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CONVERGENCE OF A NUMERICAL SCHEME FOR A MIXED
HYPERBOLIC-PARABOLIC SYSTEM IN TWO SPACE DIMENSIONS ∗

Elena Rossi
1

and Veronika Schleper
2

Abstract. We prove the convergence of an explicit numerical scheme for the discretization of a coupled
hyperbolic-parabolic system in two space dimensions. The hyperbolic part is solved by a Lax−Friedrichs
method with dimensional splitting, while the parabolic part is approximated by an explicit finite-
difference method. For both equations, the source terms are treated by operator splitting. To prove
convergence of the scheme, we show strong convergence of the hyperbolic variable, while convergence of
the parabolic part is obtained only weakly* in L∞. The proof relies on the fact that the hyperbolic flux
depends on the parabolic variable through a convolution function. The paper also includes numerical
examples that document the theoretically proved convergence and display the characteristic behaviour
of the Lotka−Volterra equations.
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1. Introduction

We consider the following Cauchy problem in two space dimensions:

∂tu+ div (f(u)v(w)) = (αw − β)u (1.1a)
∂tw − μΔw = (γ − δ u)w (1.1b)
u(0, x, y) = uo(x, y) (1.1c)
w(0, x, y) = wo(x, y). (1.1d)

This is a generalization of the predator–prey model presented in [8]. In particular, u = u(t, x, y) and w =
w(t, x, y) represent respectively the predator and the prey densities at time t ∈ R

+ and position (x, y) ∈ R
2.

The parameters α, β, γ, δ appearing in system (1.1) are all positive, μ is strictly positive. More precisely, α is
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the predator birth rate due to feeding on prey, β is the predator mortality rate, γ is the prey birth rate, δ is the
prey mortality rate due to predators and μ represents the diffusion speed of prey.

Predator-prey models are widely studied in the literature since a long time, starting with the pioneering
works of Lotka [15] and Volterra [17] in the 1920s. The model proposed therein is based on ordinary differential
equations modeling the interactions of two species’ populations u (predators) and w (prey), where birth and
death rates depend on the interactions, see equation (1.2).

d
dt
u = (αw − β)u,

d
dt
w = (γ − δu)w. (1.2)

This basic model was extended subsequently to obtain more refined predictions of population sizes [3, 4, 13] or
to model the immune system response to infectious diseases [5,16]. Further applications of the Lotka−Volterra
model (1.2) and variations of it can be found in economy, see e.g. [12] for a pioneering work.

All these models are based on ordinary differential equations, thus implicitly assuming a homogeneous dis-
tribution of the species in space. Model (1.1) overcomes this deficiency and allows for spacial variations of
predators and prey. More precisely, we assume that prey diffuse in the whole space without preferred direction
of motion, while predators are attracted by prey in a certain radius around them. To model this finite-range
non-local behavior, the velocity vector v of the predators depends on a convolution of the prey density with
a kernel function measuring e.g. the ability of the predators to feel the presence of prey at a certain distance.
This non local term in the flux of (1.1a) causes the predators to move in direction of the highest prey density,
thus chasing the prey. Note that the prey does not try to escape the predators.

In [8], the well-posedness of (1.1) was shown for f(u) = u and initial data in L1∩L∞(Rn; R) with the additional
constraint that uo is of bounded total variation. The topic of the present work is to study the convergence of
a finite difference scheme for the mixed hyperbolic-parabolic system (1.1). We choose a Lax−Friedrichs type
method for the hyperbolic part, including a modification to deal with the non local term v, and a standard
five-point stencil for the discretization of the parabolic part, see also (2.4) in Section 2. In particular, we consider
a different diffusion constant in the Lax−Friedrichs flux, see (2.4d) and Remark 2.4. This is done in order to
balance the contributions of the space-time dependent velocity field v to obtain positivity and an L∞ bound
for u.

Since the velocity function v depends only on w, we could view equation (1.1a) as a standard hyperbolic
equation with space and time dependent flux function f̃(t, x, u) := f(u)v(t, x). Equations of such type have
been widely studied in the literature and especially the convergence of finite volume schemes is established
in [6, 7, 11, 14] under different assumptions on v(t, x). Recently, a Lax–Friedrichs type method for a nonlocal
hyperbolic conservation law was studied in [1,2]. Due to the coupling of (1.1a) and (1.1b) through the velocity
function v and the source terms, the above results do not apply to the present case. The same holds true for the
well known standard convergence results for finite difference discretizations of (quasi)linear parabolic equations,
since these results are usually based on estimates in the discrete l2-norm. Here, the coupling of the parabolic
part to a hyperbolic equation forces us to study the finite difference scheme in an l1 setting.

To prove the convergence of the numerical scheme below, we make the following assumptions on the functions
f and v appearing in (1.1):

(f): f ∈ C2(R; R) and f(0) = 0;
(v): v :

(
L1 ∩ L∞) (R2; R) → (C2 ∩W2,∞) (R2; R2) depends on w through a convolution in space, i.e. v(w) :=

v(η ∗w) for a space dependent convolution kernel η ∈ L1(R2; R). Furthermore, there exist a constant K and
an increasing map C ∈ L∞

loc(R
+; R+) such that for all w ∈ (L1 ∩ L∞) (R2; R)

‖∇v(w)‖L∞(R2;R2×2) ≤ K ‖w‖L∞(R2;R)

‖∇v(w)‖L1(R2;R2×2) ≤ K ‖w‖L1(R2;R)

‖∇ (∇ · v(w))‖L∞(R2;R2) ≤ C
(
‖w‖L∞(R2;R)

)
.
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With slight abuse of notation, we will also write v(t, x, y) instead of v(w)(t, x, y), to improve readability. Note
that the case f(u) = u is the one considered in [8]. An example of a function v that fulfills all requirements of
assumption (v) above can be found in Section 5. The initial data (uo, wo) are chosen to fulfill the assumption

(0): (uo, wo) ∈ (L1 ∩ L∞ ∩BV)(R2; R+) × (L1 ∩ L∞ ∩BV)(R2; R+) are positive-valued functions, i.e. uo ≥ 0
and wo ≥ 0 for a.e. (x, y) ∈ R

2.

Remark 1.1. Under the assumption (f), existence and uniqueness of the solution to (1.1) in the space(
L1 ∩ L∞ ∩BV

)
(Rn; R+) × (L1 ∩ L∞) (Rn; R+) follow by a straightforward extension of the results of [8].

The paper is organized as follows. In Section 2, we introduce basic notations and describe the algorithm in
details. To prove convergence of the given scheme, we derive bounds on the variables u and w in various norms
in Section 3 that are needed to conclude the convergence of the scheme in Section 4. Finally, Section 5 is devoted
to numerical examples including experimental convergence studies.

2. The Algorithm

We introduce a uniform mesh of width h along both x and y axes, given by the cartesian grid whose points
are of the form

{(xi, yi) |xi = ih, yj = jh, i, j ∈ Z} .
With slight abuse of notation, we will also write xi,j := (xi, yj), xi+1/2,j := (xi+1/2, yj) = ((i+ 1/2)h, jh) and

xi,j+1/2 defined analogously. Furthermore, we define the parabolic time step τp =
h2

4μ
and let the time step τ be

such that

τ = τp max
{
n ∈ N :

nτp
h

‖∂uf‖L∞‖v‖L∞ <
1
4

}
=: mτp.

In other words, τ is a multiple of τp that satisfies the following CFL condition:

τ

h
‖∂uf‖L∞‖v‖L∞ <

1
4
· (2.1)

We also define λ =
τ

h
. We remark that ‖v‖L∞ is assumed to be the global supremum of v throughout the paper

to simplify notations and estimates. This assumption can however be relaxed to a time-step-wise supremum,
thus leading to an adaptive time stepping strategy. The same holds for ‖∂uf‖L∞ . Note further that τ is fixed
by the choice of τp, contrarily to the standard case for hyperbolic equations, where (2.1) provides some freedom
in the choice of τ . Finally, let us remark that the time step τp is chosen such that the numerical approximation
of wn has a particularly simple form (see (2.4b) below). This will improve the readability of the estimates in
the following sections. However, any time step τp that yields a stable discretization of wn will also lead to a
convergent scheme.

