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A NONCONFORMING FINITE ELEMENT APPROXIMATION
FOR THE VON KARMAN EQUATIONS
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Abstract. In this paper, a nonconforming finite element method has been proposed and analyzed for
the von Kármán equations that describe bending of thin elastic plates. Optimal order error estimates
in broken energy and H1 norms are derived under minimal regularity assumptions. Numerical results
that justify the theoretical results are presented.
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1. Introduction

Let Ω ⊂ R
2 be a polygonal domain with boundary ∂Ω. Consider the von Kármán equations for the deflection

of very thin elastic plates that are modeled by a non-linear system of fourth-order partial differential equations
with two unknown functions defined by: for given f ∈ L2(Ω), seek the vertical displacement u and the Airy
stress function v such that

Δ2u = [u, v] + f
Δ2v = − 1

2 [u, u]

}
in Ω (1.1)

with clamped boundary conditions

u =
∂u

∂ν
= v =

∂v

∂ν
= 0 on ∂Ω, (1.2)

where the biharmonic operator Δ2 and the von Kármán bracket [·, ·] are defined by

Δ2ϕ := ϕxxxx + 2ϕxxyy + ϕyyyy and [η, χ] := ηxxχyy + ηyyχxx − 2ηxyχxy = cof(D2η) : D2χ,

cof(D2η) denotes the co-factor matrix of D2η and ν denotes the unit outward normal to the boundary ∂Ω of Ω.
Depending on the thickness to length ratio, several plate models have been studied in literature; the most

important ones being linear models like Kirchhoff and Reissner–Mindlin plates for thin and moderately thick
plates respectively; and non-linear von Kármán plate model for very thin plates. Many practical applications
deal with the Kirchhoff model for thin plates in which the transverse shear deformation is negligible. On the
other hand, the Reissner–Mindlin plate model for moderately thick plates takes into consideration the shear
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deformation. The displacements of very thin plates are so large that a non-linear model is essential to consider
the membrane action. The assumptions made in the von Kármán model are similar to those of Kirchhoff model
except for the linearization of the strain tensor, which in fact, leads to the non-linearity in the model.

For the theoretical study as regards the existence of solutions, regularity and bifurcation phenomena of von
Kármán equations, see [2, 4–6, 14, 19] and the references therein. Due to the importance of the problem in
application areas, several numerical approaches have also been attempted in the past. The major challenges are
posed by the non-linearity and the higher order nature of the equations. The convergence analysis and error
bounds for conforming finite element methods are analyzed in [12]. The papers [22,24,25] investigate and analyze
the Hellan–Hermann–Miyoshi mixed finite element method and a stress-hybrid method, respectively for the von
Kármán equations. In these papers, the authors simultaneously approximate the unknown functions and their
derivatives. The papers [12,22,24] deal with the approximation and error bounds for isolated solutions, thereby
not discussing the difficulties arising from the non-uniqueness of the solution and the bifurcation phenomena.

Over the last few decades, the finite element methodology has developed in various directions. For higher-order
problems, nonconforming methods and discontinuous Galerkin methods are gaining popularity as they have a
clear advantage over conforming finite elements with respect to simplicity in implementation. In this paper,
an attempt has been made to study the von Kármán equations using nonconforming Morley finite elements.
The Morley finite element method has been proposed and analyzed for the biharmonic equation in [21] and for
the Monge–Ampère equation in [23]. In [26], a two level additive Schwarz method for a non-linear biharmonic
equation using Morley elements is discussed under the assumption of smallness of data. The C0 interior penalty
method, a variant of the discontinuous Galerkin method has been used to analyze the Monge–Ampère equation
in [9].

The solutions u, v of clamped von Kármán equations defined on a polygonal domain belong to H2
0 (Ω) ∩

H2+α(Ω)[6], where α ∈ (1
2 , 1] referred to as the index of elliptic regularity is determined by the interior angles

of Ω. Note that when Ω is convex, α = 1. This paper discusses a nonconforming finite element discretization
of (1.1)−(1.2) and develops a priori error estimates for the displacement and Airy stress functions in polygonal
domains with possible corner singularities. To highlight the contributions of this work, we have

• obtained an approximation of an isolated solution pair (u, v) of (1.1) and (1.2) using nonconforming Morley
elements;

• developed optimal order error estimates in broken energy and H1 norms under realistic regularity assump-
tions;

• performed numerical experiments that justify the theoretical results.

The advantages of the method are that the nonconforming Morley elements which are based on piecewise
quadratic polynomials are simpler to use and have lesser number of degrees of freedom in comparison with
the conforming Argyris finite elements with 21 degrees of freedom in a triangle or the Bogner–Fox–Schmit
finite elements with 16 degrees of freedom in a rectangle. Moreover, the method is easier to implement than
mixed/hybrid finite element methods.

The difficulties due to non-conformity of the space increases the technicalities in the proofs of error estimates.
Moreover, one loses the symmetry property with respect to all the variables in the discrete formulation for
nonconforming case. An important aid in the proofs is a companion conforming operator, also known in the
literature as the enriching operator which maps the elements in the nonconforming finite element space to that
of the conforming space. Also, as proved in [17] for the biharmonic problem, it is true that when Morley finite
elements are used for the von Kármán equations, the L2 error estimates cannot be further improved. This is
evident from the results of the numerical experiments presented in Section 5.

The paper is organized as follows. Section 1 is introductory and Section 2 introduces the weak formulation for
the problem. This is followed by description of nonconforming finite element formulation in Section 3. Section 4
deals with the existence of the discrete solution and the error estimates in broken energy and H1 norms. The
results of the numerical experiments are presented in Section 5. Conclusions and perspectives are discussed in
Section 6. The analysis of a more generalized form of (1.1) and (1.2) is dealt with in Appendix A.
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Throughout the paper, standard notations on Lebesgue and Sobolev spaces and their norms are employed.
We denote the standard L2 scalar or vector inner product by (·, ·) and the standard norm on Hs(Ω), for s > 0
by ‖ · ‖s. The positive constants C appearing in the inequalities denote generic constants which may depend on
the domain Ω but not on the mesh-size.

2. Weak formulation

The weak formulation corresponding to (1.1), (1.2) is: given f ∈ L2(Ω), find u, v ∈ V := H2
0 (Ω) such that

a(u, ϕ1) + b(u, v, ϕ1) + b(v, u, ϕ1) = l(ϕ1) ∀ϕ1 ∈ V (2.1a)
a(v, ϕ2) − b(u, u, ϕ2) = 0 ∀ϕ2 ∈ V (2.1b)

where ∀ η, χ, ϕ ∈ V ,

a(η, χ) :=
�

Ω

D2η : D2χ dx, b(η, χ, ϕ) :=
1
2

�
Ω

cof(D2η)Dχ · Dϕ dx and l(ϕ) := (f, ϕ).

Note that b(·, ·, ·) is derived using the divergence-free rows property [15, 23]. Since the Hessian matrix D2η is
symmetric, cof(D2η) is symmetric. Consequently, b(·, ·, ·) is symmetric with respect to the second and third
variables, that is, b(η, ξ, ϕ) = b(η, ϕ, ξ). Moreover, since [·, ·] is symmetric, b(·, ·, ·) is symmetric with respect to
all the variables in the weak formulation.

An equivalent vector form of the weak formulation which will be also used in the analysis is defined as: for
F = (f, 0) with f ∈ L2(Ω), seek Ψ = (u, v) ∈ V := V × V such that

A(Ψ, Φ) + B(Ψ, Ψ, Φ) = L(Φ) ∀Φ ∈ V (2.2)

where ∀ Ξ = (ξ1, ξ2), Θ = (θ1, θ2) and Φ = (ϕ1, ϕ2) ∈ V ,

A(Θ, Φ) := a(θ1, ϕ1) + a(θ2, ϕ2), (2.3)
B(Ξ, Θ, Φ) := b(ξ1, θ2, ϕ1) + b(ξ2, θ1, ϕ1) − b(ξ1, θ1, ϕ2) and (2.4)
L(Φ) := (f, ϕ1). (2.5)

It is easy to verify that the bilinear forms A(·, ·) and B(·, ·, ·) satisfy the following continuity and coercivity
properties. That is, there exist constants C such that

A(Θ, Φ) ≤ C |||Θ|||2 |||Φ|||2 ∀Θ, Φ ∈ V , (2.6)

A(Θ, Θ) ≥ C |||Θ|||22 ∀Θ ∈ V , (2.7)
B(Ξ, Θ, Φ) ≤ C |||Ξ|||2 |||Θ|||2 |||Φ|||2 ∀Ξ, Θ, Φ ∈ V , (2.8)

where the product norm |||Φ|||2 :=
√

A(Φ, Φ) ∀Φ ∈ V . In the sequel, the product norm defined on (Hs(Ω))2

and (L2(Ω))2 are denoted by |||·|||s and |||·|||, respectively.
For the results on existence of solution of the weak formulation, we refer to [2, 3, 14, 19]. More precisely, the

weak solution Ψ = (u, v) of (1.1), (1.2) can be characterized as the solution of the operator equation IΨ = TΨ
defined on V where T is a compact operator on V and I is an identity operator on V . In [19], it has been
proved that there exists at least one solution of the operator equation. Also, the uniqueness of solution under
the assumption on smallness of the data function f has been derived.

