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EXISTENCE OF SOLUTIONS TO AN ELASTO-VISCOPLASTIC MODEL
WITH KINEMATIC HARDENING AND r-LAPLACIAN FRACTURE

APPROXIMATION

Lukáš Jakabčin1

Abstract. This paper deals with an existence theorem for a model describing an elasto-viscoplastic
evolution of a 2D material with linear kinematic hardening and fracture where the Griffith fracture
energy is regularized using a r-Laplacian.
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1. Introduction

The goal of this paper is a mathematical study of a model that takes into consideration three dissipative
terms: plastic flow, fracture and viscoplastic dissipation. The study of a such model is motivated by the modeling
of the Earth crust considered as an elasto-visco-plastic solid in which cracks are allowed to propagate. This
hypothesis is qualitatevely supported by analogue 2D-experiments of Peltzer and Tapponnier [20] that show
faults propagation in a layer of plasticine. Unfortunately, the rheology of plasticine is not well known.

For those reasons, we proposed a class of models that combine several dissipation phenomena: anelastic
deformation, fracture and viscous dissipation [3, 16] and studied numerically if such models can reproduce (at
least partially) Peltzer and Tapponnier experiment. In particular, the numerical experiments have shown that a
model combining plasticity with kinematic hardening and regularized fracture permits to express simultaneously
the dissipation phenomena as observed in plasticine. Kinematic hardening allows the translation of the yield
surface and thus the elastic energy can increase after plastification, so that plastification does not prevent the
appearance of cracks.

For this reason, we study from mathematical point of view a model in R
2 of elasto-plastic material with

kinematic hardening and regularized fracture that may account for the behaviour observed in the plasticine
experiments. For the plastic behaviour, we use a similar visco-plastic approximation as in [10, 11, 21].

To model the fracture, we use the approximate models to the variational fracture model proposed by Francfort
and Marigo [14]. In our model, we only consider fracture via a diffuse interface model using Ambrosio−Tortorelli
functional. In other words, the geometry of possible cracks is captured by a function v with values between 0
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and 1, v = 1 in the healthy parts that do not contain cracks. A convenience of a such model is the fact, that
it can be studied numerically, see [4–7] for the numerical studies in elastic case and [3, 16] for the numerical
studies of the elasto-plastic models with fracture in the case of traction and plasticine experiments.

An existence result for a quasi-static evolution of the elastic model with the Ambrosio−Tortorelli functional
was proposed by Giacomini [15], and by Larsen, Ortner, Suli [18] for an elasto-dynamic evolution with regularized
fracture.

Particularly, in this paper, we prove an existence result for a continuous elasto-viscoplastic model with
kinematic hardening and regularized fracture using a r-Laplacian [2, 13] fracture approximation in R

2 with
r > 2, but our results extend to any dimension n > 2 such that r > n. We can also prove an existence result
for a 2D visco-elasto-plastic model with regularized fracture in the case r = 2 that could reproduce plasticine
experiments (see [17]). A model coupling perfect plasticity and brittle fracture was studied in [9] and an other
model coupling plasticity with damage in [8].

The unknowns of our model are u a displacement field, e an elastic strain, p a plastic strain, v a phase field
variable representing fracture. In our case, we will consider a modified Ambrosio−Tortorelli functional, for all
(e, v) ∈ L2(Ω, M2×2

sym) × W 1,r(Ω, R),

Eε(e, v) :=
1
2

∫
Ω

(
v2 + η

)
Ae : e dx +

∫
Ω

εr−1

r
|∇v|rdx +

∫
Ω

α

r′ε
|1 − v|r dx,

where α > 0 is a some regularization constant and r′ = r/(r − 1) with r > 2. The advantage of r-Laplacian
approach is the gain of compactness on the variables v, and then (u, e, p), of sequences of approximate solutions.

Babadjian, Francfort, Mora [1] studied an evolution elasto-visco-plastic model and proved that the approx-
imate semi-discrete time solutions (eh)h, (ph)h are Cauchy sequences in L∞(0, Tf , L2(Ω, M2×2

sym)). This result
allows passage to the limit in the discrete plastic-flow rule and proving an existence result for the continuous
elasto-visco-plastic model. The presence of v in our model requires the control of some additional terms (see
Lem. 3.7). In our model, to pass to the limit in the discrete plastic flow rule and in discrete fracture propagation
condition, we prove particularly that for fixed t ∈ (0, Tf ], e+

h (t), ph(t), ṗh(t), the piecewise constant and affine
interpolants defined in Section 3.2, are Cauchy sequences in L2(Ω, M2×2

sym). This compactness result is proved
using Helly’s selection principle [19].

The paper is organised as follows. After a short introduction, Section 2 is devoted to the definitions, mathe-
matical and mechanical settings. This is followed by the model description. In Section 3, we prove the existence
of solutions for discrete variational problem. Then, we study the convergence of these approximate evolutions
as the time step h → 0. Finally, the main result of the paper is an existence theorem for elasto-viscoplastic
model with kinematic linear hardening and fracture. There exists at least one evolution (u, v, e, p) satisfying
Theorem 2.1.

2. Description of the model

2.1. Preliminaries and mathematical setting

Throughout the paper, Ω is a bounded connected open set in R
2 with Lipschitz boundary ∂Ω = ∂ΩD ∪

∂ΩN where ∂ΩD, ∂ΩN are disjoint relatively open sets in ∂Ω. Given Tf > 0, we denote by Lp((0, Tf), X),
W k,p((0, Tf ), X), the Lebesgue and Sobolev spaces involving time [see [12] p. 285], where X is a Banach space.
We note for 1 ≤ p ≤ ∞ the Lp-norm by ‖ . ‖p. The set of symmetric 2 × 2 matrices is denoted by M

2×2
sym . For

ξ, ζ ∈ M
2×2
sym we define the scalar product between matrices ζ : ξ :=

∑
ij ζijξij , and the associated matrix norm

by |ξ| :=
√

ξ : ξ. Let A be the fourth order tensor of Lamé coefficients and B a suitable symmetric-fourth order
tensor. We assume that for some constants 0 < α1 ≤ α2 < ∞, they satisfy the ellipticity conditions

∀ e ∈ M
2×2
sym , α1|e|2 ≤ Ae : e ≤ α2|e|2 and α1|e|2 ≤ Be : e ≤ α2|e|2.
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We recall that the mechanical unknowns of our model are the displacement field u : Ω× [0, Tf ] → R
2, the elastic

strain e : Ω × [0, Tf ] → M
2×2
sym , the plastic strain p : Ω × [0, Tf ] → M

2×2
sym . We assume u and ∇u remain small. So

that the relation between the deformation tensor E and the displacement field is given by

Eu :=
1
2
(∇u + ∇uT ).

We also assume that Eu decomposes as an elastic part and a plastic part

Eu = e + p.

For w ∈ H1(0, Tf , H1(Ω, R2)), which represents an applied boundary displacement, we define for t ∈ [0, Tf ] the
set of kinematically admissible fields by

Aadm(w(t)) := {(u, e, p) ∈ H1(Ω, R2) × L2(Ω, M2×2
sym) × L2(Ω, M2×2

sym) :
Eu = e + p a.e. in Ω, u = w(t) a.e. on ∂ΩD}.

For a fixed constant τ > 0, we define K := {q ∈ M
2×2
sym ; |q| ≤ τ} and H : M

2×2
sym → [0,∞] the support function of

K by
H(p) := sup

θ∈K
θ : p = τ |p|.