Let (u(t, x, y), w(t, x, y)) be the unique solution to (1.1) (see [8] for an existence and uniqueness result in
the case of f(u) = u and Remark 1.1 for the general case, under assumption (f)). To compute the solution
numerically we set

uo
i,j =

1
h2

∫
Ii,j

uo(x, y) dx dy , wo
i,j =

1
h2

∫
Ii,j

wo(x, y) dxdy , (2.2)

where

Ii,j =
[(
i− 1

2

)
h,

(
i+

1
2

)
h

]
×
[(
j − 1

2

)
h,

(
j +

1
2

)
h

]
, (2.3)
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so that uo
i,j and wo

i,j are the cell averages of uo(x, y) and wo(x, y) respectively over the (i, j)–th cell. By (2.2) it
follows easily that

‖uo‖L∞ ≤ ‖uo‖L∞ ‖wo‖L∞ ≤ ‖wo‖L∞

‖uo‖L1 ≤ ‖uo‖L1 ‖wo‖L1 ≤ ‖wo‖L1

TV (uo) ≤ TV (uo) TV (wo) ≤ TV (wo),

see also [9]. For simplicity, we denote vn
i+1/2,j = v(nτ, xi+1/2, yj) ·ni+1/2,j, where ni+1/2,j is the normal vector of

the cell boundary at xi+1/2,j , pointing from the cell with value ui,j to the cell with value ui+1,j . The definition
of vn

i,j+1/2
follows analogously. Note that this definition, together with the rectangular grid, implies that vn

i+1/2,j

is the x-component of the vector vn at xi+1/2,j. Analogously, vn
i,j+1/2

denotes the y-component.
To approximate (1.1), we use a finite-difference scheme for the parabolic part and a Lax−Friedrichs type

finite volume method for the hyperbolic part. In both equations, the source terms are treated by operator
splitting, using a second order Runge−Kutta method. The nonlinear coupling of (1.1) is numerically resolved
by a sequential coupling of the parabolic and the hyperbolic equation. In other words, we start computing an
approximation of wn, solving the parabolic equation by an explicit scheme with smaller time step τp, thus having
to perform m small time steps to reach the hyperbolic time step τ defined in (2.1). This step involves the values
of u at the previous time step tn−1 := (n− 1)τ for the discretization of the source term. Once, wn is computed,
we can use it to compute the velocity field v(wn) and the source term in the hyperbolic equation. This balance
law is now integrated by means of a Lax−Friedrichs type scheme with dimensional splitting, while its source
term is included using a second order Runge–Kutta method, analogously to the parabolic equation. Note that
the second order discretization of the source terms is necessary to guarantee the positivity of the approximate
solution, as shown in Section 3.1.

Note that, in order to be able to give a valid meaning to v(wn), involving a convolution, we set wn :=∑
ij w

n
i,jχIi,j

. The algorithm is now defined as follows:

Algorithm 2.1 (Mixed scheme).

for n = 0, . . .N − 1
Wn,0 = wn (2.4a)

for l = 0, . . . ,m− 1

Wn,l+1
i,j =

1
4

(
Wn,l

i+1,j +Wn,l
i−1,j +Wn,l

i,j+1 +Wn,l
i,j−1

)
×
[
1 + τp

(
γ − δun

i,j

) (
1 +

τp
2
(
γ − δun

i,j

))] (2.4b)

end

wn+1 = Wn,m (2.4c)

F (u1, u2, t, x, y) =
1
2

(f(u1) + f(u2)) v(t, x, y) − 1
8λ

(u1 − u2) (2.4d)

U
n+1/2

i,j = un
i,j − λ

[
F (un

i+1,j, u
n
i,j , (n+ 1) τ, xi+1/2, yj)

−F (un
i,j , u

n
i−1,j, (n+ 1) τ, xi−1/2, yj)

] (2.4e)

Un+1
i,j = U

n+1/2

i,j − λ
[
F (Un+1/2

i,j+1 , U
n+1/2

i,j , (n+ 1) τ, xi, yj+1/2)

−F (Un+1/2

i,j , U
n+1/2

i,j−1 , (n+ 1) τ, xi, yj−1/2)
] (2.4f)

un+1
i,j = Un+1

i,j

[
1 + τ

(
αwn+1

i,j − β
) (

1 +
τ

2
(
αwn+1

i,j − β
))]

(2.4g)

end
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The flux numerical function F (u1, u2, t, x, y), defined in (2.4d) involves the evaluation of the velocity function
v at points xi+1/2,j and xi,j+1/2. Due to the definition of v through a convolution of w and a kernel function
η, this necessities the numerical computation of wn ∗ η. Since the algorithm (2.4) is (at most) first order, we
propose to use a standard quadrature formula on the same space mesh and compute

(wn ∗ η)(xi, yj) =
∑
k,�

h2 wn
k,� ηi−k,j−�, (2.5)

where ηi−k,j−� = η (xi−k, yj−�). Notice that algorithm (2.4) needs values of v on the edges of each mesh element,
such that we proceed as follows: whenever we are dealing with cells with the same x-coordinate, respectively
y-coordinate, we average the corresponding component of v in the x-coordinate, respectively y-coordinate, thus
obtaining

vn(xi+1/2, yj) =
1
2

(vn(xi, yj) + vn(xi+1, yj)) =
1
2

[v ((wn ∗ η) (xi, yj)) + v ((wn ∗ η) (xi+1, yj))]

vn(xi, yj+1/2) =
1
2

(vn(xi, yj) + vn(xi, yj+1)) =
1
2

[v ((wn ∗ η) (xi, yj)) + v ((wn ∗ η) (xi, yj+1))] .

Remark 2.2.

• The values of ηi,j can be computed in a preprocessing step and stored in a matrix. This reduces the compu-
tational cost for the evaluation of v to a matrix-vector multiplication at each point xi,j .

• In principle, the above quadrature formula can also be used to evaluate (wn ∗ η)(xi+1/2, yj) directly, using
pointwise evaluations of η at (xi+1/2−k, yj−l). However, the double storage capacity for ηi+1/2,j and ηi,j+1/2

will be needed for this strategy.
• If the kernel function η admits an explicit form of the antiderivative, it is possible to compute the convolution
wn ∗ η exactly for piecewise constant wn, since we have

(wn ∗ η)(xi, yj) :=
∑
k,l

∫
Ik,l

wn
k,lη(xi − x, yj − y)dxdy =

∑
k,l

wn
k,l

∫
Ik,l

η(xi − x, yj − y)dxdy.

Thus, storing the values of
∫

Ik,l
η(xi − x, yj − y)dxdy in a preprocessing step yields an exact evaluation of

the convolution.
• Observe that the differentiation property of the convolution product still holds in the discrete case. Hence, if

the function v satisfies (v) in the continuous case, this assumption holds also for its discrete approximation,
obtained using the discrete convolution product, computed through formula (2.5), substituting η by ∇η.

Remark 2.3. All estimates of Section 3 as well as the convergence result of Section 4 can be shown analogously
when (2.4e) and (2.4f) are replaced by

Un+1
i,j = un

i,j − λ
[
F (un

i+1,j , u
n
i,j , (n+ 1) τ, xi+1/2, yj) − F (un

i,j, u
n
i−1,j , (n+ 1) τ, xi−1/2, yj)

F (un
i,j+1, u

n
i,j, (n+ 1) τ, xi, yj+1/2) − F (un

i,j , u
n
i,j−1, (n+ 1) τ, xi, yj−1/2)

]
.

Remark 2.4. The main reason for the choice of a non standard CFL condition as (2.1) is the space-time
dependent velocity field v. To prove the positivity of u in Lemma 3.3 we observe that the space-time dependence
of v introduces an additional constraint on λ. The choice of 1/4 in the CFL condition and of 1/8 in the definition
of the Lax−Friedrichs flux are optimal in the sense that they provide the largest possible CFL condition that
guarantees positivity of u. More details on this can be found in the proof of Lemma 3.3 in the next section.
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3. Bounds on w and u

The proof of convergence of the above algorithm to the unique solution of (1.1) is based on an extension
of Helly’s theorem (see [10], Thm. 1.7.3). To apply this theorem, we have to prove the uniform boundedness
of u and w in L1 as well as a uniform bound on the time-space total variation. The necessary estimates are
collected in this section, starting with positivity estimates in Section 3.1 and bounds on the L1 and L∞ norms
in Section 3.2. Once these bounds are available, we are able to prove a bound on the total variation in space in
Section 3.3. Finally, the Lipschitz continuity in time of u, proven in Section 3.4, guarantees enough regularity
of the approximate solutions to pass to the convergence proof in Section 4.

In the sequel, we will make use of the following Lemma in several estimates.

Lemma 3.1. Let a, b ∈ R, with a, b > 0. The following inequality holds

a

n∑
k=1

ek a b ≤ 1
b

e(n+1) a b.