In this paper, we follow [12] and assume that the solution Ψ = (u, v) is isolated. That is, the linearized
problem defined by: for given G = (g1, g2) ∈ (L2(Ω))2 ⊂ V ′, seek Θ = (θ1, θ2) ∈ V such that

A (Θ, Φ) = (G, Φ) ∀Φ ∈ V (2.9)

where A (Θ, Φ) := A(Θ, Φ) + B(Ψ, Θ, Φ) + B(Θ, Ψ, Φ) is well posed and satisfies the a priori bounds

|||Θ|||2 ≤ C |||G||| , |||Θ|||2+α ≤ C |||G||| (2.10)

where α is the index of elliptic regularity.
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Figure 1. Morley element.

3. Nonconforming Finite Element Method (NCFEM)

In the first subsection, the Morley element is defined and some preliminaries are introduced. In the second
subsection, nonconforming finite element formulation for von Kármán equations and the corresponding linearized
problem are presented. Some properties and auxiliary results necessary for the analysis are discussed in the third
subsection.

3.1. The Morley element

Let Th be a regular, quasi-uniform triangulation [10,13] of Ω̄ into closed triangles. Set hT = diam(T ) ∀T ∈
Th and h = maxT∈Th

hT . For T ∈ Th with vertices ai = (xi, yi), i = 1, 2, 3, let m4, m5 and m6 denote the
midpoints of the edges opposite to the vertices a1, a2 and a3 respectively (see Fig. 1). We denote the set of
vertices (resp. edges) of Th by Vh (resp. Eh). For e ∈ Eh, let he = diam(e).

Definition 3.1. [13] The Morley finite element is a triplet (T, PT , ΦT ) where

• T is a triangle
• PT = P2(T ) is the space of all quadratic polynomials on T and
• ΦT = {φi}6

i=1 are the degrees of freedom defined by:

φi(v) = v(ai), i = 1, 2, 3 and φi(v) =
∂v

∂ν
(mi), i = 4, 5, 6.

The nonconforming Morley element space associated with the triangulation Th is defined by

Vh :=
{

ϕ ∈ L2(Ω) : ϕ|T ∈ P2(T ) ∀T ∈ Th, ϕ is continuous at the vertices {ai}3
i=1 of the triangle

and the normal derivatives of ϕ at the midpoint of the edges {mi}6
i=4 are continuous,

ϕ = 0 at the vertices on ∂Ω,
∂ϕ

∂ν
= 0 at the midpoint of the edges on ∂Ω

}
.

For ϕ ∈ Vh and Φ = (ϕ1, ϕ2) ∈ Vh := Vh × Vh, the mesh dependent semi-norms which are equivalent to the
norms denoted as |ϕ|2,h and |||Φ|||2,h, respectively, are defined by:

|ϕ|22,h :=
∑

T∈Th

|ϕ|22,T , |||Φ|||22,h := |ϕ1|22,h + |ϕ2|22,h.
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Also, for a non-negative integer m, 1 ≤ p < ∞ and ϕ ∈ Wm,p(Ω; Th)

|ϕ|2m,p,h :=
∑

T∈Th

|ϕ|2m,p,T , ‖ϕ‖2
m,p,h :=

∑
T∈Th

‖ϕ‖2
m,p,T ,

and for p = ∞
|ϕ|m,∞,h := max

T∈Th

|ϕ|m,∞,T , ‖ϕ‖m,∞,h := max
T∈Th

‖ϕ‖m,∞,T ,

where | · |m,p,T and ‖ · ‖m,p,T denote the usual semi-norm and norm in the Banach space Wm,p(T ) and
Wm,p(Ω; Th) denotes the broken Sobolev space with respect to the mesh Th. For Φ = (ϕ1, ϕ2) with
ϕ1, ϕ2 ∈ Wm,p(Ω; Th), define |||Φ|||2m,p,h := |ϕ1|2m,p,h + |ϕ2|2m,p,h. When p = 2, the notation is abbreviated
as | · |m,h and ‖ · ‖m,h.

3.2. Nonconforming finite element formulation

The NCFEM formulation corresponding to (2.1a), (2.1b) can be stated as: for f ∈ L2(Ω), seek (uh, vh) ∈ Vh

such that

ah(uh, ϕ1) + bh(uh, vh, ϕ1) + bh(vh, uh, ϕ1) = lh(ϕ1) ∀ϕ1 ∈ Vh (3.1a)
ah(vh, ϕ2) − bh(uh, uh, ϕ2) = 0 ∀ϕ2 ∈ Vh (3.1b)

where ∀ η, χ, ϕ ∈ Vh,

ah(η, χ) :=
∑

T∈Th

�
T

D2η : D2χ dx, bh(η, χ, ϕ) :=
1
2

∑
T∈Th

�
T

cof(D2η)Dχ · Dϕ dx and

lh(ϕ) :=
∑

T∈Th

�
T

fϕ dx.

As in the continuous formulation, the discrete form bh(·, ·, ·) is symmetric with respect to the second and third
variables. However, unlike in the conforming case [12], bh(·, ·, ·) is not symmetric with respect to the first and
second variables or the first and third variables. The equivalent vector form corresponding to (3.1a)−(3.1b) is
given by: seek Ψh = (uh, vh) ∈ Vh such that

Ah(Ψh, Φ) + Bh(Ψh, Ψh, Φ) = Lh(Φ) ∀Φ ∈ Vh (3.2)

where ∀ Ξ = (ξ1, ξ2), Θ = (θ1, θ2) and Φ = (ϕ1, ϕ2) ∈ Vh,

Ah(Θ, Φ) := ah(θ1, ϕ1) + ah(θ2, ϕ2), (3.3)
Bh(Ξ, Θ, Φ) := bh(ξ1, θ2, ϕ1) + bh(ξ2, θ1, ϕ1) − bh(ξ1, θ1, ϕ2) and (3.4)

Lh(Φ) :=
∑

T∈Th

�
T

fϕ1 dx. (3.5)

The nonconforming finite element formulation corresponding to (2.9) reads as: for given G ∈ (L2(Ω))2, find
Θh ∈ Vh such that

Ah(Θh, Φ) = (G, Φ) ∀Φ ∈ Vh (3.6)

where Ah(Θh, Φ) := Ah(Θh, Φ)+Bh(Ψ, Θh, Φ)+Bh(Θh, Ψ, Φ) and Ah(·, ·), Bh(·, ·, ·) are defined in (3.3) and (3.4),
respectively.
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3.3. Auxiliary results

In this subsection, some auxiliary results which are essential for the analysis are stated.

Lemma 3.2 (Integral average [7]). The projection Pe : L2(T ) −→ P0(e) defined by Peϕ =
1
he

�
e

ϕ ds, satisfies

‖ϕ − Peϕ‖0,e ≤ Ch
1/2
T |ϕ|1,T ∀ϕ ∈ H1(T ). (3.7)

Lemma 3.3 (Interpolant [11, 13, 20]). Let Πh : V −→ Vh be the Morley interpolation operator defined by:

(Πhϕ)(p) = ϕ(p) ∀ p ∈ Vh,�
e

∂Πhϕ

∂ν
ds =

�
e

∂ϕ

∂ν
ds ∀ e ∈ Eh.

Then for ϕ ∈ H2+α(Ω), α ∈ (0, 1], it holds:

‖ϕ − Πhϕ‖m,p,h ≤ Ch1+α−m+ 2
p ‖ϕ‖2+α, 0 ≤ m ≤ 2, 1 ≤ p < ∞.

For simplicity of notation, the interpolant of Φ ∈ V is denoted by ΠhΦ and belongs to Vh.

Lemma 3.4 (Enrichment function [11]). Let Vc be chosen as Hsieh–Clough–Tocher macro element space [11,13]
which is a conforming relative of the Morley finite element space Vh. For any ϕ ∈ Vh, there exists Ehϕ ∈ Vc ⊂ V
such that ∑

T∈Th

(
h−4

T |ϕ − Ehϕ|20,T + h−2
T |ϕ − Ehϕ|21,T

)
+ |Ehϕ|22,h ≤ C|ϕ|22,h. (3.8)

Again, for Φ ∈ Vh, the enrichment function corresponding to Φ denoted by EhΦ, belongs to V .
In the next lemma, we establish an imbedding result. A similar result has been proved in ([26], Lem. 3.1) for

the case of convex polygonal domains. However, for the sake of completeness, we provide a detailed proof for
the case of polygonal domains. Note that only the edge estimation in (3.12) is different from the proof in [26].

Lemma 3.5 (An imbedding result). For ϕ ∈ Vh, it holds:

|ϕ|1,4,h ≤ C|ϕ|2,h.

