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A ROBUST DOMAIN DECOMPOSITION METHOD FOR THE HELMHOLTZ
EQUATION WITH HIGH WAVE NUMBER ∗, ∗∗
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Abstract. In this paper we present a robust Robin−Robin domain decomposition (DD) method
for the Helmholtz equation with high wave number. Through choosing suitable Robin parameters on
different subdomains and introducing a new relaxation parameter, we prove that the new DD method
is robust, which means the convergence rate is independent of the wave number k for kh = constant
and the mesh size h for fixed k. To the best of our knowledge, from the theoretical point of view, this
is a first attempt to design a robust DD method for the Helmholtz equation with high wave number in
the literature. Numerical results which confirm our theory are given.
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1. Introduction

The Helmholtz problem has many applications in acoustics, elasticity, electromagnetics, quantum mechanics
and geophysics. Efficient and accurate numerical approximation of the Helmholtz equation is of fundamental
importance in scientific computation. In the engineering application, a rule of thumb suggests that at least
8 points are needed per wavelength for the discrete problem. If we consider the pollution of the discretization
of the Helmholtz equation, which requires krh = constant, where r > 1, then it implies that the larger wave
number k, the more points per wavelength are needed. So for high frequency problem, the discrete system is
usually huge. Another difficulty is that the discrete algebraic system is highly indefinite for large k. Though
there are many fast solvers for this equation in the literatures, such as shifted Laplacian [20], multigrid [2] and
DD [9, 10, 13, 16] methods, but nowadays how to solve this problem fast and efficiently is still a challenging
problem [8]. DD methods are important tools with their high parallel performance. In this paper, we shall
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study a new type of nonoverlapping DD iterative method with Robin transmission conditions on the subdomain
interfaces for the Helmholtz equation.

The Robin−Robin nonoverlapping DD method was proposed for the Poisson equation by Lions. The conver-
gence rate was first proved to be 1−O(h) in [4,6,7,14], then it was improved by Gander et al. in [11] and also by
Qin and Xu [17,18] to be 1−O(h

1
2 ). Furthermore, it was proved by Xu and Qin et al. in [21] that the convergence

rate is asymptotically sharp. Recently Chen et al. [3] presented a new two-parameter Robin−Robin method and
they proved that the convergence rate of the DD method is optimal, which means that the convergence rate is
independent of the mesh size h.

For the Helmholtz equation, the idea of using the Robin transmission conditions was first proposed by
Despres in [5]. He employed the zeroth order approximation of the Sommerfeld condition as the interface
transmission condition and proved its convergence by energy method. Then Gander, Magoules, and Nataf
improved the convergence rate by using so-called optimized Schwarz method in [13] with optimized zeroth order
and second order transmission conditions. Afterwards, the optimized two-sided Robin transmission condition for
the Helmholtz equation was further introduced by Gander et al. in [12], where it is shown that the convergence
rate of their DD method is 1 −O(h

1
4 ) for fixed k and 1 −O(k−

1
8 ) for kh = constant.

Following the idea of Chen, Xu and Zhang’s method for the second-order elliptic problems, in this paper,
we shall present a new two-parameter Robin−Robin DD method for the Helmholtz equation by differently
choosing suitable Robin parameters, which are dependent of h and k on different subdomains. Meanwhile, a
new relaxation parameter shall be introduced. Similar as in [11–13], we shall use Fourier transform to analyze our
DD method. It is shown that the new DD method is optimal, which means the convergence rate is independent
of k for kh = constant and also independent of h for fixed frequency k. To the best of our knowledge, from the
theoretical point of view, this is a first attempt to design a robust DD method for the Helmholtz equation with
high wave number in the literature.

The outline of this paper is as follows: in Section 2, we shall present the model problem and our Robin−Robin
DD method. In Section 3, we shall analyze the convergence rate of this DD method. Numerical implementation
shall be given in Sections 4. Extension to many subdomains case is given in Section 5. Finally in Section 6, we
present the numerical results which confirm our theory. It is seen from our numerical results that the new DD
method is better than optimized Schwarz and FETI-H methods.

2. Model problem and DD algorithm

The model problem is as follows:

−�u− k2u = f in Ω, (2.1)

where the domain Ω = R
2. The Sommerfeld radiation condition at infinity with r = (x2 + y2)1/2 can be

expressed as:

lim
r→∞ r1/2

(
∂u

∂r
− iku

)
= 0, (2.2)

which is the boundary condition for the Helmholtz equation excluding the incoming wave. In this paper, i =
√−1

is the imaginary unit.
However, for practical computation, we consider the problem on a bounded region Ω̃ with some absorbing

boundary condition, which actually approximates the Sommerfeld radiation condition. A usual one is the zeroth
order approximation ∂u

∂n − iku = 0 on the boundary, where n is an outward normal vector at the boundary.
With this condition, the variational form of the above model problem is to find u ∈ V = H1(Ω̃) such that

(∇u,∇v)Ω̃ − k2(u, v)Ω̃ − ik〈u, v〉∂Ω̃ = (f, v) ∀v ∈ V ,

where (u, v)Ω̃ :=
∫

Ω̃
uv, 〈u, v〉∂Ω̃ :=

∫
∂Ω̃

uv and v is the conjugated form of v. This variational form has a unique
solution when f ∈ L2(Ω̃). If there is a piece of boundary Γ̃r with condition ∂u

∂n + γu = g or Γ̃d with Dirichlet



A ROBIN-TYPE DD METHOD FOR THE HELMHOLTZ 923

condition, and the other part of the boundary condition is ∂u
∂n − iku = 0, it has been proved that the variational

form is to find u ∈ Ṽ = H1(Ω̃, Γ̃d) such that

(∇u,∇v)Ω̃ − k2(u, v)Ω̃ + γ〈u, v〉Γ̃r
− ik〈u, v〉∂Ω̃\(Γ̃r∪Γ̃d) = (f, v) + 〈g, v〉Γ̃r

∀v ∈ Ṽ ,

where H1(Ω̃, Γ̃d) is the subspace of H1(Ω̃), and for ∀w ∈ H1(Ω̃, Γ̃d), the condition γ0(w)|Γ̃d
= 0 holds, where

γ0(w) is the trace of w. The above equation has a solution if Re(γ) � 0, Im(γ) < 0 (Thm. 3.2 in [15]).
Approximating these variational forms by finite element method is popular in practical computation.

Next, we introduce our DD algorithm for the above Helmholtz equation. The domain Ω is decomposed
into two nonoverlapping subdomains Ω1 = (−∞, 0) × R and Ω2 = (0,+∞) × R with the interface x = 0,
which is denoted by Γ12 = ∂Ω1 ∩ ∂Ω2, and ni is an outward normal vector of Ωi at Γ12(i = 1 or 2). Let
f1 = f |Ω1 , f2 = f |Ω2 and γ1, γ2 be two constant parameters whose values shall be determined later. Then the
DD iterative procedure can be defined as follows:

1. Solve for un
1 on Ω1 ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−�un
1 − k2un

1 = f1 in Ω1,
∂un

1

∂n1
+ γ1u

n
1 = gn

1 on Γ12,

lim
r→∞ r1/2

(
∂un

1

∂r
− ikun

1

)
= 0.

(2.3)

2. Update the transmission condition along the interface Γ12

gn
2 = −∂u

n
1

∂n1
+ γ2u

n
1 ,

3. Solve for un
2 on Ω2 ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−�un
2 − k2un

2 = f2 in Ω2,
∂un

2

∂n2
+ γ2u

n
2 = gn

2 on Γ12,

lim
r→∞ r1/2

(
∂un

2

∂r
− ikun

2

)
= 0.