For η > 0, the elastic energy is defined as

Eel : L2(Ω, M2×2
sym) × W 1,r(Ω, R) → R

(e, v) �−→ Eel(e, v) =
1
2

∫
Ω

(
v2 + η

)
Ae : e dx.

In the following, we will define an evolution as a limit of time discretizations with a step h: p and p0 represent the

plastic deformation at 2 consecutive time steps, so that
p − p0

h
∼ ṗ. The plastic dissipated energy is defined, by

Ep : L2(Ω, M2×2
sym) × L2(Ω, M2×2

sym) → R

(p, p0) �−→ Ep(p, p0) =
∫

Ω

H(p − p0) dx,

and the hardening energy by

EKH : L2(Ω, M2×2
sym) → R

p �−→ EKH(p) =
1
2

∫
Ω

Bp : p dx.

Given β > 0, the viscoplastic energy is defined by

Evp : L2(Ω, M2×2
sym) × L2(Ω, M2×2

sym) → R

(p, p0) �−→ Evp(p, p0) =
β

2h

∫
Ω

(p − p0) : (p − p0) dx.

For r > 2, ans ε > 0, we define the phase-field surface energy

Er
S : W 1,r(Ω, R) → R

v �−→ Er
S(v) =

∫
Ω

εr−1

r
|∇v|rdx +

∫
Ω

α

r′ε
|1 − v|r dx

where r′ :=
r

r − 1
and α :=

( r

2

)r′

. In the next section we describe the evolution of the proposed model.



458 L. JAKABČIN

2.2. The evolution in elasto-viscoplastic model with linear kinematic hardening
and fracture

Consider w ∈ H1(0, Tf , H1(Ω, R2)). We define the evolution of the model by a seeking functions

(u, v, e, p) : Ω × [0, Tf ] −→ R
2 × R × M

2×2
sym × M

2×2
sym

that satisfy the following conditions:

• (A1) Initial condition: (u(0), v(0), e(0), p(0)) = (u0, v0, e0, p0) with
(u0, e0, p0) ∈ Aadm(w(0)), and v0 ∈ W 1,r(Ω) with v0 = 1 on ∂ΩD and 0 ≤ v0 ≤ 1 a.e. in Ω, such that
−divσ0 = 0 a.e. in Ω where σ0 := (v2

0 + η)Ae0 and σ0.n = 0 on ∂ΩN . n is outward normal to ∂Ω.
• (A2) Irreversibility condition: 0 ≤ v(t) ≤ v(s) ≤ 1 in Ω for every 0 ≤ s ≤ t ≤ Tf .
• (A3) Kinematic compatibility: for every t ∈ [0, Tf ],

(u(t), e(t), p(t)) ∈ Aadm(w(t)).

• (A4) Equilibrium condition: for t ∈ [0, Tf ],⎧⎨
⎩

−div(σ(t)) = 0, a.e. in Ω,
σ(t).n = 0, a.e. on ∂ΩN ,
(u(t), v(t)) = (w(t), 1), a.e on ∂ΩD,

where σ(t) = (v(t)2 + η)Ae(t).
• (A5) Plastic flow rule: for a.e. t ∈ [0, Tf ],

σ(t) − Bp(t) − βṗ(t) ∈ ∂H(ṗ(t)) for a.e. x ∈ Ω.

• (A6) Crack propagation condition: for t ∈ [0, Tf ],

Eel(e(t), v(t)) + Er
S(v(t)) = inf

v=1on ∂ΩD ,v≤v(t), v(t)∈W 1,r(Ω)
Eel(e(t), v) + Er

S(v).

The condition v = 1 on ∂ΩD means that the Dirichlet part of boundary do not crack.

The main result of the paper is the following existence result.

Theorem 2.1. There exists at least one evolution⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u ∈ L∞(0, Tf , H1(Ω, R2)),

v ∈ L∞(0, Tf , W 1,r(Ω, R)),

e ∈ L∞(0, Tf , L2(Ω, M2×2
sym)),

p ∈ W 1,∞(0, Tf , L2(Ω, M2×2
sym)),

that satisfies (A1)−(A6).

Remark 2.2. We present our result for a simplified model of plasticity, in which one assumes that the yield set
depends on the whole stress tensor, and is a ball. More physical models only assume that K is a closed convex
set with non-empty interior, and constraints only the deviatoric part of the stress. Nevertheless, our arguments
can easily be extended to this general case. The only noticeable changes concern the regularity of the plastic
strain p when K is not bounded. In that case, one obtains estimates of p in H1(L2) instead of the W 1,∞(L2)
estimates shown here. However, this does not fundamentally affect our arguments (see the Rems. 3.4, 3.9, 3.11
and 3.13).
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3. Proof of the existence theorem

3.1. Time discretization

The proof of Theorem 2.1 is based on a time discretization. It the whole paper C > 0 denotes a generic
constant which is independent of the discretization parameters. Let us consider a partition of the time interval
[0, Tf ] into Nf sub-intervals of equal length h:

0 = t0h < t1h < . . . < tnh < . . . < t
Nf

h = Tf , with h =
Tf

Nf
= tnh − tn−1

h → 0.

Let v0
h = v0, u0

h = u0, e0
h = e0, p0

h = p0. We suppose that v0 satisfies the crack propagation condtion (A6). For
n = 0, . . . , Nf , we set wn

h := w(tnh). We also define the total energy

Etotal(z, φ, ξ, q) =
1
2

∫
Ω

(φ2 + η)Aξ : ξ dx +
1
2

∫
Ω

Bq : q dx

+
1
2h

β ‖ q − pn−1
h ‖2

2 +τ

∫
Ω

|q − pn−1
h | dx

+
∫

Ω

εr−1

r
|∇φ|rdx +

∫
Ω

α

r′ε
|1 − φ|r dx

= Eel(φ, ξ) + EKH(q) + Evp(q, pn−1
h ) + Ep(q, pn−1

h ) + Er
S(φ).

Proposition 3.1. Given (un−1
h , vn−1

h , en−1
h , pn−1

h ) that satisfy (un−1
h , en−1

h , pn−1
h ) ∈ Aadm(wn−1

h ), vn−1
h ∈

W 1,r(Ω), 0 ≤ vn−1
h ≤ 1, vn−1

h = 1 on ∂ΩD. There exist a minimizer (un
h, vn

h , en
h, pn

h) to the variational problem

min
(z,ξ,q)∈Aadm(wn

h), φ∈W 1,r(Ω), φ≤vn−1
h , φ=1 on ∂ΩD

Etotal(z, φ, ξ, q). (3.1)

Proof. Since (wn
h , vn−1

h , Ewn
h , 0) is admissible for (3.1), we have that

m := inf
(z,ξ,q)∈Aadm(wn

h), φ∈W 1,r(Ω), φ≤vn−1
h , φ=1 on ∂ΩD

Etotal(z, φ, ξ, q) < ∞

Let (uk, vk, ek, pk) be a minimizing sequence. It follows from the Poincaré inequality and the Korn inequalities
that

‖ uk ‖H1 + ‖ vk ‖W 1,r + ‖ ek ‖L2 + ‖ pk ‖L2≤ Cn,h.

Therefore can be extracted a subsequence (uk, vk, ek, pk) such that

uk ⇀ u in H1(Ω, R2),
vk ⇀ v in W 1,r(Ω, R),
ek ⇀ e in L2(Ω, M2×2

sym),

pk ⇀ p in L2(Ω, M2×2
sym).

