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AN EXPLICIT FINITE-DIFFERENCE SCHEME FOR ONE-DIMENSIONAL
GENERALIZED POROUS MEDIUM EQUATIONS: INTERFACE TRACKING

AND THE HOLE FILLING PROBLEM

Léonard Monsaingeon
1

Abstract. Based on results of E. DiBenedetto and D. Hoff we propose an explicit finite-difference
scheme for one dimensional Generalized Porous Medium Equations ∂tu = ∂2

xxΦ(u). The scheme allows
to track the moving free boundaries, and captures the so-called hole filling phenomenon when free
boundaries collide. We prove the convergence of the discrete solution when the mesh parameter Δx → 0.
Finally, we provide numerical evidence of the convergence of the scheme.
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1. Introduction

We consider in this work the numerical approximation of nonnegative solutions u(x, t) ≥ 0 to one-dimensional
degenerate diffusion equations of the Generalized Porous Medium Equation type

∂tu = ∂2
xxΦ(u), t ≥ 0, x ∈ R. (GPME)

The nonlinearity Φ(s) is normalized as Φ(0) = 0, is monotone increasing for s > 0, and satisfies the structural
condition

1 < a ≤ sΦ′(s)
Φ(s)

≤ b (Γa,b)

for some constants a, b. This roughly means that nonlinearities in the class Γa,b behave in between two pure
powers sa, sb for 1 < a ≤ b, which is a generalization of the celebrated Porous Medium Equation (PME)
∂tu = Δum for m > 1. Moreover, a > 1 implies that Φ(s)/s is monotone increasing and lim

s→0+

Φ(s)
s = Φ′(0) = 0.

Writing ∂2
xxΦ(u) = ∂x(Φ′(u)∂xu) the equation clearly degenerates at the levelset {u = 0}, which results in the

well known finite speed of propagation: if the initial data u0(x) ≥ 0 is compactly supported then u( . , t) remains
compactly supported for all t > 0, and free-boundaries Γ (t) = ∂ supp u( . , t) separate {u = 0} from {u > 0}.
Degenerate diffusion equations such as (GPME) have attracted considerable attention in the last decades. We
refer the reader to [8, 9, 13, 19, 22] and references therein for the Cauchy problem and regularity theory, and
to [2, 5, 6, 10, 11] for the theory of free-boundaries.
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In order to understand the propagation of free-boundaries it is more convenient to use the pressure variable

v := Ψ(u), Ψ(s) :=
∫ s

0

Φ′(z)
z

dz,

which formally solves
vt = σ(v)∂2

xxv + |∂xv|2 (1.1)

with
σ(v) := Φ′(u) = Φ′ ◦ Ψ−1(v).

The structural assumption (H) implies that (a−1)v ≤ σ(v) ≤ (b−1)v, and v, σ(v), Φ′(u), Φ(u)/u are comparable
in the sense that the ratio of any two of these quantities is bounded away from zero and from above. In space
dimension one the free-boundaries Γ (t) = ∂ supp u( . , t) = ∂ supp v( . , t) can be simply parametrized by a set
of curves x = ζ(t) and are usually referred to as interfaces. By definition along these curves v = σ(v) = 0, thus
formally discarding the σ(v)∂2

xxv term in (1.1) we see that ∂tv = |∂xv|2 at the interfaces. This suggests that the
motion of the free-boundaries is governed by dζ/dt = −∂xv(ζ(t), t) provided that these quantities exist in some
sense, see e.g. [5, 11].

In order to track the interfaces we shall work exclusively in the pressure framework (1.1) rather than
with (GPME), and we restrict in the whole paper to Lipschitz-continuous and compactly supported initial
data

0 ≤ v0(x) ≤ M, Lip(v0) ≤ γ0.

Because (GPME) and (1.1) satisfy a comparison principle [22] we expect that 0 ≤ v(x, t) ≤ M for all times, and
the behaviour of Φ(s) should therefore be irrelevant for large r = Ψ(s) ≥ M . As a consequence we relax (Γa,b)
and only assume throughout the whole paper

σ ∈ C1([0,∞), R+) ∩ C2(R+, R+), σ(0) = 0, σ′ > 0,

and
∀ r ∈ [0, M ] : 0 < s1(M) ≤ σ′(r) ≤ S1(M) and |σ′′(r)| ≤ S2(M) (H)

for structural s1, S1, S2.

Remark 1.1. These conditions on σ(r) can be translated into conditions on the original Φ(s) nonlinearity
through r = Ψ(s), for example σ′(r) = sΦ′′(s)/Φ′(s). In the case of the pure PME nonlinearity Φ(s) = sm one
can compute explicitly v = Ψ(u) = mum−1/(m − 1) and σ(v) = (m − 1)v, thus s1 = S1 = (m − 1) and S2 = 0
in (H). As a consequence the above structural assumptions for σ can be viewed as some PME-like behaviour
condition in bounded intervals.

Because of gradient jumps at the free-boundaries no classical solutions can exist if v0 has compact support, and
we shall use the following weak formulation:

Definition 1.2. A function 0 ≤ v ∈ C(R × [0, T ]) is a weak solution of (1.1) with initial datum v0(x) if
∂xv ∈ L2(R × (0, T )) and

∫
R

v(x, τ)ϕ(x, τ)dx −
∫
R

v0(x)ϕ(x, 0)dx +

τ∫
0

∫
R

{
−v∂tϕ + σ(v)∂xv · ∂xϕ +

(
1 − σ′(v)

)
|∂xv|2ϕ

}
dxdt = 0

for all 0 ≤ τ ≤ T and test functions ϕ ∈ C∞
c (R × [0, T ]).

Note that we impose here continuity at t = 0+, so that the initial data are taken in a strong sense. The
equivalence between the density u and pressure v formulations with v = Ψ(u) is well known [3], and any
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solution v in the sense of Definition 1.2 corresponds to a weak solution u = Ψ−1(v) of (GPME). As we shall
only work in the pressure variable we refrain from giving a precise definition of weak solutions for (GPME) and
refer the reader e.g. to [11, 22].

The problem of numerical approximation to (1.1) in dimension one goes back to [16], where a finite-difference
approach was first proposed to compute numerical solutions of ∂tv = f(x, t, v)∂2

xxv + |∂xv|2 but free-boundaries
were not accurately tracked. Later in [20] a scheme allowing to track the interfaces was implemented for the
pure PME nonlinearity Φ(s) = sm, but the authors were not able to prove convergence of the interface curves.
Almost simultaneously, DiBenedetto and Hoff proposed in [14] an explicit finite-difference interface-tracking
algorithm for the pure PME nonlinearity, and established rigorous error estimates for the solution and interfaces.
In [14,16,20] only the case of initial data v0 consisting in a single patch is considered, i.e. the initial support is
always assumed to have a single connected component supp v0 = [ζl(0), ζr(0)]. In this case the interfaces can be
represented by two continuous left/right curves ζlr(t) with supp v( . , t) = [ζl(t), ζr(t)] for all t ≥ 0. Due to the
diffusive nature of the problem supp v( . , t) is noncontracting in time ([11], Cor. 1.5), and as a consequence ζl(t)
and ζr(t) are monotone nonincreasing and nondecreasing respectively. In addition to this simple setting we
shall also consider here the so-called hole-filling problem when the initial support has an internal hole, i-e when
supp v0 has an two connected components at positive distance from each other. Because of the finite speed
of propagation the hole persists for small times, but eventually fills in finite time (see Sect. 3 for a detailed
description of the problem). A finite-element method was recently employed in [23] to investigate the hole-
filling and related problems with satisfactory qualitative results, but without any rigorous convergence result.
In the presence of absorption, the opposite support splitting phenomenon was numerically investigated in [18],
see also [21] for a brief review. Finally, a finite difference was recently proposed [12] for a nonlocal version
∂tu + (−Δ)σ/2um = 0 of the PME.

Closely following [14] we propose an extension of DiBenedetto and Hoff’s algorithm to general nonlinearities,
allowing to track the interfaces and solve past the hole-filling time. As in [14] the algorithm reproduces at
the discrete level all the properties satisfied by the continuous solutions of (1.1). More precisely: initial γ0

Lipschitz regularity, nonnegativity, and L∞ bounds are preserved along the time evolution, solutions are 1/2
Hölder continuous in time, and satisfy a generalized Aronson–Bénilan estimate ∂xxv(x, t) ≥ z(t) ≈ −C(1 + 1/t)
in the sense of distributions D′(Rx) for all fixed t > 0. For the pure PME nonlinearity Φ(s) = sm the latter
semi-convexity property was first proved in [4] in the optimal form ∂xxv(x, t) ≥ −1/(m+1)t, and is fundamental
for the regularity and propagation theories. The numerical scheme is based on the following splitting method:
inside the support {v > 0} = {σ(v) > 0} (1.1) is formally parabolic, hence a classical finite-difference scheme
can be used with an extra ε-viscosity stabilizing term. As already discussed the free-boundaries x = ζ(t) should
evolve according to dζ/dt = −∂xv, and thus enforcing the discrete equivalent allows to track the interfaces.
Technically speaking this propagation law will in fact be applied at the discrete level in some neighborhood of
the interfaces. This neighborhood turns to have thickness of the same order O(Δx) as the mesh size Δx, and
can therefore be viewed as a numerical boundary layer.

The paper is organized as follows: in Section 2 we describe the scheme for general nonlinearities when the initial
data consists in a single patch. Imposing a suitable stability condition Δt = O(Δx2) on the mesh parameters we
establish discrete a priori bounds, including a generalized Aronson–Bénilan estimate (Lem. 2.5). These a priori
estimates then allow us to prove convergence of the approximate solutions and interface curves when Δx → 0. In
Section 3 we extend the scheme to study the hole-filling problem, when internal interfaces collide in finite time.
We construct a numerical approximation to the hole-filling time and show that our scheme really captures the
hole-filling phenomenon, in the sense that it allows to keep computing a consistent approximation to the solution
past the filling time. An abstract convergence result is given. In Section 4 we present numerical experiments
and investigate the rates of convergence. We would like to stress that Section 2 is adapted from [14] to general
nonlinearities but requires significant technical modifications, in particular for the generalized Aronson–Bénilan
estimate (Lem. 2.5). To the best of our knowledge all the results in Section 3 are new, even for the pure PME
nonlinearity.
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Figure 1. Right numerical boundary layer.

