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Abstract. This work deals with a posteriori error estimates for the Navier–Stokes equations. We pro-
pose a finite element discretization relying on the Galerkin method and we solve the discrete problem
using an iterative method. Two sources of error appear, the discretization error and the linearization er-
ror. Balancing these two errors is very important to avoid performing an excessive number of iterations.
Several numerical tests are provided to evaluate the efficiency of our indicators.
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1. Introduction

The a posteriori analysis controls the overall discretization error of a problem by providing error indicators
easy to compute. Once these error indicators are constructed, their efficiency can be proven by bounding each
indicator by the local error. This analysis was first introduced by Babuška [3], and developed by Verfürth [27].
The present work investigates a posteriori error estimates of the finite element discretization of the Navier–
Stokes equations in polygonal domains. In fact, many works have been carried out in this field. In [12], El Akkad,
El Khalfi and Guessous proposed a numerical solution of the incompressible Navier–Stokes equations based on an
algorithm of discretization by mixed finite elements with a posteriori error estimation of the computed solutions.
Other works for the a posteriori estimation of stationary Navier–Stokes have been introduced in [20, 21, 25].
In [6], Bernardi et al. considered a variational formulation of the three-dimensional Navier–Stokes equations
with mixed boundary conditions and they proved that it admits a solution if the domain satisfies a suitable
regularity assumption. In addition, they established a priori and a posteriori error estimates. As well, in [17],
Ervin et al. present locally calculable a posteriori error estimators for the basic two-level discretization of the
Navier–Stokes equations.

The aim of this paper is to prove that, when two types of indicators are constructed, each of them correspond-
ing to a source of error, balancing these two errors leads to important computational savings. We have decided
to use this strategy for the simplest discretization as possible: a Galerkin method relying on finite elements of
low degree, a basic linearization algorithm. Indeed, we do think that the arguments that we use here can easily
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be extended to higher order discretizations. But the gain of computation time is more obvious in the simplest
one. We apply this strategy on the following Navier–Stokes equations.

Let Ω be a connected open domain in IRd, d = 2, 3, with a Lipschitz continuous boundary ∂Ω. We consider,
for a positive constant viscosity ν, the following system:

−νΔu + (u.∇)u + ∇p = f in Ω
div u = 0 in Ω

u = 0 on ∂Ω, (1.1)

where the unknowns are the velocity u and the pressure p of the fluid. The right-hand side f belongs to H−1(Ω)d,
the dual of the Sobolev space H1

0 (Ω)d.
Using P1 Lagrange finite elements for the pressure and P1-bubble Lagrange finite elements for the velocity,

the discrete variational problem amounts to a system of nonlinear equations. In order to solve it we propose an
iterative algorithm which consists at each iteration to solve a linearized problem. We establish the corresponding
a posteriori error estimates. Thus, two sources of error appear, due to linearization and discretization. The main
goal of this work is to balance these two sources of error. In fact, if the discretization error dominates then the
nonlinear solver iterations are reduced. Therefore, our objective is to calculate a posteriori error estimates
distinguishing linearization and discretization errors in the context of an adaptive procedure. This type of
analysis was introduced by Chaillou and Suri [10, 11] for a general class of problems characterized by strongly
monotone operators. It had been developed by El Alaoui et al. [13] and by Ern and Vohraĺık [14], for a class of
second-order monotone quasi-linear diffusion-type problems approximated by piecewise affine, continuous finite
elements.

In this work we present a strategy for the linearization process. This strategy is iterative and can be outlined
as follows:

(1) On the given mesh, perform an iterative linearization until a stopping criterion is satisfied.
(2) If the error is less than the desired precision, then stop, else refine the mesh adaptively and go to step (1).

The outline of the paper is as follows. In Section 2, we present the variational formulation of Navier–Stokes
problem (1.1). We introduce in Section 3 the discrete variational problem with the a priori error estimate. The
iterative algorithm is presented in Section 4. The a posteriori analysis of the discretization and of the iterative
algorithm is performed in Section 5. Section 6 is devoted to the numerical experiments.

2. Preliminaries

We describe in this section the Navier–Stokes problem (1.1) together with its variational formulation. First
of all, we recall the main notion and results which we use later on. For the domain Ω, denote by Lp(Ω) the
space of measurable functions v such that |v|p is integrable. For v ∈ Lp(Ω), the norm is defined by

‖v‖Lp(Ω) =
(∫

Ω

|v(x)|pdx
)1/p

.

We consider the following space

X = H1
0 (Ω)d =

{
v = (vi) ∈ L2(Ω)d;∇vi ∈ L2(Ω)d; v|∂Ω

= 0
}
,

and its dual space H−1(Ω)d.
We denote by L2

0(Ω) the space of functions in L2(Ω) with zero mean-value on Ω.

M = L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q dx = 0
}
.

We recall the Sobolev imbeddings (see Adams [1], Chap. 3).
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Lemma 2.1. For all j ≤ 6 and d = 2, 3, there exists a positive constant Sj such that

∀v ∈ H1
0 (Ω), ‖v‖Lj(Ω) ≤ Sj |v|1,Ω. (2.1)

We now assume that the data f belongs to H−1(Ω)d. Then the system (1.1) is equivalent to the following
variational problem:

Find u ∈ X, p ∈M such that

∀v ∈ X, a(u,v) + c(u;u,v) + b(v, p) = 〈f,v〉,
∀q ∈M, b(u, q) = 0, (2.2)

where the bilinear forms a(., .) and b(., .) and the trilinear form c(., ., .) are defined by

a(u,v) = ν

∫
Ω

∇u∇v dx,

b(v, q) = −
∫

Ω

q div v dx,

c(w;u,v) =
∫

Ω

(w.∇)uv dx. (2.3)

Furthermore, the bilinear form b(., .) satisfies the following inf-sup condition (see [18], Chap. I, Eq. (5.14) for
instance)

inf
q∈M,q �=0

sup
v∈X

b(v, q)
‖v‖X ‖q‖M

= β > 0. (2.4)

The existence and the conditional uniqueness of the solution (u, p) of problem (2.2) is given in [18] (Chap. IV,
Sect. 2). Furthermore, the solution of the problem (2.2) verify the bound:

|u|1,Ω ≤ c

ν
||f ||−1,Ω. (2.5)

In order to calculate the a posteriori error estimate, we introduce the Stokes equations which are defined as
follows:

−νΔu + ∇p = f in Ω

div u = 0 in Ω
u = 0 on ∂Ω. (2.6)

Using the previous notation, the Stokes problem amounts to the following variational form:
Find u ∈ X , p ∈M such that

∀v ∈ X, a(u,v) + b(v, p) = 〈f,v〉,
∀q ∈M, b(u, q) = 0. (2.7)

The existence and the uniqueness of the solution (u, p) ∈ X ×M of problem (2.7) is given in [18] (Chap. I,
Sect. 5.1).