It follows that (u, e, p) ∈ Aadm(wn
h) and since r > 2, vk → v in C0(Ω) by the Sobolev imbedding theorem. As

vk ≤ vn−1
h and vk = 1 on ∂ΩD for all k, we have v ≤ vn−1

h and v = 1 on ∂ΩD. Furthermore, vkek ⇀ ve weakly
in L2(Ω). By lower semicontinuity,∫

Ω

v2Ae : e dx =
∫

Ω

Ave : ve dx ≤ lim inf
k→∞

∫
Ω

Avkek : vkek dx,

and ∫
Ω

(v2 + η)Ae : e dx ≤ lim inf
k→∞

∫
Ω

(v2
k + η)Aek : ek dx.
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The other terms of Etotal are weakly lower semicontinuous with respect to the weak topology H1(Ω, R2) ×
W 1,r(Ω) × L2(Ω, M2×2

sym) × L2(Ω, M2×2
sym) and thus

m ≤ Etotal(u, v, e, p) ≤ lim inf
k→∞

Etotal(uk, vk, ek, pk)

= lim
k→∞

Etotal(uk, vk, ek, pk) = m,

so that (u, v, e, p) is indeed a minimizer. �

We now define (un
h, vn

h , en
h, pn

h) as one solution of (3.1) and we derive the Euler-Lagrange equation satisfied
by this solution. We define for all n � 1,

δpn
h :=

pn
h − pn−1

h

h
·

Proposition 3.2. For 1 ≤ n ≤ Nf , let (un
h, vn

h , en
h, pn

h) be a solution of (3.1) and let

σn
h := an

hAen
h

with an
h := (vn

h)2 + η. Then we have:⎧⎨
⎩

−div(σn
h) = 0, a.e. in Ω,

σn
h .n = 0, a.e. on ∂ΩN ,

σn
h − Bpn

h − βδpn
h ∈ ∂H(pn

h − pn−1
h ), a.e. in Ω.

Furthermore,

vn
h = argmin

φ∈W 1,r(Ω), φ≤vn−1
h , φ=1 on ∂ΩD

{
Eel(en

h, φ) +
∫

Ω

εr−1

r
|∇φ|r +

α

r′ε
|1 − φ|r dx

}
. (3.2)

Proof. Let (z, ξ, q) ∈ Aadm(0), so that (un
h + sz, en

h + sξ, pn
h + sq) ∈ Aadm(wn

h) is an admissible triplet for every
0 < s < 1. We have

Etotal(un
h, vn

h , en
h, pn

h) ≤ Etotal(un
h + sz, vn

h , en
h + sξ, pn

h + sq),

and thus

0 ≤ s

∫
Ω

an
hAen

h : ξ dx + s

∫
Ω

Bpn
h : q dx + s

∫
Ω

β
pn

h − pn−1
h

h
: q dx

+τ

∫
Ω

|pn
h + sq − pn−1

h | − |pn
h − pn−1

h |dx + o(s).

Let Ψ(s) := τ
∫

Ω
|pn

h + sq − pn−1
h |dx. Using the convexity of Ψ we have Ψ(s) − Ψ(0) ≤ s(Ψ(1)− Ψ(0)). Dividing

this inequality by s and letting s tend to zero implies that for all (z, ξ, q) ∈ Aadm(0),

∫
Ω

an
hAen

h : ξ dx +
∫

Ω

Bpn
h : q dx +

∫
Ω

β
pn

h − pn−1
h

h
: q dx + τ

∫
Ω

|pn
h − pn−1

h + q| − |pn
h − pn−1

h | dx � 0. (3.3)

Testing (3.3) with ±(φ, E(φ), 0) for any φ ∈ C∞
c (Ω, R2), we obtain∫
Ω

σn
h : E(φ) dx = 0 (3.4)
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and from which we deduce that −div(σn
h ) = 0 a.e. in Ω. Furher, picking φ ∈ C∞(Ω, R2), with φ = 0 on ∂ΩD

in ±(φ, Eφ, 0) as a test function for (3.3) and integrating (3.4) by parts, we also obtain that σn
h .n = 0 a.e. on

∂ΩN . Testing (3.3) with (0,−q + pn
h − pn−1

h , q − pn
h + pn−1

h ) for any q ∈ L2(Ω, M2×2
sym), we have

τ

∫
Ω

|q|dx ≥ τ

∫
Ω

|pn
h − pn−1

h |dx +
∫

Ω

(
an

hAen
h − Bpn

h − β
pn

h − pn−1
h

h

)
: (q − (pn

h − pn−1
h )) dx. (3.5)

By a standard localization argument, it follows that

τ |q| ≥ τ |pn
h − pn−1

h | + (an
hAen

h − Bpn
h − βδpn

h) : (q − (pn
h − pn−1

h )) for all q ∈ M
2×2
sym , a.e. in Ω

which by definition of the subdifferential implies that

an
hAen

h − Bpn
h − βδpn

h ∈ ∂H(pn
h − pn−1

h ) a.e. in Ω. (3.6)

We also have
Etotal(un

h, vn
h , en

h, pn
h) ≤ Etotal(un

h, ϕ, en
h, pn

h).

for every ϕ ∈ W 1,r(Ω), ϕ ≤ vn−1
h and ϕ = 1 on ∂ΩD, which implies

vn
h = argmin

ϕ∈W 1,r(Ω), ϕ≤vn−1
h , ϕ=1 on ∂ΩD

{
Eel(en

h, ϕ) +
∫

Ω

εr−1

r
|∇ϕ|r +

α

r′ε
|1 − ϕ|r dx

}
. �

Remark that by a truncation argument, we have vn
h � 0 in Ω.

3.2. A priori estimates

We define piecewise affine interpolants of the sequences (un
h)Nf

n=0, (vn
h)Nf

n=0, (en
h)Nf

n=0, (pn
h)Nf

n=0 as follows:

uh(t) = un
h + (t − tnh)δun

h, for t ∈ [tn−1
h , tnh], n = 1, . . . , Nf ,

vh(t) = vn
h + (t − tnh)δvn

h , for t ∈ [tn−1
h , tnh], n = 1, . . . , Nf ,

eh(t) = en
h + (t − tnh)δen

h, for t ∈ [tn−1
h , tnh], n = 1, . . . , Nf ,

ph(t) = pn
h + (t − tnh)δpn

h, for t ∈ [tn−1
h , tnh], n = 1, . . . , Nf .

Remark that uh(0) = u0, vh(0) = v0, eh(0) = e0, ph(0) = p0. We also define piecewise constant interpolants

u+
h (t) = un

h, for t ∈ (tn−1
h , tnh], n = 1, . . . , Nf ,

v+
h (t) = vn

h , for t ∈ (tn−1
h , tnh], n = 1, . . . , Nf ,

a+
h (t) = an

h, for t ∈ (tn−1
h , tnh], n = 1, . . . , Nf ,

e+
h (t) = en

h, for t ∈ (tn−1
h , tnh], n = 1, . . . , Nf ,

p+
h (t) = pn

h, for t ∈ (tn−1
h , tnh], n = 1, . . . , Nf ,

w+
h (t) = wn

h , for t ∈ (tn−1
h , tnh], n = 1, . . . , Nf ,

with u+
h (0) = u0, v+

h (0) = v0, a+
h (0) := v2

0 + η, e+
h (0) = e0, p+

h (0) = p0, w+
h (0) = w(0). We also set

σ+
h (t) = (v+

h (t)2 + η)Ae+
h (t) for t ∈ (0, Tf ],

with σ+
h (0) = σ0.
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Proposition 3.3. There exists a constant C > 0 independent of h, n such that

sup
[0,Tf ]

‖u+
h (t)‖H1 ≤ C, sup

[0,Tf ]

‖v+
h (t)‖W 1,r ≤ C, sup

[0,Tf ]

‖p+
h (t)‖2 ≤ C,

sup
[0,Tf ]

‖e+
h (t)‖2 ≤ C, sup

(0,Tf ]

‖ṗh(t)‖2 ≤ C.