Proof. Recall that a b+ 1 ≤ ea b. Hence,

a

n∑
k=1

ek a b = a
ea b
(
en a b − 1

)
ea b − 1

≤ 1
b

e(n+1) a b,

concluding the proof. �
Remark 3.2. In what follow we restrict ourselves to the case γ > 0, in order to apply Lemma 3.1 for b = γ.
However, a modification of the estimate in Lemma 3.1 to cover also the case γ = 0 is possible, at the price of
more complicated formulas in the estimates below.

3.1. Positivity of w and u

Lemma 3.3. Let assumptions (f), (v) and (0) hold. Then the approximate solution constructed by Algo-
rithm 2.1 is such that wn

i,j ≥ 0 and un
i,j ≥ 0 for all i, j and n.

Proof. Consider w first, in particular, focus on the sequence
(
Wn,�

)
. Suppose Wn,�

i,j ≥ 0 for all i, j and define
S = Sn

i,j = τp
(
γ − δ un

i,j

)
. By (2.4b) we have

Wn,�+1
i,j =

1
4

(
Wn,�

i+1,j +Wn,�
i−1,j +Wn,�

i,j+1 +Wn,�
i,j−1

)(
1 + S +

S2

2

)
·

The parabola
(
1 + S + S2/2

)
assumes only positive values and, by the inductive hypothesis, we deduce that

Wn,�+1
i,j ≥ 0. By induction, we can thus conclude that wn

i,j ≥ 0 for all i, j and n.
Consider now u and recall vn+1

i+1/2,j := v
(
(n+ 1) τ, xi+1/2, yj

) · ni+1/2,j . By (2.4d) and (2.4e) we have

U
n+1/2

i,j =
1
8
(un

i+1,j + 6 un
i,j + un

i−1,j) − λ f(un
i,j)
(
vn+1

i+1/2,j − vn+1
i−1/2,j

)
− λ

[
f(un

i+1,j) − f(un
i,j)

2
vn+1

i+1/2,j −
f(un

i−1,j) − f(un
i,j)

2
vn+1

i−1/2,j

]

=un
i+1,j

[
1
8
− λ

2
f(un

i+1,j) − f(un
i,j)

un
i+1,j − un

i,j

vn+1
i+1/2,j

]
+ un

i−1,j

[
1
8

+
λ

2
f(un

i−1,j) − f(un
i,j)

un
i−1,j − un

i,j

vn+1
i−1/2,j

]

+ un
i,j

[
3
4

+
λ

2
vn+1

i+1/2,j

(
f(un

i+1,j) − f(un
i,j)

un
i+1,j − un

i,j

− 2
f(un

i,j)
un

i,j

)

− λ

2
vn+1

i−1/2,j

(
f(un

i−1,j) − f(un
i,j)

un
i−1,j − un

i,j

− 2
f(un

i,j)
un

i,j

)]
·
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Observe that the CFL condition (2.1) yields

1
8
± λ

2
f(un

i+1,j) − f(un
i,j)

un
i+1,j − un

i,j

vn+1
i+1/2,j ≥ 1

8
− λ

2
‖∂uf‖L∞‖v‖L∞ > 0,

and for the remaining term

3
4

+
λ

2
vn+1

i+1/2,j

[
f(un

i+1,j) − f(un
i,j)

un
i+1,j − un

i,j

− 2
f(un

i,j)
un

i,j

]
− λ

2
vn+1

i−1/2,j

[
f(un

i−1,j) − f(un
i,j)

un
i−1,j − un

i,j

− 2
f(un

i,j)
un

i,j

]

≥ 3
4
− 3λ ‖v‖L∞ ‖∂uf‖L∞ > 0.

Hence, using also the inductive hypothesis, we have that Un+1/2

i,j ≥ 0 for all i and j.
Using (2.4f), we can repeat the same steps as above considering Un+1/2 instead of un to conclude that

Un+1
i,j ≥ 0 for all i and j.
Finally, defining R = Rn+1

i,j = τ
(
αwn+1

i,j − β
)

and using (2.4g), we obtain

un+1
i,j = Un+1

i,j

(
1 + R+

R2

2

)
·

Analogously to w, we can conclude that un+1
i,j ≥ 0 for all i, j and n. �

3.2. L∞ and L1 bounds on w and u

Lemma 3.4. Let assumptions (f), (v) and (0) hold. Then for all n the approximate solution (un, wn) con-
structed by Algorithm 2.1 satisfies

‖wn‖L∞ ≤ en τ γ ‖wo‖L∞ (3.1)

‖un‖L∞ ≤ ‖uo‖L∞ exp
(

(2K1 + K2)
1
γ

e(n+1) τ γ

)
, (3.2)

where K1,K2 are constants depending on α,K, ‖wo‖L∞ , ‖∂uf‖L∞ .

Proof. Consider w first. By Lemma 3.3, un
i,j ≥ 0 for all i, j and n. By (2.4b) we have for 0 ≤ l < m

Wn,l+1
i,j ≤ eτp(γ−δ un

i,j) 1
4

(
Wn,l

i+1,j +Wn,l
i−1,j +Wn,l

i,j+1 +Wn,l
i,j−1

)
≤ eτp γ

∥∥Wn,l
∥∥
L∞ .

By induction over l in the sequence Wn,l we obtain therefore∥∥wn+1
∥∥
L∞ = ‖Wn,m‖L∞ ≤ em τp γ‖wn‖L∞ = eτ γ‖wn‖L∞ .

Finally, induction over n yields
‖wn‖L∞ ≤ en τ γ ‖wo‖L∞ .

Pass now to u and recall that by (v), we have

‖∇vn‖L∞ ≤ K‖wn‖L∞ .
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As in Lemma 3.3, by (2.4d) and (2.4e), simple computations lead to∣∣∣Un+1/2

i,j

∣∣∣ = U
n+1/2

i,j

= un
i+1,j

[
1
8
− λ

2
f(un

i+1,j) − f(un
i )

un
i+1,j − un

i,j

vn+1
i+1/2,j

]
+ un

i−1,j

[
1
8

+
λ

2
f(un

i−1,j) − f(un
i )

un
i−1,j − un

i,j

vn+1
i−1/2,j

]

+ un
i,j

[
3
4

+
λ

2
f(un

i+1,j) − f(un
i,j)

un
i+1,j − un

i,j

vn+1
i+1/2,j −

λ

2
f(un

i−1,j) − f(un
i,j)

un
i−1,j − un

i,j

vn+1
i−1/2,j

−λ f(un
i,j)

un
i,j

(
vn+1

i+1/2,j − vn+1
i−1/2,j

)]

≤ ‖un‖L∞

[
1
8
− λ

2
f(un

i+1,j) − f(un
i,j)

un
i+1,j − un

i,j

vn+1
i+1/2,j +

1
8

+
λ

2
f(un

i−1,j) − f(un
i,j)

un
i−1,j − un

i,j

vn+1
i−1/2,j

+
3
4

+
λ

2
f(un

i+1,j) − f(un
i,j)

un
i+1,j − un

i,j

vn+1
i+1/2,j −

λ

2
f(un

i−1,j) − f(un
i,j)

un
i−1,j − un

i,j

vn+1
i−1/2,j

−λ f(un
i,j)

un
i,j

(
vn+1

i+1/2,j − vn+1
i−1/2,j

)]

≤ ‖un‖L∞
(
1 + τ‖∂uf‖L∞

∥∥∂xv
n+1
∥∥
L∞
)

≤ ‖un‖L∞ exp
(
τ K ‖∂uf‖L∞

∥∥wn+1
∥∥
L∞
)
.

The estimate on Un+1 can be obtained analogously using (2.4f) to get

∥∥Un+1
∥∥
L∞ ≤

∥∥∥Un+1/2
∥∥∥
L∞

exp
(
τ K ‖∂uf‖L∞

∥∥wn+1
∥∥
L∞
)
.

Concerning the source term, integrated by (2.4g), one can easily see that∣∣un+1
i,j

∣∣ ≤ Un+1
i,j exp

[
τ
(
αwn+1

i,j − β
)] ≤ ∥∥Un+1

∥∥
L∞ exp

(
τα
∥∥wn+1

∥∥
L∞
)
.

Collecting the above estimates and using (3.1), we conclude that

∥∥un+1
∥∥
L∞ ≤ ‖un‖L∞ exp

[
τ e(n+1) τ γ ‖wo‖L∞ (2K‖∂uf‖L∞ + α)

]
.

Iterating over n and applying Lemma 3.1 yields

‖un‖L∞ ≤ ‖uo‖L∞ exp

[
τ ‖wo‖L∞ (2K‖∂uf‖L∞ + α)

n∑
k=1

ek τ γ

]

≤ ‖uo‖L∞ exp
[
e(n+1) τ γ 1

γ
‖wo‖L∞ (2K‖∂uf‖L∞ + α)

]
.

