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DOMAIN DECOMPOSITION METHOD FOR CRACK PROBLEMS
WITH NONPENETRATION CONDITION

Evgeny Rudoy
1

Abstract. The work deals with an iteration method for numerical solving the equilibrium problem of
two-dimensional elastic body with a crack under the nonpenetration condition. The method is based on
the domain decomposition and Uzawa’s algorithm. To construct an algorithm, the domain is partitioned
into two subdomains whose common boundary contains the crack. In each subdomain the linear prob-
lems are solved. We use Lagrangian multipliers to couple the solutions and provide the nonpenetration
condition on the crack.
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1. Introduction

There are different approaches to model cracks in solids. The classical models are characterized by linear
boundary conditions imposed at the crack faces [7, 12, 27]. It is known that such models have shortcoming
because there can be situations when the crack faces penetrate each other.

It is natural to impose such boundary conditions which exclude mutual penetration of crack faces. The
book [19] and parers [20–22, 30, 32] contain results for crack models with the non-penetration conditions for a
wide class of elasticity problems. This theory is characterized by unilateral constraint conditions, and it leads
to free boundary value problems.

In the present paper, the equilibrium problem of the two-dimensional elastic body with a crack is considered.
The inequality type boundary conditions are imposed on the crack faces [19]. We assume a clamping condition
at the part of the external boundary. The body is in equilibrium under the action of a given surface traction on
the other part of the external boundary.

We use the domain decomposition method [31], based on the saddle-point theory, to construct the iteration
algorithm of seeking the solution of equilibrium problem. To this end, the domain is partitioned into two
subdomains in such a way that the crack is at the common boundary of subdomains. In each subdomain the
linear problem of the elasticity theory is solved. Lagrangian multipliers are used for “gluing” the solutions and
providing the nonpenetration conditions. The iteration algorithm is based on Uzawa’s method of solution of

Keywords and phrases. Crack, nonpenetration condition, domain decomposition method, Lagrange multipliers, Uzawa’s
algorithm.
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variational inequalities [10, 17]. The convergence of the algorithm is proved. Numerical experiments illustrate
the performance of the algorithm.

The domain decomposition method is widely used for numerical solution of many problems of mathematical
physics (see, e.g., [3,24,28,29]). The application of the domain decomposition method to the solution of contact
problems can be found in [4, 5, 8, 13, 25].

There are not so many works devoted to the numerical solution of crack problems with the nonpenetration
condition. In [33], a model problem for deforming an ideal elastoplastic body with a crack was investigated. For
discretized problem the Uzawa algorithm was applied, but the convergence of the algorithm to the solution of
continuous problem was not proved. The iterative algorithm for the solving of a crack problem based on penalty
method was realized in [26]. In this case, by increase of a penalty parameter the stiffness matrix becomes ill-
conditioned. In [15,16] this approach was improved by using a primal-active set method. Numerical tests showed
that the primal-active set strategy determines the exact solution of the discretized model in few iterations.

2. Statement of the problem

Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary ∂Ω such that ∂Ω = ΓN ∪ ΓD, ΓN ∩ ΓD = ∅ and

measΓD > 0. Let Γc ⊂ Ω be a smooth curve without self-intersections such that Γ c ∩ΓD = ∅. Suppose that Ω
is partitioned into two subdomains Ω1 and Ω2 with Lipschitz boundaries ∂Ω1 and ∂Ω2, respectively. Suppose
that Σ = ∂Ω1 ∩ ∂Ω2. Let us consider that Γc ⊂ Σ; denote Γg = Σ \ Γ c. We choose the unit normal vector ν to
Σ in such a way that ν is the external normal vector to Ω1. Denote by τ a unit tangent vector on Σ; denote by
n an external normal unit vector to Ω. Finally, suppose that Ωc = Ω \ Γ c is the domain with a crack.

Let u be a two-component vector of displacements defined in the domain Ωc, i.e., u(x) : Ωc → R
2; let

σ = {σij}2
i,j=1 and ε = {εij}2

i,j=1 be the stress and the strain tensors which are related by linear Hooke’s law:

σij(u) = cijklεkl(u), εij(u) =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, i, j = 1, 2. (2.1)

The coefficients cijkl , i, j, k, l = 1, 2, satisfy the following conditions:

cijkl = cjikl = cklij , a−1 ξijξij ≤ cijklξijξkl ≤ a ξijξij ∀ξij = ξji (2.2)

for some constant a > 0. We use the Einstein summation convention: repeated indices i, j, k, l are summed
from 1 to 2.