Proof. Firstly, we observe that (un−1
h + wn

h − wn−1
h , vn−1

h , en−1
h + Ewn

h − Ewn−1
h , pn−1

h ) is admissible for the
minimisation problem (3.1), and

Etotal(un
h, vn

h , en
h, pn

h) ≤ Etotal(un−1
h + wn

h − wn−1
h , vn−1

h , en−1
h + Ewn

h − Ewn−1
h , pn−1

h ).

So that

Eel(en
h, vn

h) + Er
S(vn

h ) +
1
2

∫
Ω

Bpn
h : pn

h dx +
β

2h
‖ pn

h − pn−1
h ‖2

2 +τ

∫
Ω

|pn
h − pn−1

h | dx

≤Eel(en−1
h + Ewn

h − Ewn−1
h , vn−1

h ) + Er
S(vn−1

h ) +
1
2

∫
Ω

Bpn−1
h : pn−1

h dx

= Eel(en−1
h , vn−1

h ) + Eel(Ewn
h − Ewn−1

h , vn−1
h )

+
∫

Ω

an−1
h Aen−1

h : (Ewn
h − Ewn−1

h ) dx + Er
S(vn−1

h ) +
1
2

∫
Ω

Bpn−1
h : pn−1

h dx. (3.7)

Since Ew is absolutely continuous in time with values in L2(Ω; M2×2
sym),

Ewn
h − Ewn−1

h =
∫ tn

h

tn−1
h

Eẇ(s) ds.

We now estimate,

Eel(Ewn
h − Ewn−1

h , vn−1
h ) ≤ Eel(Ewn

h − Ewn−1
h , 1)

≤ α2

2
(1 + η)

∥∥∥∥∥
∫ tn

h

tn−1
h

Eẇ(s) ds

∥∥∥∥∥
2

2

≤ α2

2
(1 + η)

(∫ tn
h

tn−1
h

‖Eẇ(s)‖2 ds

)2

≤ α2

2
(1 + η)f(h)

∫ tn
h

tn−1
h

‖Eẇ(s)‖2 ds, (3.8)

where

f(h) := max
k∈{1,Nf}

∫ tk
h

tk−1
h

‖Eẇ(s)‖2 ds → 0 ash → 0, (3.9)

and

∫
Ω

an−1
h Aen−1

h :

(∫ tn
h

tn−1
h

Eẇ(s) ds

)
dx ≤ (1 + η) ‖ Aen−1

h ‖2

∫ tn
h

tn−1
h

‖ Eẇ(s) ‖2 ds

≤ (1 + η)2α2 sup
{0,..,Nf}

‖ en
h ‖2

∫ tn
h

tn−1
h

‖ Eẇ(s) ‖2 ds. (3.10)
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Thanks to (3.7)–(3.10) we obtain

Eel(en
h, vn

h ) + Er
S(vn

h ) +
1
2

∫
Ω

Bpn
h : pn

h dx +
β

2h
‖ pn

h − pn−1
h ‖2

2 +τ

∫
Ω

|pn
h − pn−1

h | dx

≤Eel(en−1
h , vn−1

h ) + Er
S(vn−1

h ) +
1
2

∫
Ω

Bpn−1
h : pn−1

h dx

+ Cf(h)
∫ tn

h

tn−1
h

‖Eẇ(s)‖2 ds + (1 + η)2α2 sup
{0,..,Nf}

‖ en
h ‖2

∫ tn
h

tn−1
h

‖ Eẇ(s) ‖2 ds. (3.11)

Summing the inequalities (3.11) for 1 ≤ n ≤ N ≤ Nf we obtain

Eel(eN
h , vN

h ) + Er
S(vN

h ) +
1
2

∫
Ω

BpN
h : pN

h dx

+
β

2

N∑
n=1

h

∣∣∣∣
∣∣∣∣pn

h − pn−1
h

h

∣∣∣∣
∣∣∣∣
2

2

+ τh

N∑
n=1

∫
Ω

∣∣∣∣pn
h − pn−1

h

h

∣∣∣∣ dx

≤Eel(e0, v0) + Er
S(v0) +

1
2

∫
Ω

Bp0 : p0 dx

+ Cf(h)
∫ tN

h

0

‖Eẇ(s)‖2 ds + (1 + η)2α2 sup
{0,..,Nf}

‖ en
h ‖2

∫ tN
h

0

‖ Eẇ(s) ‖2 ds. (3.12)

From the last inequality, and from the coercivity and boundedness of the tensor A we deduce that

sup
{0,...,Nf}

‖ en
h ‖2

2 ≤C ‖ e0 ‖2
2 +Er

S(v0) +
∫

Ω

Bp0 : p0 dx

+ C sup
{0,..,Nf}

‖ en
h ‖2

∫ Tf

0

‖ Eẇ(s) ‖2 ds + Cf(h).

This last estimate, the coercivity and boundedness of the tensor B and (3.12) leads to

sup
[0,Tf ]

{‖u+
h (t)‖H1 , ‖v+

h (t)‖W 1,r , ‖p+
h (t)‖2, ‖e+

h (t)‖2

} ≤ C.

Furthermore, from the discrete plastic flow rule (3.6), we deduce that

|an
hAen

h − Bpn
h − βδpn

h| ≤ τ a.e. in Ω,

and consenquently,
sup

(0,Tf ]

‖ṗh(t)‖2 ≤ C. �

Remark 3.4. In the general case, when K is a convex, closed set of M
2×2
Sym with non empty interior, the bound

of ṗh is only in L2(L2) thanks to the bound obtained in formula (3.12).

3.3. Compactness results

Our aim is to study the limit of the discrete plastic flow rule, and of the discrete variational problem for vn
h .

To this end, we show the strong compactness on the sequence of stresses (σ+
h )h, and the sequences of elastic

and plastic strains (e+
h )h, (ph)h.
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Let Mf � 2 with Mf �= Nf and consider an other partition of the time interval [0, Tf ] into Mf sub-intervals

of equals length l =
Tf

Mf
= tml − tm−1

l → 0:

0 = t0l < t1l < . . . < tm−1
l < tml < . . . < Tf .

In the same way we define all interpolant functions with indexes l and m.

Lemma 3.5. For all t ∈ (0, Tf ] we have

β ‖ ṗh(t) − ṗl(t) ‖2 ≤‖ (σ+
h (t) − Bp+

h (t)) − (σ+
l (t) − Bp+

l (t)) ‖2 .

