits one and only one solution u ∈ W 1

w(�d) and

‖u‖W 1
w(�d) � ‖f‖W−1

w (�d). (2.9)
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The notation a � b used in (2.9) means that there exists a constant c independant of the involved functions
such that a ≤ cb.

When d ≤ 2 and b = c = 0, assumption (H4) is not satisfied and Proposition 2.1 fails since uniqueness
is lost (constant functions belong to W 1

w(�d)). In addition, existence is also lost except when f satisfies the
compatibility condition

〈f, 1〉 = 0. (2.10)

This last condition is obtained by taking v = 1 in (2.8) (notice that 1 ∈ W 1
w(�d) when d ≤ 2).

Thus, when b = c = 0 and d ∈ {1, 2}, equation (1.1) (or formulation (2.8)) may be completed with the
following condition ∫

�d

w(x)u(x)dx = 0. (2.11)

Then, problem (1.1) in combination with condition (2.11) can be written into the (equivalent) weak form: find
u ∈ W 1

w(�d) such that
∀v ∈ W 1

w(�d), A�(u, v) = 〈f, v〉, (2.12)

with

A�(u, v) = A (u, v) + κ

(∫
�d

w(x)u(x)dx

)(∫
�d

w(x)v(x)dx

)
,

where henceforth κ > 0 is a fixed constant.
Indeed, it suffices to observe that A (u, 1) = 0 for all u ∈ W 1

w(�d).
The continuity of the bilinear form A�, defined on W 1

w(�d)2, is obvious. Its coercivity follows from inequal-
ity (2.3). By Lax−Milgram theorem, we get

Proposition 2.2. Suppose that d ≤ 2, b = c = 0 and that assumptions (H1) and (H2) hold. Then, prob-
lem (2.12) has a solution u ∈ W 1

w(�d) if and only if f satisfies (2.10). In that case, u is unique and verifies

‖u‖W 1
w(�d) � ‖f‖W−1

w (�d). (2.13)

3. Approximation by rational and pseudo-rational functions

Our aim in this section is to outline general principles of the numerical method we propose and to examine its
convergence. For the reader’s convenience, we begin by introducing the finite dimensional spaces of quasi-rational
functions we use in approximating the continuous problem.

3.1. Discretization and error estimate

We introduce a family of finite dimensional spaces (Hd
N )≥0 as follows

• When d = 1, the space Hd
N , is composed of functions of the form

v(x) =
N∑

k=0

pk(x)
(x2 + 1)k/2

, x ∈ �, (3.1)

where, for each k ≤ N , pk is a polynomial function of degree less than or equal to k and having the same
parity as k, that is

∀x ∈ �, pk(−x) = (−1)kpk(x).

• When d ≥ 2, the space Hd
N is composed of functions of the form

v(x) =
N∑

k=0

pk(x)
(|x|2 + 1)(2k+d−2)/2

, x ∈ �d, (3.2)

where, for each k ≤ N , pk is a polynomial of degree less than or equal to k.
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It is quite obvious that
Hd

0 ⊂ Hd
1 ⊂ Hd

2 ⊂ . . . ⊂ Hd
N ⊂ . . .

Notice that Hd
N is a subspace of V d

N , with Hd
N 	= V d

N , where V d
N is the space of functions v of the form

v(x) =
P (x)

(|x|2 + 1)(2k+d−2)/2
, x ∈ �d,

with P a polynomial function of degree less than or equal to 2N . The functions of Hd
N are obviously rational

when the dimension d is even. They are rational up to the multiplicative factor (|x|2 + 1)−1/2 when d is odd. In
the latter case, we say that functions of Hd

N are quasi-rational.
The following inclusion holds for d ≥ 1

Hd
N ↪→W 1

w(�d). (3.3)

When d = 1, one can also prove that each v ∈ H1
N can be decomposed in a unique manner into the form

v(x) =
[N/2]∑
k=0

ak

(x2 + 1)k
+

[(N−1)/2]∑
k=0

bkx

(x2 + 1)k+1/2
,

where ak and bk, 0 ≤ k ≤ N , are real numbers with b0 = 0 (one can write x2 = (x2 + 1)− 1). When d ≥ 2, each
v ∈ Hd

N can be decomposed into the sum

v(x) =
a0(x′)

(|x|2 + 1)(d−2)/2
+

N∑
k=1

ak(x′) + bk(x′)xd

(|x|2 + 1)(2k+d−2)/2
, (3.4)

where x′ = (x1, . . . , xd−1, 0) and for any k ≤ N , ak and bk are two polynomial functions of degrees less than or
equal to k and to k − 1 respectively. In view of these decompositions, we get

Lemma 3.1 (See also [3]). For all k ≥ 1,

dim Hd
N =

⎧⎨⎩
N + 1 if d = 1,(

d + N
d

)
+
(

d + N − 1
d

)
if d ≥ 2.

(3.5)

Thus, when d ≥ 2

dimHd
N ∼ 2

d!
Nd. (3.6)

We now focus attention on the variational problem (2.8) when assumptions (H1)−(H4) are satisfied.
The discretized problem writes: find uN ∈ Hd

N such that

∀vN ∈ Hd
N A (uN , vN ) = 〈f, vN 〉, (3.7)

where N ≥ 1 denotes an integer designated to tend to infinity. This is a Galerkin problem which can be reduced
to a linear system of the form AUN = BN . And, as Hd

N ↪→W 1
w(�d) and A is coercive on W 1

w(�d), the matrix A
is invertible and the discrete problem (3.7) clearly admits a unique solution uN ∈ Hd

N .

Theorem 3.2. Suppose that assumptions (H1)−(H4) are fulfilled. Let u ∈ W 1
w(�d) (resp. uN ∈ Hd

N) be the
unique solution of (2.8) (resp. of (3.7)). Assume that u ∈ �k+1

2k (�d) for some k ≥ 1. Then, the following error
estimate holds

‖u − uN‖W 1
w(�d) � N−k‖u‖

�
k+1
2k (�d), (3.8)
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When b = c = 0 and d ≤ 2, problem (1.1) can be completed with condition (2.11) to ensure uniqueness.
In the latter case, the well-posedness of the weak formulation (2.12) is guaranteed by Proposition 2.2, under
assumptions (H1) and (H2). The corresponding discretized problem writes: find uN ∈ Hd

N such that

∀vN ∈ Hd
N ; A�(uN , vN ) = 〈f, vN 〉. (3.9)

Theorem 3.3. Suppose that d ≤ 2, b = c = 0 and that assumptions (H1), (H2) and (2.10) are fulfilled. Let
u ∈ W 1

w(�d) (resp. uN ∈ Hd
N ) be the unique solution of (2.12) (resp. of (3.9)) and assume that u ∈ �

k+1
2k (�d)

for some k ≥ 1. Then, conclusion of Theorem 3.2 remains true.