Remark 2.2. In the sequel, we denote by C a generic constant that can vary from line to line but is always
independent of all discretization parameters.

In what follows, for simplicity reasons, we suppose d = 2. In fact, this work can easily be extended to d = 3
but requires some more technicalities that we prefer to avoid here.
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3. Finite element discretization and the a priori estimate

This section collects some useful notation concerning the discrete setting and the a priori estimate.
Let (Th)h be a regular family of triangulations of the polygonal domain Ω, in the sense that, for each h:

• The union of all elements of Th is equal to Ω.
• The intersection of two different elements of Th, if not empty, is a vertex or a whole edge of both triangles.
• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed circle is smaller than

a constant independent of h.

As usual, h stands for the maximum of the diameters hK , K ∈ Th.
Let (Xh,Mh) be the couple of discrete spaces corresponding to (X,M) defined as follow:

Mh =
{
qh ∈M, ∀K ∈ Th, qh|K ∈ P1(K)

}
and Xh =

{
vh ∈ X, ∀K ∈ Th, vh|K ∈ (P1(K)-bubble)2

}

where P1(K) stands for the space of restrictions toK of affine functions. P1(K)-bubble is the sum of a polynomial
of P1(K) and a “bubble” function bK . Denoting the vertices of K by ai, 1 ≤ i ≤ 3, and its corresponding
barycentric coordinates by λi, the basic bubble function bK is the polynomial of degree three

bK(x) = λ1(x)λ2(x)λ3(x).

We observe that bK(x) = 0 on ∂K and that bK(x) > 0 on K. The graph of bK looks like a bubble attached to
the boundary of K, hence its name.

We then consider the following finite element discretization of Navier–Stokes problem (2.2), obtained by the
Galerkin method:

Find uh ∈ Xh, ph ∈Mh such that

∀vh ∈ Xh, ν

∫
Ω

∇uh∇vhdx +
∫

Ω

(uh.∇)uhvhdx −
∫

Ω

phdiv vh dx = 〈f,vh〉,

∀qh ∈Mh,

∫
Ω

qhdiv uh dx = 0. (3.1)

In order to solve the discrete problem (3.1), we introduce the following space

Vh =
{
vh ∈ Xh; ∀qh ∈Mh, −

∫
Ω

qhdiv vhdx = 0
}
.

Problem (3.1) is then equivalent to the problem:
Find uh ∈ Vh such that

∀vh ∈ Vh, ν

∫
Ω

∇uh∇vhdx +
∫

Ω

(uh.∇)uhvhdx = 〈f,vh〉, (3.2)

and admits at least one solution (uh, ph) ∈ Xh ×Mh ([18], Chap. IV, Thm. 4.1) such that

|uh|1,Ω ≤ c

ν
‖f‖−1,Ω . (3.3)

In addition, if u ∈ H2(Ω)2 and p ∈ H1(Ω), the a priori estimate can be proved by following the approach in [7].
Under some further assumptions, it reads ([18], Chap. IV, Thm. 4.1)

|u − uh|1,Ω + ‖p− ph‖0,Ω ≤ Ch.
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4. Iterative algorithm

There exist in the literature many iterative algorithms to solve the Navier–Stokes discrete problem. For
instance, we refer to [8] for a time dependent discrete problem (even for steady state problem), to [2] for a
stabilized finite element method, . . . In order to solve the Navier–Stokes discrete problem, we propose in this
section a very simple iterative algorithm (see for instance [4]). Since we have used low order finite elements for
the discretization, we also choose a low order scheme, in order to reduce the cost of the computation. In fact,
we linearize the discrete problem and we set an initial guess u0

h.

Iterative algorithm. Let u0
h be an initial guess. We introduce, for i ≥ 0, the following algorithm:

Find ui+1
h ∈ Xh, pi+1

h ∈Mh such that

∀vh ∈ Xh, ν

∫
Ω

∇ui+1
h ∇vh dx +

∫
Ω

(ui
h.∇)ui+1

h vh dx −
∫

Ω

pi+1
h div vh dx = 〈f,vh〉,

∀qh ∈Mh,

∫
Ω

qhdiv ui+1
h dx = 0. (4.1)

We clearly see that problem (4.1) has the following form:
Find ui+1

h ∈ Vh such that

∀ vh ∈ Vh, ν

∫
Ω

∇ui+1
h ∇vh dx +

∫
Ω

(ui
h.∇)ui+1

h vh dx = 〈f,vh〉. (4.2)

Remark 4.1. The convergence properties of (4.1) and of more sophisticated linearization algorithms have been
proved, see [4] among others. For instance, the convergence is faster for the Newton’s method, however it only
holds for a very accurate choice of the initial value (even solving a Stokes problem as an initial step can lead to a
divergence of the algorithm for high values of the Reynolds number, i.e. when the solution of the Navier–Stokes
is not unique, see [23], Sect. 4.3.1). In fact, the following technics of a posteriori error estimates based on two
types of indicators (discretization and linearization) can be followed for almost iterative algorithm.

5. A posteriori error analysis

We start this section by introducing some additional notation needed for constructing and analyzing the error
indicators in the sequel.

For any element K ∈ Th we denote by E(K) the set of its edges and we set

Eh =
⋃

K∈Th

E(K).