Denoting

K1 = K ‖wo‖L∞ ‖∂uf‖L∞ K2 = α ‖wo‖L∞ (3.3)

completes the proof. �

Positivity and uniform boundedness of the approximate solution allow now to prove the L1 bounds necessary
for the application of ([10], Thm. 1.7.3) in the convergence proof later on.
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Lemma 3.5. Let assumptions (f), (v)and (0) hold. Then for all n the approximate solution (un, wn) con-
structed by Algorithm 2.1 satisfies

‖wn‖L1 ≤ en τ γ ‖wo‖L1 (3.4)

‖un‖L1 ≤ ‖uo‖L1 exp
(
K2

1
γ

e(n+1) τγ

)
, (3.5)

where K2 is the constant defined in Lemma 3.4, depending on α, ‖wo‖L∞ .

Proof. Consider w first. By Lemma 3.3, un
i,j ≥ 0 and wn

i,j ≥ 0 for all i, j and n. Let Wn,0 = wn and 0 ≤ l < m.
By (2.4b), ∥∥Wn,l+1

∥∥
L1 =

∑
i∈Z

∑
j∈Z

h2Wn,l+1
i,j ≤ eτp(γ−δ un

i,j)
∑
i∈Z

∑
j∈Z

h2Wn,l
i,j ≤ eτp γ

∥∥Wn,l
∥∥
L1 .

Induction over l yields ∥∥wn+1
∥∥
L1 = ‖Wn,m‖L1 ≤ em τp γ‖wn‖L1 ≤ eτ γ‖wn‖L1 .

Induction over n now yields
‖wn‖L1 ≤ en τ γ‖wo‖L1 .

Pass now to u. By the conservation property of the Lax−Friedrichs scheme (2.4d)–(2.4f) we have∥∥Un+1
∥∥
L1 =

∥∥∥Un+1/2
∥∥∥
L1

= ‖un‖L1 .

To include the source term in the L1-estimate, we consider (2.4g) and obtain∥∥un+1
∥∥
L1 =

∑
i∈Z

∑
j∈Z

h2 un+1
i,j ≤

∑
i∈Z

∑
j∈Z

h2 eτ (α wn+1
i,j −β) Un+1

i,j

≤ eτ α‖wn+1‖
L∞
∑
i∈Z

∑
j∈Z

h2 Un+1
i,j

= eτ α‖wn+1‖
L∞ ‖un‖L1 .

Using (3.1) and (3.3), this yields∥∥un+1
∥∥
L1 ≤ ‖un‖L1 exp

(
τ α ‖wo‖L∞ e(n+1) τ γ

)

≤ ‖uo‖L1 exp

(
τ K2

n+1∑
k=1

ek τ γ

)

≤ ‖uo‖L1 exp
(
K2

1
γ

e(n+2) τ γ

)
,

where we applied Lemma 3.1. This completes the proof. �

3.3. TV estimate

Lemma 3.6. Let assumptions (f), (v) and (0) hold and fix 0 < T < ∞. Then, for all n such that nτ < T ,
the approximate solution (un, wn) constructed by Algorithm 2.1 satisfies

TV(un) + TV(wn) ≤ en τ K3

(
TV(uo) + TV(wo) +

K4

K3
eτK5

)

where the functions Ki, i = 3, . . . , 5 depend on T , various norms of un, wn and ∂uf as well as on all constants
α, β, γ, δ and K and the function C defined in (v).
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Proof. Consider w first. In particular, focus on Wn,l defined in (2.4b). To obtain a bound on the total variation
of wn+1, we have to estimate

TV(wn+1) =
∑
i∈Z

∑
j∈Z

h
[∣∣wn+1

i+1,j − wn+1
i,j

∣∣+ ∣∣wn+1
i,j+1 − wn+1

i,j

∣∣] . (3.6)

Similarly as before, we define Sn
i,j = γ − δ un

i,j for the sake of simplicity. To obtain a bound for (3.6), we
consider∑

i,j

h
∣∣∣Wn,l+1

i+1,j −Wn,l+1
i,j

∣∣∣
≤ 1

4
eτp γ

∑
i,j

h
(∣∣∣Wn,l

i+2,j −Wn,l
i+1,j

∣∣∣+ ∣∣∣Wn,l
i,j −Wn,l

i−1,j

∣∣∣+ ∣∣∣Wn,l
i+1,j+1 −Wn,l

i,j+1

∣∣∣+ ∣∣∣Wn,l
i+1,j−1 −Wn,l

i,j−1

∣∣∣)

+
∑
i,j

h
∣∣∣Wn,l

i,j

∣∣∣ · τp ∣∣∣Sn
i+1,j

(
1 +

τp
2
Sn

i+1,j

)
− Sn

i,j

(
1 +

τp
2
Sn

i,j

)∣∣∣
≤ eτp γ

∑
i,j

h
∣∣∣Wn,l

i,j −Wn,l
i−1,j

∣∣∣+ ∥∥Wn,l
∥∥
L∞

∑
i,j

h τp
∣∣Sn

i+1,j − Sn
i,j

∣∣ · ∣∣∣∣1 + τp

(
γ − δ

2
(un

i+1,j + un
i,j)
)∣∣∣∣

≤ eτp γ
∑
i,j

h
∣∣∣Wn,l

i,j −Wn,l
i−1,j

∣∣∣+ τp (1 + τp(γ + δ ‖un‖L∞)) δ
∥∥Wn,l

∥∥
L∞ ·

∑
i,j

h
∣∣un

i+1,j − un
i,j

∣∣

≤ eτp γ

⎛
⎝∑

i,j

h
∣∣∣Wn,l

i,j −Wn,l
i−1,j

∣∣∣+ τpeδ ‖un‖L∞τp δ
∥∥Wn,l

∥∥
L∞

∑
i,j

h
∣∣un

i+1,j − un
i,j

∣∣
⎞
⎠ .

An analogous estimate can be derived for
∑

i,j h
∣∣∣Wn,l+1

i,j+1 −Wn,l+1
i,j

∣∣∣. Induction over l yields now

TV
(
wn+1

) ≤ eτγ
(
TV(wn) + τeτp δ ‖un‖L∞ δ ‖wn‖L∞ TV(un)

)
. (3.7)

Pass now to u. We need to estimate the following quantity:

TV(un+1) = h
∑
i∈Z

∑
j∈Z

[∣∣un+1
i+1,j − un+1

i,j

∣∣+ ∣∣un+1
i,j+1 − un+1

i,j

∣∣] . (3.8)

Denoting Rn+1
i,j = αwn+1

i,j − β for the sake of simplicity, we obtain

TV
(
un+1

)
=
∑
i,j

h
[∣∣un+1

i+1,j − un+1
i,j

∣∣+ ∣∣un+1
i,j+1 − un+1

i,j

∣∣]
≤ eτ α ‖wn+1‖L∞

∑
i,j

h
[∣∣Un+1

i+1,j − Un+1
i,j

∣∣+ ∣∣Un+1
i,j+1 − Un+1

i,j

∣∣]

+
∥∥Un+1

∥∥
L∞ τ

∑
i,j

h
∣∣∣Rn+1

i+1,j

(
1 +

τ

2
Rn+1

i+1,j

)
−Rn+1

i,j

(
1 +

τ

2
Rn+1

i,j

)∣∣∣
+
∥∥Un+1

∥∥
L∞ τ

∑
i,j

h
∣∣∣Rn+1

i,j+1

(
1 +

τ

2
Rn+1

i,j+1

)
−Rn+1

i,j

(
1 +

τ

2
Rn+1

i,j

)∣∣∣
≤ eτ α ‖wn+1‖L∞ (TV

(
Un+1

)
+ τ α eτ β

∥∥Un+1
∥∥
L∞ TV

(
wn+1

))
.

