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A DISCONTINUOUS GALERKIN REDUCED BASIS ELEMENT METHOD
FOR ELLIPTIC PROBLEMS
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Abstract. We propose and analyse a new discontinuous reduced basis element method for the ap-
proximation of parametrized elliptic PDEs in partitioned domains. The method is built upon an offline
stage (parameter independent) and an online (parameter dependent) one. In the offline stage we build
a non-conforming (discontinuous) global reduced space as a direct sum of local basis functions gen-
erated independently on each subdomain. In the online stage, for any given value of the parameter,
the approximate solution is obtained by ensuring the weak continuity of the fluxes and of the solu-
tion itself thanks to a discontinuous Galerkin approach. The new method extends and generalizes the
methods introduced in [L. Iapichino, Ph.D. thesis, EPF Lausanne (2012); L. Iapichino, A. Quarteroni
and G. Rozza, Comput. Methods Appl. Mech. Eng. 221–222 (2012) 63–82]. We prove its stability and
convergence properties, as well as the spectral properties of the associated online algebraic system.
We also propose a two-level preconditioner for the online problem which exploits the pre-existing de-
composition of the domain and is based upon the introduction of a global coarse finite element space.
Numerical tests are performed to verify our theoretical results.
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1. Introduction

The Reduced Basis (RB) method, see e.g. [32–34], for elliptic Parametrized Partial Differential Equations
(PPDEs) has been successfully developed to approximate the solution of problems like:

find u(µ) ∈ V such that A(u(µ), v; µ) = F (v; µ) ∀ v ∈ V, (1.1)

where V is a suitable Hilbert space, µ = (μ1, . . . , μP ) is a P -tuple of parameters which belongs to a subspace D
of R

P , A is a continuous coercive bilinear form defined on V × V and F is a linear continuous functional on V .
When the domain Ω(µ) of the PPDE is partitioned into several subdomains, a convenient numerical approach

is provided by the so-called Reduced Basis Element (RBE) method, presented in [26–29], in which local (i.e.,
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defined on each subdomain) reduced bases are built by restriction of global solutions, while the global continuity
of the RB solution is guaranteed either by the introduction of suitable Lagrange multipliers, as in [24], or by
adopting a discontinuous Galerkin (DG) approach, as in [13].

Several improvements of the Reduced Basis Element (RBE) idea have been recently proposed. One instance
is the so-called static condensation Reduced Basis Element method [15, 19, 20], where a RB approximation of
the Schur complement is proposed and rigorous a posteriori error estimators are derived. Another approach is
represented by the so-called Reduced Basis Hybrid Method (RBHM) [22, 24], where a global coarse solution,
responsible for ensuring interface continuity of normal fluxes, is overlaid to the subspace of local reduced
basis computed offline at subdomain levels. The continuity of the global reduced solution is enforced using
Lagrange multipliers. A further instance is provided by the Reduced Basis−Domain Decomposition−Finite
Element (RDF) method [22, 23], in which the continuity of the elements of the reduced space on the whole
domain Ω(µ) is guaranteed by the introduction of additional degrees of freedom on the interfaces, corresponding
to the fine-grid Finite Element (FE) Lagrangian basis functions associated with the nodes on each interface.
Ideas related to the RBE approach can also be applied to the RB approximation of multiscale phenomena,
as done in [1, 25]. Besides the RB framework, a method that shows similarities with the RBE approach is the
Generalized Multiscale Finite Element Method presented in [14,17]. In the latter, the DG approach is employed
to impose weak continuity of the global solution, which belongs to a discontinuous space spanned by local bases
computed subdomainwise. However, differently from the approach proposed here, the local spaces are not built
with a Greedy algorithm but solving a number of local eigenvalue problems.

In this work we propose a discontinuous Galerkin Reduced Basis Element (DGRBE) method which represents
in fact a generalization and an improvement of both RDF and RBHM. As a matter of fact, as in the RDF
method, the DGRBE approximation is based upon a set of local basis functions that feature non-homogeneous
Neumann boundary conditions, without however requiring the introduction of additional degrees of freedom on
the interfaces. Moreover, a possible preconditioner for the reduced problem is introduced by making use of a
coarse space correction on the local basis inspired by the RBHM. We point out that this correction was essential
to ensure interface stress continuities in RBHM, whereas in our DGRBE method it only serves the purpose of
improving the spectral properties of the preconditioner to solve the associated online linear system.

Furthermore, the underlying DG approach allows for the use of independent elementwise representation of
the numerical solution, without necessitating Lagrange multipliers to ensure the continuity across the internal
interfaces, as was the case for RBHM. The DGRBE method is then well suited for global meshes which are
non-conforming on the subdomain interfaces. We point out that the local bases are constructed by solving local
problems with suitably chosen boundary conditions. No approximate solution of the global problem (1.1) is
therefore required. This makes the DGRBE method particularly well suited for problems defined on “modular”
domains, namely composed by an arbitrary number of subdomains that can be obtained by geometrical trans-
formation of few parameter-independent reference subdomains, cf. [19, 24]. We show by numerical experiments
that the DGRBE approximation of (1.1) on a partitioned domain is as accurate as a fine-grid FE one, even
though it is based on a significantly lower dimensional approximation space. After introducing the DGRBE
method, we carry out its analysis in the case of elliptic problems. More precisely, we prove: the well-posedness
of the method, its stability and some convergence estimates.

An outline of the paper is as follows. In Section 2 the main features of the DGRBE method are introduced,
while in Section 3 the theoretical analysis is carried out. In Section 4 a two level preconditioner is presented
and it is meant to make the preconditioned online system weakly scalable. Finally, in Section 5 some numerical
tests are shown. In the appendices some implementation details are reported.

2. The DGRBE method

We assume that a parameter dependent open subset Ω(µ) ⊂ R
2 is given, where µ is a parameter belonging

to the space D ⊆ R
P , P ≥ 1. Given an integer NS > 1, we assume that the domain is composed of a finite
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number of non-overlapping subdomains,

Ω(µ) =
NS⋃
i=1

Ωi(µ) ∀µ ∈ D

where each Ωi(µ) is an open bounded subset of R
2. The model problem we are considering is the following:

−ν(µ)Δu(µ) + σ(µ)u(µ) = f(µ) in Ω(µ),
u(µ) = 0 on ∂Ω(µ),

(2.1)

where f ∈ L2(Ω(µ)) is a given source term and ν(µ), σ(µ) are µ-dependent constant coefficients. We point out
that our results can be extended to the case of subdomainwise constant coefficients or, under suitable regularity
assumptions, to the case of space-dependent functions. We also remark that the parameter dependence can be
both physical and geometrical, that is both the coefficients and the domain can depend on the parameters. To
follow a reduced basis approach, we define a reference domain Ω = Ω(µ̄), for a suitably chosen µ̄ ∈ D. Corre-
spondingly, we define the reference subdomains Ωi = Ωi(µ̄), for i = 1 . . .NS . Let Tµ

i : Ωi → Ωi(µ), be the local
geometrical transformation mapping the reference subdomains into the “physical” ones. By patching together
these local transformations, we can define a global transformation Tµ which maps the reference domain Ω onto
Ω(µ). We assume that the global map Tµ is continuous and bijective. Setting V = H1

0(Ω), we define

A(w, v; µ) =
∫

Ω(µ)

ν(µ)∇(w ◦ (Tµ)−1) · ∇(v ◦ (Tµ)−1) dx +
∫

Ω(µ)

σ(µ) (w ◦ (Tµ)−1) (v ◦ (Tµ)−1) dx ,

for all w, v ∈ V . For the sake of notation, in what follows we let the composition with (Tµ)−1 to be understood.
The reduced-order method we are going to introduce features two main components:

• a local reduced basis for each subdomain;
• a DG-type interface treatment at subdomain boundaries.

In what follows we explain the role played by these components during the two stages of the DGRBE method:
the offline stage and the online stage. Details about the implementation aspects can be found in Appendix A.

2.1. Offline stage

The offline stage of the DGRBE method is inspired by the offline stage of the RDF method introduced in [22]
and follows ideas which can also be found in [19]. For each i = 1, . . . , NS , we define a (parameter independent)
conforming quasi-uniform triangulation Th,i on Ωi. Setting Γi = ∂Ωi\∂Ω, we define the local spaces

Vi = {vi ∈ L2(Ω) | vi|Ωi ∈ H1(Ωi), vi = 0 on ∂Ωi\Γi, vi = 0 in Ω\Ωi},
Vh,i = {vh,i ∈ Vi | vh,i|K ∈ P

1(K)∀K ∈ Th,i}.

