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STABILITY ANALYSIS AND ERROR ESTIMATES OF AN EXACTLY
DIVERGENCE-FREE METHOD FOR THE MAGNETIC INDUCTION

EQUATIONS ∗

He Yang
1
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2

Abstract. In this paper, we consider an exactly divergence-free scheme to solve the magnetic induction
equations. This problem is motivated by the numerical simulations of ideal magnetohydrodynamic
(MHD) equations, a nonlinear hyperbolic system with a divergence-free condition on the magnetic
field. Computational methods without satisfying such condition may lead to numerical instability. One
class of methods, constrained transport schemes, is widely used as divergence-free treatments. So far
there is not much analysis available for such schemes. In this work, we take an exactly divergence-
free scheme proposed by [Li and Xu, J. Comput. Phys. 231 (2012) 2655–2675] as a candidate of
the constrained transport schemes, and adapt it to solve the magnetic induction equations. For the
resulting scheme applied to the equations with a constant velocity field, we carry out von Neumann
analysis for numerical stability on uniform meshes. We also establish the stability and error estimates
based on energy methods. In particular, we identify the stability mechanism due to the spatial and
temporal discretizations, and the role of the exactly divergence-free property of the numerical solution
for stability. The analysis based on energy methods can be extended to non-uniform meshes, and they
can also be applied to the magnetic induction equations with a variable velocity field, which is more
relevant to the MHD simulations.
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1. Introduction

The focus of this paper is to analyze an exactly divergence-free method for magnetic induction equations.
This system is extracted from ideal magnetohydrodynamic (MHD) equations, which describe the phenomena
of electrically conducting fluids and can model many problems in astrophysics and engineering. The ideal MHD
equations consist of a set of nonlinear hyperbolic equations with a divergence-free constraint on the magnetic
field, i.e. ∇ · B = 0. If such constraint is satisfied initially with compatible boundary conditions, the exact
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solution will satisfy this condition for all time. Numerical methods which violate the condition may lead to
nonphysical solutions or numerical instability for some problems [3, 5, 11, 22].

One widely used family of approaches to numerically handle the divergence-free condition is called constrained
transport (CT), which was introduced by Evans and Hawley in [8]. The basic idea of a CT scheme, at least
in its original formulation, is to work with the integral form of the magnetic induction equations to maintain
the divergence-free condition exactly or in some discrete sense. The method can also be viewed as a predictor-
corrector approach to approximate the magnetic field. The CT framework was further combined with many
discretizations, such as Godunov (upwind) or central type finite volume, finite difference, finite element methods
with second or higher order accuracy [2, 10, 14, 20, 22]. Recently there have also been developments on devising
CT type methods with the computed magnetic field to be exactly divergence-free [1, 12, 14, 21]. The commonly
available analysis in literature for CT methods is to show the computed magnetic field is (exactly) divergence-
free at time t = tn+1 as long as it is at the previous time t = tn. In this work, we want to gain further theoretical
understanding towards CT type methods.

Given that the ideal MHD equations are nonlinear and hyperbolic, we here take the magnetic induction
equations, the equations satisfied by the magnetic field in the ideal MHD system, as a model problem, and adapt
to it an exactly divergence-free method based on the methods developed in [13] for ideal MHD equations. Using
the resulting scheme as a candidate, we carry out the analysis in order to understand some stability mechanisms
of CT methods, the role of the divergence-free property of the computed magnetic field, and the accuracy of
the methods.

In this work, we specifically consider the two-dimensional magnetic induction equations,{
∂tB + ∇̂ × Ez(u,B) = 0,
∇ · B = 0,

(1.1)

where B = [Bx, By]� is the magnetic field, u = [ux, uy]� is a given velocity field, and Ez(u,B) = uyBx− uxBy
is the z-component of the electric field E = −u × B. In addition, ∇̂ × Ez := [∂Ez

∂y ,−
∂Ez

∂x ]�, and it corresponds
to the first two components of ∇× [0, 0, Ez]�. In two dimensions, (1.1) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂Bx
∂t

+
∂Ez
∂y

= 0,

∂By
∂t

− ∂Ez
∂x

= 0,

∂Bx
∂x

+
∂By
∂y

= 0.

(1.2)

The exactly divergence-free methods in [13] (also see [14]) are based on central discontinuous Galerkin (DG)
methods [15, 16] on overlapping Cartesian meshes for nonlinear hyperbolic equations, and use a different dis-
cretization for the magnetic induction equations. To be more specific, within each time step, the methods
approximate all conservative quantities but the magnetic field with the standard central DG methods. Mean-
while the normal components of the magnetic field on the mesh interfaces are approximated by central DG
type methods based on the magnetic induction equations, and this is then followed by an element-by-element
divergence-free reconstruction procedure. For higher order accuracy, more information about the magnetic field
is extracted, again based on the magnetic induction equations, prior to the reconstruction. The resulting methods
in [13] can have arbitrary order of accuracy, and the divergence-free condition of the magnetic field is satisfied
exactly up to machine accuracy. Different from Godunov (or upwind) type methods, the methods in [13] are
free of exact and approximate Riemann solvers for the MHD system, and they do not explicitly need averaging
or interpolation to construct the electric field flux at the grid points.

In this work, we adapt the method in [13] with the discrete space of the lowest order to solve our model
problem (1.1), and the forward Euler discretization is applied in time. For this method, we first carry out
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von Neumann analysis on uniform meshes when the velocity field u is constant, and obtain the time step con-
dition for numerical stability. Though Fourier analysis is simple and straightforward, it can not be applied to
more general cases such as equations with variable coefficients or schemes on non-uniform meshes. Motivated
by this, we further establish the numerical stability based on energy approach and obtain optimal error esti-
mates for smooth solutions. For the simplicity of the presentation yet without loss of generality, we focus on
the energy type analysis when the scheme is applied to the equations with a constant velocity field on uniform
meshes (see Appendix for numerical stability when the velocity field is spatially dependent). In the analysis,
some non-conventional concepts and techniques are introduced, and this is due to that the method is defined
on two overlapping meshes, with some functions defined on mesh interfaces, and involves element-wise recon-
struction. This includes a suitably chosen discrete energy which is only associated with the normal component
of the magnetic field along mesh interfaces, utilizing the computed solution being exactly divergence-free to
establish stability, and identifying the stability mechanisms due to both spatial and temporal discretizations.
Approximation properties of the discrete spaces are also used as expected. For the two-dimensional case, the
divergence-free condition is closely related to the preservation of the vorticity. In [18], Morton and Roe analyzed
a family of vorticity preserving schemes for a system of wave equations based on Fourier analysis for stability
as well as local truncation errors of the schemes. For the magnetic induction system itself, there have also
been developments based on the related symmetric form of the equations, with some examples including locally
divergence-free discontinuous Galerkin methods [4] and finite difference methods [9, 17].

The remaining of this paper is organized as follows. In Section 2, the formulation of an exactly divergence-
free method is presented. Some properties of the discrete spaces are also discussed. In Section 3, von Neumann
analysis is carried out for numerical stability. Following energy methods, in Section 4 we further establish
stability analysis and the a prior error estimates. In Section 5, several numerical experiments are presented
to confirm or to complement our analytical understanding of the stability condition and the accuracy of the
method. Extension of the present work to more general cases is briefly discussed in Section 6 together with some
concluding remarks.

2. Formulation of the numerical method

In this section, we will introduce some notation and present the formulation of an exactly divergence-free
method for the magnetic induction equations (1.1). The computational domain is Ω = I × J = [xmin, xmax] ×
[ymin, ymax], and the boundary conditions are periodic. We use φx to denote the x component of a vector-valued
function φ = [φx, φy]�, while the x-derivative of a function ψ will be ∂ψ

∂x or dψ
dx . Similar convention will go to

the notation with y, or possibly with t.

2.1. Meshes and discrete spaces

Let {xi}i and {yj}j be partitions of I and J , respectively, satisfying xmin = x0 < x1 < . . . < xNx = xmax

and ymin = y0 < y1 < . . . < yNy = ymax. Let xi+ 1
2

= xi+xi+1
2 and yj+ 1

2
= yj+yj+1

2 . We define two overlapping
meshes for Ω, the C-mesh T C

h = {Ci,j , ∀i, j} and the D-mesh T D
h = {Di,j, ∀i, j}, where Ci,j = Ii+ 1

2
× Jj+ 1

2
and

Di,j = Ii × Jj , with Ii+ 1
2

= [xi, xi+1], Jj+ 1
2

= [yj, yj+1], Ii = [xi− 1
2
, xi+ 1

2
] and Jj = [yj− 1

2
, yj+ 1

2
], see Figure 1.

Without loss of generality, the mesh is assumed to be uniform, with |Ii| = hx and |Jj | = hy (hence |Ii+ 1
2
| = hx

and |Jj+ 1
2
| = hy), ∀i, j, and h = max(hx, hy).

To approximate the magnetic field B, we define a finite dimensional discrete space with respect to each mesh,

M�
h = {w ∈ H(div0;Ω) : w|K ∈ W(K), ∀K ∈ T �

h ,w is periodic in Ω}
= {w ∈ [L2(Ω)]2 : w|K ∈ W(K),∇ · w|K = 0, ∀K ∈ T �

h and the normal component of w

is continuous across the mesh interfaces,w is periodic in Ω},
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Figure 1. Overlapping meshes in two dimensions. Dotted rectangle: bD
x,i− 1

2 ,j
; dotted circle:

bD
y,i,j− 1

2
; solid rectangle: bC

x,i+1,j+ 1
2
; solid circle: bC

y,i+ 1
2 ,j+1

.

where H(div0;Ω) = {w ∈ H(div;Ω) : ∇ · w = 0}, with H(div;Ω) = {w ∈ [L2(Ω)]2 : ∇ · w ∈ L2(Ω)}, and the
local space W(K) is given as

W(K) = {w ∈ [L2(K)]2 : w = (a, b)� + c(x,−y)�, ∀a, b, c ∈ R}. (2.1)

Here and throughout the paper, the superscript � in the notation (such as M�
h or T �

h ) stands for C and D.
One can see that any function in M�

h is piecewise-defined linear polynomial, with the normal components being
continuous across mesh interfaces, and its divergence being zero.

Next we will summarize some properties of the discrete spaces, and they will be repeatedly used in the
analysis. For any φ = [φx, φy]� ∈ W(K), where K = IK × JK = [xl, xr ] × [yl, yr] with the center (x̄, ȳ),
|IK | = Δx, and |JK | = Δy, then

(i) φx(x�, ·) := φ�x, φy(·, y�) := φ�y , � = l, r, are all constant. (2.2a)

(ii) Δy(φrx − φlx) +Δx(φry − φly) = 0. (2.2b)

(iii) φx|K =
(

1 − x− xl
Δx

)
φlx +

x− xl
Δx

φrx, φy|K =
(

1 − y − yl
Δy

)
φly +

y − yl
Δy

φry. (2.2c)

(iv) φx(x̄, ·) =
1
2
(φlx + φrx), φy(·, ȳ) =

1
2
(φly + φry). (2.2d)

(v) With ||φ||2K = ||φx||2K + ||φy||2K , we have (2.2e)
2||φ||2K ≤ Δx(||φx(xl, ·)||2JK

+ ||φx(xr , ·)||2JK
) +Δy(||φy(·, yl)||2IK

+ ||φy(·, yr)||2IK
) ≤ 6||φ||2K .

Here ||·||K stands for the L2 norm onK. Similar notation is (will be) used with the subscript IK , JK , I, or J . The
results (i)-(iv) can be verified straightforwardly, with (ii) derived from the divergence-free property. The result
in (v) comes from ||φ�||2K = 1

3

(
(φl�)2 + (φr�)2 + φl�φr�

)
, � = x, y, directly computed based on (2.2c). From (i),

one can see that the normal component of any function in M�
h on each mesh edge is not only continuous but

also constant. The result in (v) implies a new norm for the space M�
h which is equivalent to the standard L2

norm and defined on mesh interfaces (see next lemma). This new norm is more natural to use to analyze our
scheme given in Section 2.2.
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Lemma 2.1. For any φ� = [φ�x, φ�y]� ∈ M�
h, � = C,D, we have

||φC ||2Ω ≤ hx
∑
i

||φCx (xi, ·)||2J + hy
∑
j

||φCy (·, yj)||2I ≤ 3||φC ||2Ω,

||φD||2Ω ≤ hx
∑
i

||φDx (xi+ 1
2
, ·)||2J + hy

∑
j

||φDy (·, yj+ 1
2
)||2I ≤ 3||φD||2Ω .