To approximate TV (Un+1), we have to estimate∑
i,j

h
(∣∣Un+1

i+1,j − Un+1
i,j

∣∣+ ∣∣Un+1
i,j+1 − Un+1

i,j

∣∣) .
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It is a well-known fact that the standard Lax−Friedrichs scheme is TVD and thus TV (Un+1) ≤ TV (Un+1/2) ≤
TV (un). The situation here however is different, since the flux does not only depend on u, but also on t and x
through the component v(w). The conservation law itself does therefore not satisfy the TVD-property (see [8])
and we cannot expect the numerical scheme to be TVD. To estimate the increase in total variation due to the
space-time dependent velocity field, we consider the term

∑
i,j h
∣∣Un+1

i,j+1 − Un+1
i,j

∣∣. By (2.4f), we have

Un+1
i,j+1 − Un+1

i,j = U
n+1/2

i,j+1 − U
n+1/2

i,j

− λ
[
F
(
U

n+1/2

i,j+2 , U
n+1/2

i,j+1 , (n+ 1) τ, xi,j+3/2

)
− F
(
U

n+1/2

i,j+1 , U
n+1/2

i,j , (n+ 1) τ, xi,j+1/2

)
−F
(
U

n+1/2

i,j+1 , U
n+1/2

i,j , (n+ 1) τ, xi,j+1/2

)
+ F
(
U

n+1/2

i,j , U
n+1/2

i,j−1 , (n+ 1) τ, xi,j−1/2

)]
.

Add and subtract λF (Un+1/2

i,j+1 , U
n+1/2

i,j , (n+1) τ, xi,j+3/2) + λF (Un+1/2

i,j , U
n+1/2

i,j−1 , (n+1) τ, xi,j+1/2), then rearrange
to obtain:

Un+1
i,j+1 − Un+1

i,j = An
i,j − Bn

i,j ,

where

An
i,j = U

n+1/2

i,j+1 − U
n+1/2

i,j

− λ
[
F
(
U

n+1/2

i,j+2 , U
n+1/2

i,j+1 , (n+ 1) τ, xi,j+3/2

)
− F
(
U

n+1/2

i,j+1 , U
n+1/2

i,j , (n+ 1) τ, xi,j+1/2

)
+F
(
U

n+1/2

i,j , U
n+1/2

i,j−1 , (n+ 1) τ, xi,j+1/2

)
− F
(
U

n+1/2

i,j+1 , U
n+1/2

i,j , (n+ 1) τ, xi,j+3/2

)]
,

(3.9)

Bn
i,j = λ

[
F
(
U

n+1/2

i,j+1 , U
n+1/2

i,j , (n+ 1) τ, xi,j+3/2

)
− F
(
U

n+1/2

i,j+1 , U
n+1/2

i,j , (n+ 1) τ, xi,j+1/2

)
+F
(
U

n+1/2

i,j , U
n+1/2

i,j−1 , (n+ 1) τ, xi,j−1/2

)
− F
(
U

n+1/2

i,j , U
n+1/2

i,j−1 , (n+ 1) τ, xi,j+1/2

)]
.

(3.10)

From now on we omit the superscripts, n+ 1/2 or n+1, to enhance readability. Consider first the term An
i,j and

use (2.4d) to obtain

An
i,j = Ui,j+1 − Ui,j − λ

[
f(Ui,j+2) + f(Ui,j+1) − f(Ui,j+1) − f(Ui,j)

2
vi,j+3/2

−f(Ui,j+1) + f(Ui,j) − f(Ui,j) − f(Ui,j−1)
2

vi,j+1/2

]

+
1
8

((Ui,j+2 − Ui,j+1) − 2(Ui,j+1 − Ui,j) + (Ui,j − Ui,j−1))

=
3
4

(Ui,j+1 − Ui,j) + (Ui,j+2 − Ui,j+1)
(

1
8
− λ

2
f(Ui,j+2) − f(Ui,j+1)

Ui,j+2 − Ui,j+1
vi,j+3/2

)

+ (Ui,j − Ui,j−1)
(

1
8

+
λ

2
f(Ui,j) − f(Ui,j−1)

Ui,j − Ui,j−1
vi,j+1/2

)

− λ

2
[f(Ui,j+1) − f(Ui,j)]

(
vi,j+3/2 − vi,j+1/2

)
.
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Observe that both coefficients of Ui,j+2 −Ui,j+1 and Ui,j −Ui,j−1 are positive. Then, summing the modulus of
An

i,j over i, j ∈ Z, using also (v), (3.1) and (3.3), yields:

∑
i,j

h
∣∣An

i,j

∣∣ ≤ ∑
i,j

h |Ui,j+1 − Ui,j |
(

1 +
λ

2
f(Ui,j+1) − f(Ui,j)

Ui,j+1 − Ui,j

(
vi,j+1/2 − vi,j+3/2

))

+
∑
i,j

h
λ

2
|Ui,j+1 − Ui,j |

∣∣∣∣f(Ui,j+1) − f(Ui,j)
Ui,j+1 − Ui,j

∣∣∣∣ ∣∣vi,j+3/2 − vi,j+1/2

∣∣
≤
∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2

i,j

∣∣∣ (1 + τ ‖∂uf‖L∞
∥∥∂yv

n+1
∥∥
L∞
)

≤
∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2

i,j

∣∣∣ (1 + τ K ‖∂uf‖L∞
∥∥wn+1

∥∥
L∞
)
. (3.11)

Pass now to Bn
i,j. We continue omitting the superscripts.

Bn
i,j = λ

[
f(Ui,j) + f(Ui,j+1)

2
vn+1

i,j+3/2
− f(Ui,j) + f(Ui,j+1)

2
vn+1

i,j+1/2

+
f(Ui,j−1) + f(Ui,j)

2
vn+1

i,j−1/2
− f(Ui,j−1) + f(Ui,j)

2
vn+1

i,j+1/2

]

=
λ

2

[
f(Ui,j)

(
vn+1

i,j+3/2
− 2vn+1

i,j+1/2
+ vn+1

i,j−1/2

)
+ (f(Ui,j+1) − f(Ui,j−1))

(
vn+1

i,j+3/2
− vn+1

i,j+1/2

)
+ f(Ui,j−1)

(
vn+1

i,j+3/2
− 2vn+1

i,j+1/2
+ vn+1

i,j−1/2

)]
.

Since v = v2 is a smooth function and recalling that vn+1
i,j+1/2

= v((n+1)τ, xi, yj+1/2) ·ni,j+1/2 is the y-component
of v at time (n+ 1)τ and point xi,j+1/2, we obtain

vn+1
i,j+3/2

− 2vn+1
i,j+1/2

+ vn+1
i,j−1/2

≤ h2
∥∥∂yyv

n+1
∥∥
L∞ .

Then, using also (v),

λ

2
f
(
U

n+1/2

i,j

)(
vn+1

i,j+3/2
− 2vn+1

j+1/2
+ vn+1

j−1/2

)
≤ λ

2
h2 ‖∂uf‖L∞

∣∣∣Un+1/2

i,j

∣∣∣C(∥∥wn+1
∥∥
L∞
)
, (3.12)

and similarly for the term with f(Ui,j−1), while the remaining term can be easily estimated as follows

λ

2

(
f(Un+1/2

i,j+1 ) − f(Un+1/2

i,j−1 )
)(
vn+1

i,j+3/2
− vn+1

i,j+1/2

)
≤ λ

2
‖∂uf‖L∞

∣∣∣Un+1/2

i,j+1 − U
n+1/2

i,j−1

∣∣∣ h ∥∥∂yv
n+1
∥∥
L∞ . (3.13)

Hence, multiplying by h and summing over i and j, (3.12) and (3.13) yield

∑
i,j

h
∣∣Bn

i,j

∣∣ ≤ τ‖∂uf‖L∞

⎛
⎝K∥∥wn+1

∥∥
L∞

∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2

i,j

∣∣∣+ C
(∥∥wn+1

∥∥
L∞
) ‖un‖L1

⎞
⎠ . (3.14)

By (3.11) and (3.14) we have

∑
i,j

h
∣∣Un+1

i,j+1 − Un+1
i,j

∣∣ ≤ ∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2

i,j

∣∣∣ (1 + 2 τ K ‖∂uf‖L∞
∥∥wn+1

∥∥
L∞
)

+ τ ‖∂uf‖L∞C
(∥∥wn+1

∥∥
L∞
) ‖un‖L1 .

(3.15)
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In a similar way we obtain∑
i,j

h
∣∣Un+1

i+1,j − Un+1
i,j

∣∣ ≤ ∑
i,j

h
∣∣∣Un+1/2

i+1,j − U
n+1/2

i,j

∣∣∣ (1 + τ K ‖∂uf‖L∞
∥∥wn+1

∥∥
L∞
)

+ τ K ‖∂uf‖L∞
∥∥wn+1

∥∥
L∞

∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2

i,j

∣∣∣
+ 2 τ ‖∂uf‖L∞C

(∥∥wn+1
∥∥
L∞
) ‖un‖L1 .