2. The scheme for one patch only

Throughout the whole paper we fix mesh parameters Δx, Δt and write {xk}k∈Z = {k Δx}, {tn}n≥0 = {n Δt},
as well as vn

k ≈ v(xk, tn) and ζn
lr ≈ ζlr(tn). Given a “single patch” compactly supported initial datum v0

0 ≤ v0(x) ≤ M, Lip(v0) ≤ γ0, supp v0 = [ζl(0), ζr(0)],

we first initialize
v0

k := v0(xk) and ζ0
l,r := ζl,r(0).

Given an approximate solution vn
k and interfaces ζn

l,r at time tn, we define

Kl(n) := min{k ∈ Z : xk−1 ≥ ζn
l }, Kr(n) := max{k ∈ Z : xk+1 ≤ ζn

r }
and

0 ≤ sl(n) := xKl(n) − ζn
l , 0 ≤ sr(n) := ζn

r − xKr(n).

We shall often speak of xk ∈ [xKl(n), xKr(n)] as the (numerical) support at time tn, while xk ∈ [ζn
l , xKl(n)]

and xk ∈ [xKr(n), ζ
n
r , ] will be referred to as the (numerical) left and right boundary layers. Observe that by

construction these boundary layers have thickness Δx ≤ s(n) ≤ 2Δx, see Figure 1. The interfaces at time tn+1

are next computed as
ζn+1
l − ζn

l

Δt
= −

vn
Kl(n)

sn
l

,
ζn+1
r − ζn

r

Δt
= −

vn
Kr(n)

sn
r

, (2.1)

thus reproducing the propagation law dζ/dt = −∂xv at the free-boundaries. We will prove in Lemma 2.2 that
vn

k ≥ 0, and therefore ζn+1
l ≤ ζn

l and ζn+1
r ≥ ζn

r . This monotonicity translates the noncontractivity of the
support at the discrete level. We also define for later use

s′l(n) := xKl(n) − ζn+1
l ≥ sn

l , s′r(n) := ζn+1
r − xKr(n) ≥ sn

r .

Carefully note that s′lr(n) �= sn+1
lr and that x = ζn

lr need not be integer meshpoints, see Figure 1. The solution
vn+1

k is then updated inside the support by enforcing

k ∈ [Kl(n), Kr(n)] :
vn+1

k − vn
k

Δt
= (σ(vn

k ) + ε)
vn

k−1 − 2vn
k + vn

k+1

Δx2
+

∣∣∣∣vn
k+1 − vn

k−1

2 Δx

∣∣∣∣2 , (2.2)
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where ε > 0 is a fixed artificial viscosity parameter to be chosen later. Observe that (2.2) is not applied across
the interfaces but only inside the numerical support, where (1.1) is formally in the parabolic regime since
{v > 0} = {σ(v) > 0}.

Inside the boundary layers of thickness s′(n) the solution is linearly interpolated as

vn+1
k :=

⎧⎨
⎩ vn+1

Kl(n)

xk−ζn+1
l

xKl(n)−ζn+1
l

xk ∈ [ζn+1
l , xKl(n)−1]

vn+1
Kr(n)

ζn+1
r −xk

ζn+1
r −xKr(n)

xk ∈ [xKr(n)+1, ζ
n+1
r ]

, (2.3)

and finally we set
vn+1

k := 0 for xk /∈ [ζn+1
l , ζn+1

r ].

The interpolation (2.3) is consistent with the well known linear behaviour of the pressure variable across the
moving free boundaries ([22], Thm. 15.24) see Lemma 2.11 later on.

Remark 2.1. According to (2.3) vn
k is exactly linear in x inside the boundary layers. As a consequence (2.1)

also reads ζn+1
l −ζn

l

Δt = − vKl(n)−vKl(n)−1

Δx and ζn+1
r −ζn

r

Δt = − vKr(n)+1−vKr(n)

Δx , perhaps illustrating dζ/dt = −∂xv
even more clearly than (2.1).

Throughout the whole paper and without further mention we impose the Courant–Fredrichs–Lewis stability
condition

Δt

Δx2
:= β ≤ 1

2
(
σ(M) + ε

)
+ γ0Δx

(
4 + 3S1(M)

)
+ γ2

0Δx2S2(M)/2

γ0Δx
(
27 + 9s1(M) + 3S1(M) + ΔxS2(M)/4

)
≤ ε ≤ O(Δx) (CFL)

with ‖v0‖L∞(R) ≤ M , Lip(v0) ≤ γ0, and s1(M), S1(M), S2(M) ≥ 0 as in (H).

2.1. A priori discrete estimates

Defining the discrete backward and centered derivatives

wn
k :=

vn
k − vn

k−1

Δx
, wn

k :=
vn

k+1 − vn
k−1

2Δx
,

the first discrete estimate reads

Lemma 2.2. Assume that 0 ≤ v0
k ≤ M with |w0

k| ≤ γ0. Then for all k, n there holds

0 ≤ vn
k ≤ M and |wn

k | ≤ γ0.

Proof. We write β = Δt/Δx2, abbreviate σn
k := σ(vn

k ), and argue by induction on n ≥ 0.
Step 1: Positivity and l∞ stability. Noting that vn

k+1−vn
k−1

2Δx = wn
k+1+wn

k

2 it is easy to rewrite (2.2) inside the
support xk ∈ [xKl(n), xKr(N)] as

vn+1
k = (1 − 2a)vn

k + (a − b)vn
k−1 + (a + b)vn

k−1

with
a := β(σn

k + ε) and b := βΔx(wn
k+1 + wn

k )/4. (2.4)
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By the induction hypothesis and monotonicity of σ the (CFL) condition implies

0 ≤ βε ≤ a ≤ β(σ(M) + ε) ≤ 1
2
, |b| ≤ Δxβγ0/2 ≤ βε ≤ a,

thus vn+1
k is a convex combination of vn

k−1, v
n
k , vn

k+1 ∈ [0, M ]. In particular 0 ≤ vn+1
k ≤ M for k ∈ [Kl(n), Kr(n)],

and by (2.3) clearly 0 ≤ vn+1
k ≤ M for all k.

Step 2: Lischitz bounds in the support. Consider any k ∈ [Kl(n) + 1, Kr(n)], so that vn+1
k , vn+1

k−1 are both
computed using (2.2) or equivalently

vn+1
k = vn

k + βΔx (σn
k + ε) (wn

k+1 − wn
k ) + βΔx2/4

(
wn

k+1 + wn
k−1

)2
. (2.5)

Subtracting the corresponding equation for vn+1
k−1 and dividing by Δx, straightforward manipulations lead to

wn+1
k = wn

k + Δt

[(
σn

k + σn
k−1

2
+ ε

)
wn

k+1 − 2wn
k + wn

k−1

Δx2

+
(

Svw
n
k + 2

wn
k+1 + 2wn

k + wn
k−1

4

)
wn

k+1 − wn
k−1

2Δx

]
(2.6)

with

Sv :=
σn

k − σn
k−1

vn
k − vn

k−1

=
σ(vn

k ) − σ(vn
k−1)

vn
k − vn

k−1

≈ σ′(v(xk, tn)).

Formula (2.6) is the discrete equivalent of

w = ∂xv : ∂tw = σ(v)∂2
xxw +

[
σ′(v)w + 2w

]
∂xw, (2.7)

which is formally obtained differentiating (1.1) w.r.t. x. Considering (2.7) as a linear parabolic equation ∂tw =
a∂2

xxv + b∂xw with no zeroth order coefficient, we see that w = ∂xv formally satisfies the maximum principle.
Thus the initial γ0-Lipschitz bounds for v0 should be preserved for t ≥ 0 as in our statement.

In order to make this maximum principle rigorous at the discrete level we rewrite (2.6) as

wn+1
k = (1 − 2a)wn

k + (a − b)wn
k−1 + (a + b)wn

k+1, (2.8)

with now

a = β

(
σn

k + σn
k−1

2
+ ε

)
and b = β

(
Sv

2
wn

k +
wn

k+1 + 2wn
k + wn

k−1

4

)
Δx. (2.9)

By the induction hypothesis 0 ≤ vn
k ≤ M and the structural assumption (H) we get 0 ≤ Sv ≈ σ′(vn

k ) ≤ S1(M),
and the (CFL) condition implies

0 ≤ βε ≤ a ≤ β
(
σ(M) + ε

)
≤ 1/2 and |b| ≤ βγ0

(
S1(M)

2
+ 1

)
Δx ≤ βε ≤ a.

From (2.8) we see that wn+1
k is a convex combination of wn

k−1, w
n
k−1, w

n
k+1 and we conclude that |wn+1

k | ≤ γ0 as
claimed.

Step 3: Lischitz bounds close to the interfaces. The computations at the left and right interfaces are
identical, so we only deal with the right one and write K = Kr(n), s(n) = sr(n) = ζn

r − xK and s′(n) =
s′r(n) = ζn+1

r − xK for simplicity. By construction of the scheme vn+1
k is linear for xk ∈ [xK , ζn+1] and zero
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for xk ≥ ζn+1. In particular wn+1
K+1 ≤ wn+1

k ≤ 0 for all xk ≥ xK+1 and it is clearly enough to estimate |wn+1
K+1|.