On each subdomain we build a local reduced basis such that, for each value of the parameters, it allows a good
approximation of the solution of the two following problems:

−ν(µ)Δůi(µ) + σ(µ)̊ui(µ) = f(µ), in Ωi(µ)
∂ůi(µ)
∂ni

= 0, on Γi(µ)

ůi(µ) = 0, on ∂Ωi(µ)\Γi(µ),

(2.2)

and
−ν(µ)Δwi(µ, β) + σ(µ)wi(µ, β) = 0, in Ωi(µ)

∂wi(µ, β)
∂ni

= g(β), on Γi(µ)

wi(µ, β) = 0, on ∂Ωi(µ)\Γi(µ),

(2.3)
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where g(β) is a Neumann datum which depends on an additional parameter β ∈ N. Recalling that u(µ) is
the solution of (2.1), we now observe that if, for a given set of parameters {β1, . . . , βñ} ⊂ N all referring to
the current subdomain Ωi (we avoid indexing βj as βi

j , j = 1, . . . , ñ for the sake of notation),
∑

j g(βj) is a

good approximation of ∂u(µ)
∂n |Γi then by linearity ui(µ) = ůi(µ) +

∑
j wi(µ, βj) will be a good approximation

of u(µ)|Ωi(µ). Thus, building a space able to approximate the solutions of problems (2.2) and (2.3) on each
subdomain allows to approximate also the solution of the initial problem (2.1). In the following we make the
above idea more clear. We first introduce the local forms

Ai(wi, vi; µ) =
∫

Ωi(µ)

ν(µ)∇wi · ∇vi dx +
∫

Ωi(µ)

σ(µ)wi vi dx , Fi(vi; µ) =
∫

Ωi(µ)

f(µ) vi dx ,

for all wi, vi ∈ Vi. We then define

(wi, vi)Vi
= Ai(wi, vi; µ̄), ‖vi‖Vi = (vi, vi)

1/2

Vi
∀wi, vi ∈ Vi,

where µ̄ is the parameter value chosen to identify the reference domain. Next, we define the extended parameter
space

D̃ = D × {0, . . . , nBC,i}, with nBC,i ∈ N, (2.4)

and we denote with µ̃ = (µ, β) the generic element of D̃. Denoting with V Γi

h,i the space of the traces on Γi

of the elements of Vh,i, we introduce a β-dependent functional Iβ
i belonging to the dual space of V Γi

h,i, for all
β ∈ {0, . . . , nBC,i}. We are now able to define the local problems which we use to build the local basis. Given a
parameter value µ̃ ∈ D̃, find ũh,i(µ̃) ∈ Vh,i such that

Ai(ũh,i(µ̃), vh,i; µ̃) = F̃i(vh,i; µ̃) + 〈Iβ
i , vh,i|Γi〉 ∀ vh,i ∈ Vh,i, (2.5)

We assume that, for each choice of wh,i and vh,i in Vh,i, it holds

F̃i(vh,i; µ̃) = Fi(vh,i; µ) and 〈Iβ
i , vh,i|Γi〉 = 0 ∀µ̃ ∈ D × {0}, i.e., when β = 0,

F̃i(vh,i; µ̃) = 0 ∀µ̃ ∈ D × {1, . . . , nBC,i}

We observe that we are considering the FE approximation of problems (2.2) and (2.3) when β = 0 and β 
= 0,
respectively. The linear functional Iβ

i serves the purpose of (weakly) imposing the non-homogeneous Neumann
boundary conditions. We propose two possible choices of Iβ

i : the former is based on the approximation of the
weak normal derivative of the fine FE solution, the latter on the approximation of the normal derivative of the
continuous global solution along the internal interfaces.

The well-posedness of the local problem (2.5) is guaranteed by the following lemma, which can be proven
using a standard energy argument (cf. [31]).

Lemma 2.1. Let Dµ
i be the Jacobian matrix of Tµ

i and let Jµ
i be its determinant. For every µ in D, we assume

that ν(µ) > 0, σ(µ) > 0 and Jµ
i > 0 on Ωi, i = 1, . . . , NS, and define

αi(µ) = min
{

ν(µ)
ν(µ̄) ,

σ(µ)
σ(µ̄)

}
min
x∈Ωi

[
min{λmin

(
(Dµ

i )−1(Dµ
i )−�) , 1}Jµ

i

]
,

Ki(µ) = max
{

ν(µ)
ν(µ̄) ,

σ(µ)
σ(µ̄)

}
max
x∈Ωi

[
max{λmax

(
(Dµ

i )−1(Dµ
i )−�) , 1}Jµ

i

]
.

Then, for i = 1, . . . , NS, there exist two constants αi(µ), Ki(µ) such that:

(i) 0 < αi(µ) < Ki(µ);
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(ii) for each vi, wi in Vi and for each µ in D,

αi(µ) ‖vi‖2
Vi

≤ Ai(vi, vi; µ), |Ai(wi, vi; µ)| ≤ Ki(µ) ‖wi‖Vi‖vi‖Vi .

By applying the Greedy’s algorithm [32,34] to problem (2.5) we obtain a local RB space

V RB
i = span{ũh,i(µ̃1

i ), . . . , ũh,i(µ̃Ni

i )},

for a suitably chosen set of parameters µ̃k
i , k = 1, . . . , Ni. Then the solution uRB

i (µ̃) ∈ V RB
i of

Ai(ũRB
i (µ̃), vRB

i ; µ̃) = F̃i(vRB
i ; µ̃) + 〈Iβ

i , v
RB
i |Γi〉 ∀ vRB

i ∈ V RB
i ,

satisfies
|||ũh,i(µ̃) − ũRB

i (µ̃)|||µ ≤ ε∗‖ũRB
i (µ̃)‖Vi ∀µ ∈ Ξ, (2.6)

for a given (small) tolerance ε∗. Here Ξ denotes a finite training subset of D, which is needed to perform
the Greedy’s algorithm [34]. As usual in the RB context, we assume that Ξ is sufficiently “dense” in D. This
ensures that the Greedy’s algorithm is insensitive to the specific training subset that has been chosen [30, 34].
Moreover, we observe that under suitable assumptions on the equation coefficients, such as smooth or Lipschitz
dependence on the parameter [16, 30], inequality (2.6) could be extended (even though slightly weakened) to
the whole parameter set D. The global DGRBE space is now defined as

V RB =
NS⊕
i=1

V RB
i . (2.7)

A basis of the space V RB is BRB =
⋃NS

i=1 BRB,i.

Remark 2.2. The set of parameters on which a single local problem depend can be smaller than the global
set of parameters associated with problem (2.1). For instance if the domain Ω(µ) depends on the parameter,
it can happen that the geometry of a single subdomain Ωi(µ) depends only on some components of µ, thus
the ith local problem depends on µi = (μi1 , . . . , μiPi

), where {i1, . . . , iPi} ⊆ {1, . . . , P}. This fact can be very
favourable in terms of the offline computational cost, because the local Greedy algorithm could be performed
on a parameter space which has a smaller dimension than the global one.

We discuss two possible definitions of Iβ
i , used to construct the local bases.

Method A: approximation of the weak normal derivative of a discrete solution on the fine-grid. First of all,

we observe that the weak normal derivative of the fine-grid solution is actually a functional Fµ
h,i ∈

(
V Γi

h,i

)′
,

which corresponds to an element wΓi

h,i(µ) ∈ V Γi

h,i by the Riesz representation theorem. We then consider a basis
BΓi = {φi

h,1, . . . , φ
i
NΓi

} of V Γi

h,i , denote by ωm(µ) the expansion coefficients of wΓi

h,i(µ) with respect to BΓi, and
set nBC,i = NΓi . Then,

〈Fµ
h,i, vh,i|Γi〉 =

nBC,i∑
m=1

ωm(µ)(φi
h,m, vh,i|Γi)Γi ∀vh,i ∈ Vhi . (2.8)

Inspired by (2.8), we define the functional Iβ
i (for every β ranging from 0 to nBC,i, see (2.4)) such that

〈Iβ
i , vh,i|Γi〉 =

nBC,i∑
m=1

�{m}(β)(φi
h,m, vh,i|Γi)Γi ∀vh,i ∈ Vhi ,

where �{m}(β) = 1 if and only if β = m, otherwise it is null (that is �m(β) = δmβ). In this way, the local Greedy
procedure can take into account the Neumann data associated with each interface basis φh,i, i = 1, . . . , NΓi .



342 P.F. ANTONIETTI ET AL.

Method B: Legendre approximation of the normal derivative of the continuous solution. We assume now that
the interface Γi of Ωi is regular (or, at least, it is a finite union of regular components). The idea is now to
approximate the normal derivative with a properly chosen L2 orthogonal basis {φi

m}∞m=0. We write

∂u(µ)
∂n

=
∞∑

m=1

ωm(µ)φi
m, (2.9)

and consider its approximation obtained by truncating the series. We denote the truncated sum with w̃Γi (µ)
and choose the Legendre polynomials as basis functions. We now define the functional Iβ

i in the following way:

〈Iβ
i , vh,i|Γi〉 =

nBC,i∑
m=1

�{m}(β)(φi
m, vh,i|Γi)Γi ∀vh,i ∈ Vhi .

We chose nBC,i in order to achieve a good local approximation, as we will discuss later.