Proof. The tangential and normal derivative of ϕ ∈ Vh are continuous at the midpoint of each edges of T ∈ Th.
That is ϕx, ϕy ∈ Sh where Sh is the nonconforming Crouzeix–Raviart finite element space defined by

Sh :=
{

w ∈ L2(Ω) : w|T ∈ P1(T ) ∀T ∈ Th, w is continuous at the midpoints of

the triangle edges and w = 0 at the midpoint of the edges on ∂Ω
}

.

It is enough to prove |w|0,4,h ≤ |w|1,h ∀w ∈ Sh.
Consider the auxiliary problem: given θ ∈ H−1(Ω), seek ξ such that

−Δξ = θ in Ω, ξ = 0 on ∂Ω. (3.9)

The solution satisfies the following a priori bounds

‖ξ‖1 ≤ C‖θ‖−1, ‖ξ‖1+γ ≤ C‖θ‖, (3.10)



A NONCONFORMING FINITE ELEMENT APPROXIMATION FOR THE VON KARMAN EQUATIONS 439

where γ ∈ (1
2 , 1] denotes the elliptic regularity of the problem (3.9). Let Ihξ ∈ Sh be an interpolant which

satisfies the estimate [8, 10]
|ξ − Ihξ|0,h + h|ξ − Ihξ|1,h ≤ Ch1+γ‖ξ‖1+γ . (3.11)

A multiplication of (3.9) with w and a use of Green’s formula leads to

(θ, w) = (−Δξ, w) =
∑

T∈Th

(∇ξ,∇w) −
∑

T∈Th

�
∂T

∂ξ

∂ν
w ds (3.12)

The boundary term can be estimated as follows:

∑
T∈Th

�
∂T

∂ξ

∂ν
w ds =

∑
T∈Th

∑
e⊂∂T

�
e

∂ξ

∂ν
(w − Pew) ds.

Since
�

e

(w − Pew) ds = 0 ∀e ∈ Eh and
∂

∂ν
Ihξ is a constant over each edge, we obtain

∑
T∈Th

∑
e⊂∂T

�
e

∂ξ

∂ν
(w − Pew) ds =

∑
T∈Th

∑
e⊂∂T

�
e

∂

∂ν
(ξ − Ihξ)(w − Pew) ds

≤
∑

T∈Th

∑
e⊂∂T

‖ξ − Ihξ‖1,e‖w − Pew‖0,e.

A use of trace theorem, Lemma 3.2 and (3.11) leads to the estimate∣∣∣∣∣−
∑

T∈Th

�
∂T

∂ξ

∂ν
w ds

∣∣∣∣∣ ≤ Chγ‖ξ‖1+γ |w|1,h. (3.13)

Therefore, the a priori bounds in (3.10) yields

(θ, w) ≤ (|ξ|1 + Chγ‖ξ‖1+γ)|w|1,h ≤ C(‖θ‖−1 + hγ‖θ‖)|w|1,h. (3.14)

A choice of θ = w3 in (3.14) leads to

|w|40,4,h ≤ C(‖w3‖−1 + hγ‖w3‖)|w|1,h. (3.15)

A use of inverse inequality yields

‖w3‖ = ‖w‖3
L6(Ω) ≤ Ch− 1

4 ‖w‖3
L4(Ω). (3.16)

Also, Hölder’s inequality and the imbedding result L4(Ω) ↪→ H1
0 (Ω) lead to

(w3, ξ) = ‖w‖3
L4(Ω)‖ξ‖L4(Ω) ≤ C‖w‖3

L4(Ω)|ξ|1 =⇒ ‖w3‖−1 ≤ C‖w‖3
L4(Ω). (3.17)

Hence, a use of (3.16) and (3.17) in (3.15) leads to the required result

|w|0,4,h ≤ C(1 + hγ− 1
4 )|w|1,h ≤ C|w|1,h. �

The next lemma follows from ([11], Lems. 4.2 and 4.3).

Lemma 3.6 (Bounds for Ah(·, ·)).
(i) Let χ ∈ (H2+α(Ω))2 and Φ ∈ Vh. Then, it holds

Ah(χ, EhΦ − Φ) ≤ Chα |||χ|||2+α |||Φ|||2,h .
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(ii) Further, for χ ∈ (H2+α(Ω))2 and Φ ∈ (H2
0 (Ω))2 ∩ (H2+α(Ω))2, it holds

Ah(χ, ΠhΦ − Φ) ≤ Ch2α |||χ|||2+α |||Φ|||2+α .

A use of the definition of Bh(·, ·, ·), generalized Hölder’s inequality and Lemma 3.5 leads to a bound given by

Bh(Ξ, Θ, Φ) ≤ Cb |||Ξ|||2,h |||Θ|||2,h |||Φ|||2,h , (3.18)

where Cb is a positive constant independent of h.

Lemma 3.7 (A bound for Bh(·, ·, ·)). For Ξ ∈ (H2+α(Ω))2 and Θ, Φ ∈ V + Vh, there holds

Bh(Ξ, Θ, Φ) ≤ C |||Ξ|||2+α |||Θ|||1,4,h |||Φ|||1,h ≤ C |||Ξ|||2+α |||Θ|||2,h |||Φ|||1,h .

Proof. Consider

bh(η, χ, ϕ) =
1
2

∑
T∈Th

�
T

((ηyyχx − ηxyχy)ϕx + (ηxxχy − ηxyχx)ϕy) dx. (3.19)

For η ∈ H2+α(Ω), a use of generalized Hölder’s inequality and the imbedding result H2+α(Ω) ↪→ W 2,4(Ω) leads
to an estimate of the first term on the right hand side of (3.19) as

1
2

∣∣∣∣∣
∑

T∈Th

�
T

ηyyχxϕx dx

∣∣∣∣∣ ≤
( ∑

T∈Th

|η|42,4,T

) 1
4
( ∑

T∈Th

|χ|41,4,T

) 1
4
( ∑

T∈Th

|ϕ|21,2,T

) 1
2

≤ ‖η‖W 2,4(Ω) |χ|1,4,h |ϕ|1,h ≤ C‖η‖2+α |χ|1,4,h |ϕ|1,h.

Similar bounds hold true for the remaining three terms in (3.19). Hence the required result follows using the
definition of Bh(·, ·, ·) and Lemma 3.5. �

Remark 3.8. Using a proof similar to that of Lemma 3.7, it can be deduced that for Ξ ∈ (H2+α(Ω))2 and
Θ, Φ ∈ V + Vh, there holds

Bh(Ξ, Θ, Φ) ≤ C |||Ξ|||2+α |||Θ|||1,h |||Φ|||1,4,h ≤ C |||Ξ|||2+α |||Θ|||1,h |||Φ|||2,h .

Using the definition of bh(·, ·, ·), an integration by parts and a use of (3.7), the following lemma holds true.

Lemma 3.9 (An intermediate result). For η ∈ (V ∩ H2+α(Ω)) + Vh and χ, ϕ ∈ Vh, it holds

bh(η, χ, ϕ) = bh(χ, η, ϕ) +
1
2

∑
T∈Th

�
∂T

(ηxχy − ηyχx)∇ϕ · τ ds

where τ is the unit tangent to the boundary ∂T of the triangle T . Moreover,

∀η, χ, ϕ ∈ Vh,
1
2

∑
T∈Th

�
∂T

(ηxχy − ηyχx)∇ϕ · τ ds ≤ Ch|η|2,h |χ|1,∞,h |ϕ|2,h. (3.20)

Remark 3.10. A use of Lemma 3.9, Remark 3.8 and imbedding result H2+α(Ω) ↪→ W 1,∞(Ω) leads to:

for Ξh, Φh ∈ Vh and ξ ∈ (H2+α(Ω))2,

|Bh(Ξh, ξ, Φh)| ≤ |Bh(ξ, Ξh, Φh)| + Ch |||Ξh|||2,h |||ξ|||2+α |||Φh|||2,h . (3.21)
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The next lemma which will be used to establish the well posedness of the linearized problem (3.6), follows
easily under the assumption that Ψ is an isolated solution of (2.2).

Lemma 3.11 (Well posedness of dual problem). If Ψ is an isolated solution of (2.2), then the dual problem
defined by: given Q ∈ (H−1(Ω))2, find ζ ∈ V such that

A (Φ, ζ) = (Q, Φ) ∀Φ ∈ V (3.22)

is well posed and satisfies the a priori bounds:

|||ζ|||2 ≤ C |||Q|||−1 , |||ζ|||2+α ≤ C |||Q|||−1 , (3.23)

where α denotes the elliptic regularity index and |||Q|||−1 := sup
ϕ∈(H1

0 (Ω))2

(Q, ϕ)
|||ϕ|||1

·

Since the Morley finite element space Vh is not a subspace of V and the discrete form bh(·, ·, ·) is non-
symmetric with respect to first and second or first and third variables, we encounter additional difficulties in
establishing the well posedness of the discrete problem (3.6) in comparison to the conforming case.