Let M̃�
h = {w ∈ H(div;Ω): w|K = (aK + cKx, bK + dKy)�, ∀aK , bK , cK , dK ∈ R, ∀K ∈

T �
h ,w is periodic in Ω}. In both the initialization and error analysis, we will use a projection operator
Π�
h : H(div;Ω) �→ M̃�

h, which is defined as follows. For any K ∈ T �
h , with four edges ei, i = 1, . . . , 4 and

the corresponding outward unit normal nei , the projection Π�
h satisfies

((Π�
hφ) · nei , q)ei

= (φ · nei , q)ei
, ∀q ∈ P 0(ei), i = 1, . . . , 4. (2.3)

Here P 0(ei) stands for the space defined on ei with constant functions. It is easy to see that the operator Π�
h is

well defined and it is a projection. It also preserves constant. In fact, the operator can be given explicitly based
on its definition. With ΠD

h φ as an example, we have

(
ΠD
h φ
)
x
|Di,j =

x− xi− 1
2

hxhy

∫ y
j+ 1

2

y
j− 1

2

(
φx(xi+ 1

2
, y) − φx(xi− 1

2
, y)
)

dy +
1
hy

∫ y
j+ 1

2

y
j− 1

2

φx(xi− 1
2
, y)dy, (2.4a)

(
ΠD
h φ
)
y
|Di,j =

y − yj− 1
2

hxhy

∫ x
i+1

2

x
i− 1

2

(
φy(x, yj+ 1

2
) − φy(x, yj− 1

2
)
)

dx+
1
hx

∫ x
i+1

2

x
i− 1

2

φy(x, yj− 1
2
)dx. (2.4b)

By using the divergence theorem and the definition of the operator, one can also show

Π�
hφ ∈ M�

h, if φ ∈ H(div0;Ω).

In other words, Π∗
h defines a projection operator from H(div0;Ω) to M�

h. In addition, one can establish the
following approximation result: there exists a constant C > 0, independent of h, such that

||φ−Π�
hφ||L2(Ω) ≤ C||φ||H1(Ω)h, ∀φ ∈ H(div;Ω). (2.5)

This can be proved by using Piola transformation and its properties, the fact of Π�
h preserving constant, and

the standard scaling argument, see for example (3.17), (3.19), (3.21), (3.31) in [19].

2.2. An exactly divergence-free method

In reference [13], a family of exactly divergence-free central discontinuous Galerkin methods of arbitrary
order of accuracy was proposed to solve the ideal MHD equations. By assuming the velocity field is given, the
methods can be defined directly to solve the magnetic induction equations (1.2). Next, we will formulate such
method with the lowest order of accuracy for (1.2). In particular, the method involves central discontinuous
Galerkin methods in space defined on mesh edges, followed with an element-by-element reconstruction. In time,
the forward Euler method is applied with the time step τ .

We initialize the algorithm at t = 0 through B0,�
h = Π�

h(B|t=0) ∈ M�
h. Given the numerical solutions

Bn,�
h = [Bn,�x,h, B

n,�
y,h ]� ∈ M�

h at time tn = nτ with n ≥ 0, we look for the numerical solutions Bn+1,�
h =

[Bn+1,�
x,h , Bn+1,�

y,h ]� ∈ M�
h at tn+1 = (n+ 1)τ following two steps.
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Step 1: Look for bn+1,C
x,i (y)|J

j+ 1
2
, bn+1,C

y,j (x)|I
i+ 1

2
, bn+1,D

x,i+ 1
2

(y)|Jj , b
n+1,D

y,j+ 1
2

(x)|Ii ∈ R, such that ∀ μ1(y)|J
j+ 1

2
,

v1(x)|I
i+ 1

2
, μ2(y)|Jj , v2(x)|Ii ∈ R, ∀i, j, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(bn+1,C
x,i , μ1)J

j+ 1
2

=
(
θBn,Dx,h (xi, ·) + (1 − θ)Bn,Cx,h (xi, ·), μ1

)
J

j+ 1
2

+ τGj+ 1
2
(En,Dz,h (xi, ·), μ1),

(bn+1,C
y,j , v1)I

i+ 1
2

=
(
θBn,Dy,h (·, yj) + (1 − θ)Bn,Cy,h (·, yj), v1

)
I

i+ 1
2

+ τHi+ 1
2
(En,Dz,h (·, yj), v1),

(bn+1,D

x,i+ 1
2
, μ2)Jj =

(
θBn,Cx,h (xi+ 1

2
, ·) + (1 − θ)Bn,Dx,h (xi+ 1

2
, ·), μ2

)
Jj

+ τGj(E
n,C
z,h (xi+ 1

2
, ·), μ2),

(bn+1,D

y,j+ 1
2
, v2)Ii =

(
θBn,Cy,h (·, yj+ 1

2
) + (1 − θ)Bn,Dy,h (·, yj+ 1

2
), v2

)
Ii

+ τHi(E
n,C
z,h (·, yj+ 1

2
), v2).

(2.6)

Here θ ∈ [0, 1], En,�z,h = uyB
n,�
x,h − uxB

n,�
y,h , and

Gj+ 1
2
(φ(y), μ(y)) =

(
φ,

dμ
dy

)
J

j+ 1
2

− φ(yj+1)μ(y−j+1) + φ(yj)μ(y+
j ), (2.7a)

Gj(φ(y), μ(y)) =
(
φ,

dμ
dy

)
Jj

− φ(yj+ 1
2
)μ(y−

j+ 1
2
) + φ(yj− 1

2
)μ(y+

j− 1
2
), (2.7b)

Hi+ 1
2
(φ(x), v(x)) = −

(
φ,

dv
dx

)
I

i+ 1
2

+ φ(xi+1)v(x−i+1) − φ(xi)v(x+
i ), (2.7c)

Hi(φ(x), v(x)) = −
(
φ,

dv
dx

)
Ii

+ φ(xi+ 1
2
)v(x−

i+ 1
2
) − φ(xi− 1

2
)v(x+

i− 1
2
), (2.7d)

with (·, ·)I denoting the L2 inner product on a bounded domain I, and μ(y±) = limε→0± μ(y + ε). Moreover,
given that the test functions in (2.6) are all piecewise constants, the line integrals in (2.7) all vanish.

Step 2: Reconstruct Bn+1,�
h ∈ M�

h via an element-by-element procedure. More specifically, on each Ci,j , ∀i, j,
we reconstruct Bn+1,C

h |Ci,j = [Bn+1,C
x,h , Bn+1,C

y,h ]�|Ci,j ∈ W(Ci,j) such that

(i) Bn+1,C
x,h (x�, y) = bn+1,C

x,� (y), � = i, i+ 1, ∀ y ∈ (yj , yj+1), (2.8a)

(ii) Bn+1,C
y,h (x, y�) = bn+1,C

y,� (x), � = j, j + 1, ∀ x ∈ (xi, xi+1). (2.8b)

Similarly, Bn+1,D
h can be defined.

Note that in Step 1 of the algorithm, the normal trace of Bn+1,�
h is first obtained along the mesh edges of T �

h .
In Step 2, Bn+1,�

h is reconstructed with an element-by-element procedure. Following the arguments in [13] (see
Step 2 of the proof of Thm. 3.1 in [13]), we have the following results for the algorithm regarding the solvability
and divergence-free property of the solutions.

Theorem 2.2. Given B0,�
h ∈ M�

h, then both Bn+1,C
h |Cij ∈ W(Cij) and Bn+1,D

h |Dij ∈ W(Dij) are uniquely
determined, ∀i, j, hence Bn+1,�

h ∈ M�
h, ∀n ≥ 0.

3. Numerical stability by Fourier analysis

In this section, we will establish the numerical stability via Fourier analysis when the meshes are uniform
and the velocity field u is constant.
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On the one hand, we can easily verify that the exact solution to the magnetic induction equations with a
constant velocity field, when being divergence-free, satisfies linear advection equation, that is,

∂

∂t
B + ux

∂

∂x
B + uy

∂

∂y
B = 0, (3.1)

a formulation related to the symmetric form of the magnetic induction equations [4, 17]. When the boundary
conditions are periodic, the total energy satisfies

d
dt

∫
Ω

|B|2dxdy = 0, (3.2)

hence it does not change in time. The numerical stability through Fourier method in this section, and the one
based on energy methods in next section (see (4.1)), is a discrete analogue of (3.2). On the other hand, without
the divergence-free condition on the magnetic field, magnetic induction equations can not be symmetrized [17]
and differ greatly from linear advection equation. Moreover, the system admits solutions growing in time. One
such example is given as below when ux = 0:

B(x, y, t) = (sin(x), uy cos(x)t)�.

Our stability analysis uses the divergence-free property of the computed magnetic field.
Based on Step 2 of the algorithm and the fact that the normal component of Bn,�

h on each edge of the mesh
T �
h is constant, we can introduce the following shorthand notation, ∀i, j,

bn,C
x,i,j+ 1

2
= bn,Cx,i (y)|J

j+ 1
2

= bn,Cx,i (yj+ 1
2
) = Bn,Cx,h (xi, y)|J

j+ 1
2

= Bn,Cx,h (xi, yj+ 1
2
).

Similarly, we define bn,C
y,i+ 1

2 ,j
= bn,Cy,j (x)|I

i+ 1
2

= Bn,Cy,h (x, yj)|I
i+ 1

2
, bn,D

x,i+ 1
2 ,j

= bn,D
x,i+ 1

2
(y)|Jj = Bn,Dx,h (xi+ 1

2
, y)|Jj , and

bn,D
y,i,j+ 1

2
= bn,D

y,j+ 1
2
(x)|Ii = Bn,Dy,h (x, yj+ 1

2
)|Ii , see Figure 1 (without the superscript n). The proposed scheme now

can be written in terms of the new notation. For any i, j, and n ≥ 0,

bn+1,C

x,i,j+ 1
2

= (1 − θ)bn,C
x,i,j+ 1

2
+
τux
2hy

(
bn,D
y,i,j+ 3

2
− bn,D

y,i,j− 1
2

)
+
(
θ

4
+
τuy
2hy

)(
bn,D
x,i− 1

2 ,j
+ bn,D

x,i+ 1
2 ,j

)
+
(
θ

4
− τuy

2hy

)(
bn,D
x,i− 1

2 ,j+1
+ bn,D

x,i+ 1
2 ,j+1

)
(3.3a)

bn+1,C

y,i+ 1
2 ,j

= (1 − θ)bn,C
y,i+ 1

2 ,j
+
τuy
2hx

(
bn,D
x,i+ 3

2 ,j
− bn,D

x,i− 1
2 ,j

)
+
(
θ

4
+
τux
2hx

)(
bn,D
y,i,j− 1

2
+ bn,D

y,i,j+ 1
2

)
+
(
θ

4
− τux

2hx

)(
bn,D
y,i+1,j− 1

2
+ bn,D

y,i+1,j+ 1
2

)
(3.3b)

bn+1,D

x,i− 1
2 ,j

= (1 − θ)bn,D
x,i− 1

2 ,j
+
τux
2hy

(
bn,C
y,i− 1

2 ,j+1
− bn,C

y,i− 1
2 ,j−1

)
+
(
θ

4
+
τuy
2hy

)(
bn,C
x,i−1,j− 1

2
+ bn,C

x,i,j− 1
2

)
+
(
θ

4
− τuy

2hy

)(
bn,C
x,i−1,j+ 1

2
+ bn,C

x,i,j+ 1
2

)
(3.3c)

bn+1,D

y,i,j− 1
2

= (1 − θ)bn,D
y,i,j− 1

2
+
τuy
2hx

(
bn,C
x,i+1,j− 1

2
− bn,C

x,i−1,j− 1
2

)
+
(
θ

4
+
τux
2hx

)(
bn,C
y,i− 1

2 ,j−1
+ bn,C

y,i− 1
2 ,j

)
+
(
θ

4
− τux

2hx

)(
bn,C
y,i+ 1

2 ,j−1
+ bn,C

y,i+ 1
2 ,j

)
. (3.3d)

The divergence-free property of the computed magnetic field also implies the following compatibility conditions,⎧⎪⎨⎪⎩
hy

(
bn,C
x,i+1,j+ 1

2
− bn,C

x,i,j+ 1
2

)
+ hx

(
bn,C
y,i+ 1

2 ,j+1
− bn,C

y,i+ 1
2 ,j

)
= 0,

hy

(
bn,D
x,i+ 1

2 ,j
− bn,D

x,i− 1
2 ,j

)
+ hx

(
bn,D
y,i,j+ 1

2
− bn,D

y,i,j− 1
2

)
= 0.