2.2. Online stage

The elements of V RB are obviously discontinuous functions across subdomain interfaces. To compensate for
that, we introduce the following DG-type bilinear form

ADG

(
wRB , vRB; µ

)
=

NS∑
i=1

Ai

(
wRB

i , vRB
i ; µ

)
+ dDG(wRB , vRB ; µ) + cDG(wRB , vRB; µ), (2.10)

where

dDG(wRB , vRB ; µ) = −
∫

Γ (µ)

ν(µ){∇wRB} ·
�
vRB

�
ds −

∫
Γ (µ)

ν(µ){∇vRB} ·
�
wRB

�
ds

cDG

(
wRB , vRB ; µ

)
=
ν(µ)γ
h

∫
Γ (µ)

�
wRB

�
·
�
vRB

�
ds , (2.11)

for a suitable constant γ > 0. Here Γ (µ) is the union of all internal interfaces, and we used the standard notation
for jump and average operators, see [7], that on Γ ij = Ωi ∩Ωj becomes:{
∇vRB

}
|Γij(µ) =

1
2
(
(∇vRB

i )|Γij(µ) + (∇vRB
j )|Γij(µ)

)
,

�
vRB

�
|Γij(µ) =

(
vRB

i · ni

)
|Γij(µ) +

(
vRB

j · nj

)
|Γij(µ),

where nk is the normal unit vector pointing outwards Ωk(µ), k = i, j.
For any given value µ ∈ D, the corresponding global reduced approximation takes the following form

find uRB(µ) ∈ V RB such that ADG

(
uRB(µ), vRB; µ

)
= F

(
vRB; µ

)
∀ vRB ∈ V RB, (2.12)

where F (vRB; µ) =
∑NS

i=1 Fi(vRB
i ; µ).

3. Convergence analysis

In this section we present the convergence analysis of the DGRBE method, focusing in particular on the
approximation properties of the online problem (2.12). We assume that the weak solution u(µ) of the continuous
problem (2.1) has H2(Ω) regularity. We then set V = H1

0(Ω)∩H2(Ω) and V (RB) = V RB +V . In the following,
we will denote with the symbol � all the inequalities valid up to a multiplicative constant, which can depend
also on the parameter µ. We define the norms

‖v‖2
DG,µ =

∑NS

i=1 Ai(v, v; µ) + cDG(v, v; µ) ∀v ∈ V (RB) ∀µ ∈ D,
|||v|||2DG,µ = ‖v‖2

DG,µ + h2
∑NS

i=1

∑
K∈Th,i

|v|2H2(K) ∀v ∈ V (RB) ∀µ ∈ D,
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and observe that ‖vRB‖DG,µ = |||vRB |||DG,µ for any vRB ∈ V RB, as each element of V RB is piecewise linear. We
define also the reference parameter independent norms ‖ · ‖DG = ‖ · ‖DG,µ̄ and ||| · |||DG = ||| · |||DG,µ̄, which are
equivalent to the parameter dependent norms. We observe that, as we are using piecewise linear polynomials,
‖vRB‖DG = |||vRB |||DG for all vRB ∈ V RB .

We assume than that, for i = 1, . . . , NS , the local basis {ζi
1, . . . , ζ

i
Ni

} of V RB
i satisfies the following orthogo-

nality conditions (
ζi
j , ζ

i
k

)
Vi

= δjk j, k = 1, . . . , Ni, i = 1, . . . , NS , (3.1)

as guaranteed by the Greedy’s algorithm [32, 34]. Exploiting (2.7), we observe that we can uniquely express
every element of V RB as vRB =

∑NS

i=1 v
RB
i , and that

‖vRB‖2
DG =

NS∑
i=1

(
vRB

i , vRB
i

)
Vi

+ cDG

(
vRB, vRB ; µ̄

)
, (3.2)

where the inner product (·, ·)Vi
is defined as in (2.5).

The next proposition states that the form ADG(·, ·; µ) is coercive and continuous with respect to the norms
‖·‖DG and |||·|||DG, respectively. For the sake of brevity we omit the proof, which is based on standard arguments,
cf. [6, 7, 38].

Proposition 3.1 (Stability of the DGRBE method). The following estimates hold.

(1) For all µ ∈ D, there exists αDG(µ) > 0 such that for all vRB ∈ V RB

ADG(vRB , vRB; µ) ≥ αDG(µ)‖vRB‖2
DG,

provided the stability parameter γ in (2.10) has been chosen large enough.
(2) For all µ ∈ D, there exists KDG(µ) > 0 such that for every w, v ∈ V (RB)

ADG(w, v; µ) ≤ KDG(µ)|||w|||DG|||v|||DG.

We now prove global error estimates. To ease the notation, we will omit the parameter dependence of the
domain. Given a parameter value µ ∈ D, the idea is to build zRB(µ) ∈ V RB for which it is possible to estimate
|||u(µ)−zRB(µ)|||DG. To show that we can bound the approximation error with |||u(µ)−zRB(µ)|||DG, we observe
that

|||u(µ) − uRB(µ)|||DG ≤ |||u(µ) − zRB(µ)|||DG + ‖zRB(µ) − uRB(µ)‖DG,

and that, as ADG(u(µ) − uRB(µ), zRB(µ) − uRB(µ); µ) = 0 by strong consistency,

‖zRB(µ) − uRB(µ)‖2
DG ≤ 1

αDG(µ)
ADG(zRB(µ) − u(µ), zRB(µ) − uRB(µ); µ)

≤ KDG(µ)
αDG(µ)

|||zRB(µ) − u(µ)|||DG‖zRB(µ) − uRB(µ)‖DG.

We follow the approach used in [7], which first requires a local approximation result. Usually, a piecewise
polynomial interpolant is used to provide a local best approximation. As we do not dispose of such an interpolant,
we will have to build an element of our local spaces which reasonably provides a good approximation of the
continuous solution. We finally observe that, for each µ ∈ D, the reduced space built by applying the Greedy’s
algorithm to the problem (2.5) contains the element

zRB
i (µ) = ũRB

i (µ, 0) + wRB
i (µ), where wRB

i (µ) =
nBC,i∑
m=1

ωm(µ) ũRB
i (µ,m),

and the weights ωm(µ) are defined in (2.8) and (2.9) for Method A and Method B, respectively. Recalling that
Ξ ⊂ D is the set on which inequality (2.6) rigorously hold, we can state the following results.
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Lemma 3.2 (Method A). Given µ ∈ Ξ, if the local reduced bases are built using Method A, then zRB
i (µ)

approximates uh,i(µ) ∈ Vh,i, i.e., the restriction to Ωi of the global fine-grid solution uh(µ) such that

ADG(uh(µ), vh; µ) = F (vh; µ) ∀ vh ∈ Vh, (3.3)

where Vh =
⊕NS

i=1 Vh,i. Moreover it holds that

|||uh,i(µ) − zRB
i (µ)|||µ,i ≤ ΦA

µε
∗, (3.4)

‖uh,i(µ) − zRB
i (µ)‖L2(Γi) � ΦA

µε
∗, (3.5)

with ΦA,i
µ = αi(µ)−1[‖F̃i‖V ′

h,i
+NΓi maxm(ωm(µ)‖Im

i ‖V ′
h,i

)]. Here NΓi is the number of fine-grid interface bases
and V ′

h,i is the dual space of Vh,i.

Proof. We first observe that uh,i(µ) is the solution of

Ai(uh,i(µ), vh,i; µ) = Fi(vh,i; µ) + 〈Fµ
h,i, vh,i〉 ∀vh,i ∈ Vh,i,

where Fµ
h,i ∈

(
V Γi

h,i

)′
can be decomposed as in (2.8). We then note that uh,i(µ) can be written as uh,i(µ) =

ũh,i(µ, 0) + wh,i(µ) where ũh,i(µ, 0) solves problem (2.5) with β = 0 and wh,i(µ) =
∑NΓi

m=1 ωm(µ)ũh,i(µ,m).
Using (2.6) and observing that

|||wh,i(µ) − wRB
i (µ)|||µ,i ≤

NΓi∑
m=1

ωm(µ)|||ũh,i(µ,m) − ũRB
i (µ,m)|||µ,i ≤ ε∗NΓi max

m
(ωm(µ)‖Im

i ‖V ′
h,i

), (3.6)

estimate (3.4) follows from triangular inequality. As for (3.5), we observe that the norm ||| · |||µ,i is associated
with a diffusion reaction operator and, using the standard trace inequality

‖vi‖L2(Γi) � ‖vi‖H1(Ωi) ∀vi ∈ H1(Ωi), (3.7)

cf. [31], we conclude with the desired result. �

Lemma 3.3 (Method B). Given µ ∈ Ξ, if the local reduced bases are built using Method B, then zRB
i (µ) is an

approximation of u(µ)|Ωi ∈ H1
0(Ω), where u(µ) is the weak solution of (2.1). Setting

Ei(µ) =
∥∥∥∥∂u(µ)

∂n
− w̃Γi(µ)

∥∥∥∥
L2(Γi)

,

where w̃Γi(µ) is the truncated sum (2.9), it holds that

|||u(µ)|Ωi − zRB
i (µ)|||µ̄,i � h

(
‖f‖L2(Ωi) +

∥∥∥∥∂u(µ)
∂n

∥∥∥∥
L2(Γi)

)
+ Ei(µ) + ΦB

µ ε
∗, (3.8)

‖u(µ)|Ωi − zRB
i (µ)‖L2(Γi) � h

3/2

(
‖f‖L2(Ωi) +

∥∥∥∥∂u(µ)
∂n

∥∥∥∥
L2(Γi)