With any edge e ∈ Eh we associate a unit vector n such that n is orthogonal to e. We split E(K) in the form

E(K) = EK,∂Ω ∪ EK,Ω,

where EK,∂Ω is the set of edges in E(K) that lie on ∂Ω and EK,Ω = E(K) \ EK,∂Ω. Furthermore, for K ∈ Th

and e ∈ Eh, let hK and he be their diameter and length respectively. An important tool in the construction of
bounds for the total error is Clément’s interpolation operator Rh with values in Xh. The operator Rh satisfies,
for all v ∈ H1

0 (Ω), the following local approximation properties (see Verfürth [27], Chap. 1):

‖v −Rhv‖L2(K) ≤ ChK |v|1,ΔK ,

‖v −Rhv‖L2(e) ≤ Ch
1/2
e |v|1,Δe ,
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where ΔK and Δe are the following sets:

ΔK =
⋃ {

K ′ ∈ Th; K ′ ∩K �= ∅
}

and Δe =
⋃ {

K ′ ∈ Th; K ′ ∩ e �= ∅
}
.

We now recall the following properties (see Verfürth [27], Chap. 1): let r be a positive integer. For all v ∈ Pr(K),
the following properties hold

C ‖v‖L2(K) ≤
∥∥∥vb1/2

K

∥∥∥
L2(K)

≤ ‖v‖L2(K) (5.1)

|v|1,K ≤ Ch−1
K ‖v‖L2(K) , (5.2)

where bK is the bubble function of the element K.
Finally, we denote by [vh] the jump of vh across the common edge e of two adjacent elements K,K ′ ∈ Th.

We have now provided all prerequisites to establish bounds for the total error.
We start the a posteriori analysis of the iterative algorithm. In order to prove an upper bound of the error,

we first introduce an approximation fh of the data f which is constant on each element K of Th. Then, we
distinguish the discretization and linearization errors. We first write the weak residual equation.

Let (u, p) and (ui
h, p

i
h) the solution of the (2.2) and (4.1), for all v ∈ X and vh ∈ Xh, we have:

ν

∫
Ω

∇u∇v dx +
∫

Ω

(u.∇)uv dx−
∫

Ω

p div v dx

− ν

∫
Ω

∇ui+1
h ∇v dx −

∫
Ω

(ui
h.∇)ui+1

h v dx +
∫

Ω

pi+1
h div v dx

= 〈f,v − vh〉 − ν

∫
Ω

∇ui+1
h ∇(v − vh) dx −

∫
Ω

(ui
h.∇)ui+1

h (v − vh) dx +
∫

Ω

pi+1
h div (v − vh) dx. (5.3)

Adding and subtracting
∫

Ω

(ui+1
h .∇)ui+1

h v dx and using the Green formula, give

ν

∫
Ω

∇u∇v dx +
∫

Ω

(u.∇)uv dx −
∫

Ω

pdiv v dx

−ν
∫

Ω

∇ui+1
h ∇v dx −

∫
Ω

(ui+1
h .∇)ui+1

h v dx +
∫

Ω

pi+1
h div v dx

=
∑

K∈Th

∫
K

(f − fh)(v − vh) dx +
∑

K∈Th

{∫
K

(fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h )(v − vh) dx

− 1
2

∑
e∈EK,Ω

∫
e

[
ν
∂ui+1

h

∂n
− pi+1

h n

]
.(v − vh) dτ

}
+
∫

Ω

((
ui

h − ui+1
h

)
.∇
)
ui+1

h v dx, (5.4)

where τ denotes the tangential coordinate on ∂K.
On the other hand, for all q ∈ L2(Ω)

b(u− ui+1
h , q) =

∫
Ω

qdiv ui+1
h dx. (5.5)
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We now define the local linearization indicator η(L)
K,i and the local discretization indicator η(D)

K,i , corresponding
to an element K ∈ Th, by:

η
(L)
K,i = |ui+1

h − ui
h|1,K , (5.6)

η
(D)
K,i = hK

∥∥fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h

∥∥
L2(K)

+
1
2

∑
e∈EK,Ω

h1/2
e

∥∥∥∥∥
[
ν
∂ui+1

h

∂n
− pi+1

h n

]∥∥∥∥∥
L2(e)

+
∥∥div ui+1

h

∥∥
L2(K)

. (5.7)

In order to calculate the a posteriori error estimates, we denote by S the operator which associates with any f
in H−1(Ω)d the part w = u of the solution (u, p) of the Stokes problem (2.6),

S : H−1(Ω)d → X
f �→ Sf = w.

We consider now the following mapping

G : X → H−1(Ω)d

w �→ G(w) = (w.∇)w − f

and we observe that problem (2.2) can equivalently be written as

F (u) = u + SG(u) = 0. (5.8)

Lemma 5.1. Let (u, p) be the solution of problem (2.2) and denote by DG the differential of G. There exists a
real number L > 0, such that the following Lipschitz property holds

∀w ∈ X,
∥∥S(DG(u) −DG(w)

)∥∥
L(H1(Ω))

≤ L|u− w|1,Ω,

where L(H1(Ω)) is the set of linear continuous functions between H1(Ω) and itself.

Proof. We have, for all w, z ∈ X

∥∥S(DG(u).z −DG(w).z
)∥∥

1,Ω
≤ C

ν
‖DG(u).z −DG(w).z‖−1,Ω . (5.9)

We observe that
DG(u).z −DG(w).z = z.∇(u − w) + (u − w).∇z, (5.10)

hence ∥∥(DG(u) −DG(w)
)
.z
∥∥
−1,Ω

≤ 2S2
4 |u − w|1,Ω|z|1,Ω. (5.11)

Thus, combining (5.9) with (5.10) and (5.11) yields the desired property. �

Assumption 5.2. The solution (u, p) ∈ X ×M of problem (2.2) is such that the operator Id+ SDG(u) is an
isomorphism of X.