(3.4)
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Theorem 3.1. For any given θ ∈ (0, 1], a sufficient and necessary condition for the proposed scheme
in (2.6)−(2.8) to be stable is(

1−θ± θ cos
(
k1hx

2

)
cos
(
k2hy

2

))2

+
(

2τux
hx

sin
(
k1hx

2

)
cos
(
k2hy

2

)
+

2τuy
hy

cos
(
k1hx

2

)
sin
(
k2hy

2

))2

≤ 1

(3.5)
for any k1, k2 ∈ R. Moreover, the scheme is stable under the following CFL condition on the time step τ ,(

2τux
hx

)2

+
(

2τuy
hy

)2

≤ θ. (3.6)

Proof. To carry out the Fourier analysis, we let

(bn,Cx,h , b
n,C
y,h , b

n,D
x,h , b

n,D
y,h )� = (b̂n,Cx , b̂n,Cy , b̂n,Dx , b̂n,Dy )�ei(k1x+k2y) (3.7)

where k1, k2 ∈ R being arbitrary. With this ansatz, the scheme (3.3) becomes

b̂n+1,C
x = (1 − θ)b̂n,Cx +

τuxi

hy
sin(k2hy)b̂n,Dy + cos

(
k1hx

2

)(
θ cos

(
k2hy

2

)
− 2τuyi

hy
sin
(
k2hy

2

))
b̂n,Dx

b̂n+1,C
y = (1 − θ)b̂n,Cy +

τuyi

hx
sin(k1hx)b̂n,Dx + cos

(
k2hy

2

)(
θ cos

(
k1hx

2

)
− 2τuxi

hx
sin
(
k1hx

2

))
b̂n,Dy

b̂n+1,D
x = (1 − θ)b̂n,Dx +

τuxi

hy
sin(k2hy)b̂n,Cy + cos

(
k1hx

2

)(
θ cos

(
k2hy

2

)
− 2τuyi

hy
sin
(
k2hy

2

))
b̂n,Cx

b̂n+1,D
y = (1 − θ)b̂n,Dy +

τuyi

hx
sin(k1hx)b̂n,Cx + cos

(
k2hy

2

)(
θ cos

(
k1hx

2

)
− 2τuxi

hx
sin
(
k1hx

2

))
b̂n,Cy ,

(3.8)

while the compatible conditions in (3.4) give

hy sin
(
k1hx

2

)
b̂n,Cx + hx sin

(
k2hy

2

)
b̂n,Cy = 0, hy sin

(
k1hx

2

)
b̂n,Dx + hx sin

(
k2hy

2

)
b̂n,Dy = 0. (3.9)

Now combining (3.8) and (3.9), one gets{
b̂n+1,C
x = (1 − θ)b̂n,Cx + ζb̂n,Dx

b̂n+1,D
x = ζb̂n,Cx + (1 − θ)b̂n,Dx

(3.10)

where

ζ = θ cos
(
k1hx

2

)
cos
(
k2hy

2

)
− 2τuxi

hx
sin
(
k1hx

2

)
cos
(
k2hy

2

)
− 2τuyi

hy
cos
(
k1hx

2

)
sin
(
k2hy

2

)
·

Note that the amplification matrix Q of (3.10) is a normal matrix, that is, (Q̄)�Q = Q(Q̄)�. This implies a
sufficient and necessary condition for the stability of the proposed scheme is that both the eigenvalues of Q have
the magnitude no larger than 1. More specifically, the two roots λ1 and λ2 of the equation (1 − θ − λ)2 = ζ2

satisfy |λ1|, |λ2| ≤ 1, and this leads to the condition in (3.5).
Next, we want to obtain a simpler stability condition which can be easier to use in practice. Based on (3.5)

and with θ ∈ (0, 1], a sufficient condition is given below for stability,((
2τux
hx

)2

+
(

2τuy
hy

)2
)(

ξ2(1 − η2) + η2(1 − ξ2)
)
≤ 1 − (1 − θ + θξη)2, ∀ξ, η ∈ [−1, 1]
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and hence((
2τux
hx

)2

+
(

2τuy
hy

)2
)(

ξ2 + η2 − 2(ξη)2
)
≤ θ

(
−θ(1 − ξη)2 + 2(1 − ξη)

)
, ∀ξ, η ∈ [−1, 1]. (3.11)

One can verify that for any fixed ξη = z ∈ [−1, 1] with ξ, η ∈ [−1, 1], the maximum value of ξ2 + η2 is 1 + z2.
With this, the inequality (3.11) further leads to((

2τux
hx

)2

+
(

2τuy
hy

)2
)(

1 + z2 − 2z2
)
≤ θ

(
−θ(1 − z)2 + 2(1 − z)

)
, ∀z ∈ [−1, 1]

⇔
((

2τux
hx

)2

+
(

2τuy
hy

)2
)

(1 + z) ≤ θ (−θ(1 − z) + 2) , ∀z ∈ [−1, 1]

⇔
(

2τux
hx

)2

+
(

2τuy
hy

)2

≤ θ min
z∈[−1,1]

−θ(1 − z) + 2
1 + z

= θ.

This is exactly the sufficient condition (3.6). �

4. Numerical stability and error estimates by energy methods

The numerical stability established via von Neumann analysis in Section 3 is simple and straightforward,
yet the analysis itself only suits for problems with constant coefficients and on uniform meshes. The exactly
divergence-free methods in [13] can be defined on non-uniform Cartesian meshes for magnetic induction equa-
tions with a variable velocity field as the coefficients, a case which is more relevant to the MHD simulations.
Moreover, the methods can be formulated to have (k + 1)th order accuracy by using the divergence-free space
M�,k

h , a subspace of the H(div)-conforming BDM finite element space (see [13] and also [6]), with any integer
k > 0. (One can see that M�,0

h is the same as M�
h in the present work.) For these methods, a Fourier analysis

will boil down to an eigenvalue problem of a (4k + 2) × (4k + 2) amplification matrix, and such eigenvalue
problem in general can not be solved analytically and would rely on numerical computation for any given set
of parameters.

Motivated by these considerations, next we will present stability and error estimates based on energy ap-
proach, which is seemingly more involved, yet provides a more general framework to analyze the methods
without the aforementioned limitations of the Fourier analysis. Though the analysis can be established for
general Cartesian meshes and with variable velocity fields, we here only focus on the constant velocity field
case on uniform meshes to better illustrate the analysis (see Appendix for numerical stability with a variable
velocity field on uniform meshes). The analysis for higher order divergence-free schemes can follow the similar
framework, yet with extra complication (potentially) coming from the higher order time discretizations (see
e.g. [23,24] for analyzing DG methods with the second and third order Runge−Kutta time discretizations), the
additional element-based degrees of freedom to represent the functions in the discrete spaces (see e.g. [6,13]), or
from the need to identify the stability mechanism associated with the use of overlapping meshes. Such analysis
will be pursued in a separate project.

4.1. Stability analysis

We will start with the stability analysis via energy approach. The main result is given in Theorem 4.1, which
is stated in terms of a discrete energy

Eh(Bn,C
h ,Bn,D

h ) := hx
∑
i

(
||Bn,Cx,h (xi, ·)||2J + ||Bn,Dx,h (xi+ 1

2
, ·)||2J

)
+ hy

∑
j

(
||Bn,Cy,h (·, yj)||2I + ||Bn,Dy,h (·, yj+ 1

2
)||2I
)
.

From Lemma 2.1, we know that the square root of this discrete energy is equivalent to the standard L2-norm
of the numerical solutions, namely, (||Bn,C

h ||2Ω + ||Bn,D
h ||2Ω)1/2 for the space MC

h ×MD
h .
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Theorem 4.1. Given any θ ∈ (0, 1), the numerical solutions of the proposed method in (2.6)−(2.8) satisfy

Eh(Bn+1,C
h ,Bn+1,D

h ) ≤ Eh(Bn,C
h ,Bn,D

h ), ∀n ≥ 0 (4.1)

under the following CFL condition on the time step τ

τ ≤ τstab :=
√
θ

(
1
2
−

√
θ

2

)√
min(hx, hy)hxhy

max(|ux|, |uy|)(|ux| + |uy|)(hx + hy)
· (4.2)

To make the proof of Theorem 4.1 easier to follow, we next organize the technical details into some preparatory
lemmas in Section 4.1.1, whose proofs can be skipped by the readers during their first round of reading, while
the main stability result is proved in Section 4.1.2.

4.1.1. Preliminary lemmas

For all the lemmas below, the results greatly rely on the properties of the discrete spaces summarized in (2.2).
In particular, to get Lemma 4.3, one needs the approximating functions to be divergence-free.

We will soon see that there are two types of terms contributing to numerical stability. The first type is related
to Bn+1,�

h − Bn,�
h , particularly in the form of∑

i

||Bn+1,D
x,h (xi+ 1

2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)||2J ,

∑
i

||Bn+1,C
x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J ,∑

j

||Bn+1,D
y,h (·, yj+ 1

2
) −Bn,Dy,h (·, yj+ 1

2
)||2I ,

∑
j

||Bn+1,C
y,h (·, yj) −Bn,Cy,h (·, yj)||2I ,

and such terms are related to the use of the forward (or backward) Euler method in time. The other type is
more unique for the central methods on overlapping meshes. For the method proposed here, the terms are in
the form of ∑

i

∑
s=i± 1

2

||Bn,Dx,h (xs, ·) − Bn,Cx,h (xi, ·)||2J ,
∑
j

∑
s=j± 1

2

||Bn,Dy,h (·, ys) − Bn,Cy,h (·, yj)||2I . (4.3)

These terms serve a similar role as the jumps of the approximating functions at the mesh interfaces in the
analysis of discontinuous Galerkin methods [7]. In the proof of Lemma 4.4, a crucial ingredient is to properly
decompose some expressions into terms in (4.3). Similar as in Section 3, the following shorthand notation will
be used in this subsection. For any given φ� = [φ�x, φ

�
y ]

� ∈ M�
h, � = C or D, and with ∀i, j, we let

φCx,i,j+ 1
2

= φCx (xi, y)|J
j+ 1

2
, φCy,i+ 1

2 ,j
= φCy (x, yj)|I

i+ 1
2
, φDx,i+ 1

2 ,j
= φDx (xi+ 1

2
, y)|Jj , φ

D
y,i,j+ 1

2
= φDy (x, yj+ 1

2
)|Ii ,

see Figure 1, with b in the plot replaced by φ.

Lemma 4.2. Let ϕC = [ϕCx , ϕCy ]� ∈ MC
h , φD = [φDx , φDy ]� ∈ MD

h , then

∑
i

(
φDx (xi, ·) − ϕCx (xi, ·), ϕCx (xi, ·)

)
J

+
∑
i

(
ϕCx (xi+ 1

2
, ·) − φDx (xi+ 1

2
, ·), φDx (xi+ 1

2
, ·)
)
J

= −1
2

∑
i

∑
s=i± 1

2

||φDx (xs, ·) − ϕCx (xi, ·)||2J . (4.4)
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Proof. Using the property of W(K) in (2.2d), and the periodicity of the involved functions, one gets∑
i

(
φDx (xi, ·) − ϕCx (xi, ·), ϕCx (xi, ·)

)
J

+
∑
i

(
ϕCx (xi+ 1

2
, ·) − φDx (xi+ 1

2
, ·), φDx (xi+ 1

2
, ·)
)
J

=
1
2

∑
i

(
φDx (xi− 1

2
, ·) − ϕCx (xi, ·), ϕCx (xi, ·)

)
J

+
1
2

∑
i

(
φDx (xi+ 1

2
, ·) − ϕCx (xi, ·), ϕCx (xi, ·)

)
J

+
1
2

∑
i

(
ϕCx (xi, ·) − φDx (xi+ 1

2
, ·), φDx (xi+ 1

2
, ·)
)
J

+
1
2

∑
i

(
ϕCx (xi+1, ·) − φDx (xi+ 1

2
, ·), φDx (xi+ 1

2
, ·)
)
J

= −1
2

∑
i

||φDx (xi+ 1
2
, ·) − ϕCx (xi+1, ·)||2J − 1

2

∑
i

||φDx (xi+ 1
2
, ·) − ϕCx (xi, ·)||2J . (4.5)