)
+ Ei(µ) + ΦB

µε
∗, (3.9)

with ΦB,i
µ = αi(µ)−1[‖F̃i‖V ′

h,i
+
∑MBC

m=1 ωm(µ)‖Im
i ‖V ′

h,i
]. Here MBC is the number of Legendre polynomials

considered on each interface and V ′
h,i is the dual space of Vh,i.
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Proof. We first split the restriction of the exact solution to Ωi as u(µ)|Ωi = ůi(µ) + wi(µ), where ůi(µ) and
wi(µ) are such that

Ai(̊ui(µ), vi; µ) = Fi(vi; µ), Ai(wi(µ), vi; µ) =
(
ν(µ)

∂u(µ)
∂n

, vi|Γi

)
Γi

,

for all vi ∈ Vi. We then define w̃i(µ) such that

Ai(w̃i(µ), vi; µ) = (w̃Γi(µ), vi|Γi)Γi ∀vi ∈ Vi,

where w̃Γi(µ) is the polynomial expansion (2.9) truncated after the first MBC terms. Moreover, it holds that
w̃i(µ) =

∑MBC

N=1 ωm(µ)ψm,i(µ), where ψm,i(µ) ∈ Vi, m = 1, . . . ,M , are the harmonic extensions of the basis of
Neumann boundary data, i.e.,

Ai(ψm,i(µ), vi; µ) = (φm(µ), vi|Γi)Γi ∀vi ∈ Vi.

Note that ũh,i(µ,m) is the FE approximation of ψm,i(µ), then the FE approximation of w̃i(µ) is w̃h,i(µ) =∑MBC

m=1 ωm(µ)ũh,i(µ,m). By triangular inequality,

|||u(µ)|Ωi − zRB
i (µ)|||µ̄,i ≤ |||̊ui(µ) − ũh,i(µ, 0)|||µ̄,i + |||ũh,i(µ, 0) − ũRB

i (µ, 0)|||µ̄,i

+ |||wi(µ) − w̃i(µ)|||µ̄,i + |||w̃i(µ) − w̃h,i(µ)|||µ̄,i + |||w̃h,i(µ) − wRB,i(µ)|||µ̄,i. (3.10)

Recalling the standard error estimates of the FE method (cf. [31]), exploiting (2.6) and reasoning as in (3.6)
inequality (3.8) follows. To prove (3.9), we need the following trace inequalities:

‖v‖2
L2(e) � h−1

e ‖v‖2
L2(K) + he|v|2H1(K) ∀v ∈ H1(K) ∀K ∈ Th,

cf. [7], where e is an edge of K, that implies

‖vi‖2
L2(Γi)

� h−1‖vi‖2
L2(Ωi)

+ h|vi|2H1(Ωi)
∀vi ∈ H1(Ωi), i = 1, . . . , NS. (3.11)

We then decompose the ‖u(µ)|Ωi − zRB
i (µ)‖L2(Γi) as done in (3.10). By (3.11) and the standard FE error

estimates, we can bound the FE parts as follows

‖ůi(µ) − ũh,i(µ, 0)‖L2(Γi) + ‖w̃i(µ) − w̃h,i(µ)‖L2(Γi) � h3/2

(
‖f‖L2(Ωi) +

∥∥∥∥∂u(µ)
∂n

∥∥∥∥
L2(Γi)

)
·

The thesis follows bounding the remaining parts using the trace inequality (3.7). �

In order to prove a global approximation estimate, we use an argument similar to that used in ([7], Sect. 4.3).
We also exploit the following inequality, whose proof is shown in Appendix C,

1
h

∑
{i,j : Ωi∩Ωj �=∅}

‖ �vh� ‖2
L2(Γij) � 1

h

NS∑
i=1

‖vh,i‖2
H1(Ωi)

∀vh ∈ Vh. (3.12)

We define: zRB(µ) =
∑NS

i=1 z
RB
i (µ). The following result holds.

Theorem 3.4. Let µ ∈ Ξ. Let u(µ) be the exact weak solution of problem (2.1) and let uRB
A (µ) and uRB

B (µ)
be the approximated solutions obtained with Method A and Method B, respectively. Then,

|||u(µ) − uRB
A (µ)|||DG � h ‖f‖L2(Ωi) +

√
NS

(
1 +

1√
h

)
ΦA

µ ε
∗, (3.13)

|||u(µ) − uRB
B (µ)|||DG � h‖f‖L2(Ω) +

(
1 +

1√
h

) NS∑
i=1

Ei(µ) +
√
NS

(
1 +

1√
h

)
ΦB

µ ε
∗, (3.14)
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where ΦA
µ = maxi Φ

A,i
µ and ΦB

µ = maxi Φ
B,i
µ . Here ΦA,i

µ , ΦB,i
µ and Ei(µ) are defined as in Lemmas 3.2 and 3.3.

All the hidden constants depend on the domain Ω and the parameter µ, but are independent of h and ε∗.

Proof. Let us start with estimate (3.13). First of all we observe that the solution uh(µ) of (3.3) is such that

|||u(µ) − uh(µ)|||DG � h‖f‖L2(Ω),

see, for instance, [35]. We then observe that as Vh and thus V RB are piecewise polynomials spaces, it is sufficient
to estimate the error ‖uh(µ)− zRB(µ)‖DG. More precisely, we observe that we need just to estimate the jump
terms, as the others are already bounded by (3.4). Using inequality (3.12) together with Lemma 3.2, we obtain

γ

h

∑
{i,j : Ωi∩Ωj �=∅}

‖
�
uh(µ) − zRB(µ)

�
‖2
L2(Γij)

� 1
h

NS∑
i=1

|||uh,i(µ) − zRB
i (µ)|||2µ̄,i �

(√
NS

h
ΦA

µ ε
∗

)2

(3.15)

As for (3.14), it is sufficient to find an upper bound for the jump term of ||| · |||DG, because the other terms
can be controlled by the local estimate (3.8) and by observing that

NS∑
i=1

∑
K∈Th,i

|u(µ) − zRB(µ)|2H2(K) = |u(µ)|2H2(Ω) � ‖f(µ)‖2
L2(Ω).

Thanks to inequality (3.7), reasoning as in (3.15) and recalling Lemma 3.3, we have

γ

h

∑
{i,j : Ωi∩Ωj �=∅}

‖
�
u(µ) − zRB(µ)

�
‖2
L2(Γij)

�
(
h‖f‖L2(Ω) +

1√
h

NS∑
i=1

Ei(µ) +

√
NS

h
ΦB

µ ε
∗

)2

, (3.16)

where we have also used that

NS∑
i=1

∥∥∥∥∂u(µ)
∂n

∥∥∥∥
L2(Γi)

�
NS∑
i=1

‖∇u(µ)‖L2(Ωi) � ‖∇u(µ)‖L2(Ω) � ‖f‖L2(Ω),

and the thesis follows. �

Remark 3.5. Note that for both Methods A and B the contribution to the error due to the local RB increases
as the square root of the number of subdomains. This is actually reasonable because, by (2.6), we can control
only the RB approximation error committed on a single subdomain. Then, since the global absolute error
depends on the square root of the sum of the squared local errors, the dependence on

√
NS is expectable.

Remark 3.6. We observe that the constant ΦA,i
µ = αi(µ)−1[‖F̃i‖V ′

h,i
+ NΓi maxm(ωm(µ)‖Im

i ‖V ′
h,i

)], cf. Lem-
ma 3.2, may a priori depend on h. Indeed, for each subdomain Ωi and for each FE basis function on Γi we
have ‖Im

i ‖V ′
h,i

� ‖φi
h,m‖L2(Γi) � h

1/2. Therefore, since NΓ ≈ h−1, we have that ΦA,i
µ � h−1/2. Nevertheless, our

numerical computations reveal that this bound might not be sharp, as ΦA,i
µ is very likely to be independent

of h . More precisely, in Figure 4 we will display that maxm ‖Im
i ‖V ′

h,i
is of order h and in such a case ΦA,i

µ is
independent of the mesh size. A theoretical justification of this behaviour is under investigation.

Remark 3.7. The quality of the global approximation given by Method B depends on how well the normal
derivative of u(µ) on the interfaces can be approximated by a polynomial expansion, on each internal interface.
In our numerical tests, shown in Section 5, we chose MBC ≈ h−

1/2. This choice can be motivated employing
the approximation properties in average of the Legendre polynomials, provided that we assume high regularity
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on the solution u(µ). More precisely, if u(µ) ∈ H5(Ω) then ∂u(µ)
∂n has (at least) H3 regularity on each regular

component of the internal interface. Thus, the following approximation result holds:∥∥∥∥∂u(µ)
∂n

− w̃Γi (µ)
∥∥∥∥

L2(Γi)

� M−3

∣∣∣∣∂u(µ)
∂n

∣∣∣∣
H3(Γi)

,

cf. [12]. In this way, the error due to the approximation of the normal derivative on the interfaces scales as h.
A possible alternative to the requirement of a high regularity of the solution is the introduction of a suitable
a posteriori error estimator which allow to automatically tune the number of polynomial bases at the interface.
The latter approach is currently under investigation [5]. It is worth to be noted that, even if we consider
MBC ≈ h−1/2, the constant ΦB

µ is independent of h. To show this it is sufficient to consider the decay of the
coefficients ωm(µ) of the Legendre expansion of the normal derivative ∂u(µ)

∂n |Γi . To this end, we exploit the
following proposition.