It is worth noting that, in the latter case, the discrete solution uN satisfies∫
�d

w(x)uN (x)dx = 0.

(Indeed, it suffices to choose v = 1 in the weak formulation (3.9)).
The proofs of Theorems 3.2 and 3.3 are postponed to Section 3.3.
Error estimate (3.8) shows that the convergence depends not only on the smoothness of the function u but

also on its decay when |x| → +∞; it says that if u is in Hk+1
loc and if its derivatives decrease sufficiently so that

the integrals

∀|μ| ≤ k,

∫
�d

(|x|2 + 1)k+|μ||∂μu(x)|2dx,

are finite, then the method is algebraically convergent and the error in W 1
w norm decreases at least as N−k. As a

result, if u is analytic and has an exponential decay at large distances, then the convergence has an infinite order
since the error decreases faster than 1/Nk for any finite order k ≥ 1. One can surmise that for such functions
the convergence is exponential. Of course, the method is exact (the error vanishes) if u is quasi-rational of the
form (3.1) when d = 1 or (3.2) when d ≥ 2 and if N is sufficiently large.

3.2. An orthogonal basis: Arar–Boulmezaoud functions

Before proving estimate (3.8), we introduce an appropriate basis of Hd
N . The choice of this basis will play a

prominent role not only in the proof, but also in computing the linear system arising from problem (3.7) (or
problem (3.9)). Certainly, in view of decomposition (3.4), it may be tempting, when d ≥ 2, to consider the
functions

q2k(x) =
�k(x)

(|x|2 + 1)(2k+d−2)/2
, 0 ≤ k ≤ N,

q2k+1(x) =
�k−1(x)xd

(|x|2 + 1)(2k+d−2)/2
, 1 ≤ k ≤ N,

where (�k)0≤k≤N are N + 1 polynomials satisfying the property deg(�k) = k for k ≤ N . When d = 1, one can
consider the functions

qk(x) =
xk−2[k/2]

(x2 + 1)k/2
, 0 ≤ k ≤ N.

For multiple practical reasons, it is more appropriate to use a special family of functions discovered by Arar
and Boulmezaoud in [3]. These functions turn out to be suitable in proving error estimates and in the numer-
ical resolution of the discrete problem (3.7) (or (3.9)). This is mainly due to their completeness and to their
orthogonality properties.

In the sequel, we define the integers α�, � ≥ 0, as follows:

• If d = 1, then α� = 1 for all � ≥ 0,
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• if d ≥ 2, then α� is the dimension of the space �d
� of spherical harmonics of degree � on the unit sphere

�d := {x ∈ �d+1 | |x| = 1} (spherical harmonics of degree � on �d are restrictions to �d of harmonic
homogeneous polynomials of degree � on �d+1. See, e.g., [48] or [45]). We know that α0 = 1, α1 = d + 1 and
for � ≥ 2

α� =
(

d + �
d

)
−
(

d + � − 2
d

)
=
(

d + � − 1
�

)
+
(

d + � − 2
� − 1

)
. (3.10)

The following identity will play an important role

dimHd
N =

N∑
�=0

α�. (3.11)

For each integer � ≥ 0, we denote by (Y�,m)�≥0,1≤m≤α�
a basis of �d

� chosen orthogonal with respect to the
L2(�d) scalar product. That is, for all integers �, �′ ≥ 0, m, m′ ≥ 1, with m ≤ α�, m′ ≤ α�′ and (�, m) 	= (�′, m′),
we have ∫

�d

Y�,m.Y�′,m′dS = 0. (3.12)

The Arar–Boulmezaoud functions are defined as follows: for each � ≥ 0 and 1 ≤ m ≤ α�

W�,m(x) =

⎧⎪⎨⎪⎩
(

2
|x|2 + 1

) d−2
2

Y�,m(π−1(x)) if d ≥ 2,

(−1)�B�(x2 + 1)1/2 cos((� + 1) arctan(x) + �π/2) if d = 1.

(3.13)

where 1 ≤ m ≤ α� for � ≥ 0. The normalization constants B� are given by

B0 = 1 and B� =
√

2√
�(� + 2)π

for � ≥ 1. (3.14)

Here π denotes the stereographic projection defined from �d
� = �d − {(0, . . . , 0, 1) onto �d by

π : �d
� −→ �

d

ξ �−→
(

ξ1

1 − ξd+1
,

ξ2

1 − ξd+1
, . . . ,

ξd

1 − ξd+1

)
·

Its inverse is given by

π−1 : �d −→ �
d
�

x �−→
(

2x1

|x|2 + 1
. . . ,

2xd

|x|2 + 1
,
|x|2 − 1
|x|2 + 1

)
·

In the one dimensional case (d = 1), we can also write

(−1)�W�,1(x) =

⎧⎪⎪⎨⎪⎪⎩
B�

√
1 + x2T�+1

(
1√

x2 + 1

)
if � is even,

B�xU�

(
1√

x2 + 1

)
if � is odd,

(3.15)

where the constants (B�)�≥0 are given by (3.14), while T� and U� are Chebyshev polynomials of the first and
second kind satisfying

∀θ ∈ �, cos(�θ) = T�(cos θ), sin((� + 1)θ) = U�(cos θ) sin θ.
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We can also observe that
W�,1(x) = B�

√
x2 + 1 sin[(� + 1)(arctan(x) + π/2)].

Thus,

W�,1(x) = (−1)�B�U�

(
x√

x2 + 1

)
· (3.16)

When d = 2, α� = 2� + 1 for � ≥ 0, and we can write

W�,m(x) = Y�,m(π−1(x)), 0 ≤ m ≤ �, W�,�+m(x) = Z�,m(π−1(x)), 1 ≤ m ≤ �,

where Y�,m and Z�,m are usual real spherical harmonics on �2 (see Appendix A). Lastly, in the three-dimensional
case (d = 3) we can choose the following re-indexed family

W�,k,j(x) =
(

2
|x|2 + 1

) 1
2

U�kj(π−1(x)), 0 ≤ j ≤ k ≤ �,

W�,k,k+j(x) =
(

2
|x|2 + 1

) 1
2

S�kj(π−1(x)), 1 ≤ j ≤ k ≤ �,

(α� = (� + 1)2), with U�kj and S�kj real spherical harmonics on �3 (see Appendix A). It is worth noting that in
the three cases (d = 1, 2, 3), the family constructed above is orthonormal.