�

Lemma 4.3. Let ϕC = [ϕCx , ϕ
C
y ]� ∈ MC

h , φD = [φDx , φ
D
y ]� ∈ MD

h , then

(i)
∑
i,j

Gj+ 1
2
(φDx (xi, ·), ϕCx (xi, ·)) +

∑
i,j

Gj(ϕCx (xi+ 1
2
, ·), φDx (xi+ 1

2
, ·)) = 0, (4.6)

(ii)
∑
i,j

Gj+ 1
2
(φDy (xi, ·), ϕCx (xi, ·)) +

∑
i,j

Gj(ϕCy (xi+ 1
2
, ·), φDx (xi+ 1

2
, ·)) = 0. (4.7)

Proof. To prove equality (4.6), we first rewrite Gj+ 1
2
(φDx (xi, ·), ϕCx (xi, ·)) and Gj(ϕCx (xi+ 1

2
, ·), φDx (xi+ 1

2
, ·)) based

on the properties of W(K) in (2.2d) and (2.2a),

Gj+ 1
2
(φDx (xi, ·), ϕCx (xi, ·)) =

1
2

(
−φDx,i− 1

2 ,j+1 − φDx,i+ 1
2 ,j+1 + φDx,i− 1

2 ,j
+ φDx,i+ 1

2 ,j

)
ϕCx,i,j+ 1

2
, (4.8)

Gj(ϕCx (xi+ 1
2
, ·), φDx (xi+ 1

2
, ·)) =

1
2

(
−ϕCx,i,j+ 1

2
− ϕCx,i+1,j+ 1

2
+ ϕCx,i,j− 1

2
+ ϕCx,i+1,j− 1

2

)
φDx,i+ 1

2 ,j
. (4.9)

Summing them up over i, j, and rearranging the sub-indices, we obtain (4.6).
To prove (4.7), we again rewriteGj+ 1

2
(φDy (xi, ·), ϕCx (xi, ·)) based on the property of W(K) in (2.2d) and (2.2a),

in addition, we will utilize the divergence-free property of φD given in (2.2b) to reformulate φDy in terms of φDx ,

Gj+ 1
2
(φDy (xi, ·), ϕCx (xi, ·)) =

1
2

(
−φDy,i,j+ 1

2
− φDy,i,j+ 3

2
+ φDy,i,j− 1

2
+ φDy,i,j+ 1

2

)
ϕCx,i,j+ 1

2
(4.10)

=
hy
2hx

(
φDx,i+ 1

2 ,j
− φDx,i− 1

2 ,j
+ φDx,i+ 1

2 ,j+1 − φDx,i− 1
2 ,j+1

)
ϕCx,i,j+ 1

2
. (4.11)

Similarly,

Gj(ϕCy (xi+ 1
2
, ·), φDx (xi+ 1

2
, ·)) =

hy
2hx

(
ϕCx,i+1,j− 1

2
− ϕCx,i,j− 1

2
+ ϕCx,i+1,j+ 1

2
− ϕCx,i,j+ 1

2

)
φDx,i+ 1

2 ,j
. (4.12)

Summing (4.11) and (4.12) up over i and j, together with the periodicity, we get (4.7). �

Lemma 4.4. Let φ� = [φ�x, φ
�
y]

�, ϕ� = [ϕ�x, ϕ
�
y]

� ∈ M�
h, then for any α > 0, we have

(i)
∑
i,j

Gj+ 1
2
(φDx (xi, ·), ϕCx (xi, ·)) ≤

α

hy

∑
i

||ϕCx (xi, ·)||2J +
1

2αhy

∑
i

∑
s=i± 1

2

||φDx (xs, ·) − φCx (xi, ·)||2J ,

(ii)
∑
i,j

Gj+ 1
2
(φDy (xi, ·), ϕCx (xi, ·)) ≤

α

hy

∑
i

||ϕCx (xi, ·)||2J +
1

2αhx

∑
j

∑
s=j± 1

2

||φDy (·, ys) − φCy (·, yj)||2I ,
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(iii)
∑
i,j

Gj(φCx (xi+ 1
2
, ·), ϕDx (xi+ 1

2
, ·)) ≤ α

hy

∑
i

||ϕDx (xi+ 1
2
, ·)||2J +

1
2αhy

∑
i

∑
s=i± 1

2

||φDx (xs, ·) − φCx (xi, ·)||2J ,

(iv)
∑
i,j

Gj(φCy (xi+ 1
2
, ·), ϕDx (xi+ 1

2
, ·)) ≤ α

hy

∑
i

||ϕDx (xi+ 1
2
, ·)||2J +

1
2αhx

∑
j

∑
s=j± 1

2

||φDy (·, ys) − φCy (·, yj)||2I .

Proof. Based on (4.8), we can derive the result in part (i) by properly inserting and subtracting some terms
defined on C-mesh, followed with the use of Young’s inequality and the property of W(K) in (2.2a).

∑
i,j

Gj+ 1
2
(φDx (xi, ·), ϕCx (xi, ·)) =

1
2

∑
i,j

(
−φDx,i− 1

2 ,j+1 − φDx,i+ 1
2 ,j+1 + φDx,i− 1

2 ,j
+ φDx,i+ 1

2 ,j

)
ϕCx,i,j+ 1

2

≤ 1
4α

∑
i,j

(
(φDx,i− 1

2 ,j+1−φ
C
x,i,j+ 1

2
)2+(φDx,i+ 1

2 ,j+1−φ
C
x,i,j+ 1

2
)2
)
+α

∑
i,j

(
ϕCx,i,j+ 1

2

)2

+
1
4α

∑
i,j

(
(φDx,i− 1

2 ,j
− φCx,i,j+ 1

2
)2 + (φDx,i+ 1

2 ,j
− φCx,i,j+ 1

2
)2
)

=
1

2αhy

∑
i

(
||φDx (xi− 1

2
, ·) − φCx (xi, ·)||2J + ||φDx (xi+ 1

2
, ·) − φCx (xi, ·)||2J

)
+

α

hy

∑
i

||ϕCx (xi, ·)||2J .

To establish the result in part (ii), we start with (4.10),

∑
i,j

Gj+ 1
2
(φDy (xi, y), ϕCx (xi, y)) = −1

2

(
φDy,i,j+ 3

2
− φDy,i,j− 1

2

)
ϕCx,i,j+ 1

2
, (4.13)

and rewrite φD
y,i,j+ 3

2
− φD

y,i,j− 1
2

by properly inserting and subtracting some terms on C-mesh,

φDy,i,j+ 3
2
− φDy,i,j− 1

2
= φDy,i,j+ 3

2
∓ φCy,i+ 1

2 ,j+1 ∓ φDy,i,j+ 1
2
∓ φCy,i+ 1

2 ,j
− φDy,i,j− 1

2
. (4.14)

Now using (4.14), Young’s inequality, and the property (2.2a) of W(K), we can get

∑
i,j

Gj+ 1
2
(φDy (xi, y), ϕCx (xi, y))

≤ 1
4α

∑
i,j

(
(φDy,i,j+ 3

2
− φCy,i+ 1

2 ,j+1)
2 + (φCy,i+ 1

2 ,j+1 − φDy,i,j+ 1
2
)2
)

+
1
4α

∑
i,j

(
(φDy,i,j+ 1

2
− φCy,i+ 1

2 ,j
)2 + (φCy,i+ 1

2 ,j
− φDy,i,j− 1

2
)2
)

+ α
∑
i

(ϕCx,i,j+ 1
2
)2

=
1

2αhx

∑
j

(
||φDy (·, yj+ 1

2
) − φCy (·, yj)||2I + ||φDy (·, yj+ 1

2
) − φCy (·, yj+1)||2I

)
+

α

hy

∑
i

||ϕCx (xi, ·)||2J .

This completes part (ii) of the lemma. (iii) and (iv) can be proved similarly. �
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4.1.2. Stability analysis: proof of Theorem 4.1

Taking μ1(y) = bn+1,C
x,i (y) = Bn+1,C

x,h (xi, y), μ2(y) = bn+1,D

x,i+ 1
2

(y) = Bn+1,D
x,h (xi+ 1

2
, y) in (2.6), and summing up

the resulting equations over all i, j, we obtain
1
2

∑
i

(
||bn+1,C
x,i ||2J + ||bn+1,D

x,i+ 1
2
||2J − ||bn,Cx,i ||2J − ||bn,D

x,i+ 1
2
||2J
)

= − 1
2

∑
i

||Bn+1,C
x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J

− 1
2

∑
i

||Bn+1,D
x,h (xi+ 1

2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)||2J

+ Λ1 + Λ2 + Λ3 + Λ4, (4.15)

where

Λ1 = θ
∑
i

{(
Bn,Dx,h (xi, ·) −Bn,Cx,h (xi, ·), Bn,Cx,h (xi, ·)

)
J

+
(
Bn,Cx,h (xi+ 1

2
, ·) −Bn,Dx,h (xi+ 1

2
, ·), Bn,Dx,h (xi+ 1

2
, ·)
)
J

}
,

Λ2 = τ
∑
i,j

Gj+ 1
2
(En,Dz,h (xi, ·), Bn,Cx,h (xi, ·)) + τ

∑
i,j

Gj(E
n,C
z,h (xi+ 1

2
, ·), Bn,Dx,h (xi+ 1

2
, ·)),

Λ3 = θ
∑
i

(
Bn,Dx,h (xi, ·) −Bn,Cx,h (xi, ·), Bn+1,C

x,h (xi, ·) −Bn,Cx,h (xi, ·)
)
J

+θ
∑
i

(
Bn,Cx,h (xi+ 1

2
, ·) −Bn,Dx,h (xi+ 1

2
, ·), Bn+1,D

x,h (xi+ 1
2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)
)
J
,

Λ4 = τ
∑
i,j

Gj+ 1
2
(En,Dz,h (xi, ·), Bn+1,C

x,h (xi, ·) −Bn,Cx,h (xi, ·))

+τ
∑
i,j

Gj(E
n,C
z,h (xi+ 1

2
, ·), Bn+1,D

x,h (xi+ 1
2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)).

Next we estimate each Λi term, i = 1, . . . , 4. For Λ1, with Bn,�
h ∈ M�

h, we take ϕC = Bn,C
h , φD = Bn,D

h in
Lemma 4.2 and obtain

Λ1 = −θ
2

∑
i

∑
s=i± 1

2

||Bn,Dx,h (xs, ·) −Bn,Cx,h (xi, ·)||2J . (4.16)

For Λ2, using En,�z,h = uyB
n,�
x,h − uxB

n,�
y,h , the bilinearity of Gj , Gj+ 1

2
, and taking ϕC = Bn,C

h and φD = Bn,D
h in

Lemma 4.3, we have
Λ2 = 0. (4.17)

With (2.2d) and Young’s inequality, we can estimate Λ3 with any α1 > 0 as follows.

Λ3 ≤ θ2

4α1

∑
i

||1
2
Bn,Dx,h (xi− 1

2
, ·) +

1
2
Bn,Dx,h (xi+ 1

2
, ·) −Bn,Cx,h (xi, ·)||2J

+
θ2

4α1

∑
i

||Bn,Dx,h (xi+ 1
2
, ·) − 1

2
Bn,Cx,h (xi, ·) −

1
2
Bn,Cx,h (xi+1, ·)||2J

+ α1

∑
i

(
||Bn+1,C

x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J + ||Bn+1,D
x,h (xi+ 1

2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)||2J

)
≤ θ2

4α1

∑
i

∑
s=i± 1

2

||Bn,Dx,h (xs, ·) −Bn,Cx,h (xi, ·)||2J

+ α1

∑
i

(
||Bn+1,C

x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J + ||Bn+1,D
x,h (xi+ 1

2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)||2J

)
. (4.18)

The last inequality is obtained by applying (a+ b)2 ≤ 2(a2 + b2) and re-arranging the indices.
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For the last term Λ4, using En,�z,h = uyB
n,�
x,h − uxB

n,�
y,h , the bilinearity of Gj , Gj+ 1

2
, and applying (i)−(iv) of

Lemma 4.4 with ∀α2 > 0, we have

Λ4 ≤ α2(|ux| + |uy|)τ
hy

∑
i

(
||Bn+1,D

x,h (xi+ 1
2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)||2J + ||Bn+1,C

x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J
)

+
|uy|τ
α2hy

∑
i

∑
s=i± 1

2

||Bn,Dx,h (xs, ·) −Bn,Cx,h (xi, ·)||2J +
|ux|τ
α2hx

∑
j

∑
s=j± 1

2

||Bn,Dy,h (·, ys) −Bn,Cy,h (·, yj)||2I . (4.19)

Now we can sum up (4.16)−(4.19), and provide an upper bound for (4.15),

1
2

∑
i

(
||bn+1,C
x,i ||2J + ||bn+1,D

x,i+ 1
2
||2J − ||bn,Cx,i ||2J − ||bn,D

x,i+ 1
2
||2J
)

(4.20)

≤
(
−1

2
+ α1 +

α2(|ux| + |uy|)τ
hy

)∑
i

||Bn+1,D
x,h (xi+ 1

2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)||2J

+
(
−1

2
+ α1 +

α2(|ux| + |uy|)τ
hy

)∑
i

||Bn+1,C
x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J

+
(
−θ

2
+

θ2

4α1
+

|uy|τ
α2hy

)∑
i

∑
s=i± 1

2

||Bn,Dx,h (xs, ·) −Bn,Cx,h (xi, ·)||2J

+
|ux|τ
α2hx

∑
j

∑
s=j± 1

2

||Bn,Dy,h (·, ys) −Bn,Cy,h (·, yj)||2I .