Proposition 3.8. Let I = (−1, 1), f ∈ Hk(I), k ≥ 2, and let Pn be the nth Legendre polynomial, n ∈ N. Then

f =
∞∑

n=0

anPn, with an =
(
n+

1
2

)∫
I

f Pn,

and

|an| � 1
nk−1

‖f (k)‖L2(I).

The proof of Proposition 3.8 is based on the properties of Legendre polynomials and follows the same lines
of ([37], Thm. 2.1); for this reason it has been omitted. Thanks to Proposition 3.8 and our regularity assumption
on u(µ) we have that

∑MBC

m=1 ωm(µ) ≤ C <∞, thus ΦB
µ is independent of h.

3.1. Spectral bounds

We prove now some spectral bounds on the condition number of the matrix associated with the online
problem (2.12) through the basis BRB. We observe that for i = 1, . . . , NS , every element vRB

i ∈ V RB
i can be

expressed as vRB
i =

∑Ni

j=1 vi
jζ

i
j . We set vi = (vi

1, . . . , v
i
Ni

). Then, each vRB ∈ V RB is associated with a vector
vRB = (v1, . . . ,vNs).

Lemma 3.9. It holds:
‖vRB

i ‖2
Vi

= |vi|2 ∀vRB
i ∈ V RB

i , i = 1, . . . , NS ,

where | · | denotes the Euclidean norm.

Proof. Thanks to the orthogonality assumption (3.1), for i = 1, . . . , NS , it holds

‖vRB
i ‖2

Vi
=
(
vRB

i , vRB
i

)
Vi

=

⎛⎝ Ni∑
j=1

vi
jζ

i
j ,

Ni∑
k=1

vi
kζ

i
k

⎞⎠
Vi

=
Ni∑

j,k=1

vi
jv

i
k

(
ζi
j , ζ

i
k

)
Vi

= vT
i vi. �

Lemma 3.10. It holds

cDG(vRB , vRB; µ̄) � ν(µ̄)γ
h

|vRB |2 ∀vRB ∈ V RB ,

where γ is the penalization coefficient defined in (2.11) and the hidden constant depends only on the reference
domain Ω.
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Proof. Let us consider the interface Γij between Ωi and Ωj . Recalling that:

‖vk‖L2(Γij) ≤ CΓij‖vk‖Vk
∀ vk ∈ Vk, k = i, j, (3.17)

cf. [10], we observe that, using the Schwarz’s inequality and (3.17)∣∣∣∣∣
∫

Γij

�
vRB

�2

∣∣∣∣∣ ≤ C2
Γij

(
‖vRB

i ‖2
Vi

+ ‖vRB
j ‖2

Vj
+ 2 ‖vRB

i ‖Vi‖vRB
j ‖Vj

)
� C2

Γij

(
‖vRB

i ‖2
Vi

+ ‖vRB
j ‖2

Vj

)
.

Using Lemma 3.9 we finally have ∣∣∣∣∣
∫

Γij

�
vRB

�2

∣∣∣∣∣ � C2
Γij

(
|vi|2 + |vj |2

)
. (3.18)

Summing (3.18) over i and j, we get ∣∣∣∣∫
Γ

�
vRB

�2
∣∣∣∣ � C2

Γij
|vRB |2,

where the hidden constant depends on the maximum number of neighbouring subdomains a given subdomain
can have. Recalling (2.11), the thesis follows. �

From Lemmas 3.9 and 3.10 we can obtain the following result.

Theorem 3.11. The minimum and maximum eigenvalues of ARB satisfy

λmin(ARB) ≥ αDG(µ), λmax(ARB) � KDG(µ)
(

1 +
ν(µ̄)γ
h

)
,

for every µ ∈ D, where γ is defined in (2.11). The condition number of ARB can therefore be bounded by

κ(ARB) � KDG(µ)
αDG(µ)

(
1 +

ν(µ̄)γ
h

)
·

4. Preconditioning the online system

In this section we propose a possible two-level preconditioner to efficiently solve the online system. More
precisely, we aim to find a preconditioner for the parameter independent bilinear form

B(wh, vh) =
NS∑
i=1

(wh,i, vh,i)Vi
+ cDG(vh, wh; µ̄),

which is the scalar product associated with the norm ‖ · ‖DG (see (3.2)) and is spectrally equivalent to the form
ADG(·, ·; µ) (see Prop. 3.1). In the following, B will be the matrix associated with B through the basis BRB

and P the preconditioner of the online algebraic system.
The key ingredient of our two-level preconditioner is the construction of a coarse solver. For i = 1, . . . , NS

we define a parameter independent coarse triangulation TH,i, and assume that each fine triangulation Th,i

introduced in Section 2.1 is a refinement of TH,i. On each subdomain we define the local reduced space V RB
i as

V RB
i = VH,i ⊕ VNi,i, (4.1)

where VH,i is the piecewise discontinuous linear FE space associated with TH,i, while VNi,i is the space spanned
by local reduced basis functions computed in Vh,i. We denote with BH,i the standard FE basis of VH,i and
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with BNi,i the basis of VNi,i. A basis for V RB
i is then BRB,i = BH,i ∪ BNi,i. We show in Appendix B how to

build a basis which satisfies the direct sum assumption in (4.1). The offline-online decomposition of the method
enriched with a coarse space is very similar to that shown in Section 2. The main difference is that now the
global reduced space is defined as

V RB =
NS⊕
i=1

V RB
i =

NS⊕
i=1

VH,i ⊕
NS⊕
i=1

VNi,i. (4.2)

We note that VH =
⊕NS

i=1 VH,i is a non-conforming global coarse approximation space.

Remark 4.1. As regards the stability of the online problem associated with the reduced space (4.2) and the
approximation properties, the results proven in Section 3 still hold.

4.1. Two level Schwarz preconditioner

In this section we introduce a two level Schwarz preconditioner based on the reduced space enriched with
a coarse FE space, following the approach used in [2–4]. We recall that the global space is the DGRBE space
V RB defined in (4.2), we then define the global coarse space W0 =

⊕NS

i=1 VH,i, and the local spaces Wi = V RB
i ,

for i = 1, . . . , NS (see (4.1) for the definition). We observe that W0 ⊆
⊕NS

i=1Wi = V RB.
Let RT

i : Wi → V RB be the inclusion Wi → V RB . Now, it is possible to define the local operators Bi,
i = 0, . . . , NS such that

Bi(wi, vi) = B(RT
i wi, R

T
i vi) ∀wi, vi ∈ Wi.

We then introduce some projection-like operators Pi = RT
i P̃i : V RB → RT

i Wi, for i = 0, . . . , NS , where
P̃i : V RB →Wi is such that:

Bi(P̃iw, vi) = B(w,RT
i vi) ∀vi ∈Wi.

The two level additive Schwarz preconditioner is then defined by Pad =
∑NS

i=0 Pi. Employing the matrix notation
we have Pad = P−1B with P−1 =

∑NS

i=0 RT
i B−1

i Ri, being RT
i and Bi the matrix representation of RT

i and
Bi(·, ·), respectively.

We next provide an estimate for the condition number of the preconditioned matrix P−1B. The arguments
used are similar to [2]. Given w ∈ V RB, we define w0 ∈W0 such that:

w0 =
NS∑
i=1

wi
0, wi

0 = Π
VH,i

L2 w|Ωi , i = 1, . . . , NS , (4.3)

where ΠVH,i

L2 is the L2 projection onto VH,i. It holds that:

‖w − wi
0‖L2(Ωi) � H |w|H1(Ωi), |wi

0| � |w|H1(Ωi)
, (4.4)

for i = 1, . . . , NS , cf. [9]. We now report some preliminary lemmas whose proofs are based upon standard
arguments (cf. [2]).

Lemma 4.2. For any w, v ∈ V RB, we consider their unique decompositions as w =
∑NS

i=1R
T
i wi, v =∑NS

i=1 R
T
i vi, with wi, vi ∈ Wi for i = 1, . . . , NS. It holds that:

B(w, v) =
NS∑
i=1

Bi(wi, wi) + I(w, v), where I(w, v) =
ν(µ̄)
h

NS∑
i,j=1
i<j

∫
Γij

uini · vjnj + ujnj · vini ds .
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Moreover,

|I(w,w)| � γ
1
H h

‖w‖2
L2(Ω) + γ

H

h

NS∑
i=1

|w|2H1(Ωi)
,

where the hidden constant is independent of the mesh sizes h and H and of the penalty parameter γ.

Lemma 4.3. For any w ∈ V RB , let w0 be the piecewise L2 projection defined in (4.3). Then the following
estimates hold:

B0(w0, w0) �
(

2 + γ
H

h

)
B(w,w), B(w − w̃0, w − w̃0) �

(
1 + γ

H

h

)
B(w,w)

where the hidden constant is independent of h, H and γ.