Let us now recall some additional properties (see [3])

• For � ≥ 0 and 1 ≤ m ≤ α�, W�,m ∈ Hd
N and

−ΔW�,m = λ�(|x|2 + 1)−2W�,m, (3.17)

where

λ� =
{

4�(� + d − 1) + d(d − 2) if d ≥ 2,
�(� + 2) if d = 1.

• (W�,m)�≥0,1≤m≤α�
is an orthogonal basis of �0

−2(�
d) satisfying: if (�, m) 	= (j, s)∫

�d

W�,m(x)Wj,s(x)
(|x|2 + 1)2

dx = 0,

∫
�d

∇W�,m(x).∇Wj,s(x)dx = 0. (3.18)

The following lemma is crucial and follows from formula (3.11) (see also [3])

Lemma 3.4. (W�,m)0≤�≤N, 1≤m≤α�
is a basis of Hd

N .

A direct consequence of this lemma and formula (3.17) is that the spaces Hd
N , N ≥ 0, are stable under the

action of the weighted Laplacian (|.|2 + 1)2Δ, that is

∀vN ∈ Hd
N , (|.|2 + 1)2ΔvN ∈ Hd

N .

3.3. Proof of Theorems 3.2 and 3.3

We now focus attention on the Proof of Theorem 3.2. The Proof of Theorem 3.3 is quite similar.
We denote by ΠN the orthogonal projection from �

0
−2(�

d) on Hd
N . Recall that �0

−2(�
d) is equipped with

the inner product

〈v, w〉�0
−2(�d) =

∫
�d

v(x)w(x)
(|x|2 + 1)2

dx.

In other words, for w ∈ �0
−2(�

d), ΠNw belongs to Hd
N and satisfies

∀ϕ ∈ Hd
N ,

∫
�d

(w − ΠNw)(x)ϕ(x)
(|x|2 + 1)2

dx = 0.
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We have

Lemma 3.5. Let u ∈ �k+1
2k (�d) for some k ≥ 1. Then,

‖〈x〉−2(u − ΠNu)‖2
L2(�d) � N−k−1‖u‖

�
k+1
2k (�d), (3.19)

‖∇(u − ΠNu)‖L2(�d) � N−k‖u‖
�

k+1
2k (�d). (3.20)

Proof. Let (u�,m)�≥0,1≤m≤α�
be the decomposition coefficients of u on the basis (W�,m), that is

u =
+∞∑
�=0

α�∑
m=1

u�,mW�,m.

It follows that

ΠNu =
N∑

�=0

α�∑
m=1

u�,mW�,m.

Consider the operator L defined formally as

∀v ∈ D ′(�d), L v = −(1 + |.|2)2Δv.

We know on the one hand that the Laplace operator is continuous from �k+2
m (�d) into �k

m(�d) for all k ≥ 0
and m ∈ � (see, e.g., [2]). We also know that the operator w �→ (1 + |.|2)2w is continuous from �k

m(�d) into
�k

m−4(�
d). It follows that L is linear continuous from �k+2

m (�d) into �k
m−4(�

d) for k ≥ 0 and m ∈ �. Moreover,

∀w, v ∈ �2
2(�

d), 〈L v, w〉�0
−2(�d) = 〈v, L w〉�0

−2(�d). (3.21)

In view of (3.17) and (3.18) we have

‖u − ΠNu‖2
�0

−2(�
d) = ‖〈x〉−2(u − ΠNu)‖2

L2(�d)

=
+∞∑

�=N+1

α�∑
m=1

|u�,m|2‖〈x〉−2W�,m‖2
L2(�d)

‖∇(u − ΠNu)‖2
L2(�d) =

+∞∑
�=N+1

α�∑
m=1

|u�,m|2‖∇W�,m‖2
L2(�d),

=
+∞∑

�=N+1

α�∑
m=1

λ�|u�,m|2‖〈x〉−2W�,m‖2
L2(�d).

At this stage, two cases are distinguished

Case 1. k is odd. Suppose that k = 2s+1 for some s ≥ 0 and set v = L s+1u. Since u ∈ �k+1
2k (�d) = �

2s+2
4s+2(�

d),
we deduce that L u ∈ �2s

4(s−1)+2(�
d), . . . , v = L s+1u ∈ �0

−2(�
d) and

v =
+∞∑
�=0

α�∑
m=1

λs+1
� u�,mW�,m.

In fact, using formulae (3.21) and (3.17) gives

〈L s+1u, W�,m〉�0
−2(�

d) = 〈u, L s+1W�,m〉�0
−2(�d) = λs+1

� 〈u, W�,m〉�0
−2(�d).

It follows that

ΠNv =
N∑

�=0

α�∑
m=1

λs+1
� u�,mW�,m.
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In view of (3.18) we have

‖v − ΠNv‖2
�0

−2(�
d)

=
+∞∑

�=N+1

α�∑
m=1

λ2s+2
� |u�,m|2‖〈x〉−2W�,m‖2

L2(�d)

≥ λ2s+2
N+1‖〈x〉−2(u − ΠNu)‖2

L2(�d)

≥ C1N
2k+2‖u − ΠNu‖2

�0
−2(�

d)
.

We also have
‖v − ΠNv‖2

�0
−2(�

d)
≥ λ2s+1

N+1‖∇(u − ΠNu)‖2
L2(�d)

≥ C2N
2k‖∇(u − ΠNu)‖2

L2(�d).

On the other hand,
‖v − ΠNv‖2

�0
−2(�

d) ≤ ‖v‖W 0
−2(�

d) � ‖u‖W k+1
2k (�d).

This ends the Proof of Lemma 3.5 when k = 2s + 1.

Case 2. k is even. Suppose that k = 2s for some s ≥ 1 and set v = L su. Then, v ∈ �1
0(�

d). And, as before,
we have

‖∇v‖2
L2(�d) =

+∞∑
�=0

α�∑
m=1

λ2s
� |u�,m|2‖∇W�,m‖2

L2(�d)

=
+∞∑
�=0

α�∑
m=1

λ2s+1
� |u�,m|2‖〈x〉−2W�,m‖2

L2(�d)

≥ λ2s+1
N+1‖〈x〉−2(u − ΠNu)‖2

L2(�d)

≥ C′
1N

2k+2‖〈x〉−2(u − ΠNu)‖2
L2(�d).