Remark 5.3. Assumption 5.2 implies that the solution u is locally unique, which is weaker than the global
uniqueness of the solution.
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We can now state the first result of this section:

Theorem 5.4. Let (ui+1
h , pi+1

h ) ∈ Xh×Mh and (uh, ph) ∈ Xh×Mh be the solutions of the iterative problem (4.1)
and the discrete problem (3.1), respectively. Suppose that the solution (u, p) satisfies Assumption 5.2. Then, there
exists a neighborhood O of u in X such that any solution (ui+1

h , pi+1
h ) of problem (4.1) with ui+1

h in O satisfies
the following a posteriori error estimate

|u − ui+1
h |1,Ω +

∥∥p− pi+1
h

∥∥
L2(Ω)

≤ C

( ∑
K∈Th

((
η
(D)
K,i

)2 + h2
K ‖f− fh‖2

L2(K)

))1/2

+ C′

( ∑
K∈Th

(
η
(L)
K,i

)2)1/2

.

Proof. Let (ui+1
h , pi+1

h ) ∈ Xh ×Mh be the solution of the iterative problem (4.1). We proceed in two steps.

(i) Owing to Lemma 5.1 and Assumption 5.2, it follows from [24] that, for any ui+1
h in a appropriate neigh-

borhood O of u
|u− ui+1

h |1,Ω ≤ C
∥∥ui+1

h + SG(ui+1
h )

∥∥
−1,Ω

. (5.12)

Introducing F (u) in (5.12) (see Eq. (5.8)), and from equations (5.4) and (5.5), we obtain for all vh ∈ Xh

|u− ui+1
h |1,Ω ≤ C

⎛
⎜⎜⎝sup

v∈X
v �=0

〈f − fh,v− vh〉 + 〈J ,v − vh〉
|v|1,Ω

+ sup
v∈X
v �=0

∫
Ω

(
(ui

h − ui+1
h ).∇

)
ui+1

h v dx

|v|1,Ω
+ sup

q∈M
q �=0

∫
Ω

q div ui+1
h dx

‖q‖L2(Ω)

⎞
⎟⎟⎠ , (5.13)

(Note that the last term comes from the definition of S) where

〈J ,v− vh〉 =
∑

K∈Th

{∫
K

(fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h )(v − vh) dx

− 1
2

∑
e∈EK,Ω

∫
e

[
ν
∂ui+1

h

∂n
− pi+1

h n

]
.(v − vh) dτ

}
.

Taking vh equal to the image Rhv of v by the Clément operator in (5.13), we obtain the desired estimate
for |u− ui+1

h |1,Ω.

(ii) Computing b(v, p− pi+1
h ) from (5.4) and adding and substracting

∫
Ω

(ui+1
h .∇)uv dx we obtain

b(v, p− pi+1
h ) = ν

∫
Ω

∇(ui+1
h − u)∇v dx +

∫
Ω

(ui+1
h .∇)(ui+1

h − u)v dx +
∫

Ω

(ui+1
h − u)∇uv dx

+
∑

K∈Th

∫
K

(f−fh)(v−vh) dx+
∑

K∈Th

{∫
K

(fh+νΔui+1
h −(ui

h.∇)ui+1
h −∇pi+1

h )(v−vh) dx

− 1
2

∑
e∈EK,Ω

∫
e

[
ν
∂ui+1

h

∂n
− pi+1

h n

]
.(v − vh) dτ

}
+
∫

Ω

(
(ui

h − ui+1
h ).∇

)
ui+1

h v dx. (5.14)
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Using Cauchy–Schwarz inequality, (2.5) and (3.3), we derive the following estimate

b(v, p− pi+1
h ) ≤

∑
K∈Th

(
‖f− fh‖L2(K) +

∥∥fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h

∥∥
L2(K)

)
‖v − vh‖L2(K)

+
1
2

∑
e∈EK,Ω

∥∥∥∥∥
[
ν
∂ui+1

h

∂n
− pi+1

h n

]∥∥∥∥∥
L2(e)

‖v− vh‖L2(e) +
CS2

4

ν
‖f‖0,Ω |ui+1

h − ui
h|1,Ω|v|1,Ω

+
(

2
CS2

4

ν
‖f‖0,Ω + ν

)
|ui+1

h − u|1,Ω|v|1,Ω. (5.15)

Taking vh equal Rhv in (5.15) and using the inf-sup condition (2.4), we obtain the desired estimate for∥∥p− pi+1
h

∥∥
L2(Ω)

. �

We address now the efficiency of the previous indicators.

Theorem 5.5. For each K ∈ Th, the following estimates hold for the indicators η(L)
K,i defined in (5.6)

η
(L)
K,i ≤

∥∥u− ui+1
h

∥∥
1,K

+
∥∥u − ui

h

∥∥
1,K

, (5.16)

and for the indicators η(D)
K,i defined in (5.7)

η
(D)
K,i ≤ C

(
η
(L)
K,i +

∥∥u − ui+1
h

∥∥
1,ωK

+
∥∥pi+1

h − p
∥∥

L2(ωK)
+
∑

κ⊂ωK

hκ ‖f− fh‖L2(κ)

)
, (5.17)

where ωK is the union of the elements sharing at least one edge with K.

Proof. The estimation of the linearization indicator follows easily from the triangle inequality by introducing u
in η(L)

K,i. We now estimate the discretization indicator η(D)
K,i . We proceed in two steps:

(i) We start by taking vh = 0 and by adding and subtracting
∫

Ω

(ui+1
h .∇)uv dx in (5.3). We obtain

∑
K∈Th

(∫
K

(fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h )v
)
dx = ν

∫
Ω

∇(u − ui+1
h )∇v dx

+
∫

Ω

(
(u − ui+1

h ).∇
)
uv dx −

∑
K∈Th

∫
K

(f − fh)v dx +
1
2

∑
e∈EK,Ω

∫
e

[
ν
∂ui+1

h

∂n
− pi+1

h n

]
.v dτ

}

+
∫

Ω

(
ui+1

h .∇
)
(u − ui+1

h )v dx +
∫

Ω

(
(ui+1

h − ui
h).∇

)
ui+1

h v dx +
∫

Ω

(pi+1
h − p) div v dx. (5.18)