Lemma 4.4 (Stable decomposition). For any w ∈ V RB , let w0 be the element of W0 defined by (4.3) and let
wi ∈Wi, i = 1, . . . , NS, be the uniquely determined elements such that w −RT

0 w0 =
∑NS

i=1 R
T
i wi. Then:

NS∑
i=0

Bi(wi, wi) ≤ γ C2
0B(w,w), with C2

0 = O

(
H

h

)
·

Proof. We denote by w̃0 = RT
0 w0. We have that

NS∑
i=0

Bi(wi, wi) = B(w − w̃0, w − w̃0) +B0(w0, w0) − I(w − w̃0, w − w̃0).

We observe that, thanks to Lemma 4.2, and to (4.4), we have

|I(w − w̃0, w − w̃0)| � γ
1
H h

‖w − w̃0‖L2(Ω) + γ
H

h

NS∑
i=1

|w − w̃0|2H1(Ωi)
� γ

H

h

NS∑
i=1

|w|2H1(Ωi)
� γ

H

h
B(w,w).

Exploiting Lemma 4.3 we can conclude. �

We can finally prove the following proposition about the condition number of the preconditioned ma-
trix P−1B.

Proposition 4.5. The following estimate holds

κ(P−1B) ≤ γ C2
0 (2 +M) � γ(2 +M)

H

h
,

where M is the maximum neighbours of each subdomain.

Proof. The proof is similar to [2], Theorem 5.1, and follows the general theory of Schwarz’s methods, see [36]. �

5. Numerical results

In this section we show some numerical tests in order to validate the theoretical results presented in the
previous sections. We recall that we denote with “Method A” and “Method B” the strategies for the construction
of the local basis introduced in Section 2.1. In all the following examples, the tolerance of the Greedy’s algorithm
has been set equal to ε∗ = 10−5 and the coefficient γ appearing in the penalization term cDG defined in (2.11)
has been chosen as γ = 10. The computations have been performed in MATLAB r©; the local offline stages have
been carried out employing the rbMIT c© library [21].
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Table 1. Example 1. Dimensions of the spaces involved in the computations and CPU times.
Th is the time for the solution of (3.3), Toff is the time needed for the offline stage and Ton the
solution time of the online problem.

l = 1 l = 2 l = 3 l = 4 l = 5
NΓi 15 29 57 113 225
MBC 4 6 7 10 13
Nh 324 1328 5376 21632 86784
Th (s) 1.3 e−3 5.4 e−3 2.7 e−2 1.4 e−1 6.8 e−1
Method A B A B A B A B A B
NRB 35 17 57 20.5 97.5 21 168 27.5 293 33.5
Toff 41s 28s 144s 51s 23m 105s 4h39m 9m 64h23m 1h37m
NDGRBE 70 34 114 41 195 42 336 55 586 67
Nh/NDGRBE 4.6 9.5 11.6 32.4 27.5 128 64.4 393 148 1295
Ton (s) 4.7 e−4 6.6 e−5 7.0 e−4 7.1 e−5 2.1 e−3 7.9 e−5 3.3 e−3 1.0 e−4 7.6 e−3 4.0 e−4

5.1. Example 1. Comparison of the two enrichment strategies

We make a comparison between the two proposed strategies for the construction of the local bases. We
tested both strategies on a diffusion reaction problem defined on Ω = Ω1 ∪ Ω2 with Ω1 = (0, 1) × (0, 1) and
Ω2 = (1, 2) × (0, 1). We then consider a parameter µ = (μ1, . . . , μ4) belonging to D = [0.1, 10] × [0, 1]3 ⊂ R

4

and we set ν(µ) = μ1, σ ≡ 1. The right-hand side function f(µ) is chosen such that the exact solution is:

u(µ) =
μ2

μ1
sin(πx) sin(πy) +

μ3

μ1

1
2

sin(2πx) sin(2πy) +
μ4

μ1

1
3

sin(3πx) sin(3πy).

We consider a sequence of uniform refinements Thl
, l = 2, . . . , 5, of a given initial grid Th1 , with granularity h1 =

0.1, such that hl = hl−1
2 , l = 2, . . . , 5. In Table 1 we report the dimensions of the spaces involved in the

computations and the corresponding CPU times. Here we have denoted with MBC the number of Legendre
polynomials considered on each interface, with Nh the dimension of the fine FE space upon which the reduced
bases are built, with NRB average number of local basis on each subdomain and with NDGRBE the dimension
of the whole DGRBE space. From the results reported in Table 1, it is evident that Method A produces
larger DGRBE spaces and thus is more expensive than Method B. In Figures 1 and 2 we show the (relative)
approximation error computed in the energy and the L2 norms, respectively, of the enriched DGRBE method
and we compare it with the corresponding fine-grid FE solution (relative) approximation error. The errors are
computed with respect to u(µ) and represent an average on a sample of 24 parameter values. We can observe
that Method A exhibits the same approximation properties than those provided by the FE method. Indeed the
error curves reported in Figure 1a are almost overlapped. The same is observed for Method B, cf. Figure 1b. In
Figure 3 we show the DGRBE approximation relative error, with respect to the fine-grid approximation (3.3), as
a function of the number of local basis used (for l = 3). We observe that Method A shows a regular decay until
it reaches a minimum value which is actually higher than the local RB tolerance, as expected by the analysis.
As for Method B, we observe a faster, but less regular, decay. Suitable strategies to improve this convergence
feature of Method B are currently under investigation. We note also that the minimum value is higher than the
one reached by Method A. This is due to our choice of the number MBC of Legendre polynomials.

From these results we can conclude that the a priori error estimates given by Theorem 3.4 are not sharp.
This is due to the fact that the element zRB(µ) considered to build the upper bound does not provide the actual
“best approximation” of the continuous solution u(µ) in V RB. Indeed, there are cases in which the estimate
is sharp for |||u(µ) − zRB(µ)|||DG but not for the DGRBE approximation error. We consider in particular the
estimate of the interface jump component of the Method B error, given by (3.16), which yields the dependence
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Figure 1. Example 1. Relative approximation error computed in the energy norm versus h,
Method A (left) and Method B (right).
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Figure 2. Example 1. Relative approximation error computed in the L2 norm versus h,
Method A (left) and Method B (right).

on h−1/2 of the global estimate. In Figure 4 (left) we show the behaviour of the quantities

√
γ

h
‖

�
u(µ) − uRB(µ)

�
‖L2(Γ1 2) and

√
γ

h
‖

�
u(µ) − zRB(µ)

�
‖L2(Γ1 2) (5.1)

as functions of h, for a particular value of µ, using MBC = 3 Legendre polynomials during the offline stage.
From these results we clearly observe that the second quantity in (5.1) scales as h−1/2, and therefore the estimate
given in (3.16) seems to be sharp. Finally, as anticipated in Remark 3.6, we have performed a numerical study
of the dual norm of the functional Im

i of Method A (evaluated by computing the norm of theirs H1 Riesz
representatives in Vh,1). In Figure 4 (right) we observe that the maximum value of ‖Im

i ‖V ′
h,1

decays as h,
therefore the constant ΦA,i

µ defined Lemma 3.2 is independent of h.
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Figure 3. Example 1. Relative approximation error, with respect to the fine-grid solution (3.3),
of the two different enrichment methods versus the number of local basis. Here l = 3.
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Figure 4. Example 1. Left :
√

γ
h‖�u(µ) − uRB(µ)�‖L2(Γ1 2) and

√
γ
h‖�u(µ) − zRB(µ)�‖L2(Γ1 2)

versus h, (µ = (1, 0, 1, 0), MBC = 3, Method B). Right : maxm ‖Im
i ‖V ′

h,1
versus h (Method A).

5.2. Example 2. Several subdomain case

We tested Method B on a domain composed by many subdomains. We define a global domain of the form
Ω = (0, S)×(0, S) with S ∈ N, partitioned into NS = S2 subdomains. The exact solution is the same considered
in Example 1. We built a Legendre’s basis on each non-Dirichlet side of the square-shaped subdomains. In
Figure 5 we plot the relative DGRBE approximation error as a function of the fine mesh size, and we compare
it with the error given by the fine and the coarse FE approximations. The method does not show a worsening
of the performances as the number of subdomain increases.

5.3. Example 3. Two-level preconditioner

We tested the two level preconditioner of Section 4 on the problem introduced in the Example 2, see
Section 5.2. We chose to use NS = 16, 64 and we applied Method B of Section 2.1 to build the local ba-
sis. As for the meshes, we define a coarse mesh TH and a sequence of uniform refinements Thl

, l = 1, . . . , 6,
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Figure 5. Example 2. Comparison of the DGRBE relative approximation error and the FE
coarse one, as functions of the fine mesh size h.

Table 2. Example 3, NS = 16. Condition number of the online system (fine mesh size on the
rows, coarse mesh size on the columns) and iteration counts (between parentheses).