Theorem 3.12 (Well posedness of discrete linearized problem). If Ψ is an isolated solution of (2.2), then for
sufficiently small h, the discrete linearized problem (3.6) is well-posed.

Proof. The space Vh being finite dimensional, uniqueness of solution of (3.6) implies existence of solution.
Uniqueness follows if an a priori bound for the solution of (3.6) can be established. That is, we aim to prove
that

|||Θh|||2,h ≤ C |||G||| (3.24)

for sufficiently small h. For Φ ∈ Vh, using Lemma 3.7 and Remark 3.10, the following G̊arding’s type inequality
holds true:

Ah(Φ, Φ) = Ah(Φ, Φ) + Bh(Ψ, Φ, Φ) + Bh(Φ, Ψ, Φ)

≥ |||Φ|||22,h − C |||Ψ |||2+α |||Φ|||2,h |||Φ|||1,h − Ch |||Φ|||2,h |||Ψ |||2+α |||Φ|||2,h . (3.25)

Substitute Φ = Θh in (3.6) and use (3.25) to obtain

|||Θh|||2,h ≤ C(h |||Ψ |||2+α |||Θh|||2,h + |||Ψ |||2+α |||Θh|||1,h + |||G|||). (3.26)

Note that
|||Θh|||1,h ≤ |||Θh − EhΘh|||1,h + |||EhΘh|||1,h ≤ Ch |||Θh|||2,h + |||EhΘh|||1 . (3.27)

Now we estimate |||EhΘh|||1. Choose Q = −ΔEhΘh and Φ = EhΘh in (3.22) and use (3.6) to obtain

|||EhΘh|||21 = A (EhΘh, ζ) = Ah(EhΘh, ζ − Πhζ) + Ah(EhΘh, Πhζ)
= Ah(EhΘh, ζ − Πhζ) + Ah(EhΘh − Θh, Πhζ) + (G, Πhζ)
= Ah(EhΘh − Θh, ζ) + Ah(Θh, ζ − Πhζ) + Bh(Ψ, EhΘh, ζ − Πhζ) + Bh(EhΘh, Ψ, ζ − Πhζ)

+ Bh(Ψ, EhΘh − Θh, Πhζ) + Bh(EhΘh − Θh, Ψ, Πhζ) + (G, Πhζ) (3.28)

A use of Lemmas 3.3, 3.4, 3.6, 3.18, 3.23, Remarks 3.8 and 3.10 leads to

|||EhΘh|||21 ≤ C
(
hα |||Θh|||2,h |||ζ|||2+α + hα |||Ψ |||2 |||Θh|||2,h |||ζ|||2+α + h |||Ψ |||2+α |||Θh|||2,h |||ζ|||2 + |||G||| |||ζ|||2

)
≤ C

(
hα |||Θh|||2,h + |||G|||

)
|||−ΔEhΘh|||−1 ≤ C

(
hα |||Θh|||2,h + |||G|||

)
|||EhΘh|||1 .
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Therefore,
|||EhΘh|||1,h ≤ C(hα |||Θh|||2,h + |||G|||). (3.29)

Now, (3.26)−(3.29) yield

|||Θh|||2,h ≤ C∗hα |||Θh|||2,h + C |||G||| .

That is, |||Θh|||2,h ≤ C |||G||| for a choice of h ≤ h1 = ( 1
2C∗ )

1
α with α ∈ (1

2 , 1]. �

Remark 3.13. If Ψ is an isolated solution of (2.2), then for sufficiently small h, the discrete linearized dual
problem: given G ∈ (L2(Ω))2, find ζh ∈ Vh such that

Ah(Φ, ζh) = (G , Φ) ∀Φ ∈ Vh (3.30)

is well posed. The proof is similar to that of Theorem 3.12 and hence is skipped.

4. Existence, uniqueness and error estimates

In view of Theorem 3.12 and Remark 3.13, the bilinear form Ah(·, ·) : Vh × Vh → R defined by

Ah(Θ, Φ) = Ah(Θ, Φ) + Bh(Ψ, Θ, Φ) + Bh(Θ, Ψ, Φ) (4.1)

is nonsingular on Vh × Vh.
The next lemma establishes that the perturbed bilinear form Ãh(·, ·), constructed using ΠhΨ is also nonsin-

gular. Though a similar result is proved in [12] for the conforming case, we provide a proof here for the sake of
completeness.

Lemma 4.1 (Nonsingularity of perturbed bilinear form). Let ΠhΨ be the interpolation of Ψ as defined in
Lemma 3.3. Then, for sufficiently small h, the perturbed bilinear form defined by

Ãh(Θ, Φ) = Ah(Θ, Φ) + Bh(ΠhΨ, Θ, Φ) + Bh(Θ, ΠhΨ, Φ) (4.2)

is nonsingular on Vh × Vh, if (4.1) is nonsingular on Vh × Vh.

Proof. The bilinear form Ah : Vh × Vh −→ R is bounded and satisfies

sup
|||Θ|||2,h=1

Ah(Θ, Φ) ≥ β |||Φ|||2,h , sup
|||Φ|||2,h=1

Ah(Θ, Φ) ≥ β |||Θ|||2,h ,

where β > 0 is a constant. For Ψ̃ ∈ V + Vh, a use of the above properties of Ah(·, ·) and continuity of Bh(·, ·, ·)
(see (3.18)) yields

sup
|||Φ|||2,h=1

Ah(Θ, Φ) + Bh(Ψ − Ψ̃ , Θ, Φ) + Bh(Θ, Ψ − Ψ̃ , Φ)

≥ sup
|||Φ|||2,h=1

Ah(Θ, Φ) − sup
|||Φ|||2,h=1

(
Bh(Ψ̃ , Θ, Φ) + Bh(Θ, Ψ̃ , Φ)

)

≥ β |||Θh|||2,h − 2Cb

∣∣∣∣∣∣∣∣∣Ψ̃ ∣∣∣∣∣∣∣∣∣
2,h

|||Θ|||2,h ≥ β

2
|||Θ|||2,h ,

provided
∣∣∣∣∣∣∣∣∣Ψ̃ ∣∣∣∣∣∣∣∣∣

2,h
≤ β

4Cb
. Such a choice is justified for sufficiently small h ≤ h2 (say), by setting Ψ̃ = Ψ − ΠhΨ

and using Lemma 3.3. Similarly, sup
|||Θ|||2,h=1

Ãh(Θ, Φ) ≥ β

2
|||Φ|||2,h ∀Φ ∈ Vh. Hence the required result. �
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4.1. Existence and local uniqueness results

Consider the nonlinear operator μ : Vh −→ Vh defined by

Ãh(μ(Θ), Φ) = Lh(Φ) + Bh(ΠhΨ, Θ, Φ) + Bh(Θ, ΠhΨ, Φ) − Bh(Θ, Θ, Φ) ∀Φ ∈ Vh. (4.3)

A use of Lemma 4.1 leads to the fact that the mapping μ is well-defined and continuous. Also, any fixed point of
μ is a solution of (3.2) and vice-versa. Hence, in order to show the existence of a solution to (3.2), we will prove
that the mapping μ has a fixed point. As a first step to this, define BR(ΠhΨ) :=

{
Φ ∈ Vh : |||Φ − ΠhΨ |||2,h ≤ R

}
.

Theorem 4.2 (Mapping of ball to ball). For a sufficiently small choice of h, there exists a positive constant
R(h) such that for any Θ ∈ Vh,

|||Θ − ΠhΨ |||2,h ≤ R(h) ⇒ |||μ(Θ) − ΠhΨ |||2,h ≤ R(h).

That is, μ maps the ball BR(h)(ΠhΨ) to itself.

Proof. Since the bilinear form Ãh(·, ·) is nonsingular, from Lemma 4.1, there exists Φ̄ ∈ Vh such that
∣∣∣∣∣∣Φ̄∣∣∣∣∣∣

2,h
= 1

and

β

4
|||μ(Θ) − ΠhΨ |||2,h ≤ Ãh(μ(Θ) − ΠhΨ, Φ̄)

Let EhΦ̄ be an enrichment of Φ̄ (see Lem. (3.4)). A use of (4.2), (4.3) and (2.2) yields

Ãh(μ(Θ) − ΠhΨ, Φ̄) = Ãh(μ(Θ), Φ̄) − Ãh(ΠhΨ, Φ̄)

= Lh(Φ̄) + Bh(ΠhΨ, Θ, Φ̄) + Bh(Θ, ΠhΨ, Φ̄) − Bh(Θ, Θ, Φ̄) − Ah(ΠhΨ, Φ̄) − 2Bh(ΠhΨ, ΠhΨ, Φ̄)
= Lh(Φ̄ − EhΦ̄) +

(
Ah(Ψ, EhΦ̄) − Ah(ΠhΨ, Φ̄)

)
+
(
Bh(Ψ, Ψ, EhΦ̄) − Bh(ΠhΨ, ΠhΨ, Φ̄)

)
+ Bh(ΠhΨ − Θ, Θ − ΠhΨ, Φ̄) =: T1 + T2 + T3 + T4. (4.4)

Now we estimate {Ti}4
i=1. T1 can be estimated using Lemma 3.4 and the continuity of Lh. Using Lemma 3.6,

continuity of Ah(·, ·) and Lemma 3.3, we obtain

T2 ≤ |Ah(Ψ, EhΦ̄) − Ah(ΠhΨ, Φ̄)| ≤ |Ah(Ψ, EhΦ̄ − Φ̄)| + |Ah(Ψ − ΠhΨ, Φ̄)| ≤ Chα |||Ψ |||2+α .