Similarly we can work with the second and fourth equations in (2.6) by interchanging the indices x and y, i
and j, and get an estimate for 1

2

∑
j

(
||bn+1,C
y,j ||2I + ||bn+1,D

y,j+ 1
2
||2I − ||bn,Cy,j ||2I − ||bn,D

y,j+ 1
2
||2I
)
. Combining this estimate

and (4.20), one gets for any α1, α2 > 0,

1
2

(
Eh(Bn+1,C

h ,Bn+1,D
h ) − Eh(Bn,C

h ,Bn,D
h )

)
≤hx

(
−1

2
+ α1 +

α2(|ux| + |uy|)τ
hy

)∑
i

||Bn+1,D
x,h (xi+ 1

2
, ·) −Bn,Dx,h (xi+ 1

2
, ·)||2J

+ hx

(
−1

2
+ α1 +

α2(|ux| + |uy|)τ
hy

)∑
i

||Bn+1,C
x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J

+ hy

(
−1

2
+ α1 +

α2(|ux| + |uy|)τ
hx

)∑
j

||Bn+1,D
y,h (·, yj+ 1

2
) −Bn,Dy,h (·, yj+ 1

2
)||2I

+ hy

(
−1

2
+ α1 +

α2(|ux| + |uy|)τ
hx

)∑
j

||Bn+1,C
y,h (·, yj) −Bn,Cy,h (·, yj)||2I

+ hx

(
−θ

2
+

θ2

4α1
+

|uy|τ
α2hy

+
|uy|τ
α2hx

)∑
i

∑
s=i± 1

2

||Bn,Dx,h (xs, ·) −Bn,Cx,h (xi, ·)||2J

+ hy

(
−θ

2
+

θ2

4α1
+

|ux|τ
α2hx

+
|ux|τ
α2hy

)∑
j

∑
s=j± 1

2

||Bn,Dy,h (·, ys) −Bn,Cy,h (·, yj)||2I . (4.21)
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In order to achieve Eh(Bn+1,C
h ,Bn+1,D

h ) ≤ Eh(Bn,C
h ,Bn,D

h ), we require that the coefficients in front of all terms
on the right-hand side of (4.21) are non-positive. That is,

−1
2

+ α1 +
α2(|ux| + |uy|)τ

hy
≤ 0, − 1

2
+ α1 +

α2(|ux| + |uy|)τ
hx

≤ 0, (4.22a)

−θ
2

+
θ2

4α1
+

|uy|τ
α2hy

+
|uy|τ
α2hx

≤ 0, − θ

2
+

θ2

4α1
+

|ux|τ
α2hx

+
|ux|τ
α2hy

≤ 0. (4.22b)

This first puts a constraint on the constant α1, namely, θ
2 < α1 <

1
2 . Under this condition, one can easily see

that the four inequalities in (4.22) are equivalent to

τ ≤ min
(
γ(α1)
α2

, ϑ(α1)α2

)
, (4.23)

where γ(α1) =
(

1
2 − α1

) min(hx,hy)
|ux|+|uy| and ϑ(α1) =

(
θ
2 − θ2

4α1

)
hxhy

max(|ux|,|uy|)(hx+hy) . Finally we carefully choose

α1 ∈ ( θ2 ,
1
2 ) and α2 > 0, so that the upper bound of (4.23) is maximized and hence provides the best condition

for the time step τ for any fixed θ ∈ (0, 1) to ensure the numerical stability.

τ ≤ max
α1∈( θ

2 ,
1
2 )

max
α2>0

min(
γ(α1)
α2

, ϑ(α1)α2)

= max
α1∈( θ

2 ,
1
2 )

√
γ(α1)ϑ(α1) (achieved at α2 =

√
γ(α1)/ϑ(α1))

= max
α1∈( θ

2 ,
1
2 )

√(
1
2
− α1

)(
θ

2
− θ2

4α1

)
min(hx, hy)hxhy

max(|ux|, |uy|)(|ux| + |uy|)(hx + hy)

=
√
θ

(
1
2
−

√
θ

2

)√
min(hx, hy)hxhy

max(|ux|, |uy|)(|ux| + |uy|)(hx + hy)

(
achieved at α1 =

√
θ

2

)
·

Remark 4.5. Compared with the Fourier analysis, the CFL condition for stability via the energy analysis is
much more pessimistic. In fact, this discrepancy can be even illustrated well when Fourier and energy analyses
are applied to central DG methods solving the simple advection equation ut + aux = 0. What leads to this
sub-optimal stability condition in energy analysis is the use of the Young’s inequality to bound Λ2 and Λ4 in
the proof of Theorem 4.1 in Section 4.1.2. A much improved CFL condition can be obtained if one works with
Λi, i = 1, . . . , 4 all together and maximizes a quadratic function with a finite-dimensional input. The details are
more tedious and hence not presented here.

4.2. Error estimate

In this section, we will establish the L2 error estimate of the proposed method up to any given time T > 0
when the exact solution has sufficient regularity. Without loss of generality, it is assumed h < 1

2 . The main
result is stated in next Theorem.

Theorem 4.6. Let B be a sufficiently smooth exact solution to the magnetic induction equations (1.1), with
the initial data being divergence-free, let Bn denote the exact solution B at tn. With any given θ ∈ (0, 1)
in (2.6), let Bn,�

h ∈ M�
h be the numerical solution of the proposed scheme in (2.6)−(2.8) with the initialization

B�
h = Π�

h(B|t=0). As long as the time step τ satisfies τ = στstab with σ ≤ 1, we have

||Bn − Bn,C
h ||20,Ω + ||Bn − Bn,D

h ||20,Ω

≤ C†
(

exp
(
T
hx + hy

τ

){
θ2

(hx + hy)5

hxhy
+ (|ux| + |uy|)2

τ2(hx + hy)5

hxhy
+

τ4

hxhy

}
+ h2

)
, (4.24)
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for any n : nτ ≤ T . Here the positive constant C† depends on some Sobolev norms of the exact solution on
Ω × (0, T ), |Ω|, |I|, |J |, and T , and it is independent of τ , h and n. Moreover, if we further require

δ1hx ≤ hy ≤ δ2hx (4.25)

for some positive constant δ1, δ2 independent of hx, hy during mesh refinements, then

||Bn − Bn,C
h ||20,Ω + ||Bn − Bn,D

h ||20,Ω ≤ C†C†(τ2 + h2). (4.26)

Here the constant C† depends on σ, δ1, δ2, ux, uy, and θ.

From this Theorem, one can see that the exactly divergence-free method described in Section 2.2 is of first
order accuracy in both space and time, and this is somewhat expected. We want to mention that central DG
methods in general can be only proved to be kth order accurate when piecewise polynomials of degree at most
k are used as discrete spaces to solve the linear advection equation [16].

To make the proof easier to follow, we will organize the following subsections just as in Section 4.1: in
Section 4.2.1 we state some preparatory lemmas, based on which the proof of the main error estimate (4.24)
will be established in Section 4.2.2. Notation wise, we define

ηn,� = [ηn,�x , ηn,�y ]� = Bn −Π�
hB

n, ξn,� = [ξn,�x , ξn,�y ]� = Bn,�
h −Π�

hB
n, (4.27)

that is, the error in numerical solutions Bn − Bn,�
h is decomposed into

Bn − Bn,�
h = ηn,� − ξn,�. (4.28)

In particular, ξn,� = −Π�
h(B

n − Bn,�
h ) corresponds to (the negative of) the projection of the numerical error.

Throughout our analysis, the constant C† may take different values at different occurrences. It may depend
partially on some Sobolev norms of the exact solution on Ω × (0, T ), |Ω|, |I|, |J |, and T , yet it is independent
of τ , h and n. For simplicity of the presentation, the regularity of the exact solution is measured by L∞ type
norm, namely || · ||Wm,∞(Ω). This can be relaxed to L2 type norm, namely || · ||Hm(Ω), if Taylor expansion with
Lagrange remainder is used instead for analysis.

Remark 4.7. The error estimates in this section will be established by following energy approach. This frame-
work involves quite much analysis, yet it can lead to optimal error estimates for “hybrid” numerical methods,
such as the one considered here and the related high-order ones [13], which involve finite element type spatial
discretizations and explicit Runge−Kutta time discretizations. If one instead analyzes such hybrid methods,
especially those with higher order accuracy, by treating them as finite difference methods and combing stability
and local truncation errors, one may encounter the supraconvergence phenomenon and only gets sub-optimal
error estimates (see [23] and the references therein). If it were not to prepare for understanding and analyzing
the “hybrid” divergence-free schemes of higher order accuracy, one can alternatively carry out a simpler error
estimate for the first order scheme considered in this paper.

4.2.1. Preliminary lemmas

Among the following lemmas, Lemma 4.8 describes some orthogonality property related to the projection
operators. Lemmas 4.9 and 4.10 reflect the approximation property of the discrete spaces. Although the proofs
of Lemmas 4.9 and 4.10 seem to only use basic ingredients such as Taylor expansion, we want to point out that
a simple application of some standard inequality, such as ||φ · n||2∂K ≤ C( 1

min(hx,hy) ||φ||2K + ||∇ · φ||2K), ∀ φ ∈
H(div;Ω), will not be sufficient in order to estimate the projection errors in these lemmas. Lemma 4.11 is to
bound the local truncation errors in time.

Lemma 4.8. Let φ = [φx, φy]� ∈ MD
h , ϕ = [ϕx, ϕy]� ∈ MC

h , then ∀i, j, n,(
ηn,Cx (xi, ·), ϕx(xi, ·)

)
J

j+ 1
2

= 0,
(
ηn,Cy (·, yj), ϕy(·, yj)

)
I

i+ 1
2

= 0, (4.29a)(
ηn,Dx (xi+ 1

2
, ·), φx(xi+ 1

2
, ·)
)
Jj

= 0,
(
ηn,Dy (·, yj+ 1

2
), φy(·, yj+ 1

2
)
)
Ii

= 0. (4.29b)
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The orthogonality results in this lemma can be directly obtained from the definition of the projection operator
Π�
h in (2.3) and the property of W(K) in (2.2a).