Now, we consider the following mixed boundary value problem: for given f ∈ L2(ΓN )2, find u satisfying

−divσ(u) = 0 in Ωc, (2.3)

u = 0 on ΓD, (2.4)

σ(u)n = f on ΓN ,

[u] · ν ≥ 0, [σν(u)] = 0, σν(u)([u] · ν) = 0 on Γc, (2.5)

σν(u) ≤ 0, στ (u) = 0 on Γ+
c ∪ Γ−

c . (2.6)

Here Γα
c is a edge of the crack Γc belonging to the boundary of the subdomain Ωα, α = 1, 2; [v] = v|Γ 2

c
− v|Γ 1

c

is a jump of the function v on Γc, v|Γ α
c

is a trace of v on Γα
c ; σν(u) = (σ(u)ν) · ν and στ (u) = (σ(u)ν) · τ are

normal and tangent components of the surface traction on Γc, respectively.
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Equations (2.3) and boundary conditions (2.4)−(2.6) define the displacements of the body containing the
crack Γc and being in an equilibrium under applied surface traction f on ΓN . Conditions (2.5)−(2.6) provide
the nonpenetration of crack faces Γ 1

c and Γ 2
c into each other.

Let us give a variational form of the problem (2.3). To do this, we define the functional space

V = {v ∈ H1(Ωc)2 | v = 0 a.e. on ΓD};
the set of admissible displacements

Kc = {v ∈ V | [v] · ν ≥ 0 a.e. on Γc}.
Next, we define the energy functional

Π(v) =
1
2

∫
Ωc

σ(v) : ε(v)dx −
∫

ΓN

f · vds,

where σ(v) : ε(v) = σij(v)εij(v). The boundary value problem (2.3)−(2.5) can be formulated as the following
minimization problem: find a function u ∈ Kc such that

Π(u) = inf
v∈Kc

Π(v). (2.7)

It is known (see, e.g., [19], Thm. 1.30, p. 62) that there exists a unique solution u ∈ Kc of the problem (2.7),
which satisfies equation (2.3) and boundary conditions (2.4)−(2.6) in a weak sense.

3. Domain decomposition

In this section, by using domain decomposition, let us rewrite problem (2.7) in an equivalent form. For this
purpose, we define the following functional spaces

Vα = {vα ∈ H1(Ωα)2 | vα = 0 a.e. on ∂Ωα ∩ ΓD}, α = 1, 2,

and a set Kgc ⊂ V1 × V2, where

Kgc = {(v1, v2) ∈ V1 × V2 | (v2 − v1) · ν = 0, (v2 − v1) · τ = 0 a.e. on Γg, (v2 − v1) · ν ≥ 0 a.e. on Γc}.
We assume that meas (∂Ωα ∪ ΓD) > 0, α = 1, 2. Therefore, due to Korn’s inequality and (2.2) (see, e.g. [9],
Thm. 3.1, p. 115), the norm in space Vα can be defined as follows

‖vα‖2
Vα =

∫
Ωα

σ(vα) : ε(vα)dx, vα ∈ Vα,

which is equivalent to standard norm for Vα, α = 1, 2.
By using the decomposition of domain Ω into Ω1 and Ω2, we represent the energy functionals Π(v) as sum

of two functional defined on subdomains Ω1 and Ω2, i.e.,

Π(v) = Π1(v1) +Π2(v2),

where
Πα(vα) =

1
2

∫
Ωα

σ(vα) : ε(vα)dx−
∫

ΓN∩∂Ωα

f · vαds,

vα = v|Ωα ∈ Vα, α = 1, 2.

Consider the following minimization problem: find a pair (u1, u2) ∈ Kgc such that

Π1(u1) +Π2(u2) = inf
(v1,v2)∈Kgc

(
Π1(v1) +Π2(v2)

)
. (3.1)
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Theorem 3.1. Problem (3.1) has a unique solution (u1, u2) ∈ Kgc. Moreover,

uα = u|Ωα , α = 1, 2, (3.2)

where u is the solution of problem (2.7).