(2.4)

4. Update the transmission condition along the interface again

g∗1 = −∂u
n
2

∂n2
+ γ1u

n
2 .

5. Relax the transmission condition along the interface

gn+1
1 = θg∗1 + (1 − θ)gn

1 .

The choice of γ1, γ2 plays an important role in our algorithm. However, the key of this algorithm is the relaxation
step, without which we cannot get our optimal results.

3. The convergence rate of the DD method

In this section, we shall give our theoretical analysis for the algorithm introduced in the previous section.
Obviously, the solution u of the model problem (2.1) is a fixed point of the iterative procedure. We only need

to consider the transmission of the error functions un
1 − u and un

2 − u, so it suffices to assume f = 0 and to
analyze the convergence to the zero solution. Let f1 = 0, f2 = 0 in (2.3) and (2.4). Taking Fourier transform in



924 W. CHEN ET AL.

y direction for each iterative step, the functions u(x, y) and g(y) become û = û(x, η) and ĝ = ĝ(η) respectively.
We obtain the following two equations:

−∂
2ûn

1

∂x2
− (k2 − η2)ûn

1 = 0 x < 0, η ∈ R, (3.1)

−∂
2ûn

2

∂x2
− (k2 − η2)ûn

2 = 0 x > 0, η ∈ R, (3.2)

which are ordinary differential equations with variable x. The conditions

∂ûn
1

∂n1
+ γ1û

n
1 = ĝn

1 , (3.3)

∂ûn
2

∂n2
+ γ2û

n
2 = ĝn

2 , (3.4)

correspond to the boundary conditions on the interface for each subdomain. The updates of the interface
transmission conditions are of the new forms

ĝn
2 = −∂û

n
1

∂n1
+ γ2û

n
1 , (3.5)

ĝ∗1 = −∂û
n
2

∂n2
+ γ1û

n
2 , (3.6)

ĝn+1
1 = θĝ∗1 + (1 − θ)ĝn

1 . (3.7)

Since the interface is located at x = 0, the normal derivative is in x direction. All the partial differential
equations are now in the form of ordinary differential equations (ODE). Next, we solve each ODE without
boundary condition for fixed η. Let λ be the solution of the characteristic equation

λ2 + (k2 − η2) = 0,

then,

λ(η) =

{ √
η2 − k2 if |η| � k,

−i
√
k2 − η2 if |η| < k.

The general solutions to the ordinary differential equations (3.1) and (3.2) without boundary conditions can be
written as follows:

ûn
1 (x, η) = A1eλ(η)x +B1e−λ(η)x, x < 0,

ûn
2 (x, η) = A2eλ(η)x +B2e−λ(η)x, x > 0.

If we consider the absorbing boundary condition which exclude the incoming wave, then the solutions can be
expressed as

ûn
1 (x, η) = ûn

1 (0, η)eλ(η)x, and ûn
2 (x, η) = ûn

2 (0, η)e−λ(η)x.

The expression form of ûn
1 may be explained as follows: first, for the case |η| > k, λ(η) is real. Noticing that

x < 0, we have eλ(η)x → 0 as x → −∞. However, for the item e−λ(η)x, it goes to infinity as x → −∞, which
is a contradiction to the meaning of the absorbing boundary condition. Second, for the case |η| < k, λ(η) is a
complex number. eλ(η)x means the left going wave, and e−λ(η)x means the right going wave, with the frequency√
k2 − η2. For the third case |η| = k, λ(η) = 0 and eλ(η)x = e−λ(η)x, then it can be set that B1 = 0 for the
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reason that these two basis functions are the same. Based on the above observation, in any case, the term
e−λ(η)x should not appear in the formula of the solution ûn

1 , which implies B1 = 0 immediately. Similarly, we
have A2 = 0 in the solution ûn

2 .
Substituting these expressions into the interface transmission conditions (3.3), (3.5), (3.4) and (3.6), we have

ĝn
1 (η) = (λ(η) + γ1)ûn

1 (0, η),

ĝn
2 (η) = (−λ(η) + γ2)ûn

1 (0, η)
= (λ(η) + γ2)ûn

2 (0, η),
ĝ∗1(η) = (−λ(η) + γ1)ûn

2 (0, η).

Combining the above equations with the relaxation step (3.7), we get the following error propagation equation

ĝn+1
1 (η) = [θ

−λ(η) + γ1

λ(η) + γ2
· −λ(η) + γ2

λ(η) + γ1
+ (1 − θ)]ĝn

1 (η). (3.8)

Let γ1 = p1 − q1i, γ2 = p2 − q2i, where p1, q1, p2, q2 > 0. By substituting these values into (3.8), the convergence
rate ρ may be expressed as follows:

ρ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1 − θ) + θ

p1 − (q1 −
√
k2 − η2)i

p2 − (q2 +
√
k2 − η2)i

· p2 − (q2 −
√
k2 − η2)i

p1 − (q1 +
√
k2 − η2)i

|η| < k,

(1 − θ) + θ
(p1 −

√
η2 − k2) − q1i

(p2 +
√
η2 − k2) − q2i

· (p2 −
√
η2 − k2) − q2i

(p1 +
√
η2 − k2) − q1i

|η| � k.

Note that for the case |η| = k, the convergence rate is |ρ| = 1 for any p1, p2, q1, q2. In another word, we cannot
get the convergence rate for this case. This phenomenon is also observed by Gander etc. in [12, 13]. Similar as
in [12,13], we only consider the case |η| � k− and |η| � k+, where k− < k < k+ are close to k. For computation,
suppose that the length of Ω̃ in y direction is H , if the upper and bottom boundary is set to be the homogeneous
Dirichlet boundary, then the relevant frequencies are η = jπ

H , j ∈ N, so we may choose k− = k− π
H , k+ = k+ π

H
and leave only one frequency η = k which can be treated easily by the preconditioned Krylov method [12, 13].
If k satisfies jπ

H < k < (j+1)π
H , then η2 − k2 �= 0, and the iterative method converges by choosing k− = jπ

H and
k+ = (j+1)π

H . For this homogeneous Dirichlet boundary, the lowest relevant frequency is |η|min = π
H . For other

boundary conditions on top and bottom, it is not easy to determine the value of |η|min, but it is always larger
or equal zero.

In the continuous case, the value of |η| can be arbitrarily large. However, for discrete problem, we find that
|η| � |η|max, where |η|max = π

h is the highest frequency according to the finest mesh.
According to the above discussion, |η|min � |η| � |η|max, which is useful in the analysis of the convergence

rate. Let η := |η|min and η := |η|max.
Let

α =

{√
k2 − η2 η � |η| � k−,√
η2 − k2 k+ � |η| � η.