(3.16)

By (3.15) and (3.16) we have therefore

TV
(
Un+1

) ≤ (1 + 3 τ K ‖∂uf‖L∞
∥∥wn+1

∥∥
L∞
)

TV
(
Un+1/2

)
+ 3 τ ‖∂uf‖L∞C

(∥∥wn+1
∥∥
L∞
) ‖un‖L1 . (3.17)

Analogously to the estimate (3.17) for TV
(
Un+1

)
, we obtain

TV
(
Un+1/2

)
≤ (1 + 3 τ K ‖∂uf‖L∞

∥∥wn+1
∥∥
L∞
)
TV(un)

+ 3 τ ‖∂uf‖L∞C
(∥∥wn+1

∥∥
L∞
) ‖un‖L1 . (3.18)

Then,

TV
(
un+1

) ≤ eτ α‖wn+1‖
L∞
{
exp
(
6 τ K‖∂uf‖L∞

∥∥wn+1
∥∥
L∞
)
TV (un)

+ τ α eτ β
∥∥Un+1

∥∥
L∞ TV

(
wn+1

)
(3.19)

+3 τ ‖∂uf‖L∞C
(∥∥wn+1

∥∥
L∞
) ‖un‖L1

[
1 + exp

(
3 τ K‖∂uf‖L∞

∥∥wn+1
∥∥
L∞
)]}

.

Collecting the estimates (3.19) and (3.7) of TV (un+1) and TV (wn+1), we obtain now

TV (un+1) + TV (wn+1)

≤
[
eτ α‖wn+1‖

L∞ exp
(
6 τ K‖∂uf‖L∞

∥∥wn+1
∥∥
L∞
)

+
(
1 + τ α eτ β eτ α‖wn+1‖

L∞
∥∥Un+1

∥∥
L∞

)
τ eτ γ eτp δ‖un‖L∞ δ ‖wn‖L∞

]
TV (un)

+ eτ γ
(
1 + τ α eτ β eτ α‖wn+1‖

L∞
∥∥Un+1

∥∥
L∞

)
TV (wn)

+ 3 τ eτ α‖wn+1‖
L∞ ‖∂uf‖L∞C

(∥∥wn+1
∥∥
L∞
) ‖un‖L1

[
1 + exp

(
3 τ K‖∂uf‖L∞

∥∥wn+1
∥∥
L∞
)]

≤ eτ K1 TV (un) + eτ K2 TV (wn) + τ K3 eτ K4 ,

where Kl, l = 1, . . . , 4 are bounded functions depending on various norm of un, wn+1 and ∂uf as well as on
all constants α, β, γ, δ and K, defined in (v). Defining K3 = max{K1, K2}, K4 := K3 and K5 := K4 and using
induction over n yields now

TV (un) + TV (wn) ≤ en τK3

[
TV (uo) + TV (wo) +

K4

K3
eτ K5

]
.

This completes the proof. �

3.4. Lipschitz continuity in time

Lemma 3.7. Let assumptions (f), (v) and (0) hold. Then for all n the approximate solution (un, wn) con-
structed by Algorithm 2.1 is such that, for any n1, n2 ∈ N with n1 τ ≤ T and n2 τ ≤ T ,

‖un1 − un2‖L1 ≤ |n1 − n2| τ K6(T, τ),
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where the function K6(T, τ) is uniformly bounded for all n ≤ max{n1, n2} and depends on α, β, γ, δ,K, on
various norms of u,w, ∂uf , on the total variation of the initial datum and on the map C defined in (v).

Proof. Due to Lemma 3.4, un is uniformly bounded by some constant depending on T . Assumptions (f) and (v)
guarantee therefore the Lipschitz continuity of the numerical flux function F defined in (2.4d). Using (2.4e), (2.4f)
and (3.18), we can thus conclude

∥∥Un+1 − un
∥∥
L1 ≤

∑
i,j

h2
(∣∣∣Un+1

i,j − U
n+1/2

i,j

∣∣∣+ ∣∣∣Un+1/2

i,j − un
i,j

∣∣∣)

≤ τ
∑
i,j

h
[∣∣∣F (Un+1/2

i,j+1 , U
n+1/2

i,j , (n+ 1) τ, xi,j+1/2

)
− F
(
U

n+1/2

i,j , U
n+1/2

i,j−1 , (n+ 1) τ, xi,j−1/2

)∣∣∣
+
∣∣F (un

i+1,j , u
n
i,j, (n+ 1) τ, xi+1/2,j

)− F
(
un

i,j, u
n
i−1,j , (n+ 1) τ, xi−1/2,j

)∣∣]
≤ τ · 2L

∑
i,j

h
(∣∣∣Un+1/2

i,j+1 − U
n+1/2

i,j

∣∣∣+ ∣∣un
i+1,j − un

i,j

∣∣
+
∣∣∣vn+1

i+1/2,j − vn+1
i−1/2,j

∣∣∣+ ∣∣∣vn+1
i,j+1/2

− vn+1
i,j−1/2

∣∣∣)
≤ τ · 2L ((2 + 3 τ K ‖∂uf‖L∞

∥∥wn+1
∥∥
L∞
)
TV (un) +

∥∥∇vn+1
∥∥
L1

+ 3 τ ‖∂uf‖L∞C
(∥∥wn+1

∥∥
L∞
) ‖un‖L1

)
,

where L denotes the Lipschitz constant of F . Including the source term and defining T such that max{n1, n2} τ ≤
T <∞, we obtain by (2.4g)

∥∥un+1 − un
∥∥
L1 ≤

∑
i,j

h2
∣∣Un+1

i,j − un
i,j

∣∣+ τ
∑
i,j

h2
∣∣Un+1

i,j

∣∣∣∣∣(αwn+1
i,j − β

) (
1 +

τ

2
(
αwn+1

i,j − β
))∣∣∣

≤ ∥∥Un+1 − un
∥∥
L1 + τ α

∥∥Un+1
∥∥
L1

∥∥wn+1
∥∥
L∞eτ α‖wn+1‖

L∞

≤ τ K6(T, τ),

where K6 is uniformly bounded for all n ≤ max{n1, n2} and all finite τ . �

Remark 3.8. Using more refined estimates, the L1 bound for ∇v, necessary in the proof above, can be substi-
tuted by the L∞ bound on ∇v widely used in the proofs of Lemmas 3.3–3.6. This allows to skip the assumption
of ∇v being bounded in L1 in (v).

4. Convergence

For each mesh width h, we define Nτ := �T/τ� and

uh =
Nτ∑
n=0

∑
i,j

un
i,j χ

n
i,j , wh =

Nτ∑
n=0

∑
i,j

wn
i,j χ

n
i,j , (4.1)

where χn
i,j is the characteristic function of Ii,j × [n τ, (n+1) τ [, respectively Ii,j × [Nτ τ, T ] for the last time step,

with Ii,j defined as in (2.3).

Theorem 4.1. Let assumptions (f), (v) and (0) hold and fix 0 ≤ T < ∞. Let h� be a sequence of grid sizes
such that lim�→∞ h� = 0 and fix λ > 0 such that the sequence τ� := λh� fulfills (2.1) for all �. Let uh�

and wh�

be given as in (4.1). Then the sequence (uh�
, wh�

) converges to the unique weak solution (u,w) of (1.1). More
precisely, (uh�

) converges in L1
loc, while (wh�

) converges weakly* in L∞.
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Proof. Thanks to Lemma 3.4

‖wh‖L∞([0,T ]×R2;R) ≤ eT γ‖wo‖L∞(R2;R)

‖uh‖L∞([0,T ]×R2;R) ≤ ‖uo‖L∞(R2;R) exp
(

(2K1 + K2)
1
γ

eT γ

)
,

so that the sequence (uh, wh) is bounded in L∞([0, T ] × R
2; R2). This implies the existence of a subsequence

(uhk
, whk

) that converges weakly* in L∞([0, T ]×R
2; R2) to (u,w). Thanks to Lemma 3.5, (uhk

) is also uniformly
bounded in L1([0, T ]× R

2; R).
Furthermore, Lemma 3.6 and Lemma 3.7 yield a uniform bound for the space-time total variation of uhk

,
defined by

TVT (uhk
) =

Nτ∑
n=0

[
τ TV (un

hk
) +
∥∥un+1

hk
− un

hk

∥∥
L1(R2;R)

]
We can thus apply ([10], Thm. 1.7.3) and deduce the existence of ū ∈ BVloc

(
[0, T ] × R

2; R
)

and a subsequence
of (uhk

) (still denoted by (uhk
)) such that

uhk
→ ū in L1

loc

(
[0, T ]× R

2; R
)
, (4.2)

uhk
(t, x, y) → ū(t, x, y) for a.e.(t, x, y) ∈ [0, T ]× R

2. (4.3)

Due to the uniqueness of the limit ū in L1, shown in [8] (see also Rem. 1.1), we can conclude the convergence
of the whole sequence (uhk

) to ū.
From (4.3), it follows easily that uhk

converges to ū also in L∞ ([0, T ]× R
2; R
)
. Since strong convergence

implies weak* convergence, we obtain that uhk

∗
⇀ ū in L∞ ([0, T ]× R

2; R
)
. Due to the uniqueness of the weak*

limit, we have that u = ū.
By (f), the continuity of the function f implies now that

f(uh) → f(u). (4.4)

Note that Lemma 3.4 yields also

‖wh(t, ·, ·)‖L∞(R2;R) ≤ eT γ‖wo‖L∞(R2;R) for a.e. t ∈ [0, T ].