Proof. The existence and uniqueness of the solution of problem (3.1) follows from the theory of calculus of
variations (see, e.g., [10], Prop. 1.2, p. 35). Next, conditions

(v2 − v1) · ν = 0, (v2 − v1) · τ = 0 a.e. on Γg

are equivalent to condition
v2 − v1 = 0 a.e. on Γg.

Hence, equalities (3.2) follow from the fact that inclusion (v1, v2) ∈ Kgc holds iff the function

v(x) =
{
v1(x), if x ∈ Ω1,
v2(x), if x ∈ Ω2

belongs to the set Kc. The theorem is proved. �

Remark 3.2. Due to Gateaux’s differentiability of the functionals Πα, α = 1, 2, problem (3.1) is equivalent
the following variational inequality (see, e.g., [10], Proposition2.1, p. 38):

∫
Ω1

σ(u1) : ε(v1 − u1)dx +
∫
Ω2

σ(u2) : ε(v2 − u2)dx

≥
∫

ΓN∩∂Ω1

f · (v1 − u1)ds+
∫

ΓN∩∂Ω2

f · (v2 − u2)ds ∀(v1, v2) ∈ Kgc, (3.3)

which, in particular, implies the identity
∫
Ω1

σ(u1) : ε(u1)dx+
∫
Ω2

σ(u2) : ε(u2)dx =
∫

ΓN∩∂Ω1

f · u1ds+
∫

ΓN∩∂Ω2

f · u2ds. (3.4)

4. Mixed variational formulation

We associate the Lagrange function with problem (3.1). To this end, let us define

Λc = {λc ∈ L2(Γc) | λc ≥ 0 a.e. on Γc},

Λν = L2(Γg), Λτ = L2(Γg),

Λ = Λc × Λν × Λτ .

For λ = (λc, λν , λτ ) ∈ Λ we introduce the Lagrange function for problem (2.7) as follows

L(v1, v2, λ) =Π1(v1) +Π2(v2)

+
∫
Γc

λc(v1 − v2) · νds+
∫
Γg

λν(v1 − v2) · νds+
∫
Γg

λτ (v1 − v2) · τds.
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The following equality is valid

sup
λ∈Λ

L(v1, v2, λ) =
{
Π1(v1) +Π2(v2), if (v1, v2) ∈ Kgc,
+∞ else.

It follows that problem (3.1) takes the following form: find a pair (u1, u2) ∈ V1 × V2 such that

Π1(u1) +Π2(u2) = inf
(v1,v2)∈V1×V2

sup
λ∈Λ

L(v1, v2, λ). (4.1)

Therefore, it is reasonable to connect the problem of seeking the saddle point of the Lagrangian L with
problem (4.1). Unfortunately, due to fact that the trace operator from H1(Ωα), α = 1, 2, in L2(Γg) and L2(Γc)
is not surjective, the well-known theorems do not guarantee the existence of the saddle point of the LagrangianL.
Moreover, the solution u of problem (2.7) and, respectively, functions u1 and u2 can have a singularities in the
crack tips of order

√
r, where r is a distance to the crack tip (see, e.g., [12, 20], Sect. 4.6, p. 148). Therefore, in

this case there may not exist Lagrange multipliers belonging to the space L2(Γg).

In what follows, we consider the family of problems of seeking the saddle points, which depends on parameter
p > 0 and approximates problem (3.1). To this end, we use the approach applied in [6] (Chap. 5) for investigation
an elasto-plastic torsion problem.

Let p > 0; suppose that

Uα
p = {vα ∈ Vα|‖vα‖Vα ≤ p}, α = 1, 2,

Λc
p = {λc ∈ L2(Γc)|0 ≤ λc ≤ p a.e. on Γc},

Λν
p = {λν ∈ L2(Γg)| − p ≤ λν ≤ p a.e. on Γg},

Λτ
p = {λτ ∈ L2(Γg)| − p ≤ λτ ≤ p a.e. on Γg},

Λp = Λc
p × Λν

p × Λτ
p.