From (2.3) we see that wn+1
K+1 = − vn+1

K

s′(n) , and exploiting (2.2) we get

wn+1
K+1 = − 1

s′(n)

[
vn

K + Δt (σn
K + ε)

vn
K+1 − 2vn

K + vn
K1

Δx2
+ Δt

(
vn

K+1 − vn
K−1

2Δx

)2
]

= − 1
s′(n)

[
vn

K + βΔx (σn
K + ε) (wn

K+1 − wn
K)

+ Δt

{
(wn

K+1)
2 − wn

K + 3wn
K+1

4
(wn

K+1 − wn
K)

}]
.

According to Remark 2.1 we have s′(n) − sn = ζn+1 − ζn = −wn
K+1Δt, and since vn

K = −wn
K+1s

n we get
vn

K + Δt(wn
K+1)

2 = −wn
K+1s

′(n). Substituting in the previous expression gives

wn+1
K+1 = wn

K+1 + c(wn
K − wn

K+1) (2.10)

with

c =
βΔx

s′(n)

(
(σn

K + ε) − Δx
3wn

K+1 + wn
K

4

)
· (2.11)

Using the induction hypothesis, the (CFL) condition, and s′(n) ≥ s(n) ≥ Δx yields

0 ≤ β
Δx

s′(n)
(ε − γ0Δx) ≤ c ≤ β (σ(M) + ε + γ0Δx) ≤ 1,

thus by (2.10) |wn+1
K+1| ≤ γ0 as the convex combination of wn

K , wn
K+1 and the proof is complete. �

As a consequence the interfaces propagate with finite speed:

Lemma 2.3. For all tn ≥ 0 there holds
∣∣∣ ζn+1

lr −ζn
lr

Δt

∣∣∣ ≤ γ0 and

ζl(0) − γ0t
n ≤ ζn

l ≤ ζl(0) ≤ ζr(0) ≤ ζn
r ≤ ζr(0) + γ0t

n.

Proof. By Remark 2.1 |(ζn+1 − ζn)/Δt| = | − wn
K(n)±1| so our statement immediately follows by Lemma 2.2

and the pinning ζ0
ln = ζlr(0). The monotonicity is a consequence of (2.1) with vn

k ≥ 0. �

In the next auxiliary lemma we construct the lower bound to be used in the generalized Aronson–Bénilan
estimate ∂2

xxv ≥ z(t) by means of a certain ODE:

Lemma 2.4. Let Λ := γ2
0S2(M) and F (z) := Λz + (2 + s1(M))z2 with s1, S2 as in (H). There is a function

z(t) : R
+ → R such that dz

dt = F (z) with lim
t↘0

z(t) = −∞. Moreover z is monotone increasing and concave,

z(t) ≤ z(∞) = −Λ/(2 + s1(M)), and z(t) ∼ − 1
(2+s1(M))t when t ↘ 0.

Proof. Observe that F (z) is a quadratic polynomial with F (−Λ/(2 + s1(M))) = 0. Picking any t0 > 0, z0 <
−Λ/(2 + s1(M)) and solving dz/dt = F (z) with z(t0) = z0 it is easy to see that z is monotone increasing in
(T ,∞) with blow-up in finite time z(T ) = −∞ and z(∞) = −Λ/(2+ s1(M)). Shifting z(t) := z(t+T ) gives the
sought solution, and all the qualitative properties follow from a straightforward phase portrait analysis. �

The generalized Aronson–Bénilan estimate then takes the form.
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Lemma 2.5. Let z(t) as in Lemma 2.4. Then for all k, n there holds

Zn
k :=

Avn
k

Δx2
=

vn
k−1 − 2vn

k + vn
k+1

Δx2
≥ z(tn). (2.12)

Proof. Since z is monotone increasing with z(0) = −∞ the time tN = max{tn : z(tn) ≤ −2γ0/Δx} is well
defined and positive, provided that Δx, Δt are small enough. By Lemma 2.2 we have Zn

k = wn
k+1−wn

k

Δx ≥ −2γ0/Δx
and our estimate automatically holds if tn ≤ tN . We argue now by induction on n ≥ N .

Step 1: Estimate in the support. Consider first any k ∈ [Kl(n)+ 1, Kr(n)− 1], so that vn+1
k−1 , vn+1

k , vn+1
k+1 are

all computed from the finite-difference equation (2.2). Applying the second order difference operator A to (2.2)
and dividing by Δx2, straightforward algebra leads to

Zn+1
k = Zn

k + Δt

[
(S + ε)

AZn
k

Δx2
+ 2 (Sx + W1)

(
Zn

k+1 − Zn
k−1

2Δx

)

+ Svv(W2)2
Zn

k−1 + 2Zn
k + Zn

k+1

4

+

{
SvZ

n
k

Zn
k−1 + 2Zn

k + Zn
k+1

4
+ 2

(
Zn

k−1 + 2Zn
k + Zn

k+1

4

)2
}]

(2.13)

with

S :=
σn

k−1 + 2σn
k + σn

k+1

4
≈ σ(v(xk, tn)), Sx :=

σn
k+1 − σn

k−1

2Δx
≈ ∂xσ(v(xk, tn)),

Sv :=
1
2

(
σn

k+1 − σn
k

vn
k+1 − vn

k

+
σn

k − σn
k−1

vn
k − vn

k−1

)
≈ σ′(v(xk, tn)),

Svv := 2
(vn

k − vn
k−1)σ

n
k+1 − (vn

k+1 − vn
k−1)σ

n
k + (vn

k+1 − vn
k )σn

k−1

(vn
k+1 − vn

k )(vn
k − vn

k−1)(v
n
k+1 − vn

k−1)
≈ σ′′(v(xk, tn)),

and

W1 :=
wn

k−1 + 2wn
k + wn

k+1

4
≈ ∂xv(xk, tn), W2 := wn

k ≈ ∂xv(xk, tn)

(recall that we write σn
k = σ(vn

k ) and wn
k = (vn

k+1 − vn
k−1)/2Δx). Note that (2.13) is nothing but the discrete

equivalent of
∂tz = σ(v)∂2

xxz + 2
[
∂xσ(v) + ∂xv

]
∂xz +

[
σ′′(v)|∂xv|2

]
z +

[
σ′(v) + 2

]
z2 (2.14)

for z = ∂2
xxv, which is obtained differentiating twice ∂tv = σ(v)∂2

xxv + |∂xv|2 w.r.t. x. Let us give a formal
proof that z = ∂2

xxv ≥ z(t) at the continuous level: since 0 ≤ v(x, t) ≤ M we have 0 < s1(M) ≤ σ′(v) and
|σ′′(v)| ≤ S2(M), and recall that |∂xv| ≤ γ0. Using the definition of z(t) in Lemma 2.4 it is easy to check that
z(t) is a subsolution of (2.14). Since z(0) = −∞ ≤ z(x, 0) the comparison principle should give z(x, t) ≥ z(t).
In order to reproduce this formal computation at the discrete level let us first rewrite (2.13) as

Zn+1
k =

[
1 − 2β(S + ε) +

βΔx2(W2)2Svv

2

]
Zn

k

+ β

[
(S + ε) +

Δx2(W2)2Svv

4
− Δx(Sx + W1)

]
Zn

k−1

+ β

[
(S + ε) +

Δx2(W2)2Svv

4
+ Δx(Sx + W1)

]
Zn

k−1

+
βΔx2

8
(
Zn

k−1 + 2Zn
k + Zn

k+1

) [
Zn

k−1 + 2(1 + Sv)Zn
k + Zn

k+1

]
. (2.15)
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We show now (2.15) satisfies a discrete comparison principle in the sense that Zn+1
k is non-decreasing in the

three arguments Zn
k−1, Z

n
k , Zn

k+1. To this end we first note that

|Zn
k | = |(wn

k+1 − wn
k )/Δx| ≤ 2γ0/Δx,

and by our structural hypotheses (H) and Lemma 2.2 it is easy to check that

0 ≤ S ≤ σ(M) |Sx| ≤ S1(M)γ0, 0 ≤ Sv ≤ S1(M),
|Svv| ≤ S2(M), |W1| ≤ γ0, |W2| ≤ γ0.

Thus by the (CFL) condition

∂Zn+1
k

∂Zn
k

= 1 − 2β(S + ε) +
βΔx2(W2)2Svv

2

+
βΔx2

8

[
2
(
Zn

k−1 + 2(1 + Sv)Zn
k + Zn

k+1

)
+ 2(1 + Sv)

(
Zn

k−1 + 2Zn
k + Zn

k+1

)]
≥ 1 − β

[
2
(
σ(M) + ε

)
+

Δx2γ2
0S2(M)
2

+ γ0Δx
(
4 + 3S1(M)

)]
≥ 0,

∂Zn+1
k

∂Zn
k−1

= β

[
(S + ε) +

Δx2(W2)2Svv

4
− Δx(Sx + W1)

+
Δx2

8

{
(Zn

k−1 + 2Zn
k + Zn

k+1) + (Zn
k−1 + 2(1 + Sv)Zn

k + Zn
k+1))

}]

≥ β

[
ε − γ0Δx

{
Δxγ0S2(M)

4
+

(
S1(M) + 1

)
+

1
2

(
4 + S1(M)

)}]
≥ 0,

and similarly ∂Zn+1
k

∂Zn
k+1

≥ 0. By the induction hypothesis we see that Zn+1
k is greater or equal to the right-hand

side of (2.15) evaluated with Zn
k−1, Z

n
k , Zn

k+1 ≥ z(tn), and using the structural assumptions Sv ≥ s1(M) and
|Svv| ≤ S2(M) we get

Zn+1
k ≥ z(tn) + βΔx2(W2)2Svv z(tn) + βΔx2(2 + Sv)z2(tn)

≥ z(tn) + Δt
[
γ2
0S2(M)z(tn) + (2 + s1(M))z2(tn)

]
.