As above we can thus find a subsequence that converges weakly* in L∞(R2; R) for a.e. t ∈ [0, T ] and due to the
uniqueness of the weak* limit, we have

whk
(t, ·, ·) ∗

⇀ w(t, ·, ·).
Recalling that η ∈ L1(R2; R), it is now easy to prove that (whk

∗ η)(t, ·, ·) converges (strongly) to (w ∗ η)(t, ·, ·)
in L1(R2; R) for a.e. t ∈ [0, T ]. By (v), and in particular thanks to the fact that the Lipschitz constant of v is
bounded, we obtain

v(whk
∗ η) → v(w ∗ η) in L1(R2; R) for a.e. t ∈ [0, T ]. (4.5)

To prove that (u,w) are weak solutions of (1.1), we choose test functions ψ ∈ C1
c([0, T ],C2

c(R
2; R)) and

ϕ ∈ C1
c([0, T ] × R

2; R). Define now ψn,l
i,j := ψ(tn,l, xi,j), where tn,l = nτ + lτp, and

ψh =
N−1∑
n=0

∑
i,j

m−1∑
l=0

ψn,l
i,j χ

n,l
i,j

δtψh =
N−1∑
n=0

∑
i,j

m−1∑
l=0

ψn,l
i,j − ψn,l−1

i,j

τp
χn,l

i,j

Δhψh =
N−1∑
n=0

∑
i,j

m−1∑
l=0

1
h2

(
ψn,l

i+1,j + ψn,l
i−1,j + ψn,l

i,j+1 + ψn,l
i,j−1 − 4ψn,l

i,j

)
χn,l

i,j .
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Here, χn,l
i,j is the characteristic function of Ii,j × [tn,l, tn,l+1[, with Ii,j defined as in (2.3). Note that δtψh and

Δhψh are discrete versions of time derivative and Laplace operator. Due to the definition of ψh and its discrete
derivatives, we have strong convergence in L∞([0, T ]×R

2; R) for ψh → ψ as well as for the derivatives δtψh → ∂tψ
and Δhψh → Δψ as h→ 0.

Multiply (2.4b) by h2 ψn,l
i,j and sum over n, i, j and l to obtain

0 = τp h
2

N−1∑
n=0

∑
i,j

m−1∑
l=0

Wn,l
i,j

(
ψn,l

i,j − ψn,l−1
i,j

τp
+ μ

ψn,l
i+1,j + ψn,l

i−1,j + ψn,l
i,j+1 + ψn,l

i,j−1 − 4ψn,l
i,j

h2

)

+ τp h
2

N−1∑
n=0

∑
i,j

m−1∑
l=0

ψn,l
i,j (γ − δun

i,j)
[
1 +

τp
2

(γ − δ un
i,j)
] Wn,l

i+1,j +Wn,l
i−1,j +Wn,l

i,j+1 +Wn,l
i,j−1

4
·

Using the above convergence results, we can conclude

∫ T

0

∫
R2
w∂tψ + μwΔψ + w(γ − δu)ψ dx dy dt = 0.

Analogously as above we define

ϕh =
N−1∑
n=0

∑
i,j

ϕn
i,j χ

n
i,j δtϕh =

N−1∑
n=0

∑
i,j

ϕn
i,j − ϕn−1

i,j

τ
χn

i,j

δ+x ϕh =
N−1∑
n=0

∑
i,j

ϕn
i+1,j − ϕn

i,j

h
χn

i,j δ−x ϕh =
N−1∑
n=0

∑
i,j

ϕn
i,j − ϕn

i−1,j

h
χn

i,j .

δ+y ϕh =
N−1∑
n=0

∑
i,j

ϕn
i,j+1 − ϕn

i,j

h
χn

i,j δ−y ϕh =
N−1∑
n=0

∑
i,j

ϕn
i,j − ϕn

i,j−1

h
χn

i,j

and recall that we have ϕh → ϕ and δ±� ϕh → ∂�ϕ in L∞([0, T ] × R
2; R) for h → 0 and � = t, x, y. Multiply-

ing (2.4e)–(2.4g) by h2ϕn
i,j and summing over all n, i and j we obtain

0 = τh2
N−1∑
n=0

∑
i,j

un
i,j

ϕn
i,j − ϕn−1

i,j

τ
+ τh2

N−1∑
n=0

∑
i,j

(αwn
i,j − β)ϕn

i,j U
n+1
i,j

+ τh2
N−1∑
n=0

∑
i,j

1
2
f(un

i,j)
(
vn+1

i−1/2,j

ϕn
i,j − ϕn

i−1,j

h
+ vn+1

i+1/2,j

ϕn
i+1,j − ϕn

i,j

h

)

+ τh2
N−1∑
n=0

∑
i,j

1
2
f(Un+1/2

i,j )
(
vn+1

i,j−1/2

ϕn
i,j − ϕn

i,j−1

h
+ vn+1

i,j+1/2

ϕn
i,j+1 − ϕn

i,j

h

)

+ h2
N−1∑
n=0

∑
i,j

h2

4

(
un

i,j

ϕn
i−1,j − 2ϕn

i,j + ϕn
i+1,j

h2
+ U

n+1/2

i,j

ϕn
i,j−1 − 2ϕn

i,j + ϕn
i,j+1

h2

)

+ τh2
N−1∑
n=0

∑
i,j

τ

2
(αwn

i,j − β)2ϕn
i,j U

n+1
i,j .

Recall that wh is uniformly bounded in L∞ for all h. This directly implies that also w2
h is uniformly bounded

in L∞ and thus converges weakly* to some function g ∈ L∞([0, T ] × R
2; R). Due to the smoothness of v and
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the convergence of uh, wh, w2
h and ϕh, we can thus deduce that the limit functions u, w and ϕ fulfill

∫ T

0

∫
R2
u∂tϕ+ f(u)v · div (ϕ) + (αw − β)ϕ dxdy dt = 0.

We proved that (u,w) is a weak solution to (1.1). Since by [8] and Remark 1.1 we know that the weak solution
to (1.1) is unique, (u,w) is the unique weak solution. �

5. Numerical examples

To conclude the paper, we present some numerical examples that show on one hand the convergence of the
scheme and on the other hand some qualitative properties of the system (1.1). In all examples, we make the
following choice for the vector field v:

v(w) = κ
∇(w ∗ η)√

1 + ‖∇(w ∗ η)‖2
, (5.1)

where the compactly supported kernel function η is chosen as follows

η(x, y) = η̂
(
�2 − ‖(x, y)‖2

)3

χ
B(0,�)

with η̂ ∈ R
+ such that

∫∫
R2
η(x, y) dx dy = 1. (5.2)

The positive parameter � represents the maximal distance at which predators u feel the presence of prey w. It
can be easily verified that (5.1) fulfills the assumption (v).
We compute the numerical solution on the domain

D = [0, 0.5]× [0, 1]

and consider the following sizes of the space mesh:

h = 0.005 , h = 0.0025 , h = 0.00125 .

Since no exact solutions are available, we use the numerical solution computed for h = 0.000625 as reference
solution (u,w). The corresponding time step sizes τp and τ are chosen according to the definition in Section 2,
see especially (2.1) and the lines above.

Let (uh, wh) be the numerical solution associated to space mesh size h. The error is computed in the following
way

‖uh − u‖L1 = sup
t∈[0,T ]

‖uh(t) − u(t)‖L1(D;R),

‖wh − w‖L1 = sup
t∈[0,T ]

‖wh(t) − w(t)‖L1(D;R).
(5.3)

More precisely, we average the reference solution (u,w) on the coarse grid in order to compare it to the solution
(uh, wh).

We define EOCu, respectively EOCw, the experimental order of convergence for u, respectively for w, com-
puted as follows:

EOCu =
log

‖u1 − u‖L1

‖u2 − u‖L1

log
h1

h2

, EOCw =
log

‖w1 − w‖L1

‖w2 − w‖L1

log
h1

h2

, (5.4)

where (u1, w1), (u2, w2) are solutions with grid size h1 and h2 respectively.