(3.9)

By some elementary computation, the convergence factor should be

ρ = (1 − θ) + θ
A1 + iB1

D1
, if η � |η| � k−,

where the real part A1, the imaginary part B1 and the denominator D1 are as follows:

A1 = [(p1p2 − q1q2) − α2)]2 + (p1q2 + p2q1)2 − [(p1 + p2)2 + (q1 + q2)2]α2,

B1 = 2[(p1q2 + p2q1)(q1 + q2) + ((p1p2 − q1q2) − α2)(p1 + p2)]α,
D1 = [(p1p2 − q1q2) − α2 − (q1 + q2)α]2 + [(p1q2 + p2q1) + (p1 + p2)α]2.
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For the another case of |η|, a simple calculation leads to

ρ = (1 − θ) + θ
A2 + iB2

D2
, if k+ � |η| � η,

where the real part A2, the imaginary part B2 and the denominator D2 are of the forms

A2 = [(p1p2 − q1q2) + α2)]2 + (p1q2 + p2q1)2 − [(p1 + p2)2 + (q1 + q2)2]α2,

B2 = 2[−(p1q2 + p2q1)(p1 + p2) + ((p1p2 − q1q2) + α2)(q1 + q2)]α,
D2 = [(p1p2 − q1q2) + α2 + (p1 + p2)α]2 + [(p1q2 + p2q1) + (q1 + q2)α]2.

In the following, we set p1 = q1, p2 = q2 for simplicity and symmetry, then the expression of ρ is

ρ =

⎧⎪⎨⎪⎩
(1 − θ) + θ

A+ iB

D
, if η � |η| � k−,

(1 − θ) + θ
A− iB

D
, if k+ � |η| � η,

(3.10)

where

A = (2q1q2)2 − 2(q1 + q2)2α2 + α4,

B = 2(2q1q2 − α2)(q1 + q2)α,
D = (2q1q2 + (q1 + q2)α)2 + (q1 + q2 + α)2α2.

Lemma 3.1. Let d1, d2 and d3 be defined as:

d1 =
2q1q2

2q1q2 + (q1 + q2)α
, d2 =

α

(q1 + q2) + α
, d3 =

2q1q2 − α2

2q1q2 + (q1 + q2)α
(3.11)

then the real part of ρ can be bounded by

1 − 2θ + 2θmin{d1, d2} � Re(ρ) � 1 − 2θ + 2θmax{d1, d2}, (3.12)

and the imaginary part of ρ can be bounded by

|Im(ρ)| � θ|d3|. (3.13)

Proof. By careful calculation,

1 +
A

D
=

2
D

(
2q1q2(2q1q2 + (q1 + q2)α) + (q1 + q2 + α)α3

)
=

2
D

(
d1(2q1q2 + (q1 + q2)α)2 + d2(q1 + q2 + α)2α2

)
.

From the definition of D, 1 + A
D can be bounded by

2 min{d1, d2} � 1 +
A

D
� 2 max{d1, d2}. (3.14)

Note that the real part of ρ can be rewritten as

Re(ρ) = 1 − θ + θ
A

D
= 1 − 2θ + θ

(
1 +

A

D

)
, (3.15)

then the bound (3.12) can be obtained immediately.
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On the other hand, note that D � 2(2q1q2 + (q1 + q2)α)(q1 + q2 + α)α, then

(2q1q2 + (q1 + q2)α)(q1 + q2)α
D

� (2q1q2 + (q1 + q2)α)(q1 + q2)α
2(2q1q2 + (q1 + q2)α)(q1 + q2 + α)α

� 1
2
·

So B
D can be bounded by

|B|
|D| =

|2(2q1q2 − α2)|
2q1q2 + (q1 + q2)α

(2q1q2 + (q1 + q2)α)(q1 + q2)α
D

�
∣∣∣∣2d3

2

∣∣∣∣ = |d3|.

Then the bound (3.13) is easily gotten since |Im(ρ)| = θ |B|
|D| . �

Lemma 3.2. If 0 < α � α � α, and assume that

q1 � C1

2
α, q2 � 1

C2
α, (3.16)

where 0 < Cj < 1(j = 1, 2), then d1, d2 and d3 in (3.11) can be bounded by

q1
2α

< d1 <
C1

C1 + 1
, (3.17)

α

3q2
< d2 � C2

1 + C2
, (3.18)

|d3| < max
{

C1

C1 + 1
, C2

}
. (3.19)

Proof. Since q1 > 0 and α
2q1

� 1
C1

, then the lower bound and upper bound of d1 can be estimated by

d1 <
2q1q2

2q1q2 + q2α
=

1
1 + α

2q1

� C1

1 + C1
, d1 >

2
2 + 2 α

q1

>
q1
2α

� q1
2α

·

Since q2
α � 1

C2
and q2 > α > q1, the bound of d2 can be easily obtained

d2 <
α

q2 + α
� C2

C2 + 1
, d2 >

α

3q2
� α

3q2
·

Finally, from the definition of d3, we have

|d3| < max
{
d1,

α2

2q1q2 + (q1 + q2)α

}
� max

{
d1,

α

q2

}
� max

{
C1

C1 + 1
, C2

}
,

so the bound (3.19) is obtained. �

Lemma 3.3. If 0 < θ < 1 and 0 < C < 1, then the function

ζ(θ) = max
{
|1 − 2θ|2 + θ2C

2
, |1 − 2θ + 2θC|2 + θ2C

2
}

(3.20)

attains the minimum value 2C
2

(2−C)2
at θ0 = 1

2−C
.
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Figure 1. The function ζ(θ) in (3.20) where C = 1/3. The red line stands for the function
σ(θ) = |1−2θ|2 and the blue line stands for the function σ(θ) = |1−2θ+2θC|2. (Color online).

Proof. It is enough for us to consider the function

ζ1(θ) = max{|1 − 2θ|2, |1 − 2θ + 2θC|2}. (3.21)

It is easy to be verified that (see Fig. 1)

ζ1(θ) =

⎧⎪⎨⎪⎩
|1 − 2θ + 2θC|2, θ � 1

2−C
,

|1 − 2θ|2, θ � 1
2−C

·

When 0 < C < 1, the derivative of ζ1 is negative if θ < 1
2−C

and positive if θ > 1
2−C

, therefore ζ1 attains the

minimum value at θ0 = 1
2−C

. So ζ(θ) also attains the minimum value at θ0 and ζ(θ0) = 2C
2

(2−C)2
. �

Theorem 3.4. If 0 < α � α � α, and assume that

q1 � C1

2
α, q2 � 1

C2
α, (3.22)

where 0 < C1 < 1 and 0 < C2 < 2√
2+1

, then the convergence rate |ρ| < 1 if we take θ = 1
2−C

, where

C = max{ C1
C1+1 , C2}.

Proof. By using Lemmas 3.1 and 3.2, the real part and the imaginary part of ρ can be bounded by

|Re(ρ)| � max{|1 − 2θ|, |1 − 2θ + 2θC|}, and |Im(ρ)| � θC.

Then following Lemma 3.3, |ρ| attains the minimum value

|ρ| =
√

2 · C
2 − C

if we set θ = 1
2−C

. Now since 0 < C1 < 1 and 0 < C2 <
2√
2+1

, then C < 2√
2+1

, therefore |ρ| < 1. �
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Remark 3.5. For simplicity, we shall set θ = 1
2 in the numerical tests. In this case, |ρ| is still less than 1 if we

require C2
2 <

4
5 .

We also remark that from the definition of α (3.9),

α ∈ [(2C̃kk)
1
2 , C0h

−1], (3.23)

where C̃k = min(k − k−, k+ − k) is a sufficient small value compared with k, and C0 is a constant independent
of h and k. Note that α < η = π

h , we may choose q2 dependent on the mesh size h.

Corollary 3.6. If 0 < α � α � α, and assume that

q1 � C1

2
α, q2 = Ch−1, (3.24)

where C � π
C2

is a constant independent of k and h. The parameter is chosen to be θ = 1
2 , then the convergence

rate |ρ| < 1 and:

• is independent of k for krh = constant where r � 1;
• is independent of h for fixed k with kh � constant.