In the right-hand side we recognize z(tn)+ΔtF (z(tn)) with F as in Lemma 2.4. Since by construction ż = F (z)
and z is concave we finally get

Zn+1
k ≥ z(tn) + ż(tn)[tn+1 − tn] ≥ z(tn+1)

as required.

Step 2: Estimate close to the interfaces. We only establish the AB estimate across the right interface
and boundary layer, and write again ζ = ζr and K = Kr(n) to keep the notations light (the argument is
identical to the left). Recall that for xk ∈ [xK , ζn+1] the next step vn+1

k ≥ 0 is linearly interpolated by (2.3),
and vn+1

k = 0 for xk ≥ ζn+1. As a consequence Avn+1
k ≥ 0 for k > K and (2.12) is trivially satisfied there as

Zn+1
k ≥ 0 > z(tn+1). Hence we only need to look at k = K.
By definition of K = Kr(n) we see that wn+1

K , wn+1
K+1 satisfy (2.8) and (2.10), namely

wn+1
K = wn

K + (a + b)ΔxZn
K − (a − b)ΔxZn

K+1 and wn+1
K+1 = wn

K+1 − cΔxZn
K

with a, b as in (2.9) with k = K and c as in (2.11). Subtracting and dividing by Δx we get that Zn+1
K =

(wn+1
K+1 − wn+1

K )/Δx can be expressed as

Zn+1
K = (1 − a − b − c)Zn

K + (a − b)Zn
K−1. (2.16)
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We claim as in Step 1 that the right-hand side is nondecreasing in Zn
K , Zn

K−1. Indeed we already showed in the
proof of Lemma 2.2 that a − |b| ≥ 0, and recalling that s′(n) = ζn+1 − xK(n) ≥ ζn − xK(n) ≥ Δx we compute

1 − a − b − c = 1 − β

(
σn

K + σn
K−1

2
+ ε

)

− βΔx

(
1
2

σn
K − σn

K−1

vn
K − vn

K−1

wn
K +

wn
K−1 + 2wn

K + wn
K+1

4

)

− βΔx

s′(n)

(
(σn

K + ε) − Δx
3wn

K+1 + wn
K

4

)

≥ 1 − β

[(
σ(M) + ε

)
+ Δx

(
S1(M)γ0

2
+ γ0

)
+

(
σ(M) + ε + γ0Δx

)]
≥ 0,

where the last inequality follows by the (CFL) condition. Before evaluating (2.16) with Zn
K , Zn

K−1 ≥ z(tn) we
first recall from Lemma 2.3 that the interfaces propagate with discrete speed at most γ0, and that by the
CFL condition Δt = O(Δx2). In particular Δx ≤ s(n) ≤ s′(n) = s(n) + (ζn+1 − ζn) ≤ 2Δx + O(Δx2), thus
Δx ≤ s′(n) ≤ 3Δx for small Δx (see Fig. 1) and

1 − 2b − c = 1 − βΔx

(
σn

K − σn
K−1

vn
K − vn

K−1

wK +
wn

K−1 + 2wn
K + wn

K+1

2

)

− βΔx

(sn)′

(
(σn

K + ε) − Δx
3wn

K+1 + wn
K

4

)

≤ 1 + βγ0Δx
(
S1(M) + 2

)− βε

3
+ βγ0Δx

≤ 1 − Δt
(
2 + s1(M)

)3γ0

Δx

by the (CFL) condition. For small Δx, Δt and by definition of tN = max{tn′
: F (tn

′
) ≤ −2γ0/Δx} it is easy to

check that F (tN ) ∼ −2γ0/Δx, and because z is increasing and our induction is on n ≥ N we can assume that
−3γ0/Δx < −2γ0/Δx ≈ z(tN ) ≤ z(tn) hence

1 − 2b − c ≤ 1 + Δt
(
2 + s1(M)

)
z(t∗) ≤ 1 + Δt

(
2 + s1(M)

)
z(tn).

Evaluating (2.16) with Zn
k−1, Z

n
k , Zn

k+1 ≥ z(tn) thus gives

Zn+1
K ≥ (1 − 2b − c)z(tn) ≥ z(tn) + Δt

(
2 + s1(M)

)
z2(tn)

≥ z(tn) + Δt
[
Λz(tn) +

(
2 + s1(M)

)
z2(tn)

]
= z(tn) + ΔtF (z(tn)),

and we conclude by concavity of z as in Step 1. �
Remark 2.6. For the pure PME nonlinearity Φ(s) = sm one has σ(r) = (m− 1)r and therefore s1(M) = s1 =
(m−1) and S2(M) = 0 in (H). The ODE for z then becomes ż = (m+1)z2, thus z(t) = −1/(m+1)t in Lemma 2.4
and we recover the optimal Aronson–Bénilan estimate ∂2

xxv ≥ −1/(m+1)t. For general nonlinearities the optimal
estimate [7] takes the form ∂2

xxv ≥ −h(v)/t for some structural function h related to Φ. Unfortunately we were
not able to reproduce the optimal computations at the discrete level, and we shall be content here with our
lower bound ∂2

xxv ≥ z(t) ∼ −C(1 + 1/t).

Lemma 2.7. There is C = C(v0) > 0 only such that

∀n ≥ 0, k /∈ [Kl(n), Kr(n)] :
∣∣∣∣vn+1

k − vn
k

Δt

∣∣∣∣ ≤ C.
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Proof. The argument is identical to ([14], Lem. 2.4). �

Combining Lemmas 2.5 and 2.7 we get

Corollary 2.8. There is C = C(v0) > 0 such that

∑
k

∣∣∣∣Avn
k

Δx2

∣∣∣∣Δx +
∑

k

∣∣∣∣vn+1
k − vn

k

Δt

∣∣∣∣Δx ≤ C

(
1 +

1
tn

+ T

)
(2.17)

for all tn ≤ T .

Proof. From Lemma 2.5 and −C(1 + 1/t) ≤ z(t) ≤ 0 we see that∣∣∣∣Avn
k

Δx2

∣∣∣∣ ≤ Avn
k

Δx2
+ 2|z(tn)| ≤ Avn

k

Δx2
+ C

(
1 +

1
tn

)
·

Multiplying by Δx and summing over k’s with vn
k = 0 outside an interval of length C(1 + tn) (Lem. 2.3) we get

the first part of the estimate∑
k

∣∣∣∣Avn
k

Δx2

∣∣∣∣Δx ≤ C

(
1 +

1
tn

)
(1 + tn) ≤ C(1 + 1/tn + T ).

Inside the support k ∈ [Kl(n), Kr(n)] the time derivative can be estimated from (2.2) as∣∣∣∣vn+1
k − vn

k

Δt

∣∣∣∣ =

∣∣∣∣∣
(
σ(vn

k ) + ε
)Avn

k

Δx2
+

(
vn

k+1 − vn
k−1

2Δx

)2
∣∣∣∣∣

≤
(
σ(M) + ε

) ∣∣∣∣Avn
k

Δx2

∣∣∣∣ + γ2
0 ≤ C

(∣∣∣∣Avn
k

Δx2

∣∣∣∣ + 1
)

,

and inside the boundary layers of thickness Δx ≤ s(n) ≤ 2Δx the time derivative is of order O(1) according to
Lemma 2.7. Multiplying by Δx and summing over k’s as before gives the second part of the estimate. �

We end this section with uniform Höder estimates in time up to t = 0+, which are inherited from the initial
Lipschitz regularity for v0(x).

Proposition 2.9. For any T > 0 there is C = C(T, v0) > 0 such that

|vn
k − vm

k | ≤ C|tn − tm|1/2

for all tn, tm ∈ [0, T ].

The proof is almost identical to ([14], Lem. 2.7), and the argument is a discrete version of that in [15]. However
we will need to make sure in Section 3 that the proof carries out for the hole-filling problem so we give nonetheless
the full details for the sake of completeness.

Proof. We argue locally in cylinders

Q = [xk0 − r, xk0 + r] × [tn0 , tn1 ],

where xk0 and 0 ≤ tn0 ≤ tn1 ≤ T are fixed and r is a multiple of Δx to be adjusted.

Step 1: Letting

H := max
n0≤n≤n1

|vn
k0

− vn0
k0
|, c := 2

(
σ(M) + ε

)
+ γ0r

V n
k := vn

k − vn0
k0

− γ0r − H

r2

[
(xk − xk0)

2 + c(tn − tn0)
]
,
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we claim that
V n

k ≤ 0 for all (xk, tn) ∈ Q. (2.18)

Arguing by induction on n, (2.18) holds for n = n0 as V n0
k ≤ ∣∣vn0

k − vn0
k0

∣∣ − γ0r ≤ 0 since |xk − xk0 | ≤ r and
|wn

k | ≤ γ0. For the induction step we consider three cases: (i) xk /∈ [ζn+1
l , ζn+1

r ], (ii) xk is inside the boundary
layer, and (iii) xk is inside the numerical support where (2.2) holds.

In the first case we have vn+1
k = 0 and our claim immediately holds by definition of V n+1

k with vn0
k0

≥ 0. For
(ii) we have xk ∈ [xK(n), ζ

n+1], and we have shown earlier that s′(n) = |ζn+1 − xK(n)| ≤ 3Δx for small Δx. In
the boundary layer vn+1

k is computed by linear interpolation with slope |wn+1
k | ≤ γ0 and therefore

V n+1
k ≤ vn+1

k − γ0 ≤ γ0.3Δx − γ0r ≤ 0

provided that r ≥ 3Δx, which will be ensured in Step 2. In the last case (iii) we consider the linearized operator
L of (2.2), whose action on any sequence an

k is defined as

Lan+1
k :=

an+1
k − an

k

Δt
−

(
σ(vn

k ) + ε
)Aan

k

Δx2
−

(
vn

k+1 − vn
k−1

2Δx

)(
an

k+1 − an
k−1

2Δx

)
·

Applying L to V n+1
k with Lvn+1

k = 0 as in (2.2), it is easy to compute

LV n+1
k =

H

r2

[
−c + 2

(
σ(vn

k ) + ε
)

+
(

vn
k+1 − vn

k−1

2Δx

)
(xk − xk0)

]

≤ H

r2

[
−c + 2

(
σ(M) + ε

)
+ γ0r

]
≤ 0

by definition of c. The inequality LV n+1
k ≤ 0 can then be rewritten as

V n+1
k ≤ (1 − 2a)V n

k + (a − b)V n
k−1 + (a + b)V n

k+1

with coefficients a, b exactly as in (2.4). We already showed in the proof of Lemma 2.2 that 0 ≤ a ≤ 1/2 and
|b| ≤ a. In particular the above right-hand side is a convex combination of V n

k−1, V
n
k , V n

k+1, thus V n+1
k ≤ 0 as

desired.