We choose v = vK such that

vK =

{
(fh + νΔui+1

h − (ui
h.∇)ui+1

h −∇pi+1
h )bK on K

0 on Ω \K,

where bK is the bubble function of the element K.
Using Cauchy–Schwarz inequality, (5.1) and (5.2) we obtain

hK

∥∥fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h

∥∥2

L2(K)

≤ C
(∥∥u− ui+1

h

∥∥
1,K

‖vK‖L2(K) + hK ‖f − fh‖L2(K) ‖vK‖L2(K)

+
∥∥pi+1

h − p
∥∥

L2(K)
‖vK‖L2(K) +

∥∥ui
h − ui+1

h

∥∥
1,K

‖vK‖L2(K)

)
. (5.19)



1044 C. BERNARDI ET AL.

Therefore, we obtain the following estimate of the first term of the local discretization estimator η(D)
K,i

hK

∥∥fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h

∥∥
L2(K)

≤ C

(∥∥u − ui+1
h

∥∥
1,K

+ hK ‖f − fh‖L2(K) +
∥∥pi+1

h − p
∥∥

L2(K)
+ η

(L)
K,i

)
. (5.20)

(ii) We now estimate the second term of η(D)
K,i . Rewriting (5.18), we infer

1
2

∑
e∈EK,Ω

∫
e

[
ν
∂ui+1

h

∂n
− pi+1

h n

]
.v dτ =

∑
K∈Th

∫
K

(fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h )v dx

+ ν

∫
Ω

∇(ui+1
h − u)∇v dx +

∫
Ω

(
(ui+1

h − u).∇
)
uv dx +

∑
K∈Th

∫
K

(f − fh)v dx

+
∫

Ω

(ui+1
h .∇)(ui+1

h − u)v dx +
∫

Ω

(
(ui

h − ui+1
h ).∇

)
ui+1

h vdx

+
∫

Ω

(p− pi+1
h ) div v dx. (5.21)

We choose v = ve such that

ve =

⎧⎪⎨
⎪⎩
Le,κ

([
∂ui+1

h

∂n
− pi+1

h n

]
be

)
κ ∈ {K,K ′}

0 on Ω \ (K ∪K ′)

where be is the edge-bubble function, K ′ denotes the other element of Th that share e with K and Le,κ is
a lifting operator from e into κ mapping polynomials vanishing on ∂e into polynomials vanishing in ∂κ\e
and constructed from a fixed operator on the reference element (see Verfürth [27]). Furthermore, we have
for all v ∈ Pr(e), the following properties

C ‖v‖L2(e) ≤
∥∥∥vb1/2

e

∥∥∥
L2(e)

≤ ‖v‖L2(e) , (5.22)

and
||Le,κv||L2(κ) + he|Le,κv|1,κ ≤ Ch1/2

e ‖v‖L2(e) . (5.23)

Using Cauchy–Schwarz inequality, (5.22) and (5.23) we get

h1/2
e

∥∥∥∥∥
[
∂ui+1

h

∂n
−pi+1

h n

]∥∥∥∥∥
2

L2(e)

≤ (ν+
2C
ν

‖f‖0,Ω)
∥∥u−ui+1

h

∥∥
1,K∪K′ ‖ve‖L2(e)+he ‖f−fh‖L2(K∪K′) ‖ve‖L2(e)

+ he

∥∥fh + νΔui+1
h − (ui

h.∇)ui+1
h −∇pi+1

h

∥∥
L2(K∪K′) ‖ve‖L2(e)

+
∥∥pi+1

h − p
∥∥

L2(K∪K′) ‖ve‖L2(e) +
C

ν
‖f‖0,Ω η

(L)
K,i ‖ve‖L2(e) , (5.24)

with

‖ve‖L2(e) ≤ c

∥∥∥∥∥
[
ν
∂ui+1

h

∂n
− pi+1

h n

]∥∥∥∥∥
L2(e)

.

Thus, we have estimated the second term of the local discretization indicator η(D)
K,i .
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(iii) Finally, we take q = qK in (5.5) such that

qK =

{
div ui+1

h on K

0 on Ω \K

We obtain ∥∥div ui+1
h

∥∥
L2(K)

≤
∥∥u − ui+1

h

∥∥
1,K

. (5.25)

Collecting the bounds above leads to the final result

η
(D)
K,i ≤ C

(∥∥u− ui+1
h

∥∥
1,ωK

+
∥∥p− pi+1

h

∥∥
L2(κ)

+
∑

κ⊂ωK

hκ ‖f− fh‖L2(κ) + η
(L)
K,i

)
. �

Corollary 5.6. If we use the following local stopping criteria (proceeding as in [13] or [14])

η
(L)
K,i ≤ γKη

(D)
K,i , ∀K ∈ Th,

where γK is a positive parameter corresponding to the element K such that γKC < 1 (C is the constant of the
previous theorem), we have

η
(D)
K,i ≤ c

(∥∥u − ui+1
h

∥∥
1,ωK

+
∥∥pi+1

h − p
∥∥

L2(ωK)
+
∑

κ⊂ωK

hκ ‖f − fh‖L2(κ)

)
.

According to standard criteria, these estimates of the local linearization and discretization indicators are fully
optimal [27]. In fact we observe that, up to the terms involving the data, the error is bounded by a constant
times the sum of all indicators. As well, the indicators are bounded by the error in a neighborhood of K or e.

Instead the local stopping criteria introduced in the previous corollary, we can introduce a global one. In fact
we introduce the global linearization error indicator η(L)

i and discretization error indicator η(D)
i defined by

η
(L)
i =

( ∑
K∈Th

(
η
(L)
K,i

)2)1/2

,

η
(D)
i =

( ∑
K∈Th

(
η
(D)
K,i

)2)1/2

.

Corollary 5.7. If we use the following global stopping criterion (proceeding as in [13] or [14])

η
(L)
i ≤ γη

(D)
i ,

where γ is a positive parameter such that γC < 1 (C is the constant of the previous theorem), we have

η
(D)
i ≤ c

(∥∥u− ui+1
h

∥∥
1,Ω

+
∥∥pi+1

h − p
∥∥

L2(Ω)
+
∑

K⊂Ω

hK ‖f− fh‖L2(K)

)
.