Remark 3.7. In practice, we usually choose q2 = C3h
−m with m > 1, where C3 = constant independent of h

and k. However, in this situation, C3 is not necessarily large. We shall confirm this observation in our numerical
results.

If we set at least 10 points per wavelength, by a simple calculation, kh � π
5 , which immediately implies

η � 5k. For practical computation, to avoid the pollution error, we usually require the mesh grid h to satisfy
condition krh = constant for r � 1. So the above result is useful.

Remark 3.8. The convergence result of our method is quite different from other substructuring methods, like
FETI-H, FETI-DPH and BDDC-H methods. It can be seen in the above corollary that the convergent result of
our DD method is independent of h and k. For the FETI-H method, there is no any theoretical results about
the convergence rate in the literature. The numerical results in [9] reveal that the iteration number increases
as k increasing, but it may decrease as the coarse space is sufficiently large. In [16], the convergence rate of
FETI-DPH and BDDC-H is proved to be (1 −C 1

(1 + k2H2)(1 + log(H/h))4 )1/2 under the condition that the size of
coarse grid H is sufficiently small. Numerical results in [16] also shows that FETI-DPH and BDDC-H methods
are scalable. However, the iteration number still increase as k increasing. Meanwhile, both of these two methods
also require sufficiently small H to guarantee the positive definiteness of subproblem, which make the coarse
space very large. So these DD methods actually cannot solve the algebraic system resulting from the Helmholtz
equation with very high wave number.

4. Implementation of the DD algorithm

In this section, we shall derive the preconditioned system of the new DD algorithm and discretize it by finite
element method. For simplicity we assume that Ω̃ is a bounded domain with homogeneous Dirichlet boundary
condition on the upper and bottom boundary and the absorbing boundary condition ∂u

∂n − iku = 0 on the left
and right boundary. Other absorbing boundary conditions can be discussed similarly. The Helmholtz equation
is as follows:

−�u− k2u = f in Ω̃,
u = 0 on ΓD

∂u

∂n
− iku = 0 on ΓR, (4.1)
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where ΓD, ΓR are the boundaries with Dirichlet and the absorbing boundary conditions respectively. The sub-
problems in our DD algorithm can be written as:

−�un
j − k2un

j = fj in Ω̃j ,
∂un

j

∂nj
+ γju

n
j = gn

j on Γ12,

un
j = 0 on ΓDj

∂un
j

∂n
− ikun

j = 0 on ΓRj ,

where j = 1, 2, ΓDj = ΓD ∩ ∂Ω̃j , ΓRj = ΓR ∩ ∂Ω̃j and Γ12 is the interface.
Similar as the discussion in Section 2, the discrete variational form of each subproblem is to find un

jh ∈ Vjh

such that

(∇hu
n
jh,∇hvh)Ω̃j

− k2(un
jh, vh)Ω̃j

+ γj〈Πun
jh, Πvh〉Γ12

−ik〈Πun
jh, Πvh〉ΓRj = (fj , vh)Ω̃j

+ 〈gn
j , Πvh〉Γ12 ∀vh ∈ Vjh, (4.2)

where (∇hu
n
jh,∇hvh)Ω̃j

=
∑

e∈τ(Ω̃j)

(∇un
jh,∇vh)e, τ(Ω̃j) is the triangulation of Ω̃j , Vjh is the finite element space

and the projection operator Π shall be defined later.
Let Ãj be the stiffness matrix of each problem on subdomain Ω̃j , then Ãj can be expressed as

Ãj =
[
ÃjII ÃjIΓ12

ÃjΓ12I ÃjΓ12Γ12

]
, (4.3)

where the subscripts Γ12 and I denote the degrees of freedom on the interface and the other part of the
subdomain respectively. By changing the Robin interface condition into Neumann condition or equivalently
setting γj = 0 in (4.2), the stiffness matrix Aj is of the form

Aj =
[
AjII AjIΓ12

AjΓ12I AjΓ12Γ12

]
.

It is easy to verify that ÃjII = AjII , ÃjIΓ12 = AjIΓ12 , ÃjΓ12I = AjΓ12I , ÃjΓ12Γ12 = AjΓ12Γ12 + γjMΓ12 , where
MΓ12 is the mass matrix on the interface corresponding to the term 〈Πun

jh, Πvh〉Γ12 in (4.2).
Define Π : Vjh|Γ12 →Mjh to be the L2 projection operator such that

〈Πujh, vh〉Γ12 = 〈ujh, vh〉Γ12 , ∀vh ∈Mjh,

where Mjh is the subspace of Vjh|Γ12 . If Vjh is P1 conforming finite element space, Mjh = Vjh|Γ12 and Π is
the identify operator in this case; if Vjh is Crouzeix−Raviart non-conforming finite element space, Mjh is the
piecewise constant space, i.e. [17],

Mjh := {ψjh : ψjh|e is constant for ∀e the element of the triangulation on Γ12}.
A direct observation of the definitions of the space Mjh leads to the assertion that MΓ12 is the tridiagonal
matrix and identity matrix I in the cases of P1 conforming and Crouzeix−Raviart non-conforming finite element
discretization respectively.

Notice that the stiffness matrix of the problem (4.1) on Ω̃ is

A =

⎡⎣ A1II 0 A1IΓ12

0 A2II A2IΓ12

A1Γ12I A2Γ12I AΓ12Γ12

⎤⎦ .
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The Schur complement is S = AΓ12Γ12 −A1Γ12IA
−1
1IIA1IΓ12 −A2Γ12IA

−1
2IIA2IΓ12 . Obviously, AΓ12Γ12 = A1Γ12Γ12 +

A2Γ12Γ12 , which leads to S = S1 + S2, where Sj = AjΓ12Γ12 − AjΓ12IA
−1
jIIAjIΓ12 is the Schur complement

corresponding to Aj . The discrete Schur complement system of the problem (4.1) on the domain Ω̃ is

Swh = f̃

where f̃ = f̃1+ f̃2 with f̃j = fjΓ12 −AjΓ12IA
−1
jIIfjI and wh is the degrees of freedom on the interface Γ12 (see [19]

for details).
Let wn

jh be the degrees of freedom of un
jh restricted to Γ12. Then by the variational form (4.2) and the

definition of Ãj in (4.3), we have
wn

jh = S̃−1
j (MΓ12g

n
j + f̃j),

where S̃j = ÃjΓ12Γ12 − ÃjΓ12IÃ
−1
jII ÃjIΓ12 = γjMΓ12 + Sj. To avoid the computation of the normal derivatives

when we update the interface transmission conditions

gn
2 = −∂u

n
1

∂n1
+ γ2u

n
1 and g∗1 = −∂u

n
2

∂n2
+ γ1u

n
2 ,

we use the equivalent form

gn
2 = −gn

1 + (γ1 + γ2)un
1 and g∗1 = −gn

2 + (γ1 + γ2)un
2

instead. Finally, the discrete form of the DD iteration procedure can be expressed explicitly as follows:

1. Solve for wn
1h on Ω̃1

wn
1h = (γ1MΓ12 + S1)−1(MΓ12g

n
1 + f̃1).

2. Update the transmission condition along the interface Γ12

gn
2 = −gn

1 + (γ1 + γ2)Πwn
1h.

3. Solve for wn
2h on Ω̃2

wn
2h = (γ2MΓ12 + S2)−1(MΓ12g

n
2 + f̃2).