Proof. By the homogeneity of degree 1 of H , we have

σn
h − Bpn

h − βδpn
h ∈ ∂H(δpn

h) a.e. in Ω. (3.13)

We obtain for m = 1, . . . , Mf ,

σm
l − Bpm

l − βδpm
l ∈ ∂H(δpm

l ). (3.14)

By a standard result of convex analysis we have

〈(σm
l − Bpm

l − βδpm
l ) − (σn

h − Bpn
h − βδpn

h), δpn
h − δpm

l 〉 ≤ 0. (3.15)

We deduce from (3.15) and the Cauchy–Schwarz inequality

β ‖ δpn
h − δpm

l ‖2
2≤ 〈(σn

h − Bpn
h) − (σm

l − Bpm
l ), δpn

h − δpm
l 〉

≤ ‖ (σn
h − Bpn

h) − (σm
l − Bpm

l ) ‖2‖ δpn
h − δpm

l ‖2, (3.16)

to obtain

β ‖ δpn
h − δpm

l ‖2≤‖ (σn
h − Bpn

h) − (σm
l − Bpm

l ) ‖2,

or in other words, for all t ∈ (0, Tf ]

β ‖ ṗh(t) − ṗl(t) ‖2≤‖ (σ+
h (t) − Bp+

h (t)) − (σ+
l (t) − Bp+

l (t)) ‖2 . �

The proof of the next proposition is similar to the proof of Lemma 4.1 in [15] or of the Lemma 4.9 in [2].

Proposition 3.6. There exists a subsequence (not relabeled) h → 0 and a function v : [0, Tf ] → W 1,r(Ω) such
that v+

h (t) ⇀ v(t) weakly in W 1,r(Ω) for every t ∈ [0, Tf ]. Furthermore, we have v(0) = v0, 0 ≤ v(s) ≤ v(t) ≤ 1
for every 0 ≤ t ≤ s ≤ Tf and

v ∈ L∞(0, Tf , W 1,r(Ω)). (3.17)

Proof. By definition v+
h : [0, Tf ] → L1(Ω) is monotone non-increasing, for every t ∈ [0, Tf ]. By a generalized

version of Helly’s selection principle (see [19]), there exists a subsequence (not relabeled) h → 0 and a map
v : [0, Tf ] → L1(Ω) such that v+

h (t) ⇀ v(t) weakly in L1(Ω) for every t ∈ [0, Tf ]. By Proposition 3.3, for every
t ∈ [0, Tf ], up to a subsequence, v+

hn
(t) ⇀ w weakly in W 1,r(Ω) and so weakly in L1(Ω). As v+

h (t) ⇀ v(t)
weakly in L1(Ω) we deduce that w = v(t), v(t) ∈ W 1,r(Ω) and the whole sequence v+

h (t) ⇀ v(t) weakly in
W 1,r(Ω), since the limit of v+

hn
(t) does not depend of the subsequence. Consenquently, by the Sobolev imbedding

theorem, v+
h (t) → v(t) strongly in C0(Ω) for every t ∈ [0, Tf ]. Since v+

h (t) = 1 on ∂ΩD, 0 ≤ v+
h (t) ≤ 1 in Ω for

all t ∈ [0, Tf ] and 0 ≤ v+
h (s) ≤ v+

h (t) ≤ 1 for every 0 ≤ t ≤ s ≤ Tf , we obtain v(t) = 1 on ∂ΩD, 0 ≤ v(t) ≤ 1 in
Ω for all t ∈ [0, Tf ] and 0 ≤ v(s) ≤ v(t) ≤ 1 for every 0 ≤ t ≤ s ≤ Tf . By lower semicontinuity, we have

sup
[0,Tf ]

‖ v(t) ‖W 1,r(Ω)≤ C. (3.18)

�
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In the following results, we only consider the subsequence given by the Proposition 3.6.

Lemma 3.7. Define

Yh,l(t) :=‖ e+
l (t)(v+

l (t)2 − v+
h (t)2) ‖2,

Qh,l(t) :=
∫ t

0

Yh,l(s) ds.

Then for all t ∈ [0, Tf ], Yh,l(t) → 0, Qh,l(t) → 0 as h, l → 0.

Proof. Let t ∈ [0, Tf ]. By the Proposition 3.6, v+
h (t) ⇀ v(t) weakly in W 1,r(Ω). By the Sobolev imbedding

theorem, v+
h (t) → v(t) strongly in C0(Ω):

lim
h→0

(
sup
x∈Ω

|v+
h (t) − v(t)|

)
= 0 (3.19)

which implies (v+
h (t))h is a Cauchy sequence in C0(Ω):

lim
h,l→0

(
sup
x∈Ω

|v+
h (t) − v+

l (t)|
)

= 0. (3.20)

Since v+
h (t) ≤ 1 and ‖ e+

l (t) ‖2≤ C,

Yh,l(t)2 =
∫

Ω

(v+
l (t)2 − v+

h (t)2)2e+
l (t) : e+

l (t) dx

≤ sup
x∈Ω

|v+
h (t) − v+

l (t)|
∫

Ω

|v+
h (t) − v+

l (t)||(v+
h (t) + v+

l (t))|2e+
l (t) : e+

l (t) dx

≤ C sup
x∈Ω

|v+
h (t) − v+

l (t)|

with C > 0 independent of h and l. By (3.20) Yh,l(t) → 0 as h, l → 0. By the Lebesgue Dominated Convergence
Theorem, it follows that Qh,l(t) → 0 as h, l → 0. �
Lemma 3.8. For all t ∈ [0, Tf ] we have

‖ p+
h (t) − p+

l (t) ‖2≤ C

(∫ t

0

‖ a+
h (s)(e+

h (s) − e+
l (s)) ‖2 ds + Qh,l(t)

)

+ C

∫ t

0

‖ p+
h (s) − p+

l (s) ‖2 ds + C(h + l) (3.21)

with C > 0, independent of h and l.

Proof. We have pn
h − pn−1

h = hδpn
h. Summation for n = 1 to N gives

pN
h − p0 =

N∑
n=1

∫ tn
h

tn−1
h

δpn
h ds. (3.22)

Let t ∈ (tN−1
h , tNh ], then

p+
h (t) − p0 =

∫ t

0

ṗh(s) ds + Rh(t) with Rh(t) =
∫ tN

h

t

δpN
h ds,

and ‖ Rh(t) ‖2 ≤
∫ tn

h

t

‖ δpN
h ‖2 ds ≤ Ch. (3.23)
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In the same way we have for t ∈ (tM−1
l , tMl ],

p+
l (t) − p0 =

∫ t

0

ṗl(s) ds + Rl(t) with Rl(t) =
∫ tM

l

t

δpM
l ds,

and ‖ Rl(t) ‖2≤
∫ tm

l

t

‖ δpM
l ‖2 ds ≤ Cl. (3.24)

Let t ∈ (0, Tf ], and m, n � 1 such that t ∈ (tm−1
l , tml ] ∩ (tn−1

h , tnh]. Then

p+
h (t) − p+

l (t) =
∫ t

0

ṗh(s) − ṗl(s) ds + Rh(t) − Rl(t) (3.25)

and by the Lemma 3.5 we deduce that

‖ p+
h (t) − p+

l (t) ‖2 ≤
∫ t

0

‖ ṗh(s) − ṗl(s) ‖2 ds + C(h + l)

≤ C

∫ t

0

‖ (σ+
h (t) − Bp+

h (t)) − (σ+
l (t) − Bp+

l (t)) ‖2 ds + C(h + l). (3.26)

Further,

‖ (σ+
h (t) − Bp+

h (t)) − (σ+
l (t) − Bp+

l (t)) ‖2≤ ‖ σ+
h (t) − σ+

l (t) ‖2 +C ‖ p+
h (t) − p+

l (t) ‖2

≤C ‖ a+
h (t)(e+

h (t) − e+
l (t)) ‖2 +C ‖ e+

l (t)(a+
l (t) − a+

h (t)) ‖2

+ C ‖ p+
h (t) − p+

l (t) ‖2 . (3.27)

From (3.26) and (3.27) we obtain

‖ p+
h (t) − p+

l (t) ‖2≤C

∫ t

0

‖ a+
h (s)(e+

h (s) − e+
l (s)) ‖2 ds

+ C

∫ t

0

‖ e+
l (s)(a+

l (s) − a+
h (s)) ‖2 ds

+ C

∫ t

0

‖ p+
h (s) − p+

l (s) ‖2 ds + C(h + l). (3.28)

�

Remark 3.9. In the general case, when K is a convex, closed set of M
2×2
Sym with non empty interior, we can

replace the term C(h+l) in Lemma 3.8 by C(
√

h+
√

l) since in formula (3.23), on can apply the Cauchy–Schwarz
inequality and use the bound of ṗh in L2(L2) (see Rem. 3.4) to get that ‖ Rh(t) ‖2≤ C

√
h.