Likewise,
‖∇v‖2

L2(�d) ≥ λ2s
N+1‖∇(u − ΠNu)‖2

L2(�d)

≥ C′
2N

2k‖∇(u − ΠNu)‖2
L2(�d).

On the other hand,
‖∇v‖L2(�d) ≤ ‖v‖�1

0(�
d) � ‖u‖

�
k+1
2k (�d).

This ends the proof of Lemma 3.5 when k is even. �

In order to finalize the proof of Theorem 3.2, we use Céa lemma (see [24] or, e.g., [25] or [8])

‖u − uN‖W 1
w(�d) � inf

w∈Hd
N

‖u − w‖W 1
w(�d). (3.22)

Let

u�
N =

{
ΠNu if d ≥ 3,
ΠNu − cN if d ≤ 2,

where cN is a constant chosen such that ∫
�d

w(x)(u − u�
N )dx = 0.

Combining inequality (3.22) with (2.1) or with (2.3) we find

‖u − uN‖W 1
w(�d) � ‖u − u�

N‖W 1
w(�d)

� ‖∇(u − u�
N )‖L2(�d) = ‖∇(u − ΠNu)‖L2(�d)

� N−k‖u‖
�

k+1
2k (�d).

This ends the Proof of Theorem 3.2.



274 T.Z. BOULMEZAOUD ET AL.

3.4. The case of Poisson’s equation

A remarkable property of the method concerns Poisson’s equation

−Δu = f in �d, (3.23)

which corresponds to the case ai,j = δi,j , bi = 0 for 1 ≤ i, j ≤ d and c = 0. A direct consequence of orthogonality
properties of functions (W�,m) is that the discretized system (3.7) as well as the continuous one (3.23) can be
diagonalized. We set

η�,m =
∫
�d

|∇W�,m(x)|2dx = λ�

∫
�d

(|x|2 + 1)−2|W�,m(x)|2dx, (3.24)

for � ≥ 0 and 1 ≤ m ≤ α�. When d ≥ 2, we can prove that (see Appendix A)

η�,m =
λ�

4

∫
�d

|Y�,m(ξ)|2dξ, ∀� ≥ 0, ∀1 ≤ m ≤ α�. (3.25)

When d = 1, one has
η�,0 = 0, η�,1 =

π

2
λ�B

2
� = 1, ∀� ≥ 1. (3.26)

We also know that the family (W�,m) is an orthogonal basis of �0−2(�d) (see [3]). The following proposition is
straightforward

Proposition 3.6. If d ≥ 3, then the solution of Poisson’s equation (3.23) is given by

u =
∞∑

�=0

α�∑
m=1

1
η�,m

〈f, W�,m〉W�,m. (3.27)

Moreover, the discretized problem (3.7) is diagonal and

uN =
N∑

�=0

α�∑
m=1

1
η�,m

〈f, W�,m〉W�,m. (3.28)

When 1 ≤ d ≤ 2, the W 1
w(�d)-solution of Poisson’s equation (3.23) is, up to an additive constant, equal to

u =
∞∑

�=1

α�∑
m=1

1
η�,m

〈f, W�,m〉W�,m, (3.29)

and solution of the discretized problem (3.9) is

uN = c�
0 +

N∑
�=1

α�∑
m=0

1
η�,m

〈f, W�,m〉W�,m, (3.30)

where the constant c�
0 is chosen such that uN satisfies (2.11). In that case

A (W�,m, Wr,s) = η�,mδ�,rδm,s, (3.31)

for �, r ≥ 0 and 1 ≤ m ≤ α�, 1 ≤ s ≤ αs and the matrix of the discret problem (3.9) is diagonal.

Remark 3.7. According to orthogonality property (3.18), Proposition 3.6 can easily be extended to problems
of the form

−Δu + K(|x|2 + 1)−2u = f in �d, (3.32)

where K > 0 is a constant.
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4. Implementation

In this section, focus is on the numerical implementation of the method in one and multi-dimensional set-
tings. We first give some details concerning the computation of the stiffness matrix from a practical viewpoint.
Secondly, in order to check the convergence of the method, we present some computational results.

4.1. Computing integrals. The stiffness matrix

Here, we would clear up the computation of integrals involved in computing the stiffness matrix of the
discrete system (4.1). We assume that f satisfies (2.4). Decomposing uN on the functions W�,m, 0 ≤ � ≤ N and
1 ≤ m ≤ α�, transforms the discretized problem (3.7) into a linear system of the form

AU = B, (4.1)

where A is a square matrix whose entries are A (W�,m, Wj,s) or A�(W�,m, Wj,s), 0 ≤ �, j ≤ N and 1 ≤ m ≤ α�,
1 ≤ s ≤ αj . The entries of the right hand side are 〈f, Wj,s〉. When ai,j = δi,j (Poisson’s equation) the matrix of
the discrete problem 3.7 is diagonal as explained in Section 3.4.

We are now going to expose a way in which the integrals arising in the coefficients A (W�,m, Wj,s) and in the
RHS are calculated. A natural idea consists in making a change of variables from �d to �d

�, compactifying in
this way the domain of integration. Let us start by examining integrals of the form∫

�d

f(x)W (x)dx,

which arise in the RHS. The following formula is proved in Appendix A∫
�d

(
2

|x|2 + 1

)θ

f(x)φ(x)dx =
∫
�d

(1 − ξd+1)θ−2f̂(ξ)φ̂(ξ)dξ. (4.2)

for θ ∈ �. Here f̂(ξ) = (1 − ξd+1)−(d−2)/2f(π(ξ)). At this stage, spherical coordinates could be used. When
d = 1 or d = 2, the expression of these coordinates is widely known. When d = 3, we can write

ξ = ξ(ϕ, θ, χ) = (sin θ cosϕ sin χ, sin θ sin ϕ sin χ, cos θ sin χ, cosχ),

for ξ ∈ �3, with 0 ≤ ϕ < 2π, 0 ≤ θ ≤ π, 0 ≤ χ ≤ π and we have∫
�d

(1 − ξd+1)α−2f̂(ξ)ϕ̂(ξ)dξ =
∫ π

0

(∫ π

0

(∫ 2π

0

(1 − cosχ)α−2(f̂ ϕ̂)(ξ(ϕ, θ, χ)) sin2 χ sin θdϕ

)
dθ

)
dχ.