492 E. ROSSI AND V. SCHLEPER

5.1. Example 1

In our first example, we consider the test case proposed in ([8], Sect. 3.1), where the parameters are chosen
as

α = 2 β = 1 κ = 1
γ = 1 δ = 2 μ = 0.5 � = 0.0375

(5.5)

with the following initial datum on D

uo(x, y) = 4 χ
A
(x, y)

wo(x, y) = 3 (2y − 1) max{0, h(x, y)}χ
B

(x, y)

where (5.6)

h(x, y) = (4x− 1)2 + (4y − 2)2 − 0.25

A = {(x, y) ∈ R
2 : (8x− 2)2 + (1.25 (4y − 1))2 ≤ 1}

B = {(x, y) ∈ R
2 : y ≥ 0.5} .

For this example we consider two hyperbolic flux functions

1a. f(u) = u, as in [8];

1b. f(u) =

⎧⎪⎪⎨
⎪⎪⎩

u2

1728
(10 − u)3 if 0 ≤ u ≤ 10

0 elsewhere.

f(u) as in 1b.

It is easy to see that both functions fulfill assumption (f). The constants in case 1b are related to the
initial datum. Indeed, this choice guarantees that f(4) = 2 is the maximal value of f . Note that ‖∂uf‖L∞ =
5(3 + 8

√
6)/144 ≈ 0.78458 ≤ 1.

To evaluate the convolution without boundary effects, we compute the solution on a slightly bigger domain
than D. More precisely, we enlarge the computational domain D by adding in all directions a constant quantity
C(η) > 0, related to the size of the support of the kernel function η. The enlarged domain is thus of the form

[−C(η), 0.5 + C(η)] × [−C(η), 1 + C(η)] ⊇ D.

In particular, we choose C(η) large enough such that, when computing the convolution for a point on the
boundary of D, the whole support of the kernel function η is inside the extended computational domain.

The boundary conditions for u and w are chosen to remain equal to the initial datum all along the boundary
of this extended computational domain. For the balance law, this means to assume a constant value outside the
computational domain and to compute the flux accordingly: whenever v(w) is pointing inward the domain, an
inflow due to the boundary condition is considered. Concerning the parabolic equation, this choice of boundary
conditions amounts to assume that the displayed solution is part of a solution defined on all R

2 that gives
constant inflow into the computational domain.

The solution is computed up to time Tmax = 0.3 in Example 1a and up to time Tmax = 0.5 in Example 1b.
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Table 1. L1-error computed as in (5.3) and experimental order of convergence computed as
in (5.4) for the solution to (1.1), (5.1) and (5.5) with initial datum (5.6) and flux function f as
in 1a.

h ‖uh − u‖L1 EOCu ‖wh − w‖L1 EOCw

0.005 0.56 – 0.303 –

0.0025 0.275 1.03 0.114 1.41

0.00125 0.106 1.38 0.034 1.74

Table 2. L1-error computed as in (5.3) and experimental order of convergence computed as
in (5.4) for the solution to (1.1), (5.1) and (5.5) with initial datum (5.6) and flux function f as
in 1b.

h ‖uh − u‖L1 EOCu ‖wh − w‖L1 EOCw

0.005 0.579 – 0.43 –

0.0025 0.273 1.08 0.185 1.22

0.00125 0.101 1.43 0.064 1.54

Table 3. Space-time minimum values of uh and wh for the solution to (1.1), (5.1) and (5.5)
with initial datum (5.6) and flux function f as in 1a (left) and 1b (right).

h mini,j,n uh mini,j,n wh

0.005 0 0

0.0025 0 0

0.00125 0 0

h mini,j,n uh mini,j,n wh

0.005 0 0

0.0025 0 0

0.00125 0 0

In Tables 1 and 2 we report the values of the L1-error for the different mesh sizes and the corresponding
experimental order of convergence for flux function 1a and 1b respectively. Figure 1 displays the error in
logarithmic scale. The lines obtained connecting the values for u, respectively w, can be easily compared with
the line with slope 1, that represents the order of convergence we expect theoretically for smooth solutions.

To emphasize that the method is indeed positivity preserving as stated in the analytical part, we report the
space-time minimum values of uh and wh in Table 3.

Figures 2 and 3 show the results of the numerical integration for flux function f as in 1a and 1b respectively.
The figures illustrate well also the spatial effect of the model: thanks to the non-locality of v, predators u move
towards regions where the concentration of prey w is higher. Observe that boundary effects are negligible at
least up to the maximal time of integration.

5.2. Example 2

In this example, we modify the treatment of the boundary. In particular, we impose isolating boundary
conditions for u and Neumann homogeneous boundary conditions for w. We consider

f(u) = u(1 − u), (5.7)
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Figure 1. Plot of the L1-error the solution to (1.1), (5.1) and (5.5) with initial datum (5.6):
case 1a on the left, case 1b on the right. The dotted line has slope 1 and represents the order
of convergence we expect theoretically.

Figure 2. Numerical integration of (1.1), (5.1) and (5.5) with initial datum (5.6) and f as in
1a at time t = 0.1, 0.2, 0.3. This solution was obtained with h = 0.000625. Top row: u, bottom
row: w. Darker colors indicate higher densities.
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Figure 3. Numerical integration of (1.1), (5.1) and (5.5) with initial datum (5.6) and f as
in 1b at time t = 0.2, 0.35, 0.5. This solution was obtained with h = 0.000625. Top row: u,
bottom row: w. Darker colors indicate higher densities.

and it is easy to see that it fulfills the assumption (f). We set

α = 2 β = 0.8 κ = 1
γ = 0.8 δ = 24 μ = 0.1 � = 0.0625

(5.8)

with the following initial datum on D

uo(x, y) = 0.05
(
5 χ

E
(x, y) + 4 χ

F
(x, y)

)
wo(x, y) = 0.2

where

E = {(x, y) ∈ R
2 : (4x− 0.6)2 + (4y − 3)2 ≤ 0.01}

F = {(x, y) ∈ R
2 : (4x− 1.3)2 + (4y − 0.8)2 ≤ 0.04} .

(5.9)

The solution is computed up to time Tmax = 4 on a mesh of width h = 0.00125. Figure 4 shows the evolution of
the total mass (i.e. the L1-norm in space) of predators u and preys w over time, while Figure 5 shows the spacial
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Figure 4. The typical Lotka−Volterra effect obtained for the solution to (1.1), (5.1) and (5.7)
and (5.8) with initial datum (5.9) and a mesh of width h = 0.00125. The graphs display the
integral of u (left), respectively w (right), representing the total mass of predators and prey.

Figure 5. Numerical integration of (1.1), (5.1), (5.7) and (5.8) with initial datum (5.9) and a
mesh of width h = 0.00125. Top row: u, bottom row: w. Darker colors indicate higher densities.
The first column shows the spacial distribution of u and w at a time where ‖w‖L1 attains its
minimum, while ‖u‖L1 is already decreasing. The second column represents some intermediate
time, where ‖u‖L1 is still decreasing while ‖w‖L1 has already started to increase. The third
column shows a scenario where ‖u‖L1 is minimal, while the forth column shows u and w when
‖w‖L1 is maximal. In the fifth column, ‖u‖L1 is maximal, while ‖w‖L1 has started to decrease
again. Finally, in the last column, ‖w‖L1 is again minimal, while ‖u‖L1 is still decreasing.
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Table 4. Space-time minimum values of uh and wh for the solution to Example 2 using
equations (1.1), (5.1), (5.7) and (5.8) and initial datum (5.9).

h mini,j,n uh mini,j,n wh

0.00125 0 0.04

behaviour of the solution at different times. In this example we can clearly see the typical Lotka−Volterra effect,
see Figure 4, where the evolution of the total mass of predators and prey in time is shown. One population,
in this case predators u, apparently almost disappear, then its mass rises again, due to feeding on prey and to
newborns. At the same time the other population grows, until its mass reaches a sort of maximum point: from
that instant on, predators eating prey produce a decrease in prey mass. However, when the total mass of prey is
very low, predators have nothing left to eat, hence they decrease, while prey are free to increase, and the whole
cycle begins again. This time-periodic behaviour can also be seen in the spacial behaviour, see Figure 5. There,
almost the same spacial-patterns for u and w appear in every cycle.

As for the previous examples, we report the space-time minimum values of uh and wh in Table 4 to emphasize
that the method is indeed positivity preserving.
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