4. Update the transmission condition along the interface again

g∗1 = −gn
2 + (γ1 + γ2)Πwn

2h.

5. Relax the transmission condition along the interface

gn+1
1 = θg∗1 + (1 − θ)gn

1 .

Eliminating the variables wn
1h, w

n
2h, g

n
2 , g

∗
1 , we get

gn+1
1 = gn

1 + θ{(γ1 + γ2)[(γ1 + γ2)(γ2MΓ12 + S2)−1MΓ12 − I](γ1MΓ12 + S1)−1f̃1

+ (γ1 + γ2)(γ2MΓ12 + S2)−1f̃2 − (I − [(γ1 + γ2)(γ2MΓ12 + S2)−1MΓ12 − I]

· [(γ1 + γ2)(γ1MΓ12 + S1)−1MΓ12 − I])gn
1 }.

Then the preconditioned system corresponding to the above iteration method is

Pg1 = fg1, (4.4)
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… 

Figure 2. The N subdomains partition of Ω̃.

where

P = I − [(γ1 + γ2)(γ2MΓ12 + S2)−1MΓ12 − I] · [(γ1 + γ2)(γ1MΓ12 + S1)−1MΓ12 − I]

and

fg1 =(γ1 + γ2)[(γ1 + γ2)(γ2MΓ12 + S2)−1MΓ12 − I](γ1MΓ12 + S1)−1f̃1

+ (γ1 + γ2)(γ2MΓ12 + S2)−1f̃2.

The linear system (4.4) may be directly solved by GMRES method and then un
1h, u

n
2h can be computed auto-

matically.

In the case of Crouzeix−Raviart non-conforming finite element discretization, MΓ12 = I and then

P = I − [(γ1 + γ2)(γ2I + S2)−1 − I] · [(γ1 + γ2)(γ1I + S1)−1 − I]

= (γ2I + S2)−1[(γ2I + S2)(γ1I + S1) − (γ1I − S2)(γ2I − S1)](γ1I + S1)−1

= (γ2I + S2)−1[(γ1 + γ2)(S1 + S2)](γ1I + S1)−1

= (γ1 + γ2)(γ2I + S2)−1S(γ1I + S1)−1.

So P can be viewed as the left and right preconditioning system for the Schur complement S.

5. Extension to many subdomains case

In this section, we shall extend the above preconditioned system to the many subdomains case. We focus on
the problem (4.1). It can also be done in the same way for the case that the absorbing boundary condition is
set on the upper and bottom boundary. We split the domain Ω̃ into N subdomains in x direction (see Fig. 2).
The interfaces are Γjj+1 = ∂Ω̃j ∩ ∂Ω̃j+1, j = 1, 2, . . . , N − 1. The Dirichlet boundary ΓDj = ΓD ∩ ∂Ω̃j. Let
Γ01 := ΓR ∩ ∂Ω̃1 and ΓNN+1 := ΓR ∩ ∂Ω̃N . Define g1

lj , g
1
rj to be the left boundary conditions of Ω̃j , and g2

lj , g
2
rj
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to be its right boundary conditions, and note that g1
l1 = 0, g2

rN = 0. Then the iterative DD algorithm can be
defined as follows:

Set g1,n
l1 = 0, g2,n

rN = 0. Assume that g2,n
lj , g2,n

rj+1, j = 1, 2, . . . , N − 1 is known. As j growing from 1 to N − 1,
we have

1. Solve for un+1/2
lj on Ω̃j ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�un+1/2
lj − k2u

n+1/2
lj = fj in Ω̃j ,

∂u
n+1/2
lj

∂nj
+ γ1u

n+1/2
lj = g2,n

lj on Γjj+1,

u
n+1/2
lj = 0 on ΓDj ,

∂u
n+1/2
lj

∂nj
− iku

n+1/2
lj = g1,n

lj on Γj−1j .

(5.1)

2. Update the transmission condition along the interface Γjj+1

g1,n
rj+1 = −∂u

n+1/2
lj

∂nj
+ γ2u

n+1/2
lj .

3. If j �= N − 1, solve for un+1/2
rj+1 on Ω̃j+1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�un+1/2
rj+1 − k2u

n+1/2
rj+1 = fj+1 in Ω̃j+1,

∂u
n+1/2
rj+1

∂nj+1
+ γ2u

n+1/2
rj+1 = g1,n

rj+1 on Γjj+1,

u
n+1/2
rj+1 = 0 on ΓDj+1,

∂u
n+1/2
rj+1

∂nj+1
− iku

n+1/2
rj+1 = g2,n

rj+1 on Γj+1j+2.

(5.2)

4. If j �= N − 1, update the transmission condition along the interface Γjj+1

g1,n
lj+1 =

∂u
n+1/2
rj+1

∂nj+1
− iku

n+1/2
rj+1 .

Noticing that g2,n+1
rN = 0, as j decreasing from N − 1 to 1, we have

5. Solve for un+1
rj+1 on Ω̃j+1 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�un+1
rj+1 − k2un+1

rj+1 = fj+1 in Ω̃j+1,

∂un+1
rj+1

∂nj+1
+ γ2u

n+1
rj+1 = g1,n

rj+1 on Γjj+1,

un+1
rj+1 = 0 on ΓDj+1,

∂un+1
rj+1

∂nj+1
− ikun+1

rj+1 = g2,n+1
rj+1 on Γj+1j+2.

(5.3)

6. Update the transmission condition along the interface Γjj+1

g
2,n+1/2
lj = −∂u

n+1
rj+1

∂nj+1
+ γ1u

n+1
rj+1,

g2,n+1
lj = θg

2,n+1/2
lj + (1 − θ)g2,n

lj .
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7. If j �= 1, solve for un+1
lj on Ω̃j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�un+1
lj − k2un+1

lj = fj in Ω̃j ,

∂un+1
lj

∂nj
+ γ1u

n+1
lj = g2,n+1

lj on Γjj+1,

un+1
lj = 0 on ΓDj ,

∂un+1
lj

∂nj
− ikun+1

lj = g1,n
lj on Γj−1j .

(5.4)

8. If j �= 1, update the transmission condition along the interface Γjj+1

g
2,n+1/2
rj =

∂un+1
rj

∂nj
− ikun+1

rj ,

g2,n+1
rj = θg

2,n+1/2
rj + (1 − θ)g2,n

rj .

This algorithm is a sweeping procedure. In practical computation, we do not use the above iterative DD algorithm
directly. Actually we shall look for a preconditioner from above DD algorithm, then use PGMRES to solve the
preconditioned system.

Let Vjh be the finite element space in each subdomain Ω̃j . Then the above discrete variational form in each
subdomain is to find uljh ∈ Vjh such that

(∇huljh,∇hvh)Ω̃j
− k2(uljh, vh)Ω̃j

+ γ1〈Πuljh, Πvh〉Γjj+1 − ik〈Πuljh, Πvh〉Γj−1j

= (fj , vh)Ω̃j
+ 〈g2

lj , Πvh〉Γjj+1 + 〈g1
lj , Πvh〉Γj−1j ∀vh ∈ Vjh, (5.5)

and to find urjh ∈ Vjh such that

(∇hurjh,∇hvh)Ω̃j
− k2(urjh, vh)Ω̃j

+ γ2〈Πurjh, Πvh〉Γj−1j − ik〈Πurjh, Πvh〉Γjj+1

= (fj , vh)Ω̃j
+ 〈g1

rj , Πvh〉Γj−1j + 〈g2
rj , Πvh〉Γjj+1 ∀vh ∈ Vjh. (5.6)

Let Alj , Arj be the stiffness matrices associated with (5.5), (5.6) respectively. Define the restriction matrices
T 1

j , T
2
j to be that T 1

j ujh = Π(ujh|Γj−1j ) and T 2
j ujh = Π(ujh|Γjj+1 ) for ∀ujh ∈ Vjh respectively. The corre-

sponding prolongation matrices can be defined as the transposes of T 1
j , T

2
j , i.e., P 1

j := (T 1
j )T and P 2

j := (T 2
j )T .