Proposition 3.10. For all t ∈ [0, Tf ], (u+
h (t), e+

h (t), p+
h (t)) is a Cauchy sequence in H1(Ω, R2)×L2(Ω, M2×2

sym)×
L2(Ω, M2×2

sym).

Proof. Let t ∈ (0, Tf ]. Since a+
h (t) � η and

a+
h (t)(e+

h (t) − e+
l (t)) = a+

h (t)e+
h (t) − a+

l (t)e+
l (t) + e+

l (t)(a+
l (t) − a+

h (t))
= σ+

h (t) − σ+
l (t) + e+

l (t)(a+
l (t) − a+

h (t)), (3.29)
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we estimate the difference e+
h (t) − e+

l (t) as follows:

ηαA ‖ e+
h (t) − e+

l (t) ‖2
2 ≤ η

∫
Ω

A(e+
h (t) − e+

l (t)) : (e+
h (t) − e+

l (t)) dx

≤
∫

Ω

a+
h (t)A(e+

h (t) − e+
l (t)) : (e+

h (t) − e+
l (t)) dx

=
∫

Ω

(σ+
h (t) − σ+

l (t)) : (e+
h (t) − e+

l (t)) dx

+
∫

Ω

(a+
l (t) − a+

h (t))Ae+
l (t) : (e+

h (t) − e+
l (t)) dx. (3.30)

Applying the compatibility condition

E(u+
h (t) − u+

l (t)) = e+
h (t) − e+

l (t) + p+
h (t) − p+

l (t), (3.31)

which leads to

ηαA ‖ e+
h (t) − e+

l (t) ‖2
2 ≤

∫
Ω

(σ+
h (t) − σ+

l (t)) : E(u+
h (t) − u+

l (t)) dx

−
∫

Ω

(σ+
h (t) − σ+

l (t)) : (p+
h (t) − p+

l (t)) dx

+
∫

Ω

Ae+
l (t)(a+

l (t) − a+
h (t)) : (e+

h (t) − e+
l (t)) dx

:= I1 − I2 + I3.

Since divσ+
h (t) = divσ+

l (t) = 0 a.e in Ω, u+
h (t)−u+

l (t) = w+
h (t)−w+

l (t) a.e. on ∂ΩD, and σ+
h (t).n = σ+

l (t).n = 0
a.e. on ∂ΩN , we have

I1 =
∫

Ω

(σ+
h (t) − σ+

l (t)) : E(w+
h (t) − w+

l (t)) dx,

and we estimate thanks to Proposition 3.3,

|I1| ≤ ‖ σ+
h (t) − σ+

l (t) ‖2‖ E(w+
h (t) − w+

l (t)) ‖2

≤ C ‖ E(w+
h (t) − w+

l (t)) ‖2 .

Since Ew ∈ H1(0, Tf , L2(Ω, M2×2
sym)), it is Hölder continuous with value in L2(Ω, M2×2

sym). (Ew+
h )h is a Cauchy

sequence in L∞(0, Tf ; L2(Ω, M2×2
sym)), thus ‖ E(w+

h (t) − w+
l (t)) ‖2≤ δh,l with δh,l → 0 as h, l → 0. Further, we

have

I2 =
∫

Ω

a+
h (t)A(e+

h (t) − e+
l (t)) : (p+

h (t) − p+
l (t)) dx

−
∫

Ω

Ae+
l (t)(a+

l (t) − a+
h (t)) : (p+

h (t) − p+
l (t)) dx.
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Thus, we get using Proposition 3.3 and Lemma 3.8

ηαA ‖ e+
h (t) − e+

l (t) ‖2
2 ≤ ‖ σ+

h (t) − σ+
l (t) ‖2‖ E(w+

h (t) − w+
l (t)) ‖2

+C ‖ e+
h (t) − e+

l (t) ‖2‖ p+
h (t) − p+

l (t) ‖2

+C ‖ e+
l (t)(a+

l (t) − a+
h (t)) ‖2‖ p+

h (t) − p+
l (t) ‖2

+C ‖ e+
l (t)(a+

l (t) − a+
h (t)) ‖2‖ e+

h (t) − e+
l (t) ‖2

≤ C ‖ E(w+
h (t) − w+

l (t)) ‖2 (3.32)
+CYh,l(t)(‖ e+

h (t) − e+
l (t) ‖2 + ‖ p+

h (t) − p+
l (t) ‖2)

+C ‖ e+
h (t) − e+

l (t) ‖2

∫ t

0

‖ (e+
h (s) − e+

l (s)) ‖2 ds

+C ‖ e+
h (t) − e+

l (t) ‖2

∫ t

0

‖ p+
h (s) − p+

l (s) ‖2 ds

+C ‖ e+
h (t) − e+

l (t) ‖2 (Qh,l(t) + (h + l)). (3.33)

On the other hand, using the Lemma 3.8 again leads to the estimate

‖ p+
h (t) − p+

l (t) ‖2
2≤C ‖ p+

h (t) − p+
l (t) ‖2

(∫ t

0

‖ (e+
h (s) − e+

l (s)) ‖2 ds

+ Qh,l(t) + (h + l) +
∫ t

0

‖ p+
h (s) − p+

l (s) ‖2 ds

)
. (3.34)

Set
Xh,l(t) =‖ p+

h (t) − p+
l (t) ‖2 + ‖ e+

h (t) − e+
l (t) ‖2 .

Adding (3.33) and (3.34) yields

ηαA ‖ e+
h (t) − e+

l (t) ‖2
2 + ‖ p+

h (t) − p+
l (t) ‖2

2 ≤CXh,l(t)
(∫ t

0

Xh,l(s) ds + Yh,l(t) + Qh,l(t) + h + l

)
+ C ‖ E(w+

h (t) − w+
l (t)) ‖2 .