Step 2. Choosing k = k0 in V n
k ≤ 0 we see that vn

k0
− vn0

k0
≤ γ0r + cH

r2 |tn1 − tn0 |, and in a similar way we get
the same upper bound for vn0

k0
− vn

k0
. Taking the maximum over n ∈ [n0, n1] and writing s = |tn1 − tn0 | we see

by definition of H that

H ≤ γ0r +
cH

r2
s. (2.19)

Choose now r to be a multiple of Δx such that

r1 + 3Δx ≤ r ≤ r1 + 4Δx,

where r1 > 0 is the largest root of

ρ2 − 2cs = ρ2 − 2γ0sρ + 4
(
σ(M) + ε

)
s = 0.

In particular 3Δx ≤ r as required in Step 1, and it is easy to check that r1 � Cs1/2 when s ≤ T . Moreover
cs/r2 ≤ 1/2 and (2.19) give

H/2 ≤ γ0r ≤ γ0(r1 + 4Δx) ≤ C(s1/2 + Δx).

Now s = |tn1 − tn0 | and Δx =
√

Δt/β ≤ β−1/2|tn1 − tn0 |1/2, so finally

|vn1
k0

− vn0
k0
| ≤ H ≤ C|tn1 − tn0 |1/2

and the proof is complete. �
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x

tn

tn+1

t

xk xk+1

Ln
k

Un
k

Figure 2. Triangular interpolation cells.

2.2. Convergence of the approximate solution and interfaces

Denoting h = (Δt, Δx) and Ln
k , Un

k the lower and upper triangular cells in Figure 2, we first define the
continuous and piecewise linear interpolation

vh(x, t) :=

{
vn

k + (x − xk)vn
k+1−vn

k

Δx + (t − tn)
vn+1

k+1−vn
k+1

Δt , (x, t) ∈ Ln
k

vn+1
k+1 + (x − xk+1)

vn+1
k+1−vn+1

k

Δx + (t − tn+1)vn+1
k −vn

k

Δt , (x, t) ∈ Un
k .

(2.20)

We also interpolate the interfaces by the piecewise linear curves

ζh,lr(t) := ζn
lr + (t − tn)

ζn+1
lr − ζn

lr

Δt
, t ∈ [tn, tn+1]. (2.21)

If QT = R × (0, T ) the estimates from Section 2.1 can be summarized as

0 ≤ vh(x, t) ≤ M and |∂xvh(x, t)| ≤ γ0 a.e. in QT , (2.22)

∀t1, t2 ∈ [0, T ] : |vh(x, t1) − vh(x, t2)| ≤ C(T, v0)|t1 − t2|1/2, (2.23)

∀ 0 < t ≤ T :
∫
R

∣∣∂2
xxvh( . , t)

∣∣ +
∫
R

|∂tvh( . , t)| ≤ C

(
1 +

1
t

+ T

)
(2.24)

as measures in Rx (by construction ∂2
xxvh consists only in Dirac masses δxk

), and∣∣∣∣dζh,lr

dt

∣∣∣∣ ≤ γ0 and supp vh( . , t) ⊆ [ζl(0) − Δx − γ0t, ζr(0) + γ0t + Δx] for a.e. t ∈ [0, T ] (2.25)

(Lems. 2.2, 2.5 and 2.3, Prop. 2.9). The extra Δx is needed in (2.25) because x = ζn needs not be integer mesh-
points, while vh is interpolated from the (xk, tn) nodes only. It is well known [8] that the Cauchy problem (1.1)
has a unique solution. As in ([14], Thm. 3.3) the main convergence result then reads:
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Theorem 2.10. Let v be the unique solution to (1.1) with initial datum v0, and ζl,r the corresponding interfaces
with supp v( . , t) = [ζl(t), ζr(t)]. Then

vh → v uniformly in QT , (2.26)
∂xvh → ∂xv in Lp(QT ) for all p ∈ [1,∞), (2.27)
ζh,lr → ζlr uniformly in [0, T ] (2.28)

when h = (Δx, Δt) → 0.

The rest of this section is devoted to the proof of Theorem 2.10, which closely follows [14].

For (2.26) we show below that there is at least one subsequence vh′ converging to some limit v∗, and that
for any such subsequence the limit v∗ is a solution to the Cauchy problem. By uniqueness v∗ = v and standard
separation arguments this implies that the whole sequence vh → v as in our statement.

By (2.22)–(2.23) with the upper bound (2.25) for the supports, we can extract a subsequence {h′} ⊆ {h} such
that vh′ → v∗ uniformly in QT for some limit v∗ ∈ C(QT ). For any fixed t > 0 we see by (2.24) that ∂xvh( . , t)
is bounded in BV (Rx) (bounded variation) uniformly in h′. By standard compactness in BV spaces [1] there
is a further subsequence ∂xvh′′( . , t) → w∗ in L1(R). By continuity we get w∗( . ) = ∂xv∗( . , t), thus the whole
sequence ∂xvh′( . , t) → ∂xv∗( . , t) for all t > 0. An easy application of Lebesgue’s dominated convergence
theorem with uniform bounds |∂xvh| ≤ γ0 gives strong Lp(QT ) convergence for all p ∈ [1,∞) when h′ → 0 as
in our statement.

We check now that the limit v∗ is indeed a solution to the Cauchy problem in the sense of Definition 1.2.
Since v0

h(x) → v0(x) uniformly in R and v∗ is continuous up to t = 0 the initial trace will be taken in the strong
sense, and it is enough to check that∫

R

v∗(x, t1)ϕ(x, t1)dx −
∫
R

v∗(x, t0)ϕ(x, t0)dx

+

t1∫
t0

∫
R

{
−v∗∂tϕ + σ(v∗)∂xv∗∂xϕ +

(
1 − σ′(v∗)

)
|∂xv∗|2ϕ

}
dxdt = 0 (2.29)

for all 0 < t0 ≤ t1 ≤ T and test functions ϕ ∈ C∞
c (QT ). This weak formulation formally follows from ∂tv =

σ(v)∂2
xxv + |∂xv|2 after multiplying by ϕ and integration by parts. Let now ϕn

k := ϕ(xk, tn), set N0 := �t0/Δt�
and N1 := �t1/Δt�, and consider the approximate Riemann sum

S :=
N1−1∑
n=N0

{∑
k

[
vn+1

k − vn
k

Δt
− (

σ(vn
k ) + ε

)Avn
k

Δx2
−

∣∣∣∣vn
k+1 − vn

k−1

2Δx

∣∣∣∣2
]

ϕn
kΔx

}
Δt.

By construction of our scheme the summand in S is identically zero for xk /∈ [ζn
l , ζn

r ] and xk ∈ [xKl(n), xKr(n)].
In the remaining boundary layers, which have thickness at most sn = |ζn−xK(n)| ≤ 2Δx and where vn

k is linear,

we have |(vn+1
k − vn

k )/Δt| = O(1) by Lemma 2.7 and (σ(vn
k ) + ε)Avn

k

Δx2 = O(Δx)wn
k+1−wn

k

Δx = O(1). Here we used
in particular that the artificial viscosity ε = O(Δx). Thus we see that S → 0 when h′ → 0. Summing by parts
in S one can get S = S′ → 0, where S′ is the discrete ΔxΔt Riemann sum corresponding to (2.29). Using then
the definition of the interpolation vh′ in terms of vn

k , the strong convergence vh′ → v∗, the Lipschitz and Hölder
regularity of vh′ , ϕ, it is easy to express S′ as the sum of dxdt integrals over all cells Ln

k , Un
k , plus a remainder

o(1), and then send h′ → 0 in order to retrieve the weak formulation (2.29) for v∗ (note that σ ∈ C1([0,∞))
and therefore σ′(vh) → σ′(v) uniformly). We refer to ([14], p. 480) for the details.

Turning now to the uniform convergence of the interfaces, we only argue for the right one and write ζn =
ζn
r , ζh = ζh,r and K(n) = Kr(n) for simplicity (the proof for the left interface is exactly similar). From (2.25)
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we see that ζh′ is bounded in W 1,∞(0, T ), so up to extraction of a further sequence if needed we may assume
that ζh′ → ζ∗ uniformly in [0, T ] for some ζ∗. This limit ζ∗ is moreover monotone nondecreasing in t with
ζ∗(0) = ζ(0), as the uniform limit of the nondecreasing curves ζh with ζh(0) = ζ(0). We shall prove that the
limit agrees with the true interface ζ∗ = ζ, and the same separation argument as before will then show that the
whole sequence actually converges.

Following again [14] we first need a technical result ensuring that, at a point (ζ∗(t0), t0) where the limit
curve ζ∗ is moving with positive speed, then v∗( . , t0) grows at least linearly in an interior neighborhood
[ζ∗(t0) − δ, ζ∗(t0)]. Again, we only state the result for the right interface and omit the subscripts.