Consider the following family of saddle point problems depending on parameter p: find functions (u1
p, u

2
p, μp) ∈

U1
p × U2

p × Λp such that

L(u1
p, u

2
p, λ) ≤ L(u1

p, u
2
p, μp) ≤ L(v1, v2, μp) ∀(v1, v2, λ) ∈ U1

p × U2
p × Λp. (4.2)

By virtue of the fact that the sets U1
p , U2

p , Λp are convex, closed and bounded in corresponding Banach
spaces and the Lagrangian L is convex and lower semicontinuous with respect to (v1, v2) and concave and upper
semicontinuous with respect to λ, for all p > 0 problem (4.2) has the solution. Moreover, the pair (u1

p, u
2
p) is

uniquely defined (see, e.g., [10], Proposition 2.1, p. 171 and Lem. 1.2, p. 188).
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Inequalities (4.2) are equivalent to the following variational inequalities
∫
Ω1

σ(u1
p) : ε(v1 − u1

p)dx+
∫
Ω2

σ(u2
p) : ε(v2 − u2

p)dx

+
∫
Γc

μc
p(v

1 − v2 − (u1
p − u2

p)) · ν)ds+
∫
Γg

μν
p(v1 − v2 − (u1

p − u2
p)) · νds

+
∫
Γg

μτ
p(v1 − v2 − (u1

p − u2
p)) · τds

≥
∫

ΓN∩∂Ω1

f · (v1 − u1
p)ds+

∫
ΓN∩∂Ω2

f · (v2 − u2
p)ds, ∀(v1, v2) ∈ U1

p × U2
p , (4.3)

∫
Γc

λc(u1
p − u2

p)ds ≤
∫
Γc

μc
p(u

1
p − u2

p)ds ∀λc ∈ Λc
p, (4.4)

∫
Γg

λγ(u1
p − u2

p) · γds ≤
∫
Γg

μγ
p(u1

p − u2
p) · γds ∀λγ ∈ Λγ

p , γ = ν, τ. (4.5)

Theorem 4.1. Let (u1, u2) be the solution of problem (3.1) and (u1
p, u

2
p, μp) be the solution of problem (4.2);

then as p→ ∞
uα

p → uα strongly in Vα, α = 1, 2. (4.6)

Proof. Substitution of vα = 0, α = 1, 2 into (4.3) yields

‖u1
p‖2

V1 + ‖u2
p‖2

V2 +
∫
Γc

μc
p(u

1
p − u2

p) · νds+
∫
Γg

μν
p(u1

p − u2
p) · νds

+
∫
Γg

μτ
p(u1

p − u2
p) · τds ≤

∫
ΓN∩∂Ω1

f · u1
pds+

∫
ΓN∩∂Ω2

f · u2
pds. (4.7)

Substituting λ = 0 into (4.4) and (4.5), respectively, we obtain
∫
Γc

μc
p(u

1
p − u2

p) · νds ≥ 0, (4.8)

∫
Γg

μγ
p(u1

p − u2
p) · γds ≥ 0, γ = ν, τ. (4.9)

Hence, due to Hölder’s inequality and the boundedness of the trace operator, from (4.7) we have

‖u1
p‖2

V1 + ‖u2
p‖2

V2 ≤
∫

ΓN∩∂Ω1

f · u1
pds+

∫
ΓN∩∂Ω2

f · u2
pds ≤ K1‖f‖L2(∂Ω1)‖u1

p‖V1 +K2‖f‖L2(∂Ω2)‖u2
p‖V2 ,

where Kα is the norm of the trace operator T ΓN
α : Vα → H1/2(ΓN ), α = 1, 2. Therefore, we get estimates

‖uα
p‖Vα ≤ K ∀p > 0, α = 1, 2, (4.10)

where K =
√
K2

1‖f‖2
L2(∂Ω1)

+K2
2‖f‖2

L2(∂Ω2).