6. Numerical results

In this section, we present numerical results for the Navier–Stokes iterative algorithm. These simulations have
been performed using the code FreeFem++ due to Hecht and Pironneau, see [19]. In all this section, u0

h is the
solution of the Stokes problem with corresponding boundary conditions.
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Figure 1. Numerical pressure. Figure 2. Exact pressure.

6.1. A priori estimation

We consider the square Ω = ]0, 3[2. Each edge is divided into N equal segments so that Ω is divided into
2N2 triangles. We consider the iterative Navier–Stokes algorithm and the theoretical solution (u, p) = (rot ψ, p)
where ψ and p are defined as follows

ψ(x, y) = e−30
(
(x−1)2+(y−1)2

)
,

p(x, y) = cos(2πx) cos(2πy).

The convergence criterion used in this section is the following

|u− ui
h|1,Ω

|u|1,Ω
≤ 10−8.

Figures 1 and 2 compare the exact and the numerical solution of the pressure p for N = 100. We can see that
the two solutions are visually similar.

As well, Figures 3–6 compare the different components of the numerical and exact solutions of the velocity
u for N = 100.

Figures 7 and 8 present the error curves (after convergence of the iterative solution) of the velocity (|u−uh|1,Ω)

and the pressure (||p − ph||L2(Ω)) as a function of h =
1
N

in logarithmic scales. We test the algorithm for the
number of segments N going from 60 to 100. The slope of the velocity error curve is equal to 0.92 while it is 1.08
for the pressure error curve.

Remark 6.1. Note that the error curves of the pressure and the velocity are coherent with the theoretical
results in Section 3.

6.2. A posteriori analysis

In this section, we test our a posteriori error estimates on the iterative Navier–Stokes problem. We will
present two examples: the first one considers the homogeneous boundary condition and the second one treats
the Lid-Driven Cavity.



A POSTERIORI ANALYSIS OF AN ITERATIVE ALGORITHM FOR NAVIER–STOKES PROBLEM 1047

Figure 3. First component of the
numerical velocity.

Figure 4. First component of the
exact velocity.

Figure 5. Second component of
the numerical velocity.

Figure 6. Second component of
the exact velocity.

6.2.1. First test case

We consider the same domain as previously and the exact solution (u, p) = (rot ψ, p) where ψ and p are
defined as follows

ψ(x, y) = e−30
(
(x−1)2+(y−1)2

)
,

p(x, y) = cos
(

2π
3
x

)
cos
(

2π
3
y

)
.
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Figure 7. Error curve of the ve-
locity (|u−uh|1,Ω) versus the size

of the mesh h =
1
N

, for N going
from 60 to 100.

Figure 8. Error curve of the pres-
sure (||p−ph||L2(Ω)) versus the size

of the mesh h =
1
N

, for N going
from 60 to 100.

The considered exact pressure is slightly different than that in the previous section which was constituted of
three period in every dimension. In order to show the efficiency of the adapted mesh method according to the
velocity, we consider the pressure with one period in every dimension.

We define two different global stopping criteria:

η
(L)
i ≤ 10−5 Classical stopping criterion, (6.1)

and
η
(L)
i ≤ γη

(D)
i New stopping criterion, (6.2)

where γ is a positive parameter which balances the discretization and linearization errors. In [13,14], the authors
introduce this new stopping criterion and choose in practice γ = 0.1 in their numerical experiments. In this
work, we choose γ = 0.01 for our numerical applications.

Remark 6.2. In [13,14], the authors show numerical experiments corresponding to the local stopping criterion
(Cor. 5.6) and the global one (Cor. 5.7). To compare with the classical stopping criterion (6.1), the global
one (6.2) is more suitable than local one (Cor. 5.6). Furthermore, it is shown in [13] that (6.2) can be a good
criterion for the adaptive method.

Figures 9 to 12 show the evolution of the mesh (see [27], Introduction) using the iterative Navier–Stokes
algorithm. We remark that, from an iteration to an other, the mesh is mainly refined in the region where the
velocity takes its higher values. An adaptive mesh refinement can be outlined as follows:

(1) Given ui
h,

(a) Solve the problem (4.1) to compute ui+1
h .

(b) Calculate η(D)
i and η(L)

i .
(2) If the stopping criterion (6.2) is satisfied, go to (3), else set ui

h = ui+1
h and go to (1).

(3)
(a) If η(D)

i is smaller than a fixed error tolerance ε, we stop the iterations and the algorithm.
(b) Else we adapt the mesh using the indicators η(D)

K,i .
(4) Set i = i+ 1 and go to (1).
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Figure 9. 273 vertices. Figure 10. 507 vertices.

Figure 11. 891 vertices. Figure 12. 1615 vertices.

In the previous algorithm, the adapt mesh technics is performed by using the “FreeFem++” software (see [19])
and based on the calculated indicators η(D)

K,i . The main idea can be summarized as follow: we calculate the

mean value η∗i of the indicators η(D)
K,i at each step i, detect the elements of the mesh where the corresponding

indicators are larger then η∗i and refine them.

Figures 13 and 14 present the numerical and the exact first component of the velocity for the mesh refinement
of Figure 12.

We observe that the numerical velocity and the exact velocity are visually similar.
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Figure 13. Numerical velocity. Figure 14. Exact velocity.

Figure 15. Curve of the error Er

as a function of the global vertices
number. Uniform mesh (top), adaptive
mesh (bottom).

Figure 16. Iterations number as a
function of the refinement level. Clas-
sical criterion (top), new criterion
(bottom).

Figure 15 presents the curve of the error Er =
|u− uh|1,Ω

|u|1,Ω
(after convergence of the iterative solution) for

uniform (red) and adaptive (blue) mesh refinement using the new stopping criterion. We note that the error
using an adaptive mesh is much smaller than the error using a uniform mesh.