Lemma 2.11. Let v∗, ζ∗ = lim vh′ , ζh′ as above and z(t) as in Lemma 2.4. Then

(i) For any 0 < t0 < t0 + η ≤ T and δ > 0 there holds

∫ t0+η

t0

v∗(ζ∗(s) − δ, s) ds ≥ δ
(
ζ∗(t0 + η) − ζ∗(t0)

)− δ2ηz(t0) (2.30)

(ii) If 0 < t0 < T is such that dζ∗/dt(t0) exists and is positive, then there is δ0 > 0 and c > 0 such that

v∗(ζ∗(t0) − δ, t0) ≥ cδ (2.31)

for all δ ∈ [0, δ0].

This is somehow the converse statement of a well known fact for the so-called waiting-time phenomenon: if
(ζ(t0), t0) is a free-boundary point and the pressure grows at least linearly in x in an interior neighborhood
{v > 0} ∩ Br(ζ(t0)) × {t0} then the free-boundary starts to move immediately, see e.g. ([22], Thm. 15.19) for
a stronger statement and simple proof in dimension d = 1 for the pure PME nonlinearity. This interpretation
is purely heuristic, as we do not know at this stage that ζ∗ = lim ζh′ is really the interface. Note in (ii) that
ζ∗ ∈ W 1,∞(0, T ) is differentiable a.e. t ∈ (0, T ), since ζh was uniformly bounded in W 1,∞(0, T ).

Proof. We first give a formal proof, keeping in mind that at the discrete level we enforced dζ/dt = −∂xv at
the interface and that the AB estimate ∂xxv(x, t) ≥ z(t) holds. Taking h′ → 0 we thus expect dζ∗/dt(t0) =
−∂xv∗(ζ∗(t0), t0), so that v∗ should indeed grow at least linearly ∂xv(ζ∗(t0), t0) < 0 whenever the interface
is moving dζ∗/dt(t0) > 0. In fact (ii) rigorously follows from (i): for whenever ζ∗ is differentiable at t0 with
dζ∗/dt(t0) > 0 then dividing (2.30) by η → 0 and discarding the δ2 = o(δ) term for small δ > 0 yields (2.31)
with c ≈ dζ∗/dt(t0) > 0. Let us therefore also give a formal proof of (i): all regularity issues left aside and
assuming that v∗(ζ∗(t), t) = 0, dζ∗/dt = −∂xv∗(ζ∗(t), t) and ∂2

xxv(x, t) ≥ z(t) as expected, we first integrate by
parts and use the generalized Aronson–Bénilan estimate to get

v∗(ζ∗(s) − δ, s) = v∗(ζ∗(s), s)︸ ︷︷ ︸
=0

−
∫ ζ∗(s)

ζ∗(s)−δ

∂xv∗(x, s)dx

= −
∫ ζ∗(s)

ζ∗(s)−δ

(
∂xv∗(ζ∗(s), s) −

∫ ζ∗(s)

x

∂2
xxv∗(y, s)dy

)
dx

≥
∫ ζ∗(s)

ζ∗(s)−δ

−∂xv∗(ζ∗(s), s)︸ ︷︷ ︸
=+dζ∗/dt(s)

dx +
∫ ζ∗(s)

ζ∗(s)−δ

(∫ ζ∗(s)

x

z(s)dy

)
dx

≥ δ
dζ∗

dt
(s) +

∫ ζ∗(s)

ζ∗(s)−δ

δz(s) dx = δ
dζ∗

dt
(s) + δ2z(s).
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Recalling that z(t) < 0 is monotone increasing and integrating from t0 to t0 + η we conclude that∫ t0+η

t0

v∗(ζ∗(s) − δ, s) ds ≥
∫ t0+η

t0

(
δ
dζ∗

dt
(s) + δ2z(s)

)
ds

≥
∫ t0+η

t0

(
δ
dζ∗

dt
(s) + δ2z(t0)

)
ds

= δ
(
ζ∗(t0 + η) − ζ∗(t0)

)− δ2ηz(t0)

as desired.
Following ([14], Lem. 3.4) we now briefly sketch how to get (i) rigorously, from which (ii) will follow as already

explained. For fixed δ, η, t0 > 0 let p = �δ/Δx�, q = �η/Δx�, and N = �t0/Δt�. Recalling that ζn+1−ζn

Δt =

− vn
K(n)+1−vn

K(n)

Δx and summing by parts instead of integrating by parts as above, an explicit computation gives
the discrete equivalent of (2.30)

N+q−1∑
n=N

vK(n)−pΔt ≥ pΔx
(
ζN+q − ζN )

)− (pΔx)2(qΔt)z(tN ).

Sending h′ → 0 with uniform convergence vh′ → v∗, ζh′ → ζ∗ and xK(n) → ζ∗(t) for n = �t/Δt� finally allows
to retrieve (2.30) and the proof is complete. �
Back to the proof of (2.28), we recall that we only need to establish lim ζh′ = ζ∗ = ζ. From (2.25) we have
vh′(x, t) = 0 for all x ≥ ζh′(t) + Δx. As a consequence v∗(x, t) = lim vh′(x, t) = 0 for all x ≥ ζ∗(t), which shows
by definition of ζ(t) = ζr(t) = sup{x : v(x, t) > 0} that ζ∗(t) ≥ ζ(t). Assuming by contradiction that there is
t1 > 0 for which ζ∗(t1) > ζ(t1), we claim that there is t0 ∈ (0, t1) such that

ζ∗(t0) > ζ(t0) and dζ/dt(t0) > 0.

For if not, then arguing backwards in time starting from t1 it is easy to see that either ζ∗(t) = cst. = ζ∗(t1) for
all t ∈ [0, t1], or there is t2 ∈ (0, t1) such that ζ∗(t) = cst. = ζ∗(t1) for all t ∈ [t2, t1] with ζ∗(t2) = ζ(t2). The first
case would contradict ζ∗(0) = ζ(0) since ζ∗(t1) > ζ(t1) ≥ ζ(0). In the second case, ζ ≤ ζ∗ and the monotonicity
of ζ show that necessarily ζ∗(t) = ζ(t) = cst = ζ∗(t1) for all t ∈ [t2, t1], thus contradicting ζ∗(t1) > ζ(t1).

For any such t0 Lemma 2.11 gives then v(ζ∗(t0) − δ) ≥ cδ > 0 for small δ’s, and in particular choosing
0 < δ < ζ∗(t0) − ζ(t0) small enough there is a point x0 = ζ∗(t0) − δ > ζ(t0) such that v(x0, t0) ≥ cδ > 0. This
finally contradicts ζ(t0) = sup{x : v(x, t0) > 0} and ends the proof of Theorem 2.10.

3. The hole-filling problem

In this section we choose two compactly supported “patches” v̂0(x), v̌0(x) such that: (i) both v̂0, v̌0 are γ0-
Lipschitz, (ii) 0 ≤ v̂0(x), v̌0(x) ≤ M , and (iii) supp v̂0 is at positive distance from supp v̌0 with initial interfaces

ζ̂l(0) < ζ̂r(0) < ζ̌l(0) < ζ̌r(0).

Defining
v0 := max{v̂0, v̌0}

this means that supp v0 = supp v̂0∪supp v̌0 has an internal hole of width d0 = ζ̌l(0)− ζ̂r(0) > 0 between supp v̂0

to the left and supp v̌0 to the right. Let v(x, t), v̂(x, t), andv̌(x, t) be the solution of the Cauchy problem with
initial data respectively v0(x), v̂0(x), and v̌0(x). We are interested here in computing a numerical approximation
to v(x, t). By noncontraction of the supports we know that ζ̂r(t) is nondecreasing, ζ̌l(t) is nonincreasing, and
because the interfaces propagate with finite speed at most γ0 (which also follows from Sect. 2) the first time
when the supports touch

0 < T ∗ = sup
{
t ≥ 0 : ζ̂r(t) < ζ̌l(t)

}
≤ ∞
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is positive. By uniqueness this implies that

v = max{v̂, v̌} in [0, T ∗),

so for t ∈ [0, T ∗) an internal hole of width d(t) = ζ̌l(t) − ζ̂r(t) > 0 persists in the support of v between the
left and right patches v̂, v̌. A well-known property of GPME is that “once an interface starts moving it never
stops”, see e.g. ([22], Lem. 14.20) in any dimension for the pure PME nonlinearity and ([22], Cor. 15.23) for a
simple proof in dimension one. Since the internal interfaces were at positive distance at time 0 this implies that,
if and when they meet in finite time ζ̂r(T ∗) = x∗ = ζ̌l(T ∗), at least one of the internal interfaces has started
moving (otherwise the two would not meet) and is therefore still moving with positive speed. As a consequence
at least one of the patches v̂, v̌ becomes instantaneously positive at x = x∗ for t > T ∗, the comparison principle
then implies v(x∗, t) ≥ max{v̂(x∗, t), v̌(x∗, t)} > 0, and the hole eventually disappears at t = T ∗. Once the hole
has filled the internal interfaces disappear, supp v( . , t) becomes a connected interval [ζl(t), ζr(t)] (containing
the whole [ζ̂l(T ∗), ζ̌r(T ∗)]), and v does not equal max{v̂, v̌} anymore.

In Section 2 we described how to compute the approximate solution and interfaces when the initial datum
consists in a single patch, which is exactly our assumption for both v̂0, v̂0. Using the results in the previous
section we can therefore construct an approximation to each of the corresponding solutions v̂, v̌ and track all
the resulting interfaces. We explain below how this previous one-patch algorithm can be naturally extended
to the above case of two initial patches, while tracking all the interfaces (internal and external), detecting the
hole-filling with accuracy, and solving past this time.

Remark 3.1. We discuss here the case of two patches only for the ease of exposition, but the argument is
easily adapted to any arbitrary number of initial patches at positive distance one from each other.