A use of Lemmas 3.3, 3.4, 3.7 and (3.18) leads to

T3 ≤ |Bh(Ψ, Ψ, EhΦ̄) − Bh(ΠhΨ, ΠhΨ, Φ̄)|
≤ |Bh(Ψ, Ψ, EhΦ̄ − Φ̄) − Bh(ΠhΨ − Ψ, ΠhΨ, Φ) − Bh(Ψ, ΠhΨ − Ψ, Φ̄)|
≤ Ch |||Ψ |||2+α |||Ψ |||2

∣∣∣∣∣∣EhΦ̄
∣∣∣∣∣∣

2,h
+ Chα |||Ψ |||2+α |||Ψ |||2

∣∣∣∣∣∣Φ̄∣∣∣∣∣∣
2,h

≤ Chα |||Ψ |||2 |||Ψ |||2+α .

Finally, T4 is estimated using (3.18) as

T4 ≤ |Bh(ΠhΨ − Θ, Θ − ΠhΨ, Φ̄)| ≤ C |||Θ − ΠhΨ |||22,h .

A substitution of the estimates derived for T1, T2, T3 and T4 in (4.4) and an appropriate grouping of the terms
yields

|||μ(Θ) − ΠhΨ |||2,h ≤ C1

(
hα + |||Θ − ΠhΨ |||22,h

)
(4.5)
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for some positive constants C1 independent of h but dependent on |||Ψ |||2+α. A choice of h ≤ h3, where h3 =(
1

4C2
1

) 1
α

, yields 4C2
1hα ≤ 1. Since |||Θ − ΠhΨ |||2,h ≤ R(h), for h ≤ h3, a choice of R(h) := 2C1h

α leads to

|||μ(Θ) − ΠhΨ |||2,h ≤ C1h
α
(
1 + 4C2

1hα
) ≤ R(h)

This completes the proof. �

Theorem 4.3 (Existence). For sufficiently small h, there exists a solution Ψh of the discrete problem (3.2) that
satisfies |||Ψh − ΠhΨ |||2,h ≤ R(h), for some positive constant R(h) depending on h.

Proof. Lemma 4.2 leads to the fact that μ maps the ball BR(h)(ΠhΨ) to itself. Therefore, an application of
Schauder fixed point theorem [18] yields that the mapping μ has a fixed point, say Ψh. Hence, Ψh is an approx-
imate solution of (3.2) which satisfies |||Ψh − ΠhΨ |||2,h ≤ R(h). �

Theorem 4.4 (Contraction result). For Θ1, Θ2 ∈ BR(h)(ΠhΨ) with R(h) as defined in Theorem 4.2, the fol-
lowing contraction result holds true:

|||μ(Θ1) − μ(Θ2)|||2,h ≤ Chα |||Θ1 − Θ2|||2,h , (4.6)

for some positive constant C independent of h.

Proof. For Θ1, Θ2 ∈ BR(h)(ΠhΨ), let μ(Θi), i = 1, 2 be the solutions of:

Ãh(μ(Θi), Φ) = Lh(Φ) + Bh(ΠhΨ, Θi, Φ) + Bh(Θi, ΠhΨ, Φ) − Bh(Θi, Θi, Φ) ∀Φ ∈ Vh. (4.7)

The nonsingularity of Ãh(·, ·) yields a Φ̄ with
∣∣∣∣∣∣Φ̄∣∣∣∣∣∣

2,h
= 1. With (4.7) and (3.18), we obtain

β

4
|||μ(Θ1) − μ(Θ2)|||2,h ≤ Ãh(μ(Θ1) − μ(Θ2), Φ̄)

= Bh(ΠhΨ, Θ1 − Θ2, Φ̄) + Bh(Θ1 − Θ2, ΠhΨ, Φ̄) + Bh(Θ2, Θ2, Φ̄) − Bh(Θ1, Θ1, Φ̄)
= Bh(Θ2 − Θ1, Θ1 − ΠhΨ, Φ̄) + Bh(Θ2 − ΠhΨ, Θ2 − Θ1, Φ̄)

≤ C |||Θ2 − Θ1|||2,h

(
|||Θ1 − ΠhΨ |||2,h + |||Θ2 − ΠhΨ |||2,h

)
.

Since Θ1, Θ2 ∈ BR(h)(ΠhΨ), for a choice of R(h) as in the proof of Theorem 4.2, for sufficiently small h, we
obtain

|||μ(Θ1) − μ(Θ2)|||2,h ≤ Chα |||Θ2 − Θ1|||2,h , (4.8)

for some positive constant C independent of h. This completes the proof. �

Remark 4.5. (Local uniqueness) Let Ψ be an isolated solution of (2.2). For sufficiently small choice of h,
Theorem 4.4 establishes the local uniqueness of the solution of (3.2).

4.2. Error estimates

In this subsection, the error estimates in the broken energy and H1 norms are established.

Theorem 4.6 (Energy norm estimate). Let Ψ and Ψh be the solutions of (2.2) and (3.2) respectively. Under
the assumption that Ψ is an isolated solution, for sufficiently small h, it holds

|||Ψ − Ψh|||2,h ≤ Chα, (4.9)

where α ∈ (1
2 , 1] is the index of elliptic regularity.



A NONCONFORMING FINITE ELEMENT APPROXIMATION FOR THE VON KARMAN EQUATIONS 445

Proof. A use of triangle inequality yields

|||Ψ − Ψh|||2,h ≤ |||Ψ − ΠhΨ |||2,h + |||ΠhΨ − Ψh|||2,h . (4.10)

For sufficiently small h, Theorem 4.3 leads to

|||ΠhΨ − Ψh|||2,h ≤ Chα. (4.11)

Now, Lemma 3.3 , (4.11) and (4.10) establish the required estimate. �
Theorem 4.7 (H1 estimate). Let Ψ and Ψh be the solutions of (2.2) and (3.2) respectively. Assume that Ψ is
an isolated solution. Then, for sufficiently small h, it holds

|||Ψ − Ψh|||1,h ≤ Ch2α, (4.12)

where α ∈ (1
2 , 1] is the index of elliptic regularity.

Proof. A use of triangle inequality yields

|||Ψ − Ψh|||1,h ≤ |||Ψ − ΠhΨ |||1,h + |||ΠhΨ − Ψh|||1,h ≤ |||Ψ − ΠhΨ |||1,h + |||ρ − Ehρ|||1,h + |||Ehρ|||1 , (4.13)

where ρ = ΠhΨ −Ψh. A choice of Q = −ΔEhρ and Φ = Ehρ in the dual problem (3.22) and a use of (2.2), (3.2)
leads to

(∇Ehρ,∇Ehρ) = Ah(Ehρ, ζ) = Ah(Ehρ − ρ, ζ) + Ah(ρ, ζ)
= Ah(Ehρ − ρ, ζ) + Bh(Ψ, Ehρ − ρ, ζ) + Bh(Ehρ − ρ, Ψ, ζ)

+ Ah(ΠhΨ − Ψ, ζ) + Ah(Ψ − Ψh, ζ − Πhζ) + Ah(Ψ, Πhζ − ζ) + Lh(ζ − Πhζ)
+ (Bh(Ψ, ΠhΨ − Ψh, ζ) + Bh(ΠhΨ − Ψh, Ψ, ζ) − Bh(Ψ, Ψ, ζ) + Bh(Ψh, Ψh, Πhζ))

=:
8∑

i=1

Ti. (4.14)

T1 is estimated using Lemma 3.6 and (4.11). T4 and T6 are estimated using Lemma 3.6. T5 is estimated
using continuity of Ah(·, ·), Lemma 3.3 and Theorem 4.6. The term T7 is estimated using continuity of Lh and
Lemma 3.3. T2 is estimated using Remark 3.8, Lemma 3.4 and (4.11) as

T2 ≤ |Bh(Ψ, Ehρ − ρ, ζ)| ≤ C |||Ψ |||2+α |||Ehρ − ρ|||1,h |||ζ|||2 ≤ Ch1+α |||Ψ |||2+α |||ζ|||2 . (4.15)

T3 is estimated using Remark 3.10, Lemma 3.4, (4.15) and (4.11) as

T3 ≤ |Bh(Ehρ − ρ, Ψ, ζ)| ≤ |Bh(Ψ, Ehρ − ρ, ζ)| + Ch |||Ehρ − ρ|||2,h |||Ψ |||2+α |||ζ|||2 ≤ Ch1+α |||Ψ |||2+α |||ζ|||2 .