The Cauchy inequality (a + b)2 ≤ 2a2 + 2b2 leads to

Xh,l(t)2 ≤ CXh,l(t)
(∫ t

0

Xh,l(s) ds + Yh,l(t) + Qh,l(t) + h + l

)
(3.35)

+ C ‖ E(w+
h (t) − w+

l (t)) ‖2,

from which we deduce that

‖ p+
h (t) − p+

l (t) ‖2 + ‖ e+
h (t) − e+

l (t) ‖2≤C

∫ t

0

‖ (e+
h (s) − e+

l (s)) ‖2 + ‖ p+
h (s) − p+

l (s) ‖2 ds

+ C

(
Yh,l(t) + Qh,l(t) + h + l +

√
2
C

‖ E(w+
h (t) − w+

l (t)) ‖2

)
,

for some constant C > 0 independent on h, l, t. Applying the Gronwall’s inequality leads to

‖ p+
h (t) − p+

l (t) ‖2+ ‖ e+
h (t) − e+

l (t) ‖2

≤C

(
Yh,l(t) + Qh,l(t) + h + l +

√
2
C

‖ E(w+
h (t) − w+

l (t)) ‖2

)

+ C2eCTf

∫ t

0

(
Yh,l(s) + Qh,l(s) + h + l +

√
2
C

‖ E(w+
h (s) − w+

l (s)) ‖2

)
ds. (3.36)
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Since Yh,l and Qh,l tend to 0 for all s ∈ [0, Tf ] (Lem. 3.7), and since these functions are uniformly bounded
on [0, Tf ], from (3.36) and the Lebesgue’s dominated convergence theorem we deduce that Xh,l(t) −→ 0 as
h, l → 0. Finally we conclude that for fixed t ∈ [0, Tf ], (u+

h (t), e+
h (t), p+

h (t))h is a Cauchy sequence in H1(Ω, R2)×
L2(Ω, M2×2

sym) × L2(Ω, M2×2
sym). �

Remark 3.11. In the general case, when K is convex, closed set of M
2×2
Sym with non empty interior, in the proof

of Proposition 3.10, we can replace everywhere the term (h + l) by (
√

h +
√

l).

Proposition 3.12. There exists a function t → (u(t), e(t), p(t)), such that for all t ∈ [0, Tf ] the next results
hold:

(u(t), e(t), p(t)) ∈ Aadm(w(t)),
u+

h (t) → u(t) strongly inH1(Ω, R2),
e+

h (t) → e(t) strongly in L2(Ω, M2×2
sym),

p+
h (t) → p(t) strongly in L2(Ω, M2×2

sym),

ph(t) → p(t) strongly in L2(Ω, M2×2
sym).

Furthermore, for a.e. t ∈ [0, Tf ]

ṗh(t) → ṗ(t) strongly in L2(Ω, M2×2
sym),

and

u ∈ L∞(0, Tf , H1(Ω, R2)),
e ∈ L∞(0, Tf , L2(Ω, M2×2

sym)),

p ∈ W 1,∞(0, Tf , L2(Ω, M2×2
sym)).

Proof. Let t ∈ [0, Tf ]. By Proposition 3.10 there exist u(t) ∈ H1(Ω, R2), e(t) ∈ L2(Ω, M2×2
sym), and p(t) ∈

L2(Ω, M2×2
sym) such that for all t ∈ [0, Tf ] the next convergence results hold:

u+
h (t) → u(t) strongly inH1(Ω, R2), (3.37)

e+
h (t) → e(t) strongly inL2(Ω, M2×2

sym), (3.38)

p+
h (t) → p(t) strongly inL2(Ω, M2×2

sym). (3.39)

By the compatibility condition we have for all t ∈ [0, Tf ],

Eu+
h (t) = e+

h (t) + p+
h (t) and u+

h (t) = w+
h (t) on ∂ΩD a.e. in Ω.

The convergence results (3.37)−(3.39) imply that

(u(t), e(t), p(t)) ∈ Aadm(w(t)), for all t ∈ [0, Tf ].

On the other hand, for all t ∈ (0, Tf ],

‖ ph(t) − p+
h (t) ‖2≤ h ‖ ṗh(t) ‖2 . (3.40)

Since ṗh(t) is uniformly bounded in L2(Ω), ph(0) = p+
h (0) = p0, we deduce from (3.39) and (3.40) that for all

t ∈ [0, Tf ],

ph(t) → p(t) strongly inL2(Ω, M2×2
sym). (3.41)
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From Lemma 3.5 and (3.27), we deduce that

‖ ṗh(t) − ṗl(t) ‖2≤‖ a+
h (t)(e+

h (t) − e+
l (t)) ‖2 +Yh,l(t) + C ‖ p+

h (t) − p+
l (t) ‖2 . (3.42)

Combining this last inequality, Lemma 3.7 and Proposition 3.10 we have that for all t ∈ (0, Tf ], (ṗh(t))h is a
Cauchy sequence in L2(Ω, M2×2

sym). As a consequence, there is a function ζ(t) ∈ L2(Ω, M2×2
sym) such that

ṗh(t) → ζ(t) strongly inL2(Ω, M2×2
sym). (3.43)

Due to the a priori estimate of Proposition 3.3

sup
(0,Tf ]

‖ ṗh(t) ‖L2≤ C. (3.44)

Thanks to the previous convergence result (3.43) we have

sup
(0,Tf ]

‖ ζ(t) ‖L2≤ C, and ζ ∈ L∞(0, Tf , L2(Ω, M2×2
sym)). (3.45)

From Proposition 3.3 we also deduce that

‖ph‖W 1,∞(0,Tf ,L2(Ω,M2×2
sym)) ≤ C, (3.46)

so that up to a subsequence, there exists p̂ ∈ W 1,∞(0, Tf , L2(Ω, M2×2
sym)) such that

ph, ṗh ⇀ p̂, ˙̂p weakly* in L∞(0, Tf , L2(Ω, M2×2
sym)). (3.47)

Then, by the Arzelà–Ascoli theorem ph(t) ⇀ p̂(t) weakly in L2(Ω, M2×2
sym) for all t ∈ [0, Tf ]. It follows from (3.41)

that for all t ∈ [0, Tf ], p(t) = p̂(t), and

p ∈ W 1,∞(0, Tf ; L2(Ω, M2×2
sym)). (3.48)

Since ṗh(t) → ζ(t) strongly in L2(Ω, M2×2
sym) for all t ∈ (0, Tf ], by the Lebesgue dominated convergence theorem

and Proposition 3.3 we deduce that

ṗh ⇀ ζ weakly* in L∞(0, Tf , L2(Ω, M2×2
sym)). (3.49)

The convergence results (3.47), (3.48) and (3.49) lead to ṗ = ζ a.e. in [0, Tf ] × Ω which implies due to (3.43)
that for a.e. t ∈ [0, Tf ]

ṗh(t) → ṗ(t) strongly inL2(Ω, M2×2
sym). (3.50)

Furthermore, by the a priori estimates of Proposition 3.3 we have

sup
[0,Tf ]

‖ u+
h (t) ‖H1≤ C, sup

[0,Tf ]

‖ e+
h (t) ‖L2≤ C,

for some constant C > 0 independent on h. Thanks to the convergence (3.37)–(3.39),

sup
[0,Tf ]

‖ u(t) ‖H1≤ C, sup
[0,Tf ]

‖ e(t) ‖L2≤ C.

We conclude that

u ∈ L∞(0, Tf , H1(Ω, R2)), e ∈ L∞(0, Tf , L2(Ω, M2×2
sym)), p ∈ W 1,∞(0, Tf , L2(Ω, M2×2

sym)). �

Remark 3.13. In the case, when K is a convex, closed set of M
2×2
Sym with non empty interior, we can proceed

as follows: we can show that ‖ ph(t)− p+
h (t) ‖L2(L2)≤ h ‖ ṗh(t) ‖L2(L2) (which replaces formula (3.40)). Thanks

to (3.39), using the a priori bounds and the Lebesgue dominated convergence theorem, we can show that p+
h → p

strongly in L2(L2) (which replaces formula (3.41)) and so obtain that ph → p strongly in L2(L2). Using (3.42),
we can show that ṗh is a Cauchy sequence in L2(L2). Since ph is uniformly bounded in H1(L2), we obtain using
the Arzelà−Ascoli theorem that for almost every t ∈ [0, Tf ], ṗh(t) converges to ṗ(t) strongly in L2. Finally, we
obtain p ∈ H1(L2) instead of p ∈ W 1,∞(L2).
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3.4. The proof of Theorem 2.1

Let t ∈ (0, Tf ]. The convergence result (3.38) and Proposition 3.6 imply that

σ+
h (t) → σ(t) strongly inL2(Ω, M2×2

sym), (3.51)

with σ(t) = (v2(t) + η)Ae(t). Since −div σ+
h (t) = 0 a.e. in Ω,

−divσ(t) = 0 a.e. in Ω.