Roughly speaking, the algorithm goes as follows: starting from v̂0
k, v̌0

k, construct two independent sets of
approximate solutions and interfaces (v̂n

k , ζ̂n
l,r) and (v̂n

k , ζ̂n
l,r) applying the one-patch scheme from Section 2

separately to each patch. As long as the internal interfaces ζ̂r, ζ̌l do not meet keep solving, and define vn
k =

max{v̂n
k , v̌n

k }. If the internal interfaces meet at t = tN then stop tracking them, define the external interfaces
ζN
l := ζ̂N

l , ζN
r := ζ̌N

r , and resume the computation applying the one-patch scheme to vn
k starting from vN

k at
time tN . More precisely,

Algorithm 1 (Numerical scheme for the hole-filling). Initialize v̂0
k := v̂0(xk), v̌0

k := v̌0(xk), v0
k := max{v̂0

k, v̌0
k},

as well as ζ̂0
l,r := ζ̂l,r(0), ζ̌0

l,r := ζ̌l,r(0), and ζ0
l := ζ̂0

l , ζ0
r := ζ̌0

r . For fixed T > 0 and while tn ≤ T , do:

1. Apply the one-patch algorithm from Section 2 separately to v̂n, ζ̂n
l,r and v̌n, ζ̌n

l,r in order to compute a

temporary prediction v̂(n+1)′ , ζ̂
(n+1)′

l,r and v̌(n+1)′ , ζ̌
(n+1)′

l,r . If the predicted internal interfaces are at least Δx

away ζ̌
(n+1)′

l − ζ̂
(n+1)′
r > Δx, update all quantities (n + 1)′ → (n + 1), set vn+1

k := max{v̂n+1
k , v̌n+1

k }, and
repeat Step 1. Otherwise mark the numerical filling time T ∗

h := tn, redefine the external interfaces ζn
l := ζ̂n

l

and ζn
r := ζ̌n

r , and go to Step 2.
2. Apply the one-patch algorithm from Section 2 to vn, ζn

l,r in order to construct vn+1, ζn+1
l,r , and repeat Step 2.

Note that, because the internal interfaces propagate with discrete speed at most γ0 (Lem. 2.3) and start at
an initial distance d(0) > 0, Step 1 will be applied at least for tn ≤ d(0)/2γ0 hence T ∗

h ≥ d(0)/2γ0 uniformly
in h. In case the filling does occur for some T ∗

h ≤ T then the numerical internal interfaces are not defined for
later times.

3.1. A priori estimates

We show here that all the previous discrete estimates are preserved across and after the filling time, including
the L∞, Lipschitz, and Hölder bounds as well as the generalized Aronson–Bénilan estimate. In particular we will
obtain that the pressure v stays γ0-Lipshitz after the filling time, which only holds in dimension one because
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w = ∂xv satisfies a maximum principle (see the proof of Lem. 2.2). In higher dimensions there is no such
maximum principle, and the global Lipschitz regularity of the pressure is known to fail precisely because of the
hole-filling phenomenon [11, 22] (|∇v| blows up where and when internal holes fill). As in the previous section
and without further mention we impose the (CFL) condition on the mesh parameters Δx, Δt, ε.

Proposition 3.2. Let vn
k be the (two-patches) discrete solution constructed with Algorithm 1, and z(t) < 0 as

in Lemma 2.4. Then

0 ≤ vn
k ≤ M,

∣∣∣∣vn
k − vn

k−1

Δx

∣∣∣∣ ≤ γ0, |vn
k − vm

k | ≤ C|tn − tm|1/2,
Avn

k

Δx2
≥ z(tn)

hold for all k and tn, tm ∈ [0, T ].

Proof. If no (numerical) hole filling occurs our statement immediately follows from the results in Section 2, as
vn

k coincides with either v̂n
k or v̌n

k on each side of the internal hole of width at least Δx. Thus we may assume
that the internal interfaces meet at t = tN .

For times tn ≤ tN the patches 0 ≤ v̂n
k , v̌n

k ≤ M are γ0-Lipschitz (Lem. 2.2) so clearly vn
k = max{v̂n

k , v̌n
k }

satisfies the same bounds for all tn ≤ tN , and in particular at t = tN . By definition vn
k is then constructed for

tn ≥ tN by applying the one-patch scheme to solve the discrete Cauchy problem starting from the initial data
vN

k at time tN . Since vN
k satisfies the desired bounds at t = tN we conclude by Lemma 2.2 that vn

k satisfies the
same L∞ and γ0-Lipschitz estimates for all tn ≥ tN .

Regarding now the Hölder continuity in time, we check that the proof of Proposition 2.9 still applies. In Step 1
(V n

k ≤ 0 in Q by induction on n ∈ [n0, n1]) the initialization n = n0 only requires γ0-Lipschitz bounds, which
is true here. For the induction step we distinguished three cases: (i) xk is outside of the support with vn

k = 0,
(ii) xk is within one of the boundary layers, and (iii) when vn+1

k is constructed applying the finite-difference
scheme (2.2). All three cases are easily checked here with two patches: (i) and (ii) are identical, and (iii) also
works here since vn+1

k is in fact constructed applying the finite-difference equation (2.2) to either one of the
two patches before the filling time and to the unique patch afterward. Step 2 is identical, since it relies only on
structural considerations and the previous L∞ and Lipschitz bounds.

We finally turn to the AB estimate. By definition of the hitting time tN we have that ζ̌n
l − ζ̂n

r > Δx stay
strictly Δx away from each other for tn ≤ tN , so that there is always at least one integer mesh point in the
hole. Since vn

k ≥ 0 everywhere and vn
k = 0 in the hole it is easy to check that Avn

k ≥ 0 for all xk such that
ζ̂n
r − Δx ≤ xk ≤ ζ̌n

l + Δx, hence the AB estimate is trivially satisfied there (recall that z(t) < 0). Now outside
the hole Avn

k equals either Av̂n
k or Av̌n

k , hence the AB estimate holds for all tn ≤ tN and including at t = tN .
Now for tn ≥ tN the solution vn

k is constructed applying the one-patch algorithm with initial datum vN
k at time

tN , which satisfies the AB estimate. By Lemma 2.5 we conclude that the estimate also holds for all tn ≥ tN

and the proof is complete. �

3.2. Convergence of the approximate solutions and interfaces

For fixed T > 0 we denote QT = R × (0, T ) and h = (Δx, Δt) as before. As in Section 2.2 we define vh to
be continuous and piecewise linear in all triangle Ln

k , Un
k according to (2.20). The external ζh,lr and internal

ζ̂h,r, ζ̌h,l interfaces are defined to be piecewise linear as in (2.21). Note that ζh,lr are defined up to t = T , while
ζ̂h,r ≤ ζ̌h,l are only defined up to the (numerical) filling time

T ∗
h := max{tn : ζ̌n

l − ζ̂n
r > Δx} (3.1)

(see Algorithm 1). If no filling is numerically detected before the end of the computation we simply do not define
T ∗

h . In any case the internal interfaces ζ̂h,r, ζ̌h,l are respectively monotone nondecreasing and nonincreasing as
long as they exist.

Theorem 3.3. For fixed T > 0 the numerical solution vh converges uniformly in QT to the unique solution v
when h → 0.
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Proof. Note that the proof of (2.26) for the case of a single patch in Theorem 2.10 only relies on: (i) the discrete
estimates on vh uniformly in h allowing to get strong compactness for vh and ∂xvh; (ii) uniqueness for the
Cauchy problem; (iii) the consistence of the finite-difference equation (2.2) inside the support; and (iv) the fact
that all quantities involved in (2.2) are of order O(1) inside the numerical boundary layers, see Section 2.2 for
the details. By Proposition 3.2 this remains true in the case of two patches, thus allowing to conclude exactly
as in the proof of Theorem 2.10. �

The uniform convergence of the interfaces is now more delicate, as we need to distinguish between cases depend-
ing on whether the hole fills or not before the computation time T . Roughly speaking, as long as the interfaces
make sense the convergence follows as in the case of one patch only. We prove in particular that, if and when
the numerical filling occurs at time t = T ∗

h , then T ∗
h is indeed a good approximation to the exact filling time T ∗:

Theorem 3.4. Fix T > 0 and let T ∗ be the theoretical hole-filling time.

(a) If T ∗ < T then there is a small δ0 > 0 such that the numerical filling eventually occurs at times T ∗
h ≤ T − δ0

for all h ≤ h0, and lim
h→0

T ∗
h = T ∗. Moreover

‖ζh,l − ζl‖L∞(0,T ) + ‖ζh,r − ζr‖L∞(0,T ) → 0

and
‖ζ̂h,r − ζ̂r‖L∞(0,T∗−η) + ‖ζ̌h,l − ζ̌l‖L∞(0,T∗−η) → 0

when h → 0 for any small η > 0 fixed.
(b) If T ∗ ≥ T then for all η > 0 there exists h0(η) such that for all h ≤ h0 either no numerical filling occurs

before t = T , or does so at times T ∗
h ≥ T − η. In particular for small η the internal interfaces ζ̂h,r, ζ̌h,l are

defined at least for t ≤ T − η. Moreover

‖ζh,l − ζl‖L∞(0,T ) + ‖ζh,r − ζr‖L∞(0,T ) → 0

and
‖ζ̂h,r − ζ̂r‖L∞(0,T−η) + ‖ζ̌h,l − ζ̌l‖L∞(0,T−η) → 0

when h → 0 for any small η > 0 fixed.

Practically speaking this means that if a hole-filling is detected numerically at t = T ∗
h then indeed T ∗

h is a
good approximation to the theoretical filling time T ∗, while if no hole-filling is detected before the end of the
computation then one has simply not waited long enough to see the hole-filling, i.e. T ∗ ≥ T . In any case the
numerical interfaces converge to the theoretical ones, both internal (as long as they exist) and external (up to
t = T ).