Let MΓjj+1 be the mass matrix which is related to the term 〈Πujh, Πvh〉Γjj+1 on the interface Γjj+1 for
∀j = 0, . . . , N . The matrix form for the subdomain can be expressed as:

Aljuljh = fj + P 1
j MΓj−1jg

1
lj + P 2

j MΓjj+1g
2
lj , (5.7)

where j = 1, . . . , N − 1. Similarly, we have

Arjurjh = fj + P 1
j MΓj−1jg

1
rj + P 2

j MΓjj+1g
2
rj, (5.8)
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where j = 2, . . . , N . Now we further define

A1,1
lj,rj := −I + (γ2 + ik)T 1

j A
−1
rj P

1
j MΓj−1j ,

A1,1
rj,lj−1 := −(γ1 + γ2)T 2

j−1A
−1
lj−1P

1
j−1MΓj−2j−1 ,

A1,2
lj,rj := (γ2 + ik)T 1

j A
−1
rj P

2
j MΓjj+1 ,

A1,2
rj,lj−1 := I − (γ1 + γ2)T 2

j−1A
−1
lj−1P

2
j−1MΓj−1j ,

A2,1
lj,rj+1 := I − (γ1 + γ2)T 1

j+1A
−1
rj+1P

1
j+1MΓjj+1 ,

A2,1
rj,lj := (γ1 + ik)T 2

j A
−1
lj P

1
j MΓj−1j ,

A2,2
lj,rj+1 := −(γ1 + γ2)T 1

j+1A
−1
rj+1P

2
j+1MΓj+1j+2 ,

A2,2
rj,lj := −I + (γ1 + ik)T 2

j A
−1
lj P

2
j MΓjj+1 ,

f1
lj := −(γ2 + ik)T 1

j A
−1
rj fj,

f1
rj := (γ1 + γ2)T 2

j−1A
−1
lj−1fj−1,

f2
lj := (γ1 + γ2)T 1

j+1A
−1
rj+1fj+1,

f2
rj := −(γ1 + ik)T 2

j A
−1
lj fj,

where I is the identity matrix. Define matrices A11, A12, A21, A22 as follows:

A11 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

A1,1
l2,r2 I

A1,1
r3,l2 I

. . .

A1,1
lN−1,rN−1 I

A1,1
rN,lN−1 I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1,2
r2,l1

A1,2
l2,r2

A1,2
r3,l2

. .
.

A1,2
lN−1,rN−1

A1,2
rN,lN−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

A21 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2,1
lN−1,rN

A2,1
rN−1,lN−1

A2,1
lN−2,rN−1

. .
.

A2,1
r2,l2

A2,1
l1,r2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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and

A22 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

I

A2,2
rN−1,lN−1 I

A2,2
lN−2,rN−1 I

. . .

A2,2
r2,l2 I

A2,2
l1,r2 I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let

g1 = (g1
r2 g1

l2 . . . g
1
lN−1 g1

rN)T , g2 = (g2
lN−1 g2

rN−1 . . . g
2
r2 g2

l1)
T ,

f1 = (f1
r2 f1

l2 . . . f
1
lN−1 f1

rN)T , f2 = (f2
lN−1 f2

rN−1 . . . f
2
r2 f2

l1)
T .

Let Ã21 = θA21, Ã22 = θA22, Ã22(1) = (1 − θ)I + Ã22, and f̃2 = θf2. By simple manipulation, we obtain the
preconditioned system

Ã−1
22(1)(Ã22 − Ã21A

−1
11 A12)g2 = Ã−1

22(1)(f̃2 − Ã21A
−1
11 f1), (5.9)

which is corresponding to the iterative DD procedure. Here the parameter is chosen to be θ = 1
2 , which is the

same as the two subdomains case. Note that N = 2, system (5.9) reduces to the system (4.4), so (5.9) is a
reasonable extension of the two subdomains case.

The next theorem shows that the system (5.9) is equivalent to the global problem, and we may use the
GMRES method to solve it.

Theorem 5.1. For the algebraic system (5.9), there exists a unique solution, which is equivalent to the solution
of the original global problem.

Proof. For starting the proof, we first need to know the well-definedness of the matrices and vectors in (5.9),
which depend on the existence of matrices A−1

lj and A−1
rj . According to the above discussion, A−1

lj and A−1
rj

correspond to solving subproblems (5.1), (5.4) and (5.2), (5.3) respectively. In fact, we already know in Section 2
that there exist unique solutions to these subproblems (see [15] for details) and then Alj and Arj are invertible.
Meanwhile, A11 is also invertible in (5.9) since A11 is a lower triangular matrix with identity matrices in its
block diagonal. Similarly, Ã22(1) is invertible.

We then prove the equivalence. Obviously, (5.9) is equivalent to the coupled algebraic system[
A11 A12

A21 A22

] [
g1
g2

]
=
[
f1
f2

]
, (5.10)

which actually is the same as system

g2
lj = (γ1 + γ2)T 1

j+1urj+1h − g1
rj+1, j = 1, . . . , N − 1 (5.11)

g1
lj = −(γ2 + ik)T 1

j urjh + g1
rj, j = 2, . . . , N − 1 (5.12)

g1
rj = (γ1 + γ2)T 2

j−1ulj−1h − g2
lj−1, j = 2, . . . , N (5.13)

g2
rj = −(γ1 + ik)T 2

j uljh + g2
lj , j = 2, . . . , N − 1 (5.14)

together with subproblems (5.7) and (5.8).
By (5.11) and (5.13), we know that T 2

j uljh = T 1
j+1urj+1h for j = 1, . . . , N − 1. Denote AjI to be the stiffness

matrix in Ω̃j with Neumann boundary condition on Γj−1j and Γjj+1. Then, the matrices Alj , Arj can be
expressed as

Alj = AjI − ikP 1
j MΓj−1jT

1
j + γ1P

2
j MΓjj+1T

2
j , (5.15)

Arj = AjI + γ2P
1
j MΓj−1jT

1
j − ikP 2

j MΓjj+1T
2
j . (5.16)
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By (5.7), (5.8), (5.12), and (5.14), we have

Aljuljh −Arjurjh = (P 1
j MΓj−1jg

1
lj + P 2

j MΓjj+1g
2
lj) − (P 1

j MΓj−1jg
1
rj + P 2

j MΓjj+1g
2
rj)

= −(γ2 + ik)P 1
j MΓj−1jT

1
j urjh + (γ1 + ik)P 2

j MΓjj+1T
2
j uljh.