DOMAIN DECOMPOSITION METHOD FOR CRACK PROBLEMS WITH NONPENETRATION CONDITION 1001

Since sequences {u1
p} and {u2

p} are bounded, there exist subsequences {u1
p̃} and {u2

p̃} and functions ũ1 ∈ V1,
ũ2 ∈ V2 such that

uα
p̃ → ũα weakly in Vα, α = 1, 2,

as p̃→ ∞.
Show that (ũ1, ũ2) ∈ Kgc. To this end, first note that from inequality (4.4) it follows that

μc
p(x) =

{
0, if (u1

p(x) − u2
p(x)) · ν(x) < 0,

p, if (u1
p(x) − u2

p(x)) · ν(x) > 0. (4.11)

Moreover, from (4.5) we get for γ = ν, τ

μγ
p(x) =

{−p, if (u1
p(x) − u2

p(x)) · γ < 0,
p, if (u1

p(x) − u2
p(x)) · γ > 0. (4.12)

Introduce notation
Ic
p =

∫
Γc

((u1
p − u2

p) · ν)+ds,

Iγ
p =

∫
Γg

((u1
p − u2

p) · γ)−ds+
∫
Γg

((u1
p − u2

p) · γ)+ds, γ = ν, τ,

where

v+(x) =
{
v(x), if v(x) ≥ 0,
0, if v(x) < 0,

v−(x) = v+(x) − v(x).
Note that (4.11) and (4.12) imply ∫

Γc

μc
p(u

1
p − u2

p)ds = pIc
p,

∫
Γg

μγ
p

(
u1

p − u2
p

) · γds = pIγ
p , γ = ν, τ.

By using these formulas, we can rewrite (4.7) in the following form:

0 ≤ ‖u1
p‖2

V1 + ‖u2
p‖2

V2 + p(Ic
p + Iν

p + Iτ
p ) ≤

∫
ΓN∩∂Ω1

f · u1
pds+

∫
ΓN∩∂Ω2

f · u2
pds

Due to (4.10), we have the following estimate

0 ≤ p(Ic
p + Iν

p + Iτ
p ) ≤M, (4.13)

where M = K‖f‖L2(ΓN ). The last implies

lim
p→∞(Ic

p + Iν
p + Iτ

p ) = 0.

We take an arbitrary nonnegative function φ ∈ C∞
0 (Γc). We have

∫
Γc

φ(ũ1 − ũ2) · νds = lim
p̃→∞

∫
Γc

φ(u1
p̃ − u2

p̃) · νds ≤ (max
x∈Γc

φ(x)) lim
p̃→∞

∫
Γc

((u1
p̃ − u2

p̃) · ν)+ds = 0,

and, consequently, (ũ2 − ũ1) · ν ≥ 0 a.e. on Γc.
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Let ψ ∈ C∞
0 (Γg); then we have

∫
Γg

ψ(ũ1 − ũ2) · νds = lim
p̃→∞

∫
Γg

ψ(u1
p̃ − u2

p̃) · νds.

The following inequalities are valid:

−
(

max
x∈Γg

ψ(x)
) ∫

Γg

(
(u1

p̃ − u2
p̃

) · ν)−ds ≤
∫
Γg

ψ(u1
p̃ − u2

p̃) · νds ≤
(

max
x∈Γg

ψ(x)
) ∫

Γg

(
(u1

p̃ − u2
p̃) · ν

)+
ds

Passing to the limit as p̃→ ∞, we obtain
∫
Γc

φ(ũ1 − ũ2) · νds = 0.

It means that (ũ2 − ũ1) · ν = 0 a.e. on Γg. Similarly, it is shown that (ũ2 − ũ1) · τ = 0 a.e. on Γg.
Thus, the pair (ũ1, ũ2) belongs to the set Kgc.
Now we show that (ũ1, ũ2) coincides with (u1, u2). Let us take an arbitrary (v1, v2) ∈ Kgc. Then for all p̃ ≥

max{‖v1‖V1 , ‖v2‖V2} the inclusion (v1, v2) ∈ U1
p̃ ×U2

p̃ is valid. By virtue of (4.8) and (4.9), from inequality (4.3)
for pair (v1, v2) ∈ Kgc ∩ (U1

p̃ × U2
p̃ ) we get

∫
Ω1

σ(u1
p̃) : ε(v1 − u1

p̃)dx +
∫
Ω2

σ(u2
p̃) : ε(v2 − u2

p̃)dx ≥
∫

ΓN∩∂Ω1

f · (v1 − u1
p̃)ds+

∫
ΓN∩∂Ω2

f · (v2 − u2
p̃)ds. (4.14)

By virtue of weak lower semicontinuity of the norm, it is possible to pass to the limit in (4.14) as p̃→ ∞. As a
result, we have inequality