Lemma 4.9. Let φ = [φx, φy]� ∈ MD
h , ϕ = [ϕx, ϕy]� ∈ MC

h , then ∀α > 0,

∑
i

(
ηn,Dx (xi, ·) − ηn,Cx (xi, ·), ϕx(xi, ·)

)
J
≤ C†

α

(hx + hy)4hy
h2
x

+ αhx
∑
i

||ϕx(xi, ·)||2J , (4.30a)

∑
i

(
ηn,Cx (xi+ 1

2
, ·) − ηn,Dx (xi+ 1

2
, ·), φx(xi+ 1

2
, ·)
)
J
≤ C†

α

(hx + hy)4hy
h2
x

+ αhx
∑
i

||φx(xi+ 1
2
, ·)||2J . (4.30b)

Proof. With similarity, we here only prove (4.30a). Based on the explicit formulation of the projection operator
ΠD
h in (2.4) and applying Taylor expansion, we have∫ yj+1

yj

ηn,Dx (xi, y)dy =
∫ y

j+ 1
2

yj

ηn,Dx (xi, y)dy +
∫ yj+1

y
j+ 1

2

ηn,Dx (xi, y)dy

=
∫ yj+1

yj

Bnx (xi, s) −
1
4

(
Bnx

(
xi− 1

2
, s− hy

2

)
+Bnx

(
xi+ 1

2
, s− hy

2

)
+Bnx

(
xi− 1

2
, s+

hy
2

)
+Bnx

(
xi+ 1

2
, s+

hy
2

))
ds

≤C†(hx + hy)2hy, (4.31)

where the positive constant C† depends on the L∞ norm of the second spatial derivatives of the exact solution
Bx. With this, we next use the orthogonality result in Lemma 4.8 and the property of W(K) in (2.2a), and get∫ yj+1

yj

(
ηn,Dx (xi, y) − ηn,Cx (xi, y)

)
ϕx(xi, y)dy

=
∫ yj+1

yj

ηn,Dx (xi, y)ϕx(xi, y)dy = ϕx(xi, yj+ 1
2
)
∫ yj+1

yj

ηn,Dx (xi, y)dy

≤ C†∑
i,j

(hx + hy)2h
1
2
y ||ϕx(xi, ·)||J

j+ 1
2

= C†∑
i

(hx + hy)2h
1
2
y ||ϕx(xi, ·)||J (4.32)

≤ C†

α

∑
i

(hx + hy)4hy
hx

+ αhx
∑
i

||ϕx(xi, ·)||2J =
C†

α

(hx + hy)4hy
h2
x

+ αhx
∑
i

||ϕx(xi, ·)||2J . (4.33)

Here the constant C† also depends on I. This concludes (4.30a). �

Lemma 4.10. Let φ = [φx, φy]� ∈ MD
h , ϕ = [ϕx, ϕy]� ∈ MC

h , then ∀α > 0,

(i)
∑
i,j

Gj+ 1
2
(ηn,Dx (xi, ·), ϕx(xi, ·)) ≤

C†

α

(hx + hy)6

h2
xhy

+ αhx
∑
i

||ϕx(xi, ·)||2J , (4.34a)

(ii)
∑
i,j

Gj+ 1
2
(ηn,Dy (xi, ·), ϕx(xi, ·)) ≤

C†

α

(hx + hy)6

h2
xhy

+ αhx
∑
i

||ϕx(xi, ·)||2J . (4.34b)

Similarly, both
∑

i,j Gj(η
n,C
x (xi+ 1

2
, ·), φx(xi+ 1

2
, ·)) and

∑
i,j Gj(η

n,C
y (xi+ 1

2
, ·), φx(xi+ 1

2
, ·)) can be bounded by

C†
α

(hx+hy)6

h2
xhy

+ αhx
∑

i ||φx(xi+ 1
2
, ·)||2J .
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Proof. We start with part (i). Based on the explicit formulation of the projection operator ΠD
h in (2.4) and

applying Taylor expansion, we have

ηn,Dx (xi, yj+1) − ηn,Dx (xi, yj)

=Bnx (xi, yj+1) −Bnx (xi, yj) −
1

2hy

∫ y
j+ 1

2

y
j− 1

2

(
Bnx (xi− 1

2
, s+ hy) −Bnx (xi− 1

2
, s)
)

ds

− 1
2hy

∫ y
j+ 1

2

y
j− 1

2

(
Bnx (xi+ 1

2
, s+ hy) −Bnx (xi+ 1

2
, s)
)

ds

=Bnx (xi, yj+1) −Bnx (xi, yj) −
1

2hy

∫ y
j+ 1

2

y
j− 1

2

2hy
∂Bnx
∂y

(xi, s)

+ h2
y

∂2Bnx
∂y2

(xi, s)ds+ C†(h3
x + h2

xhy + hxh
2
y + h3

y),

hence
|ηn,Dx (xi, yj+1) − ηn,Dx (xi, yj)| ≤ C†(hx + hy)3. (4.35)

Here the positive constant C† depends on the L∞ norm of the third derivatives of the exact solution Bx.
With (4.35) and ϕx(xi, y)|J

j+ 1
2

being constant, we obtain (4.34a) with α > 0,

∑
i,j

Gj+ 1
2
(ηn,Dx (xi, y), ϕx(xi, y)) = −

∑
i,j

(
ηn,Dx (xi, yj+1) − ηn,Dx (xi, yj)

)
ϕx(xi, yj+ 1

2
)

≤
∑
i,j

C†(hx + hy)3h
− 1

2
y ||ϕx(xi, ·)||J

j+ 1
2

=
∑
i

C†(hx + hy)3h
− 1

2
y ||ϕx(xi, ·)||J

≤ C†

α

(hx + hy)6

h2
xhy

+ αhx
∑
i

||ϕx(xi, ·)||2J .

Next we prove part (ii). Based on the explicit formulation of the projection operator ΠD
h in (2.4), Taylor

expansion, and using the exact solution being divergence-free, we have

ηn,Dy (xi, yj+1) − ηn,Dy (xi, yj)

=Bny (xi, yj+1) −Bny (xi, yj) −
1

2hx

∫ x
i+1

2

x
i− 1

2

(
Bny (x, yj+ 3

2
) −Bny (x, yj− 1

2
)
)

dx

=hy

⎛⎝∂Bny
∂y

(xi, yj+ 1
2
) − 1

hx

∫ x
i+ 1

2

x
i− 1

2

∂Bny
∂y

(x, yj+ 1
2
)dx

⎞⎠+ C†h3
y

= − hy

(
∂Bnx
∂x

(xi, yj+ 1
2
) − 1

hx

(
Bnx (xi+ 1

2
, yj+ 1

2
) −Bnx (xi− 1

2
, yj+ 1

2
)
))

+ C†h3
y ≤ C†(hx + hy)3. (4.36)

With this and a similar argument for part (i), we will obtain the estimate in (4.34b). �

Although the exact solution being divergence-free is used in the proof of Lemma 4.10, this is not essential for
the error estimate.

Lemma 4.11. Let T nB,x(x, y) = Bn+1
x (x, y) − Bnx (x, y) − τ

∂Bn
x (x,y)
∂t be the local truncation error in time, and

define T nB,x,i(y) = T nB,x(xi, y), T
n
B,x,i+ 1

2
(y) = T nB,x(xi+ 1

2
, y), and let φ = [φx, φy]� ∈ MD

h , ϕ = [ϕx, ϕy]� ∈ MC
h ,
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then ∀α > 0,

∑
i

(
T nB,x,i(·), ϕx(xi, ·)

)
J
≤ C†

α

τ4

h2
x

+ αhx
∑
i

||ϕx(xi, ·)||2J , (4.37a)

∑
i

(
T nB,x,i+ 1

2
(·), φx(xi+ 1

2
, ·)
)
J
≤ C†

α

τ4

h2
x

+ αhx
∑
i

||φx(xi+ 1
2
, ·)||2J . (4.37b)

The estimates in Lemma 4.11 are direct results of Taylor expansion, and the proofs are omitted.

4.2.2. Error estimates: proof of Theorem 4.6

Our error analysis starts from the error equations, which essentially are the equations satisfied by the errors in
numerical solutions. Based on these equations, we will derive the energy equations, which measure the increase
of the projection of the errors over one time step, and will be bounded by using the preparatory lemmas in
Sections 4.1.1 and 4.2.1. In the end, the overall error up to a given time T is estimated based on its projection
and the approximation properties of the discrete spaces.

4.2.3. Error equations and energy equations

Based on the proposed method (2.6)−(2.8), the governing equations (1.2), and the decomposition of the
errors in (4.28), one can easily get one of the error equations, with any μ1(y)|J

j+ 1
2
∈ R,

(
ξn+1,C
x (xi, ·) − ξn,Cx (xi, ·), μ1(·)

)
J

j+ 1
2

= θ
(
ξn,Dx (xi, ·) − ξn,Cx (xi, ·), μ1(·)

)
J

j+ 1
2

+ τGj+ 1
2

(
uyξ

n,D
x (xi, ·) − uxξ

n,D
y (xi, ·), μ1(·)

)
+
(
ηn+1,C
x (xi, ·) − ηn,Cx (xi, ·), μ1(·)

)
J

j+ 1
2

− θ
(
ηn,Dx (xi, ·) − ηn,Cx (xi, ·), μ1(·)

)
J

j+ 1
2

−τGj+ 1
2

(
uyη

n,D
x (xi, ·) − uxη

n,D
y (xi, ·), μ1(·)

)
− (TB,x,i(·), μ1(·))J

j+ 1
2

. (4.38)

By formally shifting the index i to i+ 1
2 , j + 1

2 to j, μ1 to μ2, C to D, we get one more error equation,(
ξn+1,D
x (xi+ 1

2
, ·) − ξn,Dx (xi+ 1

2
, ·), μ2(·)

)
Jj

= θ
(
ξn,Cx (xi+ 1

2
, ·) − ξn,Dx (xi+ 1

2
, ·), μ2(·)

)
Jj

+ τGj

(
uyξ

n,C
x (xi+ 1

2
, ·) − uxξ

n,C
y (xi+ 1

2
, ·), μ2(·)

)
+
(
ηn+1,D
x (xi+ 1

2
, ·) − ηn,Dx (xi+ 1

2
, ·), μ2(·)

)
Jj

− θ
(
ηn,Cx (xi+ 1

2
, ·) − ηn,Dx (xi+ 1

2
, ·), μ2(·)

)
Jj

−τGj
(
uyη

n,C
x (xi+ 1

2
, ·) − uxη

n,C
y (xi+ 1

2
, ·), μ2(·)

)
−
(
TB,x,i+ 1

2
(·), μ2(·)

)
Jj

, (4.39)

with any μ2(y)|Jj ∈ R. In particular, we take μ1(y) = ξn+1,C
x (xi, y) in (4.38), μ2(y) = ξn+1,D

x (xi+ 1
2
, y) in (4.39),

sum up in i, j, and get the part of the energy equations associated to the x-component of the numerical solution,

1
2

∑
i

(
||ξn+1,C
x (xi, ·)||2J + ||ξn+1,D

x (xi+ 1
2
, ·)||2J − ||ξn,Cx (xi, ·)||2J − ||ξn,Dx (xi+ 1

2
, ·)||2J

)
= −1

2

∑
i

||ξn+1,C
x (xi, ·) − ξn,Cx (xi, ·)||2J − 1

2

∑
i

||ξn+1,D
x (xi+ 1

2
, ·) − ξn,Dx (xi+ 1

2
, ·)||2J +

5∑
i=1

Θi, (4.40)
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where

Θ1 = θ
∑
i

((
ξn,Dx (xi, ·) − ξn,Cx (xi, ·), ξn+1,C

x (xi, ·)
)
J

+
(
ξn,Cx (xi+ 1

2
, ·) − ξn,Dx (xi+ 1

2
, ·), ξn+1,D

x (xi+ 1
2
, ·)
)
J

)
+ τ

∑
i,j

Gj+ 1
2

(
uyξ

n,D
x (xi, ·) − uxξ

n,D
y (xi, ·), ξn+1,C

x (xi, ·)
)

+ τ
∑
i,j

Gj

(
uyξ

n,C
x (xi+ 1

2
, ·) − uxξ

n,C
y (xi+ 1

2
, ·), ξn+1,D

x (xi+ 1
2
, ·)
)
, (4.41)

Θ2 =
∑
i

(
ηn+1,C
x (xi, ·) − ηn,Cx (xi, ·), ξn+1,C

x (xi, ·)
)
J

+
∑
i

(
ηn+1,D
x (xi+ 1

2
, ·) − ηn,Dx (xi+ 1

2
, ·), ξn+1,D

x (xi+ 1
2
, ·)
)
J
,

(4.42)

Θ3 = −θ
∑
i

(
(ηn,Dx (xi, ·) − ηn,Cx (xi, ·), ξn+1,C

x (xi, ·))J + (ηn,Cx (xi+ 1
2
, ·) − ηn,Dx (xi+ 1

2
, ·), ξn+1,D

x (xi+ 1
2
, ·))J

)
,

(4.43)

Θ4 = − τ
∑
i,j

Gj+ 1
2

(
uyη

n,D
x (xi, ·) − uxη

n,D
y (xi, ·), ξn+1,C

x (xi, ·)
)

− τ
∑
i,j

Gj

(
uyη

n,C
x (xi+ 1

2
, ·) − uxη

n,C
y (xi+ 1

2
, ·), ξn+1,D

x (xi+ 1
2
, ·)
)
, (4.44)

and Θ5 = −
∑
i

(
T nB,x,i(·), ξn+1,C

x (xi, ·)
)
J
−
∑
i

(
T nB,x,i+ 1

2
(·), ξn+1,D

x (xi+ 1
2
, ·)
)
J
. (4.45)

One more part of the energy equations is related to ξn,�y , � = C,D, it can be formally obtained by switching i
to j, x to y, J to I, and will not be given explicitly here to save space. Note that the energy equation (4.40)
measures the increase of energy associated to the projected errors over one time step. Estimating such increase
will be a key component in error estimates, and this will be discussed next.