It is therefore possible to use a Gauss−Lobatto or a Gauss−Chebyshev quadrature rule.
However, it should be noted that expression (4.2) can be simplified by means of the Funk–Hecke formula at

least for the two following cases:

Case 1. If f is radial, that is
f(x) = F (|x|), x ∈ �d,

for some function F defined on �+. In that case, define the function

h(t) = (1 − t)−d/2−1F

(√
1 + t

1 − t

)
, −1 < t < 1.

In view of (4.2), we have ∫
�d

f(x)φ(x)dx =
∫
�d

h(ξd+1)φ̂(ξ)dξ.
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We can now use the Funk–Hecke formula (see, e.g., [46] p. 29 or [4], Thm. 2.22) which states that for all Y ∈ �d
� ,

� ≥ 0 being an integer, and for all η ∈ �d,∫
�d

g(η.ξ)Y (ξ)dξ = |�d−1|
(∫ 1

−1

(1 − t2)d/2−1P�,d+1(t)g(t)dt

)
Y (η), (4.3)

for any measurable function g measurable on (−1, 1) satisfying∫ 1

−1

(1 − t2)d/2−1|g(t)|dt < +∞

Here P�,d+1 denotes the Legendre polynomial of degree � in d + 1 dimensions given by

P�,d+1(t) =
(−1)�Γ (d

2 )
2�Γ (� + d

2 )
(1 − t2)1−d/2 d�

dt�
(1 − t2)�+d/2−1. (4.4)

We get ∫
�d

f(x)φ(x)dx = |�d−1|
(∫ 1

−1

(1 − t2)d/2−1P�,d+1(t)h(t)dt

)
φ̂(ed+1), (4.5)

where ed+1 is the (d + 1)th canonical vector of �d+1. The integral on the right hand side can be computed by
means of a Gauss–Jacobi quadrature formula (see, e.g., [47], Chap. 4).

It is worth noting that formula (4.5) can be simplified when h ∈ C �([−1, 1]) and writes∫ 1

−1

(1 − t2)d/2−1P�,d+1(t)h(t)dt =
Γ (d

2 )
2�Γ (� + d

2 )

∫ 1

−1

(1 − t2)�+d/2−1h(�)(t)dt. (4.6)

Case 2. In this second case, f is of the form

f(x) =
(

2
|x|2 + 1

)d/2+1

F

(
2x.u

|x|2 + 1

)
,

for some unit vector u = (u1, . . . , ud) ∈ �d−1. Using (4.2) gives∫
�d

f(x)φ(x)dx =
∫
�d

F (ξ.u)φ̂(ξ)dξ,

where we still denote by u the vector (u1, . . . , ud, 0) ∈ �d. By the Funk–Hecke formula (4.3) we get∫
�d

f(x)φ(x)dx = |�d−1|
(∫ 1

−1

(1 − t2)d/2−1P�,d+1(t)F (t)dt

)
φ̂(u). (4.7)

Remark 4.1. The polynomial P�,d+1 is proportional to Jacobi polynomial of degree �, J
(α,α)
� with α = d/2−1.

Moreover, P�,2 is the ordinary Chebyshev polynomial of degree �, P�,3 is the Legendre polynomial of degree �
and P�,4 = 1/(� + 1)U�, where U� is the �-degree Chebyshev polynomial of the second kind.

Now, let us come back to the calculation of the entries A (W�,m, Wj,s). In the one dimensional case (d = 1), a
direct change of variables based on formula (3.16) appears to be appropriated. More precisely, set

h(x) = (x2 + 1)f(x), x ∈ �, b̃(x) =
√

x2 + 1b(x), c̃(x) = (x2 + 1)c(x), x ∈ �.

According to Assumptions (2.10), we get∫
�

|h(x)|2
x2 + 1

dx < +∞, b̃ ∈ L∞(�), c̃ ∈ L∞(�). (4.8)
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Then

A (W�,1, Wj,1) = B�Bj

(∫ 1

−1

a

(
t√

1 − t2

)
U ′

�(t)U
′
j(t)(1 − t2)3/2dt

+
∫ 1

−1

b̃

(
t√

1 − t2

)
U ′

�(t)Uj(t)(1 − t2)1/2dt

+
∫ 1

−1

c̃

(
t√

1 − t2

)
U�(t)Uj(t)(1 − t2)−1/2dt

)
.

In the particular case a = 1, b = c = 0, one has

A (W�,1, Wj,1) = δ�,j ,

and the matrix of the linear system (3.7) is the identity. In the more general situation in which a is a variable
function, integrals A (W�,1, Wj,1) can be computed with help of Chebyshev−Gauss quadrature formula∫ 1

−1

(1 − t2)−1/2g(t)dt ≈
N�∑
i=1

�ig(cos(θi)), (4.9)

where N� ≥ 1 is the number of nodes and

θi =
2i − 1
2N�

π, �i =
π

N�
, 1 ≤ i ≤ N�. (4.10)

It is worth recalling the formula

(sin θ)U�(cos(θ)) = sin((� + 1)θ),

(sin θ)3U ′
�(cos(θ)) = sin((� + 1)θ) cos(θ) − (� + 1) cos((� + 1)θ) sin θ.

Similarly, ∫
�

f(x)W�,1(x)dx = B�

∫ 1

−1

h

(
t√

1 − t2

)
U�(t)(1 − t2)−1/2dt. (4.11)

This integral can be numerically computed by means of formula (4.9). When b = 0 and c = 0, we also need the
formula ∫

�

W�,1(x)
x2 + 1

dx = B�

∫ 1

−1

(1 − t2)−1/2U�(t)dt.

In the multi-dimensional case (d ≥ 1), the computation of the integrals arising in the entries A (W�,m, Wj,s) can
be done by means of a change of variables from �d to �d

�, as explained above. In order to describe in detail the
methodology, let us assume for simplicity that b = 0 and c = 0 (the case b 	= 0 or/and c 	= 0 can be treated in
a similar way). We stated earlier that the arising matrix is diagonal for Poisson’s equation (3.23). In the more
general situation, we prove the formula (see Appendix A for the proof)

A (u, v) =
∫
�d

[∇ξû(ξ)tH(ξ)t − αû(ξ)ξt
∗]Â(ξ)[H(ξ)∇ξ v̂(ξ) − αv̂(ξ)ξ∗]

(1 − ξd+1)2
dξ, (4.12)

where
û(ξ) = (1 − ξd+1)−αu(π(ξ)), for ξ ∈ �d

�, with α = (d − 2)/2,

(v̂ is similarly defined). Here H(ξ) denotes the matrix defined by (A.7) (see Appendix A). The integral on the
right hand side of (4.12) is absolutely convergent and can be directly computed using a quadrature formula on
the unit sphere (see, e.g., [1, 27, 41, 44]). Similar formulae can be easily obtained when b 	= 0 or c 	= 0.