Finally, a use of Remarks 3.8 , 3.10, Lemmas 3.3, 3.7, Theorem 4.6 and (3.18) yields an estimate for T8 as

T8 = Bh(Ψ, ΠhΨ − Ψh, ζ) + Bh(ΠhΨ − Ψh, Ψ, ζ) − Bh(Ψ, Ψ, ζ) + Bh(Ψh, Ψh, Πhζ)
= Bh(Ψ, ΠhΨ − Ψ, ζ) + Bh(ΠhΨ − Ψ, Ψ, ζ)

+ Bh(Ψ, Ψ − Ψh, ζ) + Bh(Ψ − Ψh, Ψ, ζ) − Bh(Ψ, Ψ, ζ) + Bh(Ψh, Ψh, Πhζ)
= Bh(Ψ, ΠhΨ − Ψ, ζ) + Bh(ΠhΨ − Ψ, Ψ, ζ)

+ Bh(Ψ − Ψh, Ψ − Ψh, ζ) + Bh(Ψh − Ψ, Ψh, Πhζ − ζ) + Bh(Ψ, Ψh, Πhζ − ζ)
≤ Ch2α(|||ζ|||2 + |||ζ|||2+α).

A combination of the estimates T1 to T8 and a priori bounds (3.23) for the linearized dual problem yields

(∇Ehρ,∇Ehρ) ≤ Ch2α |||−ΔEhρ|||−1 ≤ Ch2α |||Ehρ|||1 =⇒ |||Ehρ|||1 ≤ Ch2α. (4.16)

A use of Lemmas 3.3, 3.4, (4.11) and the last statement of (4.16) in (4.13) completes the proof. �
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4.3. Convergence of the Newton’s method

In this subsection, we define a working procedure to find an approximation for the discrete solution Ψh. The
discrete solution Ψh of (3.2) is characterized by the fixed point of (4.3). This depends on the unknown ΠhΨ and
hence the approximate solution for (3.2) is computed using Newton’s method in implementation. The iterates
of the Newton’s method are defined by

Ah(Ψn
h , Φ) + Bh(Ψn−1

h , Ψn
h , Φ) + Bh(Ψn

h , Ψn−1
h , Φ) = Bh(Ψn−1

h , Ψn−1
h , Φ) + Lh(Φ) ∀Φ ∈ Vh. (4.17)

Now we establish that these iterates in fact converge quadratically to the solution of (3.2).

Theorem 4.8 (Convergence of Newton’s method). Let Ψ be an isolated solution of (2.2) and let Ψh solve (3.2).
There exists ρ > 0, independent of h, such that for any initial guess Ψ0

h which satisfies
∣∣∣∣∣∣Ψ0

h − Ψh

∣∣∣∣∣∣
2,h

≤
ρ, |||Ψn

h − Ψh|||2,h ≤ ρ

2n
holds true. That is, the iterates of the Newton’s method defined in (4.17) are well

defined and converge quadratically to Ψh.

Proof. From Lemma 4.1, there exists δ > 0 such that for each Zh ∈ Vh satisfying |||Zh − ΠhΨ |||2,h ≤ δ, the form

Ah(Θ, Φ) + Bh(Zh, Θ, Φ) + Bh(Θ, Zh, Φ) (4.18)

is non singular in Vh × Vh. From (4.11), for sufficiently small h, |||ΠhΨ − Ψh|||2,h ≤ Chα. Thus h can be chosen

sufficiently small so that |||ΠhΨ − Ψh|||2,h ≤ δ
2 . Define

ρ := min
{

δ

2
,

β

16Cb

}
, (4.19)

where β and Cb are respectively the coercivity constant of Ah(·, ·) and boundedness constant of Bh(·, ·, ·)
(see (3.7)). Assume that the initial guess Ψ0

h satisfies
∣∣∣∣∣∣Ψh − Ψ0

h

∣∣∣∣∣∣
2,h

≤ ρ. Then∣∣∣∣∣∣ΠhΨ − Ψ0
h

∣∣∣∣∣∣
2,h

≤ |||ΠhΨ − Ψh|||2,h +
∣∣∣∣∣∣Ψh − Ψ0

h

∣∣∣∣∣∣
2,h

≤ δ

Since (4.18) is nonsingular, the first iterate Ψ1
h of the Newton’s method in (4.17) is well defined for the initial

guess Ψ0
h . Using the nonsingularity of (4.18), there exists Φ̄ ∈ Vh such that

∣∣∣∣∣∣Φ̄∣∣∣∣∣∣
2,h

= 1 which satisfies

β

8

∣∣∣∣∣∣Ψ1
h − Ψh

∣∣∣∣∣∣
2,h

≤ Ah(Ψ1
h − Ψh, Φ̄) + Bh(Ψ0

h , Ψ1
h − Ψh, Φ̄) + Bh(Ψ1

h − Ψh, Ψ0
h , Φ̄).

A use of (4.17), (3.2), (3.18) yields

Ah(Ψ1
h − Ψh, Φ̄) + Bh(Ψ0

h , Ψ1
h − Ψh, Φ̄) + Bh(Ψ1

h − Ψh, Ψ0
h , Φ̄)

= Bh(Ψ0
h , Ψ0

h , Φ̄) + Lh(Φ̄) − Ah(Ψh, Φ̄) − Bh(Ψ0
h , Ψh, Φ̄) − Bh(Ψh, Ψ0

h , Φ̄)
= Bh(Ψ0

h , Ψ0
h , Φ̄) + Bh(Ψh, Ψh, Φ̄) − Bh(Ψ0

h , Ψh, Φ̄) − Bh(Ψh, Ψ0
h , Φ̄)

= Bh(Ψ0
h − Ψh, Ψ0

h − Ψh, Φ̄) ≤ Cb

∣∣∣∣∣∣Ψ0
h − Ψh

∣∣∣∣∣∣2
2,h

. (4.20)

Hence,
∣∣∣∣∣∣Ψ1

h − Ψh

∣∣∣∣∣∣
2,h

≤ 8Cb

β

∣∣∣∣∣∣Ψ0
h − Ψh

∣∣∣∣∣∣2
2,h

. Since
∣∣∣∣∣∣Ψ0

h − Ψh

∣∣∣∣∣∣ ≤ ρ ≤ β
16Cb

, we obtain

∣∣∣∣∣∣Ψ1
h − Ψh

∣∣∣∣∣∣
2,h

≤ 1
2

∣∣∣∣∣∣Ψ0
h − Ψh

∣∣∣∣∣∣
2,h

≤ ρ

2
· (4.21)

Since
∣∣∣∣∣∣Ψ1

h − Ψh

∣∣∣∣∣∣
2,h

≤ ρ, the form (4.18) is nonsingular for Zh = Ψ1
h . Continuing the process, we obtain

|||Ψn
h − Ψh|||2,h ≤ ρ

2n
· (4.22)
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Moreover, proceeding as in the proof of the estimate (4.20), it can be shown that∣∣∣∣∣∣Ψn+1
h − Ψh

∣∣∣∣∣∣
2,h

≤ (8Cb/β) |||Ψn
h − Ψh|||22,h . (4.23)

This establishes that the Newton’s method converges quadratically to Ψh. This completes the proof. �

Remark 4.9 (local uniqueness). The local uniqueness of solution of (3.2) also follows from Theorem 4.8. We
observe that the definition of ρ in (4.19) does not depend on h. From Theorem 4.8, it is clear that for any initial
guess Ψ0

h which lies in the ball of radius ρ with center at Ψh, the sequence generated by (4.17) will converge
uniquely to Ψh. In particular, if we choose the initial guess Ψ0

h = ΠhΨ , then the sequence generated by the
iterates of the Newton’s method will also converge to Ψh which shows the local uniqueness of the solution Ψh.

5. Numerical experiments

In this section, two numerical experiments that justify the theoretical results are presented. The implemen-
tations have been carried out in MATLAB. The results illustrate the order of convergence obtained for the
numerical solution of (1.1) and (1.2) computed using the Morley finite element scheme. For a detailed descrip-
tion of construction of basis functions for the Morley element, see Ming and Xu [21]. We implement the Newton’s
method defined in (4.17) to solve the discrete problem (3.2).

Example 5.1. In the first example, we choose the right hand side load functions such that the exact solution
is given by

u(x, y) = x2(1 − x)2y2(1 − y)2; v(x, y) = sin2(πx) sin2(πy)

on the unit square. The initial triangulation is chosen as shown in Figure 2a. In the uniform red-refinement
process, each triangle T is divided into four similar triangles [1] as in Figure 2b.

Let the mesh parameter at the Nth level be denoted by hN and the computational error by eN . The experi-
mental order of convergence at the Nth level is defined by

αN := log(eN−1/eN)/log(hN−1/hN) = log(eN−1/eN )/log(2).

Tables 1 and 2 show the errors and experimental convergence rates for the variables uh and vh. In Fig-
ures 3 and 4, the convergence history of the errors in broken energy, H1 and L2 norms are illustrated.