4.2.4. Estimation of energy equations

To estimate Θ1 in (4.41), the same techniques in Section 4.1.2 to estimate Λ1−Λ4 for numerical stability will
be applied, and this leads to

Θ1 ≤− θ

2

∑
i

∑
s=i± 1

2

||ξn,Dx (xs, ·) − ξn,Cx (xi, ·)||2J +
θ2

4α1

∑
i

∑
s=i± 1

2

||ξn,Dx (xs, ·) − ξn,Cx (xi, ·)||2J (4.46)

+ α1

∑
i

{
||ξn+1,C
x (xi, ·) − ξn,Cx (xi, ·)||2J + ||ξn+1,D

x (xi+ 1
2
, ·) − ξn,Dx (xi+ 1

2
, ·)||2J

}
+
τ |uy|
α2hy

∑
i

∑
s=i± 1

2

||ξn,Dx (xs, ·) − ξn,Cx (xi, ·)||2J +
τ |ux|
α2hx

∑
j

∑
s=j± 1

2

||ξn,Dy (·, ys) − ξn,Cy (·, yj)||2I

+
α2τ(|ux| + |uy|)

hy

∑
i

(
||ξn+1,C
x (xi, ·) − ξn,Cx (xi, ·)||2J + ||ξn+1,D

x (xi+ 1
2
, ·) − ξn,Dx (xi+ 1

2
, ·)||2J

)
,

with any α1, α2 > 0.
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Next we will turn to terms Θi, i = 2, . . . , 5 in (4.42)−(4.45), which involve both ξm,�� and ηm,�� , with � = x, y,
� = C,D and some integer m, and will be estimated based on Lemmas 4.8−4.11. In particular, from Lemma 4.8,
we see Θ2 vanishes. The terms Θ3, Θ4, Θ5 will be estimated using Lemmas 4.9−4.11, respectively,

Θ3 ≤ θ2
C†

α3

(hx + hy)4hy
h2
x

+ α3hx
∑
i

(
||ξn+1,C
x (xi, ·)||2J + ||ξn+1,D

x (xi+ 1
2
, ·)||2J

)
,

Θ4 ≤ (|ux| + |uy|)2
C†

α4

τ2(hx + hy)6

h2
xhy

+ α4hx
∑
i

(
||ξn+1,C
x (xi, ·)||2J + ||ξn+1,D

x (xi+ 1
2
, ·)||2J

)
,

Θ5 ≤ C†

α5

τ4

h2
x

+ α5hx
∑
i

(
||ξn+1,C
x (xi, ·)||2J + ||ξn+1,D

x (xi+ 1
2
, ·)||2J

)
,

with any α3, α4, α5 > 0. Now we combine the estimates for all Θi, i = 1, . . . , 5 with (4.40), and obtain

1
2

∑
i

(
||ξn+1,C
x (xi, ·)||2J + ||ξn+1,D

x (xi+ 1
2
, ·)||2J − ||ξn,Cx (xi, ·)||2J − ||ξn,Dx (xi+ 1

2
, ·)||2J

)

≤ θ2
C†

α3

(hx + hy)4hy
h2
x

+ (|ux| + |uy|)2
C†

α4

τ2(hx + hy)6

h2
xhy

+
C†

α5

τ4

h2
x

+(α3 + α4 + α5)hx
∑
i

(
||ξn+1,C
x (xi, ·)||2J + ||ξn+1,D

x (xi+ 1
2
, ·)||2J

)

+
(
−1

2
+ α1 +

α2(|ux| + |uy|)τ
hy

)∑
i

||ξn+1,C
x (xi, ·) − ξn,Cx (xi, ·)||2J

+
(
−1

2
+ α1 +

α2(|ux| + |uy|)τ
hy

)∑
i

||ξn+1,D
x (xi+ 1

2
, ·) − ξn,Dx (xi+ 1

2
, ·)||2J

+
(
−θ

2
+

θ2

4α1
+

|uy|τ
α2hy

)∑
i

∑
s=i± 1

2

||ξn,Dx (xs, ·) − ξn,Cx (xi, ·)||2J

+
|ux|τ
α2hx

∑
j

∑
s=j± 1

2

||ξn,Dy (·, ys) − ξn,Cy (·, yj)||2I . (4.47)

If formally switching x to y, i to j, J to I, we can also get the bound for

1
2

∑
j

(
||ξn+1,C
y (·, yj)||2I + ||ξn+1,D

y (·, yj+ 1
2
)||2I − ||ξn,Cy (·, yj)||2I − ||ξn,Dy (·, yj+ 1

2
)||2I
)
.
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Combining these bounds with hx as an weight for (4.47) and hy as an weight for the estimate of the y -
component, taking α3 = α4 = α5 = 1

6 , we get

1
2
(
Eh(ξn+1,C , ξn+1,D) − Eh(ξn,C , ξn,D)

)
≤ 6Θ +

hx + hy
2

Eh(ξn+1,C , ξn+1,D)

+ hx

(
−1

2
+α1+

α2(|ux| + |uy|)τ
hy

)∑
i

{
||ξn+1,C
x (xi, ·)−ξn,Cx (xi, ·)||2J+||ξn+1,D

x (xi+ 1
2
, ·)−ξn,Dx (xi+ 1

2
, ·)||2J

}
+ hy

(
−1

2
+α1+

α2(|ux| + |uy|)τ
hx

)∑
j

{
||ξn+1,C
y (·, yj)−ξn,Cy (·, xi)||2I+||ξn+1,D

y (·, yj+ 1
2
)−ξn,Dy (·, yj+ 1

2
)||2I
}

+ hx

(
−θ

2
+

θ2

4α1
+

|uy|τ
α2hy

+
|uy|τ
α2hx

)∑
i

∑
s=i± 1

2

||ξn,Dx (xs, ·) − ξn,Cx (xi, ·)||2J

+ hy

(
−θ

2
+

θ2

4α1
+

|ux|τ
α2hx

+
|ux|τ
α2hy

)∑
j

∑
s=j± 1

2

||ξn,Dy (·, yj− 1
2
) − ξn,Cy (·, yj)||I , (4.48)

where

Θ = C†
(
θ2(hx + hy)4

(
hy
hx

+
hx
hy

)
+ (|ux| + |uy|)2τ2(hx + hy)6

1
hxhy

+ τ4

(
1
hx

+
1
hy

))
≤ C†

(
θ2

(hx + hy)6

hxhy
+ (|ux| + |uy|)2

τ2(hx + hy)6

hxhy
+
τ4(hx + hy)

hxhy

)
· (4.49)

By requiring all the coefficients of the last four terms of (4.48) to be non-positive. and choosing α1 and α2

exactly the same way as the ones in Section 4.1.2, we will obtain the same time step condition as for numerical
stability in (4.2), τ ≤ τstab. Moreover, under this time step condition, we have

Eh(ξn+1,C , ξn+1,D) − Eh(ξn,C , ξn,D) ≤ Θ + (hx + hy)Eh(ξn+1,C , ξn+1,D). (4.50)

4.2.5. The final step of error estimates

Define Φn = (1 − hx − hy)nEh(ξn,C , ξn,D), then (4.49) implies Φn+1 ≤ Φn + Θ(1 − hx − hy)n. With Φ0 = 0
and the assumption that h < 1

2 , we have

Φn ≤ Θ

n−1∑
k=0

(1 − hx − hy)k ≤ Θ

hx + hy
, (4.51)

and therefore

Eh(ξn,C , ξn,D) = (1 − hx − hy)−n
Θ

hx + hy
≤ exp(n(hx + hy))

Θ

hx + hy

≤ C† exp(T
hx + hy

τ
)
(
θ2

(hx + hy)5

hxhy
+ (|ux| + |uy|)2

τ2(hx + hy)5

hxhy
+

τ4

hxhy

)
· (4.52)
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Now we can apply triangle inequality based on (4.28), the norm equivalency on M�
h in Lemma 2.1, the

approximation property of the projection operators (hence the discrete spaces) in (2.5), and get

||Bn − Bn,C
h ||2Ω + ||Bn − Bn,D

h ||2Ω
≤ 2

(
||ξn,C ||2Ω + ||ξn,D||2Ω + ||ηn,C ||2Ω + ||ηn,D||2Ω

)
≤ 2

(
Eh(ξn,C , ξn,D) + ||ηn,C ||2Ω + ||ηn,D||2Ω

)
≤ C†

(
exp

(
T
hx + hy

τ

){
θ2

(hx + hy)5

hxhy
+ (|ux| + |uy|)2

τ2(hx + hy)5

hxhy
+

τ4

hxhy

}
+ h2

)
.

This concludes the error estimate in (4.24).
If we further assume that hx and hy satisfy (4.25) during mesh refinement, and denote τ = στstab with σ ≤ 1,

the error estimate can be expressed in a simpler form in (4.26).

5. Numerical experiments

In this section, we demonstrate the performance of the scheme through some numerical experiments and
verify some of the theoretical results. In particular, we will examine the sharpness of the CFL condition (3.6)
in Theorem 3.1, and illustrate the convergence order of the method when the velocity field u is constant and
when it is spatially dependent.

We start with an example defined on the computational domain Ω = [0, 1] × [0, 1] with a constant velocity
field u = [ux, uy]� = [1, 1]�. The initial condition is

Bx(x, y, 0) = − sin(2πy), By(x, y, 0) = sin(2πx), (5.1)

and the exact solution is

Bx(x, y, t) = − sin(2π(y − t)), By(x, y, t) = sin(2π(x− t)) (5.2)

at any time t. We use this example to demonstrate numerically how sharp the CFL condition in (3.6) is. To
this end, we take the parameter θ to be 0.1, 0.2, . . . , 1.0, respectively, and implement the scheme on a uniform
mesh with hx = hy = h = 1

40 and periodic boundary conditions. We then report in Table 1 the largest value

of

√(
τux

hx

)2

+
(
τuy

hy

)2

, denoted as Ch,θ, with which the scheme is stable in long term simulation. The number

Ch,θ is the largest in the sense that the scheme blows up if the corresponding τ
h increases to τ

h +ε, with ε = 0.01

in our experiment. In Table 1, we also include
√
θ

2 , a sufficient upper bound of

√(
τux

hx

)2

+
(
τuy

hy

)2

for numerical

stability based on Fourier analysis in Theorem 3.1. One can see Ch,θ >
√
θ

2 , and this is consistent with that
the CFL condition in (3.6) is only sufficient. On the other hand, our analytical bound

√
θ

2 is a fairly good
approximation to Ch,θ, and hence the result in (3.6) provides a practically useful CFL condition.

Another way to examine the sharpness of the CFL condition in (3.6) is to directly compare the ranges of
λx = τux

hx
and λy = τuy

hy
allowed by this condition and by the sufficient and necessary condition in (3.5). This

is demonstrated by the plots in Figure 2 with θ = 1, 3
4 ,

1
2 and 3

8 . In each plot, the blue dotted region consists of
the values of (2λx, 2λy) permitted by (3.5), and the red solid curve corresponds to the circle (2λx)2 +(2λy)2 = θ
arising from the condition (3.6). With symmetry, the plots are only shown in the first quadrant. One can again
see that the result in (3.6) provides a good CFL condition to guide how the time step is chosen for stable
simulations.

With the same exact solution and the constant velocity field used above, we next compute the L2 errors
and convergence orders of the scheme with θ = 1 when it is implemented on a sequence of refined meshes with
h = 1

N , N = 20, 40, 80, 160. The time step τ is the largest allowed by the CFL condition (3.6). In Table 2, three
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Table 1. Study of the sharpness of the CFL condition in (3.6).

θ Ch,θ

√
θ

2

1.0 0.5091 0.5000
0.9 0.4808 0.4743
0.8 0.4525 0.4472
0.7 0.4243 0.4183
0.6 0.3960 0.3873
0.5 0.3677 0.3536
0.4 0.3253 0.3162
0.3 0.2828 0.2739
0.2 0.2263 0.2236
0.1 0.1697 0.1581
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(a) θ = 1
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(b) θ = 3/4

0 0.2 0.4 0.6 0.8 1
0
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(c) θ = 1/2

0 0.2 0.4 0.6 0.8 1
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y

(d) θ = 3/8

Figure 2. Comparison of the CFL conditions in (3.5) and (3.6).
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Table 2. L2 errors and convergence orders of the scheme with θ = 1 on a uniform mesh with
h = 1

N . The velocity field is constant.