∫
Ω1

σ(ũ1) : ε(v1 − ũ1)dx +
∫
Ω2

σ(ũ2) : ε(v2 − ũ2)dx ≥
∫

ΓN∩∂Ω1

f · (v1 − ũ1)ds+
∫

ΓN∩∂Ω2

f · (v2 − ũ2)ds, (4.15)

that is valid for all (v1, v2) ∈ Kgc (due to arbitrariness of the choice). Variational inequality (4.15) coincides
with (3.3), which uniquely defines the pair (u1, u2). Thus, we conclude that (u1

p, u
2
p) weakly converges to (u1, u2)

as p→ ∞ in V1 × V2.
Finally, we show that (4.6) is valid. Taking into account (4.8) and (4.9), from (4.7) we get

‖u1
p‖2

V1 + ‖u2
p‖2

V2 ≤
∫

ΓN∩∂Ω1

f · u1
pds+

∫
ΓN∩∂Ω2

f · u2
pds.

By virtue of weak lower semicontinuity of the norm, after passing to the limit as p → ∞ the last inequality
yields

‖u1‖2
V1 + ‖u2‖2

V2 ≤ lim inf
p→∞

(‖u1
p‖2

V1 + ‖u2
p‖2

V2

) ≤ lim sup
p→∞

(‖u1
p‖2

V1 + ‖u2
p‖2

V2

) ≤
∫

ΓN∩∂Ω1

f · u1ds+
∫

ΓN∩∂Ω2

f · u2ds.

It follows from (3.4) that
∫

ΓN∩∂Ω1

f · u1ds+
∫

ΓN∩∂Ω2

f · u2ds = ‖u1‖2
V1 + ‖u2‖2

V2 .
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Therefore, we get
‖u1

p‖2
V1 + ‖u2

p‖2
V2 → ‖u1‖2

V1 + ‖u2‖2
V2

as p→ ∞. Since (u1
p, u

2
p) converges weakly to (u1, u2) and the norm of (u1

p, u
2
p) converges to the norm of (u1, u2),

the (u1
p, u

2
p) converges strongly to (u1, u2) in V1 × V2 as p → ∞ (see, e.g., [34], Thm. 8, p. 124). The theorem

is proved. �

Now we show that for all “sufficiently” great p the set of saddle points (u1
p, u

2
p, μp) of the Lagrangian L on

the set U1
p ×U2

p ×Λp coincides with the set of saddle points of the same Lagrangian on V1 × V2 ×Λp. Namely,
the following theorem is valid.

Theorem 4.2. For all p > K, where K is the constant in (4.10), (u1
p, u

2
p, μp) is the saddle point of the

Lagrangian L on the set U1
p × U2

p × Λp iff it satisfies (4.4), (4.5) and the following relations:

∫
Ωα

σ(uα
p ) : ε(vα)dx+ (−1)α+1

∫
Γc

μc
pv

α · νds+ (−1)α+1

∫
Γg

μν
pv

α · νds

+ (−1)α+1

∫
Γg

μτ
pv

α · τds =
∫

ΓN∩∂Ωα

f · vαds ∀vα ∈ Vα, α = 1, 2. (4.16)

Proof. To proof the theorem, it is sufficient to show that variational inequality (4.3) is valid for all functions
(v1, v2) ∈ V1 ×V2. Indeed, in this case we can substitute (±v1 + u1

p, u
2
p) and (u1

p,±v2 + u2
p) as test functions in

order to obtain (4.16).
Let p > K; due to (4.10), functions (u1

p, u
2
p) belong to U1

K×U2
K ⊂ U1

p ×U2
p . Fix the number δ ∈ (0, (p−K)/2).

Then the open set

U(u1
p, u

2
p, δ) = {(v1, v2) ∈ V1 × V2 | ‖v1 − u1

p‖V1 < δ, ‖v2 − u2
p‖V2 < δ}

is contained in U1
p × U2

p .
We take arbitrary (v1, v2) ∈ V1 × V2 and find β > 0 such that β‖vα − uα

p ‖Vα < δ, α = 1, 2. Then the
pair (u1

p + β(v1 − u1
p), u2

p + β(v2 − u2
p)) belongs to the set U(u1

p, u
2
p, δ) ⊂ U1

p × U2
p . Hence, it can be substitute

into (4.3) as a test function. After calculations, we get the variational inequality (4.3) which is valid for all
functions (v1, v2) ∈ V1 × V2. The theorem is proved. �

Thus, we obtain that nonlinear problem (2.7) defined in the domainΩ is approximated by two linear problems,
defined in Ω1 and Ω2 and connected by Lagrange multipliers μc

p, μ
ν
p and μτ

p .