(a) (b)

Figure 2. Initial triangulation T0 and its red refinement T1.
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Table 1. Errors and convergence rates of uh in broken H2, H1 and L2 norms.

# unknowns |u − uh|2,h Order |u − uh|1,h Order ‖u − uh‖L2 Order

25 0.874685E-1 – 0.102155E-1 – 0.386068E-2 –

113 0.405787E-1 1.1080 0.257318E-2 1.9891 0.919743E-3 2.0695

481 0.209921E-1 0.9508 0.732470E-3 1.8127 0.248134E-3 1.8901

1985 0.106209E-1 0.9829 0.191118E-3 1.9383 0.636227E-4 1.9635

8065 0.532754E-2 0.9953 0.483404E-4 1.9831 0.160158E-4 1.9900

32 513 0.266595E-2 0.9988 0.121213E-4 1.9956 0.401107E-5 1.9974

Table 2. Errors and convergence rates of vh in broken H2, H1 and L2 norms.

# unknowns |v − vh|2,h Order |v − vh|1,h Order ‖v − vh‖L2 Order

25 19.245671 – 2.140613E-0 – 0.770876E-0 –

113 9.5043699 1.0178 0.569979E-0 1.9090 0.177898E-0 2.1154

481 5.0549209 0.9109 0.161737E-0 1.8172 0.482777E-1 1.8816

1985 2.5758939 0.9726 0.421546E-1 1.9398 0.123930E-1 1.9618

8065 1.2944929 0.9926 0.106618E-1 1.9832 0.312076E-2 1.9895

32 513 0.6480848 0.9981 0.267351E-2 1.9956 0.781643E-3 1.9973

Figure 3. Convergence history of displacement for Example 1.

The computational order of convergences in broken H2, H1 norms are quasi-optimal and verify the theo-
retical results obtained in Theorems 4.6 and 4.7 for α = 1. The order of convergence with respect to L2 norm is
sub-optimal justifying the results in [17] that using a lower order finite element method, the order of convergence
in L2 norm cannot be improved than that of the H1 norm.
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Figure 4. Convergence history of Airy stress for Example 1.

Table 3. Errors and the experimental convergence rates for uh in broken H2, H1 and L2 norms
for L-shaped domain.

# unknowns |u − uh|2,h Order |u − uh|1,h Order ‖u − uh‖L2 Order

17 29.209171 – 6.363539E-0 – 2.769499E-0 –

81 14.130192 1.0476 1.682747E-0 1.9190 0.693436E-0 1.9977

353 7.5651300 0.9013 0.491659E-0 1.7750 0.200814E-0 1.7879

1473 3.9620126 0.9331 0.146551E-0 1.7462 0.583024E-1 1.7842

6017 2.0841141 0.9267 0.487106E-1 1.5891 0.179703E-1 1.6979

24 321 1.1252534 0.8891 0.187772E-1 1.3752 0.613474E-2 1.5505

Example 5.2. Consider the L-shaped domain Ω = (−1, 1)2 \ ([0, 1) × (−1, 0]) (see Fig. 5). Choose the right
hand functions such that the exact singular solution [16] in polar coordinates is given by

u(r, θ) = (r2cos2θ − 1)2(r2sin2θ − 1)2r1+αgα,ω(θ); v(r, θ) = u(r, θ),

where ω := 3π
2 and α := 0.5444837367 is a non-characteristic root of sin2(αω) = α2 sin2(ω) with

gα,ω(θ) =
(

1
α − 1

sin
(
(α − 1)ω

)− 1
α + 1

sin
(
(α + 1)ω

))(
cos
(
(α − 1)θ

)− cos
(
(α + 1)θ

))

−
(

1
α − 1

sin
(
(α − 1)θ

)− 1
α + 1

sin
(
(α + 1)θ

))(
cos
(
(α − 1)ω

)− cos
(
(α + 1)ω

))
.

Tables 3 and 4 show the errors and experimental convergence rates for the variables uh and vh. The domain
being non-convex, we do not obtain linear and quadratic order of convergences in broken energy and H1 norms
for displacement and Airy stress functions.
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Figure 5. L-shaped domain and its initial triangulation.

Table 4. Errors and the experimental convergence rates for vh in broken H2, H1 and L2 norms
for L-shaped domain.

# unknowns |v − vh|2,h Order |v − vh|1,h Order ‖v − vh‖L2 Order

17 24.759835 – 4.932699E-0 – 2.069151E-0 –

81 15.293270 0.6951 1.779132E-0 1.4712 0.727981E-0 1.5070

353 7.8509322 0.9619 0.483823E-0 1.8786 0.199644E-0 1.8664

1473 4.0531269 0.9538 0.137278E-0 1.8173 0.557622E-1 1.8400

6017 2.1219988 0.9336 0.439086E-1 1.6445 0.165699E-1 1.7507

24 321 1.1421938 0.8936 0.165883E-1 1.4043 0.545066E-2 1.6040

6. Conclusions and perspectives

In this work, an attempt has been made to obtain approximate solutions for the clamped von Kármán
equations defined on polygonal domains using nonconforming Morley elements. Error estimates in broken energy
and H1 norms are established for sufficiently small discretization parameters. Numerical results that substantiate
the theoretical results are obtained. A future area of interest would be derivation of reliable a posteriori error
estimates that drive the adaptive mesh refinements.

Appendix A.

We consider one of the variants of von Kármán equations which is important in practical applications and
give a brief sketch of the extension of the analysis. Consider the following form of von Kármán equations:

Δ2u = [u, v] − p
DΔu + f

Δ2v = − 1
2 [u, u]

}
in Ω (A.1)

with clamped boundary conditions

u =
∂u

∂ν
= v =

∂v

∂ν
= 0 on ∂Ω, (A.2)

where p is a real parameter known as the bifurcation parameter and D denotes the flexural rigidity of the plate.
The weak formulation of (A.1)−(A.2) reads as: given F = (f, 0), find Ψ ∈ V such that

A(Ψ, Φ) + B(Ψ, Ψ, Φ) + C(Ψ, Φ) = L(Φ) ∀Φ ∈ V (A.3)
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where A(·, ·), B(·, ·, ·), L(·) are defined in (2.3)−(2.5) respectively, and C(·, ·) is defined as

C(Θ, Φ) = − p

D

�
Ω

∇θ1 · ∇ϕ1 dx ∀Θ = (θ1, θ2) and Φ = (ϕ1, ϕ2) ∈ V . (A.4)

The corresponding nonconforming finite element formulation is given by: find Ψh ∈ Vh such that

Ah(Ψh, Φ) + Bh(Ψh, Ψh, Φ) + Ch(Ψh, Φ) = Lh(Φ) ∀Φ ∈ Vh (A.5)

where Ah(·, ·), Bh(·, ·, ·), Lh(·) are defined in (3.3)−(3.5) respectively, and Ch(·, ·) is defined as

Ch(Θ, Φ) = − p

D

∑
T∈Th

�
T

∇θ1 · ∇ϕ1 dx ∀Θ = (θ1, θ2) and Φ = (ϕ1, ϕ2) ∈ Vh. (A.6)

For the newly introduced bilinear form C(·, ·), the following boundedness properties hold true:

C(Θ, Φ) ≤ C |||Θ|||1 |||Φ|||1 ∀Θ, Φ ∈ V (A.7)

Ch(Θh, Φh) ≤ C |||Θh|||1,h |||Φh|||1,h ∀Θh, Φh ∈ Vh. (A.8)

For the modified problem (A.3), the linearized problem (see (3.6)) is defined by: for given G ∈ (L2(Ω))2, find
Θ ∈ V such that

A (Θ, Φ) = (G, Φ) ∀Φ ∈ V (A.9)

where
A (Θ, Φ) := A(Θ, Φ) + B(Ψ, Θ, Φ) + B(Θ, Ψ, Φ) + C(Θ, Ψ). (A.10)

The dual problem is stated as: given Q ∈ (H−1(Ω))2, find ζ ∈ V such that

A (Φ, ζ) = (Q, Φ) ∀Φ ∈ V . (A.11)

It can be observed that if Ψ is an isolated solution of (A.3), then (A.9) and (A.11) are well posed and satisfy
the a priori bounds

|||Θ|||2 ≤ C |||G||| , |||Θ|||2+α ≤ C |||G||| and |||ζ|||2 ≤ C |||Q|||−1 , |||ζ|||2+α ≤ C |||Q|||−1 , (A.12)

where α is the index of elliptic regularity. The discrete linearized problem is defined as: find Θh ∈ Vh such that

Ah(Θh, Φ) = (G, Φ) ∀Φ ∈ Vh (A.13)

where
Ah(Θh, Φ) := Ah(Θh, Φ) + Bh(Ψ, Θh, Φ) + Bh(Θh, Ψ, Φ) + Ch(Θh, Φ). (A.14)

With this background, Theorem 3.12, Lemma 4.1 and Theorems 4.2 and 4.8 can be modified for the new
formulation, leading to the applicability of the analysis to a more general form of the von Kármán equations.
We will sketch the proofs of the important results.