Substituting (5.15), (5.16) into the above equation, then we get

(AjI − ikP 1
j MΓj−1jT

1
j − ikP 2

j MΓjj+1T
2
j )uljh = (AjI − ikP 1

j MΓj−1jT
1
j − ikP 2

j MΓjj+1T
2
j )urjh,

which is equivalent to uljh = urjh by the invertibility of matrix AjI − ikP 1
j MΓj−1jT

1
j − ikP 2

j MΓjj+1T
2
j . Let

uh ∈ Vh, where Vh is the finite element space in the whole domain Ω̃, which obviously satisfy that uh|Ω̃j
=

urjh, j = 2, . . . , N and uh|Ω̃1
= ul1h. Define the restriction matrix Tj to be that Tjvh = (vh|Ω̃j

), ∀vh ∈ Vh, and
the corresponding prolongation matrix Pj := T T

j . Obviously, T 2
j Tj = T 1

j+1Tj+1 and PjP
2
j = Pj+1P

1
j+1. Then we

have

P1Al1ul1h +
N∑

j=2

PjArjurjh

=
N∑

j=1

PjAjITjuh − ikP1P
1
1MΓ01T

1
1 T1uh − ikPNP

2
NMΓNN+1T

2
NTNuh

− ik

N−1∑
j=2

PjP
2
j MΓjj+1T

2
j Tjuh + γ1P1P

2
1MΓ12T

2
1 T1uh + γ2

N∑
j=2

PjP
1
j MΓj−1jT

1
j Tjuh

=
N∑

j=1

Pjfj + P1P
1
1MΓ01g

1
l1 + PNP

2
NMΓNN+1g

2
rN

+ P1P
2
1MΓ12g

2
l1 +

N∑
j=2

PjP
1
j MΓj−1jg

1
rj +

N−1∑
j=2

PjP
2
j MΓjj+1g

2
rj.

By (5.11), (5.14) and simple manipulation, it is easy to verify that

−ik
N−1∑
j=2

PjP
2
j MΓjj+1T

2
j Tjuh + γ1P1P

2
1MΓ12T

2
1 T1uh + γ2

N∑
j=2

PjP
1
j MΓj−1jT

1
j Tjuh

= P1P
2
1MΓ12g

2
l1 +

N∑
j=2

PjP
1
j MΓj−1jg

1
rj +

N−1∑
j=2

PjP
2
j MΓjj+1g

2
rj ,

which leads to

N∑
j=1

PjAjITjuh − ikP1P
1
1MΓ01T

1
1 T1uh − ikPNP

2
NMΓNN+1T

2
NTNuh

=
N∑

j=1

Pjfj + P1P
1
1MΓ01g

1
l1 + PNP

2
NMΓNN+1g

2
rN .

So uh is the unique solution of (4.1), and then we finish the proof. �
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Table 1. The iteration numbers for different methods and different mesh sizes. The wave
number k = 9.5π.

h RO OS T-OS
1
60

6 386 251
1

120
7 235 126

1
240

7 288 132
1

480
7 393 153

1
960

7 >500 182

Table 2. The iteration numbers of PGMRES for different methods and different mesh sizes.
The wave number k = 9.5π.

h RO OS T-OS FETI-H
1
60

5 15 13 20
1

120
5 19 16 28

1
240

4 23 17 36
1

480
4 29 18 46

1
960

4 36 21 58

6. Numerical results

In this section, we shall give some numerical results to illustrate the efficiency of our new DD method.
Consider the following Helmholtz equation

−�u− k2u = f in Ω,
∂u

∂n
− iku = 0 on ΓR,

u = 0 on ΓD, (6.1)

where Ω is the unit square [0, 1] × [0, 1], ΓR denotes x = 0 and x = 1, which is the Robin boundary condition,
and ΓD is the boundary y = 0 and y = 1 with homogeneous Dirichlet boundary condition. The source term
f = exp{−h−2[(x − 1/2)2 + (y − 1/2)2]} is a gaussian function which is an approximation of the point source
(1
2 ,

1
2 ) with exponential decay off the center. Here we choose the Crouzeix−Raviart non-conforming finite element

to discretize this model problem. P1 conforming finite element has similar performance behavior. Our iterative
procedure is proposed for the continuous case, however for the discrete case the pollution error can not be
avoidable for the uniform mesh [1]. Because the degrees of freedoms of Crouzeix−Raviart finite element is
nearly 3 times as P1 conforming finite element, it may reduce the influence of pollution.

We consider the iteration of our method with different mesh sizes. The parameter chooses θ = 1
2 in our iterative

method. The iteration stops when ‖uiter−ud‖l2

‖ud‖l2
� 10−10, where uiter is the iteration solution, and ud is the discrete

solution. The choices of the Robin transmission condition parameters are γ1 = 1
100k

1/2(1−i), γ2 = h−2(1−i). We
first test our algorithm (RO) with different mesh size for fixed k and compare it to Optimized Schwarz (OS) [13],
Two-sided Optimized Schwarz (T-OS) [12] methods. Table 1 shows the corresponding iteration numbers when
the mesh is refined.

If these DD methods are used as preconditioners in GMRES iterations, the iteration number greatly decrease.
We also compare them to the FETI-H method with coarse space constituted by 4 different direction plan waves
in the preconditioned form. The terminal precision of the PGMRES iteration is 10−10. It can be seen from
Table 1 and 2 that our method is better than optimized Schwarz, two-sided optimized Schwarz method and
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Table 3. The iteration numbers of PGMRES for different methods and different mesh sizes.
The wave number k = 30π.

h RO OS T-OS FETI-H
1

188
5 21 17 42

1
376

4 24 18 51
1

752
5 33 22 63

1
1504

5 38 25 80

Table 4. The iteration numbers of PGMRES with different wave number k and different
methods for kh = constant, where kh ≈ 0.5.

k RO OS T-OS FETI-H
9.5π 5 15 15 20

19.5π 5 18 19 32

29.5π 4 18 19 38

39.5π 4 20 21 45

59.5π 5 25 23 56

89.5π 5 29 27 65

100.5π 5 30 28 70

150.5π 5 35 32 82

Table 5. The iteration numbers for different choices of the relaxation parameter θ.

θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

k = 19.5π 90 40 23 14 7 12 21 35 73 >500

k = 59.5π 78 35 20 12 5 12 20 35 77 >500

the FETI-H method in this case. Note that the numbers of iteration for h = 1/60 in Table 1 is quite large,
one reasonable explanation is that the discrete wave number k̃ is shifted close to the relevant frequency of the
whole domain and thus the convergence rate is close to 1 for this mesh parameter. However, this phenomenon
disappeared by refining the mesh and k̃ is close to k. Similar phenomenon is also observed in [12, 13].

Now, for a larger k, let the frequency k = 30π, which is a frequency that the the convergence rate may equal 1
in the iterative procedure. So we only focus on the PGMRES iteration. We find that our DD method is still
better than other DD methods.

Next, we fix kh = constant to test how the iteration numbers depend on the wave number k. We also do
this test by PGMRES. It can be seen from Table 4 that the number of iterations of our method is stable as k
becomes larger and larger and the iteration numbers are great less than the OS, T-OS and FETI-H methods.