(a) Non preconditioned

No coarse H H/2 H/4

h 9.68 e2 (44) 1.94 e2 (51) / /
h/2 1.91 e3 (98) 4.04 e2 (100) 5.17 e2 (109) /
h/4 3.78 e3 (131) 8.20 e2 (135) 1.06 e3 (152) 1.66 e3 (163)
h/8 7.50 e3 (176) 1.65 e3 (195) 2.15 e3 (184) 3.40 e3 (223)
h/16 1.49 e4 (218) 3.31 e3 (252) 4.32 e3 (264) 6.87 e3 (271)

(b) Preconditioned

H H/2 H/4

h 11.4 (21) / /
h/2 25.6 (32) 11.6 (25) /
h/4 52.7 (41) 23.7 (33) 9.87 (22)
h/8 104 (52) 54.1 (43) 21.5 (29)
h/16 205 (63) 109 (53) 44.0 (37)

Table 3. Example 3, NS = 64. Condition number of the online system (fine mesh size on the
rows, coarse mesh size on the columns) and iteration counts (between parentheses).

(a) Non preconditioned

No coarse H H/2 H/4

h 1.73 e3 (127) 6.04 e2 (87) / /
h/2 2.73 e3 (230) 1.24 e3 (157) 1.67 e3 (181) /
h/4 5.43 e3 (304) 2.52 e3 (207) 3.42 e3 (215) 5.41 e3 (222)
h/8 1.08 e4 (408) 5.08 e3 (300) 6.93 e3 (311) 1.11 e4 (335)
h/16 2.17 e4 (539) 1.02 e4 (384) 1.39 e4 (331) 2.23 e4 (341)

(b) Preconditioned

H H/2 H/4

h 11.4 (21) / /
h/2 25.6 (33) 11.6 (26) /
h/4 53.0 (43) 23.8 (33) 9.92 (23)
h/8 105 (54) 54.2 (46) 21.6 (31)
h/16 205 (63) 109 (53) 44.0 (37)

assuming that the restrictions of these meshes to each subdomain are conforming triangulations. We then set

T ′
H = Th1 , T ′

hl
= Thl+1 , l = 1, . . . , 5, and T ′′

H = Th2 , T ′
hl

= Thl+2 , l = 1, . . . , 4.

In Tables 2 and 3 we show the condition number of the non-preconditioned online system and the preconditioned
one, for NS = 16 and NS = 64, respectively. In brackets we report the numbers of conjugate gradient iterations
needed to solve the online system (2.12) (with a tolerance of 10−9). As regards the non-preconditioned case,
the values reported are referred to the online matrices associated with the space (2.7) (column “no coarse”)
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Table 4. Example 3. CPU time (in seconds) for the solution of the online preconditioned system
(fine mesh size on the rows, coarse mesh size on the columns) and corresponding number of
degrees of freedom, for NS = 64. The CPU time for the solution of the non-preconditioned
system is also reported (within brackets).

(a) CPU time (s)

No coarse H H/2 H/4

h / (0.037) 0.049 (0.049) / /
h/2 / (0.249) 0.166 (0.228) 0.166 (0.293) /
h/4 / (0.464) 0.233 (0.400) 0.242 (0.521) 0.467 (0.762)
h/8 / (0.804) 0.324 (0.748) 0.360 (0.841) 0.360 (1.340)
h/16 / (1.670) 0.466 (1.300) 0.511 (1.210) 0.789 (1.730)

(b) Number of degrees of freedom

No coarse H H/2 H/4

h 1444 1444 / /
h/2 2506 3043 3851 /
h/4 3019 3550 4506 7871
h/8 3483 3998 4903 8324
h/16 4321 4809 5747 9121

Table 5. Example 3. Comparison of the preconditioned reduced scheme (with coarse mesh
size H ≈ 0.5) and of the fine-grid approximation of the problem. Th is the time needed for the
solution of (3.3), Toff is the time required for the local offline stage on a single subdomain, and
Ton is the solution time of the online problem.

Mesh size Nh Th Average Toff MBC NDGRBE Ton

h/8 ≈ 0.06 68644 7.280s 1m40s 5 3998 0.324s
h/16 ≈ 0.03 268324 8.310s 5m 7 4809 0.466s

and with the spaces (4.2) for different values of the coarse mesh size (columns “H”, “H/2” and “H/4”). The
condition number of the non-preconditioned matrix has been evaluated by explicitly computing the extremal
eigenvalues. Differently, the condition number of the preconditioned system has been computed as in [2], by
exploiting the connections between the Lanczos technique and the Preconditioned Conjugate Gradient (PCG)
method, as presented in detail in [18]. We observe that the condition number of the preconditioned system
scales as expected by Proposition 4.5. We observe also the condition number of the preconditioned system and
thus the number of PCG iterations are independent of the number of subdomains. In our tests we used an
initial coarse mesh size H ≈ 0.5. In Table 4a we show the CPU times for the solution of the preconditioned
online system and the non-preconditioned one (within brackets), for NS = 64. The speed-up ensured by the
preconditioner represents a trade-off between the reduction of the number of iterations from one hand, and the
increase of the number of degrees of freedom (see Tabs. 4 and 5) that are brought by the coarse space. We
point out that the reported CPU times refer to a serial (not parallel) implementation of the preconditioner.
For the sake of completeness, in Table 4b we compare the performance of the preconditioned reduced scheme
(using coarse mesh size H) with the PCG solution of the fine problem (3.3), for very refined fine-grids, i.e., the
ones with granularity h/8 ≈ 0.06 and h/16 ≈ 0.03. Here, Th is the elapsed time for the solution of the fine-grid
problem, Toff is the time needed to compute a single local basis, MBC is the number of Legendre polynomials
considered on each interface, NDGRBE is the DGRBE space dimension, and Ton is the online CPU time. We
observe that the reduction of the speed-up with respect to the 2 subdomain case (cf. Example 1) is partly due
to the increased number of interfaces which requires a larger number of basis.

6. Conclusions

We have introduced the DGRBE method and carried out its convergence analysis. In particular we have
proven the well-posedness of the method and we have shown that the DGRBE approximation error scales as the
size of the fine mesh on which the local bases are built, provided we use properly defined local problems to build
the local bases and set a sufficiently small tolerance in the local Greedy procedures. We have presented two
possible methods to generate the local bases. We have finally proposed a possible preconditioner for the online
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problem, which exploits the pre-existing decomposition of the domain, but requires a slight modification in the
Greedy procedure used to build the local bases. The modified Greedy algorithm is needed to ensure the linear
independence between the coarse space and the local bases, which is crucial to guarantee the well-posedness of
the method. Through numerical experiments, we have compared the DGRBE approximation with the FE one
based on the fine meshes on which the local basis are built. We have shown that the accuracy of both methods
is similar, but the former is based on a lower dimensional approximation space. This property holds for any
given fine triangulation. We also tested the performances of the proposed preconditioner. Further developments
of this work are the study of a posteriori error estimators which provide upper bounds for the approximation
error of the reduced solution with respect to the fine-grid one. Moreover, the strategy proposed can be extended
to more general problems, e.g. the Stokes problem, in which some stabilization techniques may be needed to
guarantee the stability of the method.

Appendix A. Implementation issues

We now sum up the main ingredients of the DGRBE method, from the implementation point of view.
As regards the offline stage of the DGRBE method, we point out that it can be split into two sub-steps: (i)

the local offline stage, where the local reduced bases and the local discrete operators are built; (ii) the global
offline stage, where the global DGRBE space and the interface discrete operators are constructed.

We consider now the local offline stage on the subdomain Ωi. With respect to a given FE basis Bh,i =
{ϕi

1, . . . , ϕ
i
Nh,i

} of Vh,i, given µ̃ = (µ, β) ∈ D̃ the matrix form of the reference problem (2.5) reads

Ahi(µ)uhi(µ) = Fhi(µ) + Ihi(β).

As usual in the RB context, we assume that the local operators depends “affinely” on the parameter [32, 34],
i.e.,

Ahi(µ) =
QAi∑
q=1

Θq
Ai

(µ)Aq
h,i, Fhi(µ) =

QFi∑
q=1

Θq
Fi

(µ)Fq
h,i, Ihi(β) =

QIi∑
q=1

Θq
Ii

(β)Iq
h,i, (A.1)

where Aq
h,i, Fq

h,i and Iq
h,i are parameter independent arrays, while Θq

Ai
, Θq

Fi
and Θq

Ii
are real valued functions

of the parameter µ ∈ D and β ∈ DBC . In order to recover such “affine” decomposition of the operators, suitable
empirical interpolation techniques may be needed [8]. We denote with BRB,i = {ζi

1, . . . , ζ
i
Ni

} ⊆ Vh,i the basis
of the space V RB

i produced by the Greedy’s algorithm, i.e., the local reduced basis. We denote with ZRB,i the
matrices whose columns are the coefficients of the expansion of the elements of BRB,i with respect to the fine
basis Bh,i. In the local offline stage the following matrices and vectors are then built and stored:

Aq
RB,i,i = ZT

RB,iA
q
h,iZRB,i ∀q = 1, . . . , QAi ,

Fq
RB,i = ZT

RB,iF
q
h,i, ∀q = 1, . . . , QFi ,

Iq
RB,i = ZT

RB,iI
q
h,i, ∀q = 1, . . . , QIi .