Theorem A.1 (Well posedness of discrete linearized problem). If Ψ is an isolated solution of (A.3), then for
sufficiently small h, the discrete linearized problem (A.13) is well-posed.
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Outline of the proof. Following the proof of Theorem 3.12, we easily arrive at (3.26) using (A.8). To estimate
|||EhΘh|||1 in this case, choose Q = −ΔEhΘh and Φ = EhΘh in (A.11) and use (A.13) to obtain

|||EhΘh|||21 = Ah(EhΘh − Θh, ζ) + Ah(Θh, ζ − Πhζ) + Bh(Ψ, EhΘh, ζ − Πhζ) + Bh(EhΘh, Ψ, ζ − Πhζ)
+ Bh(Ψ, EhΘh − Θh, Πhζ) + Bh(EhΘh − Θh, Ψ, Πhζ) + (G, Πhζ)
+ (Ch(EhΘ − Θh, ζ) + Ch(Θh, ζ − Πhζ)) .

The last term can be estimated using (A.8), Lemmas 3.3 and 3.4 as

|Ch(EhΘ − Θh, ζ) + Ch(Θh, ζ − Πhζ)| ≤ Ch |||ζ|||2 . (A.15)

The remaining terms are estimated as in Theorem 3.12 and result follows.
The next lemma follows as in Lemma 4.1 using (A.8) and hence the proof is skipped.

Lemma A.2 (Nonsingularity of perturbed bilinear form). Let ΠhΨ be the interpolation of Ψ as defined in
Lemma 3.3. Then, for sufficiently small h, the perturbed bilinear form defined by

Ãh(Θ, Φ) = Ah(Θ, Φ) + Bh(ΠhΨ, Θ, Φ) + Bh(Θ, ΠhΨ, Φ) + C(Θ, Φ) (A.16)

is nonsingular on Vh × Vh, if (A.14) is nonsingular on Vh × Vh.

Theorem A.3 (Mapping of ball to ball). For a sufficiently small choice of h, there exists a positive constant
R(h) such that for any Θ ∈ Vh,

|||Θ − ΠhΨ |||2,h ≤ R(h) ⇒ |||μ(Θ) − ΠhΨ |||2,h ≤ R(h).

That is, μ maps the ball BR(h)(ΠhΨ) to itself.

Outline of the proof. Proceeding as in the proof of Theorem 4.2, using nonsingularity of Ãh(·, ·) and Lemma A.2,
there exists Φ̄ ∈ Vh such that

∣∣∣∣∣∣Φ̄∣∣∣∣∣∣
2,h

= 1 and

β

4
|||μ(Θ) − ΠhΨ |||2,h ≤ Ãh(μ(Θ) − ΠhΨ, Φ̄)

= Lh(Φ̄ − EhΦ̄) +
(
Ah(Ψ, EhΦ̄) − Ah(ΠhΨ, Φ̄)

)
+
(
Bh(Ψ, Ψ, EhΦ̄) − Bh(ΠhΨ, ΠhΨ, Φ̄)

)
+ Bh(ΠhΨ − Θ, Θ − ΠhΨ, Φ̄) +

(
Ch(Ψ, EhΦ̄) − Ch(ΠhΨ, Φ̄)

)
=:

5∑
i=1

Ti.

The terms T1 to T4 can be estimated as in the proof of Theorem 4.2. The last term T5 is estimated using (A.8),
Lemmas 3.3 and 3.4 as:

|Ch(Ψ, EhΦ̄) − Ch(ΠhΨ, Φ̄)| ≤ |Ch(Ψ, EhΦ̄ − Φ̄)| + |Ch(Ψ − ΠhΨ, Φ̄)| ≤ Ch |||Ψ |||2 . (A.17)

The remaining proof follows exactly same as the proof of Theorem 4.2.
The existence of solution Ψh of (A.5) follows using Theorem A.3 and satisfies the estimate

|||Ψh − ΠhΨ |||2,h ≤ Chα. (A.18)

A contraction result similar to Theorem 4.4 also holds true in this case. The energy estimate follows exactly as
in the proof of Theorem 4.6.
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Theorem A.4 (H1 estimate). Let Ψ and Ψh be the solutions of (A.3) and (A.5) respectively. Assume that Ψ
is an isolated solution. Then, for sufficiently small h, it holds

|||Ψ − Ψh|||1,h ≤ Ch2α, (A.19)

where α ∈ (1
2 , 1] is the index of elliptic regularity.

Outline of the proof. A use of triangle inequality yields

|||Ψ − Ψh|||1,h ≤ |||Ψ − ΠhΨ |||1,h + |||ΠhΨ − Ψh|||1,h ≤ |||Ψ − ΠhΨ |||1,h + |||ρ − Ehρ|||1,h + |||Ehρ|||1 , (A.20)

where ρ = ΠhΨ − Ψh. A choice of Q = −ΔEhρ and Φ = Ehρ in the dual problem (A.11) leads to

(∇Ehρ,∇Ehρ) = Ah(Ehρ, ζ) = Ah(Ehρ − ρ, ζ) + Ah(ρ, ζ)
= Ah(Ehρ − ρ, ζ) + Bh(Ψ, Ehρ − ρ, ζ) + Bh(Ehρ − ρ, Ψ, ζ) + Ch(Ehρ − ρ, ζ)

+ Ah(ΠhΨ − Ψ, ζ) + Ah(Ψ − Ψh, ζ − Πhζ) + Ah(Ψ, Πhζ − ζ) + Lh(ζ − Πhζ)
+ (Bh(Ψ, ΠhΨ − Ψh, ζ) + Bh(ΠhΨ − Ψh, Ψ, ζ) − Bh(Ψ, Ψ, ζ) + Bh(Ψh, Ψh, Πhζ))
+ (Ch(ΠhΨ − Ψ, ζ) + Ch(Ψh, Πhζ − ζ)) (A.21)

Combining all the terms related to Ch and using (A.8), (A.18) and Lemmas 3.3, 3.4, we obtain the estimate

Ch(Ehρ − ρ, ζ) + Ch(ΠhΨ − Ψ, ζ) + Ch(Ψh, Πhζ − ζ) ≤ Ch1+α |||ζ|||2+α . (A.22)

Estimating the remaining terms as in the proof of Theorem 4.7, the result follows.
The Newton’s iterates in this case are defined by

Ah(Ψn
h , Φ)+Bh(Ψn−1

h , Ψn
h , Φ)+Bh(Ψn

h , Ψn−1
h , Φ)+Ch(Ψn

h , Φ) = Bh(Ψn−1
h , Ψn−1

h , Φ)+Lh(Φ) ∀Φ ∈ Vh. (A.23)

The quadratic convergence result follows by a similar proof as in Theorem 4.8.

Example A.5. In this example, we perform numerical experiments for the problem (A.1), (A.2) with p/D = 10,
over a unit square domain. Choose the right hand side load functions such that the exact solution is given by

u(x, y) = x2(1 − x)2y2(1 − y)2, v(x, y) = sin2(πx) sin2(πy).

We consider the same initial triangulation and its uniform refinement process as in Example 5.1. Tables A.1
and A.2 show the errors and experimental convergence rates for the variables uh and vh. The computational
order of convergences in broken H2, H1 norms are quasi-optimal and verify the theoretical results. Also, the
order of convergence with respect to L2 norm is sub-optimal justifying the results in [17].

Table A.1. Errors and Convergence rates of uh in broken H2, H1 and L2 norms.

# unknowns |u − uh|2,h Order |u − uh|1,h Order ‖u − uh‖L2 Order
25 0.101724E-0 – 0.129574E-1 – 0.469669E-2 –
113 0.391714E-1 1.3767 0.275863E-2 2.2317 0.957470E-3 2.2943
481 0.195023E-1 1.0061 0.767382E-3 1.8459 0.252196E-3 1.9246
1985 0.974844E-2 1.0004 0.198544E-3 1.9504 0.641987E-4 1.9739
8065 0.487399E-2 1.0000 0.500990E-4 1.9866 0.161298E-4 1.9928
32 513 0.243697E-2 1.0000 0.125546E-4 1.9965 0.403763E-5 1.9981
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Table A.2. Errors and Convergence rates of vh in broken H2, H1 and L2 norms.

# unknowns |v − vh|2,h Order |v − vh|1,h Order ‖v − vh‖L2 Order
25 19.245650 – 2.140609E-0 – 0.770875E-0 –
113 9.5043692 1.0178 0.569978E-0 1.9090 0.177898E-0 2.1154
481 5.0549208 0.9109 0.161737E-0 1.8172 0.482777E-1 1.8816
1985 2.5758938 0.9726 0.421546E-1 1.9398 0.123930E-1 1.9618
8065 1.2944929 0.9926 0.106618E-1 1.9832 0.312076E-2 1.9895
32 513 0.6480848 0.9981 0.267351E-2 1.9956 0.781643E-3 1.9973
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