Figure 16 illustrates the performance of our new stopping criterion with γ = 0.01 by comparing it to the
classical stopping criterion η

(L)
i ≤ 10−5. We can clearly observe that our new stopping criterion reduces the

number of iterations.
In Tables 1 and 2, we present the effectivity index defined as

EI =

⎛
⎜⎝
(
η
(L)
i

)2

+
(
η
(D)
i

)2

|ui
h − u|21,Ω

⎞
⎟⎠

1/2

� η
(D)
i

|ui
h − u|1,Ω
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Table 1. Repartition of errors and EI with respect to the iterations for the new stoping criterion.

NK i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
150 vertices 338 vertices 830 vertices 2302 vertices 5109 vertices 9869

|u − ui
h|1,Ω

|u|1,Ω
0.202505 0.141114 0.106995 0.0770237 0.0533372 0.0380128

EI (with (6.2)) 5.196 4.6017 4.3130 4.158 4.1656 4.1606

Table 2. Repartition of errors and EI with respect to the iterations for the classical stoping
criterion.

NK i = 1 i = 2 i = 3 i = 4 i = 5 i = 6
149 vertices 331 vertices 830 vertices 2288 vertices 5180 vertices 9795

|u − ui
h|1,Ω

|u|1,Ω
0.203689 0.137318 0.107731 0.07809 0.0547675 0.0380982

EI (with (6.1)) 5.2357 4.6930 4.3082 4.1733 4.1745 4.1793

Table 3. CPU time for both criteria.
��������������Method

Level of refinement
3 4 5 6 7

New criterion 6.466s 8.331s 14.439s 11.591s 15.351s
Classical criterion 30.609s 13.104s 21.279s 29.25s 49.483s

with respect to the number of unknowns NK during the iterations and for the new and classical stopping criteria.
We remark that both of these criteria gives the same precision.

Finally, Table 3 presents the CPU time of each level of refinement for both criteria, the classical one and the
new one. We can see clearly the efficiency of the new stopping criterion with γ = 0.01.

6.2.2. Second test case: Lid Driven cavity

In this section, we consider Ω = ]0, 1[2, recall that ν =
1
Re

where Re is the Reynold number and complete the

Navier–Stokes equations with the following boundary conditions: u = (1, 0) on the lid (top of Ω) and u = (0, 0)
on the sides and the bottom of Ω.

The Lid Driven Cavity is treated in several works. Kawaguti [22] appears to have the earliest numerical
solutions for the lid-driven cavity problem by using the stream function-vorticity formulation with a finite
difference method. Then, we can cite the works of [9,16,26] which improved the work of Kawaguti. In addition,
Barrgy and Carey [5] use the stream function-vorticity formulation but with finite element method. Finally, we
can also refer to [8, 15]. In this work, we will elaborate numerical results using the adaptive mesh method and
give some numerical comparisons of the stream function ψ such that u = curlψ which verifies the following
variational problem ⎧⎨

⎩
Find ψ ∈ H1

0 (Ω) such that for all φ ∈ H1
0 (Ω) we have∫

Ω

∇ψ∇φ =
∫

Ω

curl u φ.

To compare with the above references, we chose the finite elements of degree 2 for the velocity, of degree 1 for
the pressure and of degree 2 for the stream function.

First of all, we begin to test the iterative Algorithm 4.1 with the uniform mesh method (N = 100) and with
the stopping criteria (6.1) and (6.2) for different values of Re. We remark that it converges for Re ≤ 5000, but
it does not converge for bigger values of Re. Figures 17 and 18 show the corresponding stream functions.
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IsoValue
0.00132161
0.00711922
0.0129168
0.0187144
0.024512
0.0303096
0.0361073
0.0419049
0.0477025
0.0535001
0.0592977
0.0650953
0.0708929
0.0766905
0.0824881
0.0882857
0.0940833
0.0998809
0.105679
0.111476

Figure 17. Re = 1000.

IsoValue
0.000496819
0.00632151
0.0121462
0.0179709
0.0237956
0.0296203
0.035445
0.0412697
0.0470944
0.0529191
0.0587437
0.0645684
0.0703931
0.0762178
0.0820425
0.0878672
0.0936919
0.0995166
0.105341
0.111166

Figure 18. Re = 5000.

We slightly change (4.1) with the following: find ui+1
h ∈ Xh, pi+1

h ∈Mh such that

∀vh ∈ Xh, ν

∫
Ω

∇ui+1
h ∇vh dx +

∫
Ω

(ũi
h.∇)ui+1

h vh dx −
∫

Ω

pi+1
h div vh dx = 〈f,vh〉,

∀qh ∈Mh,

∫
Ω

qhdiv ui+1
h dx = 0,

(6.3)

where

ũi
h =

ui
h + ũi−1

h

2
·

Based on this new algorithm (6.3), the uniform mesh method with n = 100 converges for big values of Re.
The indicators (5.6) become

η̃
(L)
K,i = |ui+1

h − ũi
h|1,K , (6.4)

η̃
(D)
K,i = hK

∥∥νΔui+1
h − (ũi

h.∇)ui+1
h −∇pi+1

h

∥∥
L2(K)

(6.5)

+
1
2

∑
e∈EK,Ω

h1/2
e

∥∥∥∥∥[ν ∂u
i+1
h

∂n
− pi+1

h n]

∥∥∥∥∥
L2(e)

+
∥∥div ui+1

h

∥∥
L2(K)

, (6.6)

and the upper bound in Theorem 5.4 remains the same with these new indicators.
Next, we consider the adaptive mesh algorithm with the stopping criterion (6.2) and we allow a maximum

number of vertices up to 10 000. In this case, the algorithm refines in some regions of the domain and coarsens in
other regions following the indicators. Figures 19–22 show the evolution of the mesh during the refinement levels
for Re = 10 000. We remark that, from an iteration to an other, the concentration of the refinement is on the
top of the Lid where the velocity is imposed, in the two corner singularities and on the complex vorticity region
(see Ref. [2]). Figures 23 and 24 show isovalues of the stream function between the uniform and adaptive mesh
methods. By using the classical stopping criterion (6.1), the evolution of the meshes is similar to Figures 19–22
and the isovalues of the stream function are similar to Figures 23 and 24 for the same Re.