Before going into the details, it is worth pointing out that at the filling time there holds

0 ≤ ζ̌h,l(T ∗
h ) − ζ̂h,r(T ∗

h ) ≤ O(Δx). (3.2)

Indeed by (3.1) we have T ∗
h = tN for some N , which according to Algorithm 1 is characterized by the fact that

ζ̌N
l − ζ̂N

r > Δx and virtually computing one more step separately for each patch would result in ζ̌N+1
l − ζ̂N+1

r ≤
Δx. Recalling that any interface propagates with discrete speed at most γ0 (Lem. 2.3) we see that indeed
0 ≤ ζ̌N

l − ζ̂N
r ≤ (ζ̌N+1

l − ζ̂N+1
r ) + 2γ0Δt ≤ Δx + 2γ0Δt ≤ O(Δx) since Δt = O(Δx2).

Proof of (a). We first show that the hole-filling always eventually occurs before the end of the computation if
h is small enough, i.e. T ∗

h ≤ T − δ0 as in our statement. Assuming by contradiction that this does no hold,
then by definition of T ∗

h there is a discrete subsequence (not relabeled) such that either no numerical filling
occurs before t = T , or does so for times T ∗

h ↗ T . In any case and by definition of the internal interfaces
we can find a sequence of points (xh, th) such that th ↗ T and xh ∈ [ζ̂h,r(th), ζ̌h,l(th)] with vh(xh, th) = 0.
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By monotonicity of the interfaces we see that xh stays in the fixed compact set [ζ̂r(0), ζ̌l(0)], so up to extracting
a further subsequence we can assume that xh → x0 ∈ [ζ̂r(0), ζ̌l(0)]. By Theorem 3.3 we get

v(x0, T ) = lim
h↘0

vh(xh, T ∗
h ) = 0 for some x0 ∈ [ζ̂r(0), ζ̌l(0)].

We argue now for the theoretical solution and interfaces in order to get a contradiction. Because T ∗ < T and
the internal interfaces start at positive distance from each other they must meet at x∗ = ζ̂r(T ∗) = ζ̌l(T ∗) ∈
[ζ̂r(0), ζ̌l(0)], and necessarily one of them has started moving before t = T ∗ (otherwise they would not meet).
Once an interface starts moving it never stops, so at least one of the interfaces is really moving at t = T ∗ and
thus v̂(x∗, t) > 0 or v̌(x∗, t) > 0 for all t > T ∗. By the comparison principle v ≥ max{v̂, v̌} is positive everywhere
in [ζ̂r(0), ζ̌l(0)] for all t > T ∗, in particular for t = T > T ∗. This finally contradicts v(x0, T ) = 0.

We claim now that lim
h↘0

T ∗
h = T ∗. Since 0 ≤ T ∗

h ≤ T − δ0 for small h, we can extract a subsequence such

that T ∗
h′ → T̃ ∗ for some T̃ ∗ < T . We prove that necessarily T̃ ∗ = T ∗, which will show that the whole sequence

converges. Virtually keeping applying the one-patch algorithm separately to each of the patches v̂h′ , v̌h′ after
t = T ∗

h′ , we can naturally extend ζ̂h′,r, ζ̌h′,l to all t ∈ [0, T ]. By construction of our scheme these (virtually)
extended interfaces, still denoted ζ̂h′,r, ζ̌h′,l with a slight abuse of notations, coincide with the internal interfaces
for vh′ up to the numerical filling time T ∗

h , after which we stop tracking the internal interfaces but the extended
ones virtually still exist up to t = T . Applying Theorem 2.10 we see that the extended interfaces ζ̂h′,r, ζ̌h′,l →
hatζr, ζ̌l uniformly in [0, T ], where ζ̂, ζ̌ are the interfaces of each patch v̂, v̌ considered as two independent
solutions up to t = T . Since T ∗

h′ → T̃ ∗ we get by (3.2) and uniform convergence that

ζ̂r(T̃ ∗) − ζ̌l(T̃ ∗) = lim
h′→0

(
ζ̂h′,r(T ∗

h′) − ζ̌h′,l(T ∗
h′)

)
= 0.

Because ζ̂r, ζ̌l are monotone and start at positive distance and once an interface starts moving it never stops,
they can only meet at a unique time. By definition this time is t = T ∗, thus T̃ ∗ = T ∗ and T ∗

h → T ∗ as desired.
Uniform convergence of the interfaces can be obtained as in the proof of Theorem 2.10 as long as the internal

interfaces exist and are tracked numerically (this is why we need to step η > 0 away from T ∗ as in our statement,
thus ensuring that the internal interfaces are numerically defined at least for fixed time intervals [0, T ∗ − η]),
and the proof is achieved. �

Proof of (b). We claim that a hole-filling can only be detected numerically for times T ∗
h ≥ T − η close to the

total computation time T if h is small enough (and may actually not be detected). For if not, then T ∗
h′ ≤ T − δ0

for some subsequence and fixed δ0 > 0. Arguing exactly as in (a) we conclude that T ∗
h′ → T ∗, which shows in

particular that T ∗ ≤ T − δ0 and contradicts T ∗ ≥ T . The convergence of the interfaces is also exactly similar
to the proof of Theorem 2.10, stepping again η > 0 away from t = T for the internal interfaces as in our
statement. �

4. Numerical experiments

The stability (CFL) condition was imposed in order to ensure Lipschitz bounds and L∞ stability of the
scheme (Lem. 2.2), but also the generalized Aronson–Bénilan estimate (Lem. 2.5). For numerical purposes the
less stringent condition

β ≤ 1

2
(
σ(M) + ε

) and γ0Δx
(
1 + S1(M)/2

)
≤ ε ≤ O(Δx) (CFL’)

suffices to guarantee the stability Lemma 2.2 and seems to give satisfactory convergence (see below). Note that
in contrast with (CFL) this relaxed condition does not depend on s1(M), S2(M) anymore. In any case the
computationally expensive β = Δt/Δx2 = O(1) condition is necessary due to the explicit nature of the scheme.
In [17] Hoff considered a linearly implicit version of [14] for the pure PME nonlinearity. We presented here the
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Figure 3. Numerical solution vh( . , t) for several times (Δx = 0.01).

explicit scheme for the ease of exposition, but all the theoretical results in Sections 2 and 3 extend to general
nonlinearities by considering as in [17] the linearly implicit finite-difference equation

vn+1
k − vn

k

Δt
= σ(vn

k )
Avn+1

k

Δx2
+ ε

Avn
k

Δx2
+

∣∣∣∣vn
k+1 − vn

k−1

2Δx

∣∣∣∣2
instead of (2.2). In this case the stability condition becomes Δt = O(Δx), which is clearly the best one can
hope for since the propagation law dζ/dt = −∂xv is intrinsically hyperbolic.

In order to test our scheme and because no explicit solutions are known for general nonlinearities we restrict
to the pure PME ∂tv = (m − 1)v∂2

xxv + |∂xv|2, to which the Barenblatt profiles

t ≥ −t0 : Vm(x, t; C, x0, t0) =
1

t0 + t

(
C(t0 + t)2/(m+1) − 1

2(m + 1)
|x − x0|2

)
+

are exact solutions for any m > 1. Here C > 0 is a free parameter, while x0, t0 reflect the invariance under
shifts. The interfaces are then explicitly given by

ζlr(t) = x0 ±
√

2(m + 1)C (t0 + t)1/(m+1).

For our numerical experiment we fix m = 2 and choose arbitrary parameters

v̂(x, t) := V2(x, t; 4/6, 0, 1), v̌(x, t) := V2(x, t; 1/6, 3 3
√

2, 1)

for which the initial supports of v̂0(x) := v̂(x, 0), v̌0(x) := v̌(x, 0) are at positive distance from each other as in
Section 3, and the corresponding interfaces are then

ζ̂lr(r) = 0 ± 2(1 + t)1/3, ζ̌lr(t) = 3 3
√

2 ± (1 + t)1/3.

Starting with initial datum v0 = max{v̂0, v̌0} the theoretical hole-filling time T ∗ can be computed according to
Section 3 by solving ζ̂r(t) = ζ̌l(t) ⇔ t = T ∗, which with our specific parameters gives explicitly

T ∗ = 1, x∗ = ζ̂r(T ∗) = ζ̌l(T ∗) = 2 3
√

2 ≈ 2.5198.

All the computations were performed on a personal computer with Linux/Octave. We only specify the value
of Δx, the parameters Δt, ε being then chosen respectively with the largest and smallest value allowed by (CFL’).
Figure 3 shows a typical solution vh(x, t) with Δx = 0.01, and Figure 4 illustrates the corresponding numerical
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Figure 4. Interface curves (Δx = 0.01).
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Figure 5. Errors as a function of Δx.

interfaces. The hole filling was numerically detected for T ∗
h = 1.0205 and x∗

h = 2.5236 (compare with T ∗ = 1
and x∗ = 2 3

√
2 ≈ 2.5198).

In addition to an abstract convergence result as in Theorem 2.10 DiBenedetto and Hoff also derived explicit
error estimates for the pure PME nonlinearity in the case of one single patch, in the form ‖ζh − ζ‖L∞(0,T ) +
‖vh − v‖L∞(QT ) ≤ O (

Δxα| log Δx|β) for some structural α, β related to m > 1, see ([14], Thm. 4.1). However
their proof heavily relies on the explicit power structure Φ(s) = sm, and obtaining error estimates for general
nonlinearities is a hard task that we did not carry out here due to the technical difficulties and lack of space.
Figure 5 shows the numerical errors Ex := |x∗

h − x∗| , Et = |T ∗
h − T ∗| and Eζ = ‖ζh − ζ‖L∞(0,T∗

h )), Ev =
‖vh−v‖L∞(QT∗

h
) as a function of Δx, and strongly suggests O(Δxα) convergence rates. Thus our scheme gives a

good approximation of the solution, interfaces, and coordinates of the hole-filling as predicted from Theorems 3.3
and 3.4.
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