As for the global offline stage, we start by considering the matrices associated to the interface terms through
the bases Bh,i and Bh,j. Setting Γ ij(µ) = ∂Ωi(µ) ∩ ∂Ωj(µ), as regards the jump term we have

(Cr,r′(µ))pq =
ν(µ) γ
h

∫
Γij(µ)

ϕr′
q ϕr

p ds ∀p = 1, . . . , Nh,r′ ∀q = 1, . . . , Nh,r ∀r, r′ ∈ {i, j}.

As for the derivative consistency term, we define

(Dr,r′(µ))pq =
∫

Γij(µ)

1
2
ν(µ) (∇ϕr′

q · nr′)ϕr
p ds ∀p = 1, . . . , Nh,r′ ∀q = 1, . . . , Nh,r ∀r, r′ ∈ {i, j},
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where nr is the normal unit vector of Γij(µ), exiting from Ωr. We assume that also these interface matrices
admit an affine decomposition as in (A.1), i.e.,

Cr,r′(µ) =

QC
r,r′∑

q=1

Θq
Cr,r′

(µ)Cq
r,r′ , Dr,r′(µ) =

QD
r,r′∑

q=1

Θq
Dr,r′

(µ)Dq
r,r′ ,

for suitably chosen parameter independent matrices Cq
r,r′ , Dq

r,r′ and real valued functions Θq
Cr,r′

, Θq
Dr,r′

of µ.
In the global offline stage we build and store the following matrices:

Cq
RB,r,r′ = S(r, r′)ZT

RB,rC
q
r,r′ZRB,r′ ∀q = 1, . . . , QCr,r′ ∀r, r′ ∈ {i, j},

Dq
RB,r,r′ = S(r, r′)ZT

RB,rD
q
r,r′ZRB,r′ ∀q = 1, . . . , QDr,r′ ∀r, r′ ∈ {i, j},

where S(r, r′) = 1 if r = r′, S(r, r′) = −1 otherwise, and QCr,r′ , QDr,r′ are the numbers of affine terms of Cr,r′

and Dr,r′ , respectively. These matrices have to be built for each interface.
During the online stage, the matrices built and stored during the offline stage have to be properly assembled

exploiting the affine decomposition property, for a given value of the parameter µ̃ ∈ D. First of all the arrays
ARB,i,j(µ), CRB,i,j(µ), DRB,i,j(µ) and FRB,i(µ) have to be built, exploiting the affine decomposition (which
follows from the fine-grid operators affine decomposition (A.1) and (A.2)), by summing the previously stored
quantities. In order to simplify the exposition, if Ωi ∩ Ωj = ∅, we assume that CRB,i,j(µ) and DRB,i,j(µ)
are null matrices of dimension Ni × Nj . Moreover, if i 
= j, we assume that ARB,i,j(µ) is the null matrix of
dimension Ni ×Nj . For the sake of notation, we now omit the parameter dependence of matrices and vectors.
We define:

AOn = (ARB,i,j)i,j=1,...,NS
, COn = (CRB,i,j)i,j=1,...,NS

, DOn = (DRB,i,j)i,j=1,...,NS
. (A.2)

The matrix associated to the online problem (2.12) is then: ARB = AOn + COn + DOn + DT
On. We finally

define uRB = (uNi)i=1,...,NS
, and FRB = (FNi)i=1,...,NS

. The algebraic system associated with the online
problem (2.12) is then

ARBuRB = FRB .

Appendix B. Construction of the local basis for the two-level

preconditioner

To make sure that the local reduced spaces VNi,i and the coarse ones VH,i are in direct sum as assumed
in (4.2) the standard implementation of the RB Greedy’s algorithm [34] will not serve the purpose. We propose
a possible way to build the space VNi,i, which is described in detail in the pseudo-algorithm below (Algorithm 1).
It is a proper modification of the algorithm shown in [32, 34]. We consider local a posteriori error estimators
Δk

H,Ni
: D̃ → R, i = 1, . . . , NS, based on the dual norm of the residual, similarly to the a posteriori estimator

of the standard RB method (cf. [32, 34]). The estimator Δk
H,i satisfies

|||ũh,i(µ̃) − uk
H,i(µ̃)|||µ̃,i

‖uk
H,i(µ̃)‖Vi

≤ Δk
H,i(µ̃) ∀ µ̃ ∈ D,

where ũh,i(µ̃) solves (2.5) and uk
H,i(µ̃) ∈ V k

H,i is such that

Ai(uk
H,i(µ̃), vk

H,i; µ̃) = Fi(vk
H,i; µ̃) + 〈Iβ

i , v
k
H,i|Γi〉 ∀ vk

H,i ∈ V k
H,i, (B.1)

with V k
H,i = VH,i ⊕ span{ũh,i(µ̃1

i ), . . . , ũh,i(µ̃k
i )}. Note that V 0

H,i = VH,i. It holds that

Δk
H,i(µ̃) = 0 ⇐⇒ ũh,i(µ̃) ∈ V k

H,i, (B.2)
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cf. [34]. Thanks to (B.2), if the parameter value µ̃k+1
i picked up at the kth step of the Greedy’s algorithm is

such that Δk
H,i(µ̃

k+1
i ) > 0, then ũh,i(µ̃k+1

i ) is independent of V k
H,i and, in particular of VH,i.

At each step of our Greedy’s algorithm, we ensure also some orthogonality properties on the local basis. This
is useful to control the conditioning of the linear system associated with problem (B.1), to be solved many times
during the Greedy’s procedure.

Algorithm 1 (Greedy’s algorithm for the ith local problem).
k = 0; X0 = {0}; ε0 = ε∗ + 1;
while εk > ε∗ do

µ̃k+1
i = argmaxµ̃∈DΔ

k
H,i(µ̃);

εk+1 = Δk
H,i(µ̃

k+1
i );

computation of ũh,i(µ̃k+1
i );

ζi
k+1 = orthonormalization of ũh,i(µ̃k+1

i ) w.r.t. V k
H,i = VH,i ⊕Xk and (·, ·)Vi

;
Xk+1 = Xk ⊕ span{ζi

k+1};
k = k + 1;

end while
Ni = k; VNi,i = XNi .

Appendix C. Proof of inequality (3.12)

The proof of inequality (3.12) follows from standard arguments, for the sake of completeness we sketch it.

Proposition C.1. It holds that

1
h

∑
{i,j : Ωi∩Ωj �=∅}

‖ �vh� ‖2
L2(Γij) � 1

h

NS∑
i=1

‖vh,i‖2
H1(Ωi)

∀vh ∈ Vh.

where h is the size of the mesh associated with Vh.

Proof. We consider the interface Γij = Ωi∩Ωj . We introduce the lifting operators associated with each interface
edge e of Th belonging to Γij

re : (H1(Ωi) ⊕ H1(Ωj)) → [Vh]2

ψ �→ re(ψ)

where re(ψ) is such that ∫
Ω

re(ψ) · τh dx = −
∫

e

{τh} · �ψ� ∀τh ∈ [Vh]2. (C.1)

We know from ([11], Lem. 2) that for ψh ∈ Vh then

1
h
‖ �ψh� ‖2

L2(e) � ‖re(ψh)‖2
L2(Ω),

thus we have that
1
h
‖ �ψh� ‖2

L2(Γij) �
∑

e∈Γij

‖re(ψh)‖2
L2(Ω). (C.2)

Now, we bound the L2 norm of re(ψh) with the H1 norm of ψh, with an argument similar to that used in ([11],
Lem. 2). From (C.1) we have, for each e ∈ Γ1 2,

‖re(ψh)‖2
L2(Ω) = −

∫
e

{re(ψh)} · �ψh� ≤ ‖ �ψh� ‖L2(e)‖{re(ψh)}‖L2(e).



A DGRBE METHOD FOR ELLIPTIC PROBLEMS 359

Recalling the standard inverse inequality, cf. [31],

|vh,i|H1(Ωi) � h−1‖vh,i‖L2(Ωi) ∀vh,i ∈ Vh,i, (C.3)

and summing over the interface edges we get:∑
e∈Γij

‖re(ψh)‖2
L2(Ω) ≤

∑
e∈Γij

‖ �ψh� ‖L2(e)‖{re(ψh)}‖L2(e)

≤ ‖ �ψh� ‖L2(Γij)

∑
e∈Γij

‖{re(ψh)}‖L2(e)

(3.7)

�

⎡⎣ ∑
k∈{i,j}

‖ψh‖H1(Ωk)

⎤⎦ ∑
e∈Γij

‖{re(ψh)}‖L2(e)

(3.11)

�

⎡⎣ ∑
k∈{i,j}

‖ψh‖H1(Ωk)

⎤⎦ ∑
e∈Γij

⎡⎣h−1‖re(ψh)‖L2(Ω) + h
∑

k∈{i,j}
|re(ψh)|H1(Ωk)

⎤⎦1/2

(C.3)

�

⎡⎣ ∑
k∈{i,j}

‖ψh‖H1(Ωk)

⎤⎦ ∑
e∈Γij

[
h−1‖re(ψh)‖L2(Ω)

]1/2
.

We obtain ∑
e∈Γij

‖re(ψh)‖L2(Ω) � h−
1/2

⎡⎣ ∑
k∈{i,j}

‖ψh‖H1(Ωi)

⎤⎦ .
Then, using (C.2) and summing over all the interfaces, we can conclude. �
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