To show the efficiency of the proposed adaptive mesh method, we compare the uniform mesh method, the
adaptive mesh method with the literature. The following Table shows the comparisons of ‖ψ‖∞ with literature.
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Figure 19. Initial mesh (Re =
10 000), number of vertices 900.

Figure 20. First level mesh (Re =
10 000), number of vertices 3778.

Figure 21. Second level mesh
(Re = 10 000), number of vertices
6279.

Figure 22. Third level mesh
(Re = 10 000), number of vertices
9457.

For bigger Reynolds number, the algorithms corresponding to both methods (uniform and adaptive) do not
converge for the considered meshes.

Table 4 shows that ‖ψ‖∞ decreases with bigger values of Re for the uniform mesh method which is not
the case for the adaptive mesh method where it remains more stable. Furthermore, the adaptive solution is
comparable to the one in [16], hence it is better than the uniform solution. This is not to mention that the new
stopping criterion (6.2) requires less CPU time than the classical stopping criterion (6.1) (see Tab. 3) and the
adaptive method requires less CPU time than the uniform one.

In Table 5, we present the ratio of indicators on the velocity norm

Indi =

⎛
⎜⎝
(
η
(L)
i

)2

+
(
η
(D)
i

)2

|ui
h|1,Ω

⎞
⎟⎠

1/2

� η
(D)
i

|ui
h|1,Ω

with respect to the number of vertices NV with different Reynolds number.
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IsoValue
-0.000205171
0.00588106
0.0119673
0.0180535
0.0241397
0.030226
0.0363122
0.0423984
0.0484846
0.0545709
0.0606571
0.0667433
0.0728295
0.0789158
0.085002
0.0910882
0.0971745
0.103261
0.109347
0.115433

Figure 23. Adaptive stream func-
tion (Re = 10 000).

IsoValue
-5.10785e-005
0.00546392
0.0109789
0.0164939
0.0220089
0.0275239
0.0330389
0.0385539
0.0440689
0.0495839
0.0550989
0.0606139
0.0661289
0.0716439
0.0771589
0.0826739
0.0881889
0.0937039
0.0992189
0.104734

Figure 24. Uniform stream func-
tion (Re = 10 000).

Table 4. ‖ψ‖∞ for different Reynolds number Re and for the uniform mesh method, the
adaptive mesh method with classical stopping criterion, the adaptive mesh method with new
stopping criterion and the one in [16].

�������������Method
Reynolds Number

1000 5000 10 000 20 000 30 000

Uniform mesh method (N = 100) 0.114372 0.111748 0.10749 0.100236 0.0929158
Adaptive mesh method with classical stopping

0.118209 0.120131 0.118459 0.115512 0.112353
criterion (number of vertices up to 10 000)
Adaptive mesh method with new stopping

0.118259 0.120127 0.118478 0.115617 0.112298
criterion (number of vertices up to 10 000)
Erturk et al. [16] 0.118942 0.122233 0.122390 0.122084 −

Table 5. Indi with respect to the number of vertices NV for different Reynolds number.

Re = 10 000
NV 3778 vertices 6279 vertices 9475 vertices
Indi 0.1107 0.03201 0.02597
Re = 20 000
NV 3778 vertices 6596 vertices 9790 vertices
Indi 0.1358 0.03878 0.02135
Re = 30 000
NV 3778 vertices 6646 vertices 9973 vertices
Indi 0.1577 0.0542 0.0256

7. Conclusion

In this work we have derived a posteriori error estimates for the finite element discretization of the Navier–
Stokes equations. These estimates yield a fully computable upper bound which allows to distinguish the
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discretization and the linearization errors. We have shown in this work that balancing these two errors leads to
important computational savings; in fact, it avoids performing an excessive number of iterations.
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[14] A. Ern and M. Vohraĺık, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs.
SIAMJ. Sci. Comput. 35 (2013) A1761–A1791.

[15] E. Erturk, Discussions on driven cavity flow. Int. J. Numer. Meth. Fluids 60 (2009) 747–774.

[16] E. Erturk, T.C. Corke and C. Gokcol, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds
numbers. Int. J. Numer. Methods Fluids 48 (2005) 747–774.

[17] V. Ervin, W. Layton and J. Maubach, A posteriori error estimators for a two-level finite element method for the Navier–Stokes
equations. I.C.M.A. Tech. Report, University of Pittsburgh (1995)

[18] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations. Springer-Verlag (1986).

[19] F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–266.

[20] H. Jin and S. Prudhomme, A posteriori error estimation in finite element analysis. Comput. Methods Appl. Mech. Eng. 159
(1998) 19–48.

[21] V. John, Residual a posteriori error estimates for two-level finite element methods for the Navier–Stokes equations. Appl.
Numer. Math. 37 (2001) 501–518.

[22] M. Kawaguti, Numerical Solution of the Navier–Stokes Equations for the Flow in a Two-Dimensional Cavity. J. Phys. Soc.
Japan 16 (1961) 2307–2315.
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Masson (1988).

[24] J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to
nonlinear problems. Numer. Math. 69 (1994) 213–231.

[25] S. Prudhomme and J.T. Oden, Residual a posteriori error estimates for two-level finite element methods for the Navier–Stokes
equations. Finite Elements in Analysis and Design 33 (1999) 247–262.

[26] R. Schreiber and H.B. Keller, Driven cavity flows by efficient numerical techniques. J. Comput. Phys. 49 (1983) 310–333.

[27] R. Verfürth, A Posteriori Error Estimation Techniques For Finite Element Methods. Numer. Math. Sci. Comput. Oxford
(2013).


	Introduction
	Preliminaries
	Finite element discretization and the a priori estimate
	Iterative algorithm
	A posteriori error analysis
	Numerical results
	A priori estimation
	A posteriori analysis
	First test case
	Second test case: Lid Driven cavity


	Conclusion
	References