Now we consider how the different choices of the parameters in our method influence the iteration number.
The convergence rate sensitively depend on the choice of the relaxation parameter θ in the iterative method,
which is shown in Table 5. We can see that the parameter θ = 1

2 which we choose in our numerical test is close
to the optimal one. For the Robin parameters, the left graph of Figure 3 shows the iteration numbers for some
fixed parameters γ2 and different choices of γ1. We note that in the left graph, the iteration numbers are almost
the same when C1 � 1

32 and γ1 = C1k
1/2(1− i) for any fixed γ2, and the best choice of γ2 is γ2 = h−2(1− i) with

the least iteration number. So our choice of γ1 = 1
100k

1/2(1− i) in the previous numerical tests is suitable. The
right graph of Figure 3 shows the iteration numbers for some fixed parameters γ1 and different choices of γ2.
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Figure 3. The iteration numbers of PGMRES for different choices of the Robin parameters.
The wave number is k = 19.5π, and the mesh size is h = 0.0082, which implies kh = 0.5023. Left:
the iteration numbers with γ2 = 1/4h−1(1− i), h−1(1− i), 4h−1(1− i), 16h−1(1− i), h−2(1− i)
over γ1 = C1k

1/2(1 − i), where C1 = 2s, s = 4, 3, . . . ,−11. Right: the iteration numbers with
γ1 = 16k1/2(1−i), 4k1/2(1−i), k1/2(1−i), 1/4k1/2(1−i), 1/128k1/2(1−i) over γ2 = C3h

−1(1−i),
where C3 = 2t, t = −4,−3, . . . , 6 and C3 = h−1.

Similarly, we observe that the iteration numbers are almost the same when C3 � 16 and γ2 = C3h
−1(1 − i)

for any fixed γ1, and the choice γ1 = 1
128k

1/2(1 − i) performs best with the least iteration number. Note that
h = 0.0082 and h−2 ≈ 122h−1, the optimal choice that γ2 = h−2(1 − i) is better than γ2 = C3h

−1(1 − i)
with C3 � 16, and this phenomena is consistent with the observation in Remark 3.7. The discussion above also
implies that our choices of the Robin parameters do not affect the optimality of our DD method.

We further consider the following model problem

−�u− k2u = f in Ω,
∂u

∂n
− iku = 0 on Γ , (6.2)

where Γ is the boundary ofΩ with Robin boundary condition and the source term f is the same as problem (6.1).
This type problems are widely used in practical computation. We only test the iteration number of PGMRES
for this problem. The result (see Tab. 6) also shows that our method is stable and better than the other three
DD methods. If the domain is divided by x = 1

3 instead of x = 1
2 , and the source term f = exp{−h−2[(x −

1/3)2 + (y − 1/2)2]}, then we will have a similar result in Table 7.
Next, we shall consider two kinds of more complicated domains. Let Ωd to be a diamond domain with the four

vertices (1
2 , 0), (0, 1

2 ), (1, 1
2 ), (1

2 , 1) (see the left graph of Fig. 4). The corresponding equation can be written as

−�u− k2u = f in Ωd,
∂u

∂n
− iku = 0 on Γ , (6.3)
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Table 6. The iteration numbers of different wave number k and different methods for kh =
constant, where kh ≈ 0.5.

k RO OS T-OS FETI-H

10π 5 13 14 22
20π 4 15 16 30
40π 4 17 18 43
80π 4 19 20 56
160π 4 21 22 68

Table 7. The iteration numbers of different wave number k and different methods for non-
symmetric decomposition with kh = constant, where kh ≈ 0.5.

k RO OS T-OS FETI-H
10π 6 14 14 24
20π 7 15 16 34
40π 8 17 18 46
80π 8 19 20 57
160π 9 21 22 70

Figure 4. Left: the diamond domain. Right: the domain with a scatterer.

Table 8. The iteration numbers of different wave number k and different methods with kh =
constant, where kh ≈ 0.5 (domain Ωd).

k RO OS T-OS
10π 4 13 14
20π 4 15 16
40π 4 17 18
80π 4 19 20
160π 4 21 22

where Γ is the boundary of Ωd with Robin boundary condition and the source term f is the same as prob-
lem (6.1). The result in Table 8 reveals that our method is also stable and superior to other two DD methods.
Next, let Ωo to be a domain [0, 1] × [0, 1] without inner part [25 ,

3
5 ] × [25 ,

3
5 ] (see the right graph of Fig. 4).
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Table 9. The iteration numbers of different wave number k and different methods with kh =
constant, where kh ≈ 0.5 (domain Ωo).

k RO OS T-OS
10π 6 16 16
20π 7 17 17
40π 8 18 19
80π 8 19 21
160π 9 21 23

Table 10. The iteration numbers of different wave number k and different methods for kh =
constant with 2nd order absorbing boundary condition, where kh ≈ 0.5.

k RO OS T-OS FETI-H

10π 4 11 12 20
20π 4 14 10 31
40π 4 16 12 44
80π 4 18 14 57
160π 4 23 17 73

Table 11. The iteration numbers of different wave number k and different number of subdo-
mains N , for kh = constant, where kh ≈ 0.5, θ = 1/2.

k
RO FETI-H

N = 4 × 1 N = 8 × 1 N = 16 × 1 N = 2 × 2 N = 3 × 3 N = 4 × 4

16 10 15 22 12 18 16
32 11 16 22 20 42 34
64 11 15 22 31 86 74
128 11 16 23 46 190 215
256 11 16 23 62 442 >500
512 11 16 23 81 >500 >500
1024 11 16 23 100 >500 >500

Then the equation is as follows:

−�u− k2u = f1 in Ωo,
∂u

∂n
= 0 on Γ0,

∂u

∂n
− iku = 0 on ΓR, (6.4)

where Γ0 is the internal boundary, ΓR is the external boundary and the source term is f1 = exp{−h−2[(x −
1/2)2+(y−1)2]}. In this case, we also find that our method is better than the other two DD methods in Table 9.
Note that we always use the lowest order absorbing boundary condition ∂u

∂n − iku = 0 in the above numerical
tests. Actually, our method may still work for higher order boundary condition according to our theory. For the
problem (6.1), if we use 2nd order absorbing boundary condition ∂u

∂n − iku− i
2k

∂2u
∂τ2 = 0 on ΓR, where τ denotes

the tangent direction at the boundary, we have the result shown in Table 10, which indicates that our new DD
method is still stable and outperform the other three DD methods.

For many subdomains case, we consider the problem (6.2). Because of the suitable choice of the parameters,
we also find that the iteration number of the new system (5.9) is independent of k (see Tab. 11 for details) and h
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Table 12. The iteration numbers of different mesh size h and different number of subdomains
N , θ = 1/2. The wave number k = 64.

h
RO FETI-H

N = 4 × 1 N = 8 × 1 N = 16 × 1 N = 2 × 2 N = 3 × 3 N = 4 × 4
1

128
11 15 22 31 86 74

1
256

11 15 22 43 94 86
1

512
11 15 22 59 104 104

1
1024

11 15 22 80 117 134

(see Tab. 12 for details). However it may increase as the number of subdomains increasing, which may be due
to the lack of the coarse space. For the other optimized Schwarz methods, the iteration number also increases
as the number of the subdomains becomes large. Similar situation also happens for the FETI-H, FETI-DPH
or BDDC-H methods. But we believe that the iteration number may keep stable if the the coarse space is
sufficiently large.

7. Conclusion

A new and robust two parameters Robin−Robin nonoverlapping domain decomposition method for the
Helmholtz problems is introduced in this paper. We analyze the convergence rate of this method for a model
problem with two subdomains case by Fourier transform. It is proved that by suitable choice of parameters,
the convergence rate ρ < 1 is independent of the mesh size for fixed k and the wave number for kh = constant.
We also extend this method to the many subdomains case. Numerical experiments further show that the DD
method holds optimal convergence rate.

Acknowledgements. We thank the anonymous referees who made many helpful comments and suggestions which lead to
an improved presentation of this paper.
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