We rewrite the discrete plastic flow rule as follows:

τ

∫
Ω

|q|dx ≥ τ

∫
Ω

|ṗh(t)|dx

+
∫

Ω

(
σ+

h (t) − Bp+
h (t) − βṗh(t)

)
: (q − ṗh(t)) dx. (3.52)

By the convergence results (3.39), (3.50), (3.51) we obtain for a.e t ∈ [0, Tf ]

τ

∫
Ω

|q|dx ≥ τ

∫
Ω

|ṗ(t)|dx

+
∫

Ω

(σ(t) − Bp(t) − βṗ(t)) : (q − ṗ(t)) dx, (3.53)

which implies
σ(t) − Bp(t) − βṗ(t) ∈ ∂H(ṗ(t)) for a.e. x ∈ Ω.

We now pass to the limit in the crack propoagation condition. A similar treatement was used in [2, 15]. We
rewrite the problem (3.2) as follows: for every ϕ ∈ W 1,r(Ω), ϕ ≤ vn−1

h , ϕ = 1 on ∂ΩD we have

Eel(e+
h (t), v+

h (t)) + Er
S(v+

h (t)) ≤ Eel(e+
h (t), ϕ) + Er

S(ϕ). (3.54)

Let v ∈ W 1,r(Ω), v = 1 on ∂ΩD, with v ≤ v(t) in Ω. We define

v∗h(t) := min(v, v+
h (t)).

By definition v∗h(t) ∈ W 1,r(Ω) and v∗h(t) ≤ v+
h (t) ≤ vn−1

h and v∗h(t) = 1 on ∂ΩD, so that v∗h(t) is an admissible
test function for the problem (3.54). We obtain

1
2

∫
Ω

(
v+

h (t)
2
+ η
)

Ae+
h (t) : e+

h (t) dx +
∫

Ω

εr−1

r
|∇v+

h (t)|rdx +
∫

Ω

α

r′ε
(
1 − v+

h (t)
)r

dx

≤ 1
2

∫
Ω

(
v∗h(t)2 + η

)
Ae+

h (t) : e+
h (t) dx

+
∫

Ω

εr−1

r
|∇v∗h(t)|rdx +

∫
Ω

α

r′ε
(1 − v∗h(t))r dx. (3.55)

Set Ah := {x ∈ Ω; v(x) ≤ v+
h (t, x)}. As v+

h (t) ⇀ v(t) weakly in W 1,r(Ω); 1Ah
→ 1, and 1Ac

h
→ 0 pointwise

in Ω. As a consequence, by the Lebesque Dominated Convergence Theorem we get∫
Ω

1Ac
h
(x) dx → 0. (3.56)
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We now prove that 1Ah
∇v+

h (t) ⇀ ∇v(t) weakly in Lr(Ω). Let q ∈ Lr/(r−1)(Ω). Since v+
h (t) ⇀ v(t) weakly in

W 1,r(Ω), we have
∫

Ω

∇v+
h (t)q dx =

∫
Ah

∇v+
h (t)q dx +

∫
Ac

h

∇v+
h (t)q dx →

∫
Ω

∇v(t)q dx. (3.57)

By the Lebesque dominated convergence∫
Ac

h

∇v+
h (t)q dx =

∫
Ω

1Ac
h
∇v+

h (t)q dx → 0,

which, using (3.57) yields
∫

Ω

1Ah
∇v+

h (t)q dx =
∫

Ah

∇v+
h (t)q dx →

∫
Ω

∇v(t)q dx.

By lower semicontinuity,

lim inf
h→0

∫
Ah

|∇v+
h (t)|r dx = lim inf

h→0

∫
Ω

|1Ah
∇v+

h (t)|r dx �
∫

Ω

|∇v(t)|r dx. (3.58)

Using the same arguments, we also prove that v∗h(t) ⇀ v weakly in W 1,r(Ω). The Sobolev imbedding theorem
implies that, v∗h(t) → v strongly in C0(Ω), using Proposition 3.6 and (3.38) we show that as h → 0,

1
2

∫
Ω

(
v+

h (t)
2

+ η
)

Ae+
h (t) : e+

h (t) dx → 1
2

∫
Ω

(
v(t)2 + η

)
Ae(t) : e(t) dx,

1
2

∫
Ω

(
v∗h(t)2 + η

)
Ae+

h (t) : e+
h (t) dx → 1

2

∫
Ω

(
v2 + η

)
Ae(t) : e(t) dx,∫

Ω

α

r′ε
(
1 − v+

h (t)
)r

dx →
∫

Ω

α

r′ε
(1 − v(t))r dx,∫

Ω

α

r′ε
(1 − v∗h(t))r dx →

∫
Ω

α

r′ε
(1 − v)r dx,∫

Ah

εr−1

r
|∇v|rdx →

∫
Ω

εr−1

r
|∇v|r dx. (3.59)

The definition of v∗h(t) gives

∫
Ω

εr−1

r
|∇v∗h(t)|r dx =

∫
Ah

εr−1

r
|∇v|r dx +

∫
Ac

h

εr−1

r
|∇v+

h (t)|r dx.

From (3.55), we obtain

1
2

∫
Ω

(
v+

h (t)
2

+ η
)

Ae+
h (t) : e+

h (t) dx +
∫

Ah

εr−1

r
|∇v+

h (t)|rdx +
∫

Ω

α

r′ε
(
1 − v+

h (t)
)r

dx

≤ 1
2

∫
Ω

(
v∗h(t)2 + η

)
Ae+

h (t) : e+
h (t) dx

+
∫

Ah

εr−1

r
|∇v|rdx +

∫
Ω

α

r′ε
(1 − v∗h(t))r dx. (3.60)
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The previous convergence results (3.58), (3.59), and the last inequality yield to

1
2

∫
Ω

(
v(t)2 + η

)
Ae(t) : e(t) dx +

∫
Ω

εr−1

r
|∇v(t)|rdx +

∫
Ω

α

r′ε
(1 − v(t))r dx

≤ 1
2

∫
Ω

(
v2 + η

)
Ae(t) : e(t) dx

+
∫

Ω

εr−1

r
|∇v|rdx +

∫
Ω

α

r′ε
(1 − v)r dx. (3.61)

for all v ∈ W 1,r(Ω), v = 1 on ∂ΩD, with v ≤ v(t) in Ω, which completes the proof. �

4. Conclusion

In this paper, we studied an elasto-viscoplastic continuous evolution with kinematic hardening and fracture.
We proved an existence result of an evolution to the proposed model via a study of a discrete time evolutions
obtained resolving incremental variational problems.

Acknowledgements. The author wish to express his gratitude to E. Bonnetier and S. Labbé for the fruitful and enlight-
ening discussions.
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