N errC errD err order
20 3.00E-1 3.00E-1 4.19E-1 −
40 1.63E-1 1.63E-1 2.28E-1 0.88
80 8.41E-2 8.41E-2 1.19E-1 0.95
160 4.28E-2 4.28E-2 6.05E-2 0.98

Table 3. L2 errors and convergence orders of the scheme with θ = 1 on a uniform mesh with
h = 1

N . The velocity field is spatially dependent.

N errC errD err order
20 5.43E-1 5.43E-1 7.69E-1 −
40 3.61E-1 3.61E-1 5.10E-1 0.59
80 2.19E-1 2.19E-1 3.10E-1 0.72
160 1.23E-1 1.23E-1 1.73E-1 0.84
320 6.52E-2 6.52E-2 9.23E-2 0.91
640 3.38E-2 3.38E-2 4.77E-2 0.95

types of errors at T = 1 are presented, and they are errC = ||Bn − Bn,C
h ||0,Ω, errD = ||Bn − Bn,D

h ||0,Ω, and
err =

√
(errC)2 + (errD)2. The convergence orders in the last column are computed based on the total error,

err. Our results confirm the first order accuracy as proved in Theorem 4.6 for the proposed method.
Finally, we illustrate the accuracy of the proposed scheme when the velocity field is spatially dependent.

Here we make use of the following time reversible property of the magnetic induction equations with periodic
boundary conditions: let B(x, y, T ) denote the exact solution of the equations with the velocity field u = v at
time T . If we start with B(x, y, T ) as the initial data, and consider the magnetic induction equations with a
different velocity field u = −v, then B(x, y, 0) will give the exact solution at time T for this new problem. In
our simulation, the scheme is run first from t = 0 to t = 0.5 with the velocity field u = [− sin(2πy), 1]� and the
initial condition (5.1). We then use the computed solution at T = 0.5 as the initial condition, take the negative
velocity field, i.e. u = [sin(2πy),−1]�, and run the scheme for another time interval from t = 0 to t = 0.5.
We compare the final computed solution with the initial data (5.1). The L2 errors and convergence orders are
presented in Table 3. The results again confirm the first order accuracy of the proposed scheme.

6. Concluding remarks

As an effort to gain better theoretical understanding of the constrained transport type divergence-free
schemes, we analyze in this work a first order exactly divergence-free method on overlapping Cartesian meshes
for the magnetic induction equations, a linear problem extracted from ideal MHD equations. Numerical stability
is established through both Fourier and energy methods when the meshes are uniform and when the velocity
field in the equations is constant. A priori error estimate is also obtained in the L2 norm for sufficiently smooth
solutions.

Though not being the focus of this paper, stability and error estimates based on energy methods can be
extended to more general cases, including non-uniform Cartesian meshes and variable velocity fields. The gen-
eralization to the non-uniform mesh case is straightforward, as long as some reasonable assumption is made on
how non-uniform the meshes are. In the case of the variable velocity fields, a more relevant case to the MHD
simulations, the exact solution satisfies

d
dt

∫
Ω

|B|2dxdy ≤ C(|u(·, ·, t)|W 1,∞(Ω))
∫
Ω

|B|2dxdy, (6.1)
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where | · |W 1,∞(Ω) is the semi W 1,∞-norm. In Appendix, numerical stability analysis is given based on energy
approach when the velocity field is spatially dependent on uniform meshes.

The mathematical understanding gained for the first order divergence-free scheme examined here, together
with the analysis framework based on energy approach, provides us a starting point to further study some
other divergence-free schemes, such as those with higher order accuracy, defined on one mesh, and in higher
dimensions, or even with more general boundary conditions. New technical challenges are expected and would
need to be addressed.

Appendix A. Numerical stability by energy methods: spatially dependent

velocity field

In this appendix, we will present the stability analysis by energy methods when the velocity field u is spatially
dependent.

Theorem A.1. Given any θ ∈ (0, 1), the numerical solutions of the proposed method in (2.6)−(2.8) with a
variable velocity field u satisfy

Eh(Bn,C
h ,Bn,D

h ) ≤ e(Cθ|u|W1,∞(Ω)T )Eh(B0,C
h ,B0,D

h ), ∀n : nτ ≤ T, (A.1)

under the following CFL condition on the time step τ

τ < τstab. (A.2)

Here the constant Cθ depends on hx

hy
, hy

hx
and θ, and τstab is defined in (4.2).

Proof. Following the proof in Section 4.1.2, we only need to re-estimate Λ2 and Λ4. Without loss of generality,
it is assumed τ ≤ 1.

For Λ2, we have Λ2 = Λ21 + Λ22, where

Λ21 =τ
∑
i,j

(
−uy,i,j+1b

n,D
x,i,j+1 + uy,i,jb

n,D
x,i,j

)
bn,C
x,i,j+ 1

2

+ τ
∑
i,j

(
−uy,i+ 1

2 ,j+
1
2
bn,C
x,i+ 1

2 ,j+
1
2

+ uy,i+ 1
2 ,j− 1

2
bn,C
x,i+ 1

2 ,j− 1
2

)
bn,D
x,i+ 1

2 ,j

=
τ

2

∑
i,j

(
−uy,i+ 1

2 ,j+
1
2

+ uy,i,j

)
bn,C
x,i,j+ 1

2
bn,D
x,i+ 1

2 ,j

+
τ

2

∑
i,j

(
−uy,i− 1

2 ,j+
1
2

+ uy,i,j

)
bn,C
x,i,j+ 1

2
bn,D
x,i− 1

2 ,j

+
τ

2

∑
i,j

(
−uy,i,j+1 + uy,i+ 1

2 ,j+
1
2

)
bn,C
x,i,j+ 1

2
bn,D
x,i+ 1

2 ,j+1

+
τ

2

∑
i,j

(
−uy,i,j+1 + uy,i− 1

2 ,j+
1
2

)
bn,C
x,i,j+ 1

2
bn,D
x,i− 1

2 ,j+1

≤Cτ |uy|W 1,∞(Ω)

∑
i

(
||bn,Cx,i ||2J + ||bn,D

x,i+ 1
2
||2J
)
, (A.3)
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and

Λ22 = τ
∑
i,j

(
ux,i,j+1b

n,D
y,i,j+1 − ux,i,jb

n,D
y,i,j

)
bn,C
x,i,j+ 1

2

+ τ
∑
i,j

(
ux,i+ 1

2 ,j+
1
2
bn,C
y,i+ 1

2 ,j+
1
2
− ux,i+ 1

2 ,j− 1
2
bn,C
y,i+ 1

2 ,j− 1
2

)
bn,D
x,i+ 1

2 ,j

=
τ

2

∑
i,j

(ux,i,j+1 − ux,i,j)
(
bn,D
y,i,j+ 1

2
+ bn,D

y,i,j+ 3
2

)
bn,C
x,i,j+ 1

2

+
τ

2

∑
i,j

(
ux,i+ 1

2 ,j+
1
2
− ux,i,j

)(
bn,C
y,i+ 1

2 ,j
+ bn,C

y,i+ 1
2 ,j+1

)
bn,D
x,i+ 1

2 ,j

+
τ

2

∑
i,j

(
ux,i,j − ux,i+ 1

2 ,j− 1
2

)(
bn,C
y,i+ 1

2 ,j−1
+ bn,C

y,i+ 1
2 ,j

)
bn,D
x,i+ 1

2 ,j

− τ

2
hy
hx

∑
i,j

(ux,i−1,j − ux,i,j) b
n,C

x,i,j+ 1
2
bn,D
x,i− 1

2 ,j

− τ

2
hy
hx

∑
i,j

(ux,i,j − ux,i,j+1) b
n,C

x,i,j+ 1
2
bn,D
x,i+ 1

2 ,j+1

− τ

2
hy
hx

∑
i,j

(−ux,i,j + ux,i−1,j+1) b
n,C

x,i,j+ 1
2
bn,D
x,i− 1

2 ,j+1

≤ Cτ |ux|W 1,∞(Ω)

⎛⎝∑
i

(||bn,Cx,i ||2J + ||bn,D
x,i+ 1

2
||2J) +

∑
j

(||bn,Cy,j ||2I + ||bn,D
y,j+ 1

2
||2I)

⎞⎠ . (A.4)

Note that the numerical solution being divergence-free has been used to estimate Λ22. Here and below, the
constant C depends on hx

hy
and hy

hx
, and it may take different values at different occurrences. We use shorthand

notation such as uy,i,j which is to denote uy(xi, yj).
We next consider Λ4 = Λ41 + Λ42, where

Λ41 = τ
∑
i,j

(
−En,Dz,h (xi, yj+1) + En,Dz,h (xi, yj)

)(
bn+1,C

x,i,j+ 1
2
− bn,C

x,i,j+ 1
2

)
,

Λ42 = τ
∑
i,j

(
−En,Cz,h (xi+ 1

2
, yj+ 1

2
) + En,Cz,h (xi+ 1

2
, yj− 1

2
)
)(

bn+1,D
x

i+1
2
,j − bn,Dx

i+1
2
,j

)
.

With similarity, we only estimate Λ41. It is easy to see that Λ41 can be written as the sum of

τ

2

∑
i,j

(−uy,i,j+1 + uy,i,j)
(
bn,D
x,i− 1

2 ,j+1
+ bn,D

x,i+ 1
2 ,j+1

)(
bn+1,C

x,i,j+ 1
2
− bn,C

x,i,j+ 1
2

)

≤ τ ||∂uy
∂y

||L∞(Ω)

(∑
i

||bn,D
x,i+ 1

2
||2J

)1/2(∑
i

||Bn+1,C
x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J

)1/2

≤ 1
ε
τ |uy|W 1,∞(Ω)

∑
i

||bn,D
x,i+ 1

2
||2J + ε|uy|W 1,∞(Ω)

∑
i

||Bn+1,C
x,h (xi, ·) −Bn,Cx,h (xi, ·)||2J (A.5)

(with arbitrary constant ε > 0) and

τ

2

∑
i,j

ux,i,j

(
−bn,D

x,i− 1
2 ,j+1

− bn,D
x,i+ 1

2 ,j+1
+ bn,D

x,i− 1
2 ,j

+ bn,D
x,i+ 1

2 ,j

)(
bn+1,C

x,i,j+ 1
2
− bn,C

x,i,j+ 1
2

)
. (A.6)
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One can see that the term (A.6) can be estimated just as in the constant velocity case, see (4.19) with ux and uy
replaced by their L∞ norms.

Combining the new estimates of Λ2 and Λ4, and using the “symmetric” structure in the different components
of the computed solution, we eventually have

1
2

(
Eh(Bn+1,C

h ,Bn+1,D
h ) − Eh(Bn,C

h ,Bn,D
h )

)
≤ ℵε + Cετ |u|W 1,∞(Ω)Eh(Bn,C

h ,Bn,D
h ). (A.7)

Here Cε depends on hx

hy
, hy

hx
and ε. The term ℵε is almost identical to the right hand side of (4.21), except that

|ux| and |uy| are replaced by their L∞ norms, and all four (− 1
2 )s are replaced by − 1

2 + ε|u|W 1,∞(Ω). Similar as
in Section 4.1.2, for any given θ ∈ (0, 1), one can choose ε such that ℵε ≤ 0 as long as τ satisfies (A.2). The
corresponding Cε is now denoted as Cθ.

Under this time step condition, we have for any n : nτ ≤ T ,

Eh(Bn,C
h ,Bn,D

h ) ≤ (1 + Cθ|u|W 1,∞(Ω)τ)Eh(Bn−1,C
h ,Bn−1,D

h ) ≤ e(Cθ|u|W1,∞(Ω)T )Eh(B0,C
h ,B0,D

h ). �
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[17] S. Mishra and M. Svärd, On stability of numerical schemes via frozen coefficients and the magnetic induction equations. BIT
Num. Math. 50 (2010) 85–108.

[18] K.W. Morton and R.L. Roe, Vorticity-preserving Lax-Wendroff-type schemes for the system wave equation. SIAM J. Sci.
Comput. 23 (2001) 170–192.

[19] P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite
Element Methods. Springer (1997) 292–315.



ANALYSIS FOR EXACTLY DIVERGENCE-FREE METHOD FOR MIE 993

[20] J.A. Rossmanith, An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows. SIAM J.
Sci. Comput. 28 (2006) 1766–1797.

[21] J.A. Rossmanith, High-order discontinuous Galerkin finite element methods with globally divergence-free constrained transport
for ideal MHD. Preprint (2013).
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