Of course, other changes of variables can be used (see the forthcoming paper [14] for more details).
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4.2. Numerical results

We are now in position to provide a quantitative assessment of the method through some computational
tests. The method is implemented in the one dimensional case (d = 1) for solving problems of the form

−(au′)′(x) + b(x)u′(x) + c(x)u(x) = f(x), x ∈ �. (4.13)

completed with the integral condition (2.11). It is also implemented for the three dimensional Poisson’s equation
(d = 3)

−Δu = f in �3. (4.14)

In all the cases, we observe the behavior of the relatives errors

e0 =
‖u − uN‖�0

−1(�
d)

‖u‖�0
−1(�

d)

, e1 =
‖∇(u − uN)‖L2(�d)

‖∇u‖L2(�d)

,

and we give a comparison with error estimates established hereabove. Four examples are considered. In all
these examples, quadrature formulae, such as (4.9), are used with N� = 20N . Such a choice ensures that the
numerical integration does not have a significant effect on the error of approximation.

Example 4.2. First, we consider an example with a smooth solution of the 1-dimensional equation (4.13),
considered when a = 1, b = c = 0, and completed with the condition∫

�

u(x)
x2 + 1

dx = 0.

The right-hand side is chosen such that the solution is

u(x) =
x

(x2 + 1)
s
2+ 1

4 log(x2 + 2)
, (4.15)

for some real number s. The behavior of u at larges distances depends on s. More precisely, for each m ≥ 0,
there exists a constant Cm > 0 such that

|u(m)(x)| ≤ Cm
〈x〉 1

2−s−m

log(x2 + 2)
, for all x ∈ �.

It follows that u ∈ �s+1
2s (�). Moreover, u 	∈ �r+1

2r (�) for any real r > s. According to Theorem 3.2, we expect
that the error in W 1

w norm decreases at least as N−s.

In Table 1, the relative errors e0 and e1 are illustrated for several choices of s and N . The log-plots of these
errors are given in Figures 1 and 2 when s = 1, 2 or 3. As expected the convergence to the exact solution is of
algebraic type and it is achieved with an index approximately equal to s. This is obviously in agreement with
statements of Theorem 3.2.

On the other hand, it is worth noting that the method is still convergent when u increases slowly when
|x| → ∞. Figure 3 compares the exact solution with the approximate one when s = 1/5 and N = 40. The
solutions are indistinguishable to within the thickness of the curves, despite the fact that the exact solution
increases as |x|3/10(log |x|)−1 when |x| → ∞.

Example 4.3. In this second example, we consider equation (4.13) when the coefficient a oscillates in near and
far regions;

a(x) = 1 +
1
2

cos (2x), x ∈ �,
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Figure 1. (Example 4.2) Relative weighted error e0 versus N for several values of s (in log scale).

10
2

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

N (log scale)

R
el

at
iv

e 
L2  e

rr
or

 o
n 

th
e 

gr
ad

ie
nt

 (
lo

g 
sc

al
e)

 

 

s = 1
s = 2
s = 3

Figure 2. (Example 4.2) Relative weighted error e1 versus N for several values of s (in log scale).
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Table 1. Relative errors e0 and e1 obtained for Example 4.1 for several values of the parameter
s and the discretization parameter N .

s = 1 s = 2 s = 3
N e0 e1 e0 e1 e0 e1

20 1.223e-2 6.875e-3 1.874e-4 8.403e-5 2.118e-4 1.206e-4
40 5.121e-3 2.854e-3 7.754e-5 3.964e-5 2.223e-5 1.263e-5
60 3.091e-3 1.713e-3 3.787e-5 1.987e-5 5.919e-6 3.353e-6
80 2.166e-3 1.197e-3 2.199e-5 1.166e-5 2.316e-6 1.311e-6
100 1.647e-3 9.075e-4 1.424e-5 7.594e-6 1.119e-6 6.324e-7
120 1.318e-3 7.249e-4 9.93e-6 5.31e-6 6.218e-7 3.49e-7
140 1.093e-3 6.000e-4 7.296e-6 3.912e-6 3.885e-7 2.233e-7
160 9.295e-4 5.097e-4 5.575e-6 2.995e-6 2.497e-7 1.279e-7
180 8.062e-4 4.416e-4 4.391e-6 2.363e-6 1.544e-7 1.105e-7
200 7.101e-4 3.886e-4 3.544e-6 1.910e-6 9.662e-8 9.118e-8

Log slope (approximate) −1.23 −1.24 −2.00 −1.99 −3.30 −3.15
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Figure 3. The approximation and the exact solution for Example 4.2 when s = 1
5 and N = 40.

(b = c = 0). The source term f is chosen to be consistent with the exact solution

u(x) =
sin x

(x2 + 1)3/2
·

Here also, the approximate solution is in good agreement with the exact one as it is shown in Figure 4. Both
the relative weighted L2 error e0 and the relative L2 error on the gradient e1 decrease approximately as N−1

(see Figs. 5 and 6). This is in line with forecasts of Theorem 3.3 since u ∈ �2
2(�) but u 	∈ �r+1

2r (�) for r ≥ 5/4.
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Figure 4. The approximate solution and the exact one for the second example.
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Figure 5. Relative weighted L2 error for Example 4.3 (solid) and Example 4.4 (dashed) versus
N (in log scale).
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Figure 6. Relative L2 error on the gradients for Example 4.3 (solid) and Example 4.4 (dashed)
versus N (in log scale).

Example 4.4. In this example, equation (4.13) is considered with a discontinuous coefficient

a(x) =
{

1 if |x| ≤ 1,
a0 if |x| > 1,

where a0 > 0 is a constant (b = c = 0). The source term is given by

f(x) = 3
x

(1 + x2)5/2
·

The unique solution of (4.13) satisfying (2.11) is

u(x) = a(x)−1u0(x) + u1(x) for x ∈ �, |x| 	= 1,

where
u0(x) =

x

(x2 + 1)1/2
·

while u1 is a piecewise linear function chosen such that u ∈ W 1
w(�) and satisfies (4.13). Since u and au′ must

be continuous at ±1, one can prove that

u1(x) =

⎧⎨⎩0 if |x| ≤ 1,
k0 if x > 1,
−k0 if x < −1,

with k0 = (1 − a−1
0 )u0(1). One can notice, on one hand, that the solution u is not very smooth since it does

not belong to H2
loc(�). On the other hand, |u(x)| does not decrease to zero when |x| → +∞. More precisely,

u(x) → ±u0(1) ± (1 − u0(1))a−1
0 when x → ±∞.
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Figure 7. The approximate and the exact solution for Example 4.4.

In Figure 7, we display the exact and approximate solutions when a0 = 10 and N = 100. Errors on u and
on its gradient are shown in Figures 5 and 6. One can notice that the weighted L2 error decreases as N−1.15.
However, the L2-error on the gradient decreases as

√
N . This fact is not inconsistent with the predictions of

Theorem 3.2 since the solution is not sufficiently smooth nor quickly decreasing when |x| → +∞.

Example 4.5. In this last example, we deal with a three dimensional example. More precisely, we consider
Poisson’s equation (3.23) with f chosen such that

u(x) =
(

2
|x|2 + 1

) 3
2

|x1|atan
(

2x1

|x|2 + 1

)
·

Let us recall that for the Poisson equation, the arising system is diagonal. This solution belongs to W 2
2 (�3) (but

it no longer belongs to W 3
4 (�3) nor to H3

loc(�
3)). According to Theorem 3.2, we expect that the W 1

0 (�d)-error
decreases at least as N−1. The results of the numerical tests are presented in Table 2 and in Figure 8. The
numerical errors confirm predictions of our error estimate as pointed out in Table 2.

A complementary series of tests concerning Poisson’s equation in �3 confirm the efficiency of the method and
its fast convergence, particularly for smooth and quickly decreasing solutions.

Overall, these numerical results demonstrate the capabilities of the method we propose here to compute
solutions in unbounded geometries. They also point out that the method is accurate far away from the origin.
The method can easily be applied to several kinds of partial differential equations and in arbitrary dimensions.
In particular, it allows to tackle equations with varying coefficients at infinity. It also avoids any truncation of
the domain, preserving by the way its unboundedness. The authors are considering to develop other applications
of the method in forthcoming papers (see, e.g., [14]).
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Table 2. Relative W 1
0 -error and relative L2 on the gradient versus N for Example 4.4.

N e0 e1

5 3.255e-2 9.985e-2
10 1.012e-2 4.554e-2
15 3.496e-3 2.985e-2
20 2.104e-4 1.652 e-2
25 1.154e-4 1.100 e-2
30 8.32 e-4 9.221 e-3
35 5.46 e-4 6.989e-3
40 4.274 e-4 5.857e-3

Log slope −2.08 −1.36
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Figure 8. (Example 4.4) Relative weighted errors e0 and e1 versus N (in log scale).

Appendix A. The stereographic projection and integrals

In what follows, given a function h in D(�d) (the space of infinitely differentiable functions with compact
support), we denote by h̃ the function defined over �d

� by

h̃(ξ) = h(π(ξ)), for ξ ∈ �d
�. (A.1)

Let B�� = B − {(0, . . . , 0, t), 0 ≤ t < 1}, where B is the unit ball of �d+1. Then,∫
�d

h̃(ξ)dξ = (d + 1)
∫

B��

F̃ (x)dx,
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where F̃ is the degree zero homogeneous extension of h̃ to B�� defined by

∀x ∈ B��, F̃ (x) = h̃

(
x

|x|
)
·

Consider now the one-to-one map

ϕ : B�� −→ �
d×]0, 1[

x �−→ (y, r) = (π(ξ), r) where ξ =
x

|x| , r = |x|.

We have ∫
B��

F̃ (x)dx =
∫
�d×]0,1[

F̃ (ϕ−1(y, r))|Jϕ(y, r)|−1dydr,

where Jϕ(y, r) is the jacobian matrix of this variable changement. One has

Jϕ(y, r) = −
(

1 + |y|2
2r

)d

.

It follows that
1

d + 1

∫
�d

h̃(ξ)dξ =
∫

B��

F̃ (x)dx =
1

d + 1

∫
�d

h(y)
(

2
1 + |y|2

)d

dy.

We get the formula ∫
�d

h(y)
(

2
1 + |y|2

)d

dy =
∫
�d

h̃(ξ)dξ. (A.2)

Formulae (3.25) and (4.2) are direct consequences of (A.2).
On the other hand, since h(y) = F̃ ◦ π−1(y) for all y ∈ �d, one has

∇h(y) = M(ξ)∇xF̃ (ξ) = M(ξ).∇ξh̃(ξ), y ∈ �d, ξ = π−1(y), (A.3)

where ∇ξh̃ is the tangential gradient of h̃. The entries of the rectangular matrix M(ξ) are given by

mi,j(ξ) = (1 − ξd+1)δi,j − ξiξj if 1 ≤ i ≤ d, 1 ≤ j ≤ d,
mi,d+1(ξ) = (1 − ξd+1)ξi.

One can easily prove this

M(ξ)M(ξ)t = (1 − ξd+1)2Id,
M(ξ)tM(ξ) = (1 − ξd+1)2(Id+1 − ξξt), for ξ ∈ �d

�.
(A.4)

Furthermore, for any tangential vector z ∈ �d+1 (that is, ξt.z = 0), one has

M(ξ)z = (1 − ξd+1)z∗ + zd+1ξ∗, ξt
∗M(ξ)z = (1 − ξd+1)zd+1, (A.5)

where z∗ = (z1, . . . , zd)t and ξ∗ = (ξ1, . . . , ξd)t. In other words, (A.3) can be rewritten into the form

∇̃xh(ξ) = H(ξ)∇ξh̃(ξ), (A.6)

where H(ξ) = (hi,j(ξ))1≤i≤d, 1≤j≤d+1 is a d × (d + 1) is given by

hi,j(ξ) = (1 − ξd+1)δi,j if 1 ≤ i ≤ d, 1 ≤ j ≤ d,
hi,d+1(ξ) = ξi.

(A.7)
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Now, given two functions u and v in D(�d), we set

U(x) =
u(x)
ρ(x)

, V (x) =
v(x)
ρ(x)

with ρ(x) =
(

2
|x|2 + 1

) d−2
2

. (A.8)

One has ρ̃(ξ) = (1− ξd+1)α and ∇̃ρ(ξ) = −α(1− ξd+1)αξ∗, with α = (d− 2)/2 and ξ∗ = (ξ1, . . . , ξd)T . It follows
that

∇̃u = (1 − ξd+1)α[H(ξ)∇ξŨ − αŨ(ξ)ξ∗]. (A.9)

Using relations (A.2) and (A.9) one can easily get formula (4.12). The formula remains valid when u and v

belong to W 1
w(�d). In that case Ũ = û ∈ H1(�d

�) and Ṽ = v̂ ∈ H1(�d
�) (see [3]).

We can go further into this calculation in the case of Poisson’s equation (ai,j = δi,j for 1 ≤ i, j ≤ n). Since
H(ξ) can be replaced by M(ξ) in (A.9), we can write

A (u, v) =
∫
�d

∇ξŨ(ξ)tM(ξ)tM(ξ)∇ξṼ (ξ)
(1 − ξd+1)2

dξ + α2

∫
�d

|ξ∗|2Ũ(ξ)Ṽ (ξ)
(1 − ξd+1)2

dξ

−α

∫
�d

ξt
∗M(ξ)∇ξ(Ũ Ṽ )(ξ)

(1 − ξd+1)2
dξ

=
∫
�d

∇ξŨ(ξ)t.∇ξṼ (ξ) + α2

∫
�d

(1 + ξd+1)Ũ(ξ)Ṽ (ξ)
1 − ξd+1

dξ

−α

∫
�d

ξt
∗M(ξ)∇ξ(Ũ Ṽ )(ξ)

(1 − ξd+1)2
dξ

where we use the identity ξ.∇ξṼ (ξ) = 0. On the other hand, the following formula can easily be deduced∫
�d

Ũ(ξ)ed+1.∇ξṼ (ξ)dξ = −
∫
�d

Ṽ (ξ)ed+1.∇ξŨ(ξ)dξ + d

∫
�d

ξd+1Ũ(ξ)Ṽ (ξ)dξ. (A.10)

Thus, ∫
�d

ξt
∗M(ξ)∇ξ(Ũ Ṽ )(ξ)

(1 − ξd+1)2
dξ =

∫
�d

ed+1.∇ξ(Ũ Ṽ )(ξ)
1 − ξd+1

dξ

= −
∫
�d

Ũ(ξ)Ṽ (ξ)
ed+1.∇ξξd+1

(1 − ξd+1)2
dξ

+d

∫
�d

Ũ(ξ)Ṽ (ξ)
ξd+1

1 − ξd+1
dξ

=
∫
�d

Ũ(ξ)Ṽ (ξ)
(d − 1)ξd+1 − 1

(1 − ξd+1)
dξ,

and
A (u, v) =

∫
�d

∇ξŨ(ξ)t.∇ξṼ (ξ) +
dα

2

∫
�d

Ũ(ξ)Ṽ (ξ)dξ

=
∫
�d

∇ξû(ξ)t.∇ξv̂(ξ) +
dα

2

∫
�d

û(ξ)v̂(ξ)dξ.
(A.11)

In particular, when d ≥ 2, one has

A (W�,m, Wr,s) =
∫
�d

∇ξY�,m(ξ)t.∇ξYr,s(ξ)dσ(ξ) +
dα

2

∫
�d

Y�,m(ξ).Yr,s(ξ)dσ(ξ)

=
(

�(� + d − 1) +
d(d − 2)

4

)∫
�d

Y�,m(ξ).Yr,s(ξ)dσ(ξ).

This identity entails formula (3.25).
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Appendix B. Formulae of spherical harmonics on �
2

and on �
3

A usual family of real spherical harmonics on �2 is given by

Y�,0(θ, φ) =

√
2� + 1

2π
P 0

� (cos θ), � ≥ 0,

Y�,j(θ, φ) =

√
(2� + 1)(� − j)!

2π(� + j)!
P j

� (cos θ) cos(jφ), 1 ≤ j ≤ �,

Z�,j(θ, φ) =

√
(2� + 1)(� − j)!

2π(� + j)!
P j

� (cos θ) sin(jφ), 1 ≤ j ≤ �.

where (P j
� ) are the associated Legendre functions defined as follows

P j
� (t) =

(−1)j

2��!
(1 − t2)j/2 d�+j

dt�+j
(1 − t2)�, 0 ≤ j ≤ �.

The family composed of functions Y�,j and Z�,j is orthonormal with respect to the scalar product of L2(�2). On
�3, an orthonormal family of real spherical harmonics is given by

U�kj(x) =
1√
a�,k

(sin χ)kT
(k+1)
�+1 (cosχ)Yk,j(θ, φ), 0 ≤ j ≤ k ≤ �

S�kj(x) =
1√
a�,k

(sin χ)kT
(k+1)
�+1 (cosχ)Zk,t(θ, φ), 1 ≤ j ≤ k ≤ �

where

a�,k =
(� + 1)π

2
(k + � + 1)!

(� − k)!
·
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[40] C. Johnson and J.-C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comput. 35 (1980)
1063–1079.

[41] Q.T. Le Gia and H.N. Mhaskar, Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer.
Anal. 47 (2008/09) 440–466.

[42] J. Lysmer and R.L. Kuhlemeyer, Finite difference model for infinite media. J. Eng. Mech. EMR 95 (1969) 859–877.

[43] Y. Maday, B. Pernaud-Thomas and H. Vandeven, Reappraisal of Laguerre type spectral methods. La Recherche Aerospatiale
6 (1985) 13–35.

[44] A.D. McLaren, Optimal numerical integration on a sphere. Math. Comput. 17 (1963) 361–383.

[45] C. Müller, Spherical harmonics. Vol. 17 of Lect. Notes Math. Springer-Verlag, Berlin (1966).

[46] C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces. Vol. 129 of Applied Mathematical Sciences. Springer (1998).

[47] A. Ralston and Ph. Rabinowitz, A first course in numerical analysis, 2nd edition. Dover Publications, Inc., Mineola, New York
(2001).

[48] R.T. Seeley, Spherical harmonics. Amer. Math. Monthly 73 (1966) 115–121,.


	Introduction
	Weak formulation of the continuous problem. The underlying functional spaces
	Approximation by rational and pseudo-rational functions
	Discretization and error estimate
	An orthogonal basis: Arar--Boulmezaoud functions
	Proof of Theorems 3.2 and 3.3
	The case of Poisson's equation

	Implementation
	Computing integrals. The stiffness matrix
	Numerical results

	Appendix A. The stereographic projection and integrals
	Appendix B. Formulae of spherical harmonics on S2 and on S3
	References