5. Iteration process for approximating problem

The goal of this section is to construct iteration Uzawa-type algorithm for problem (4.4), (4.5) and (4.16).
We consider that p > K, where K is the constant in (4.10). By PΛc

p
we denote the projection operator on the

set Λc
p in L2(Γc); by PΛγ

p
we denote the projection operator on the set Λγ

p in L2(Γg), γ = ν, τ . It is easy to check
that

PΛc
p
v(x) =

⎧⎨
⎩

0, if v(x) ≤ 0,
v(x), if 0 < v(x) < p,
p, if v(x) ≥ p,

PΛν
p
v(x) = PΛτ

p
v(x) =

⎧⎨
⎩

−p, if v(x) ≤ −p,
v(x), if − p < v(x) < p,
p, if v(x) ≥ p,
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Inequalities (4.4) and (4.5) are equivalent to the fact that for any real number θ > 0 functions μc
p ∈ Λc

p,
μγ

p ∈ Λγ
p are fixed points of operators

PΛc
p

(
λc + θ(u1

p − u2
p) · ν

)
: Λc

p → Λc
p,

PΛγ
p

(
λγ + θ(u1

p − u2
p

) · γ) : Λγ
p → Λγ

p

γ = ν, τ , respectively, i.e. (see [10], Example on p. 39)

μc
p = PΛc

p

(
μc

p + θ(u1
p − u2

p) · ν
)
, (5.1)

μγ
p = PΛγ

p

(
μγ

p + θ(u1
p − u2

p) · γ
)
, γ = ν, τ. (5.2)

Basing on equalities (5.1) and (5.2), construct a convergent iteration algorithm to find the saddle point of
Lagrangian L on the set V1 × V2 × Λp.

Algorithm 1.

i. Choose μc,0 ∈ Λc
p, μν,0 ∈ Λν

p and μτ,0 ∈ Λτ
p. Set k = 0.

ii. For each k ≥ 0 we find u1,k and u2,k as solutions of the following variational equalities:
∫

Ωα

σ(uα,k) : ε(vα)dx+ (−1)α+1

∫
Γc

μc,kvα · νds+ (−1)α+1

∫
Γg

μν,kvα · νds

+ (−1)α+1

∫
Γg

μτ,kvα · τds =
∫

ΓN∩∂Ωα

f · vαds ∀vα ∈ Vα, α = 1, 2. (5.3)

iii. Set
μc,k+1 = PΛc

p
(μc,k + θ(u1,k − u2,k) · ν), (5.4)

μγ,k+1 = PΛγ
p
(μγ,k + θ(u1,k − u2,k) · γ), γ = ν, τ. (5.5)

iv. Stop or k = k + 1, goto (ii).

Theorem 5.1. There exists θ∗ such that for all θ ∈ (0, θ∗) the sequences {uα,k} converge to uα
p strongly in Vα,

α = 1, 2.

Proof. Convergence of Algorithm1 follows from the general theorem of Uzawa’s algorithm convergence (see,
e.g., [10], Prop. 1.1, p. 189 or [17], Thm. 4.49, p. 118). Let us check the conditions of proposition in [10].
The sets Λp and Uα

p , α = 1, 2, are non-empty closed convex sets. Moreover, Λp is bounded. The function
λ→ L(v1, v2, λ) is affine continuous one.

Due to boundedness of linear trace operator (see, e.g., [11], Thm. 1, p. 258), the following inequality

‖vα − wα‖L2(Γc) ≤ G‖vα − wα‖Vα , ∀vα, wα ∈ Vα,

holds, where the constant G depends only Ωα, α = 1, 2. The similar inequality takes place for L2(Γg).
Finally, by virtue of Gâteaux-differentiability of the functionals Πα, α = 1, 2, and Korn’s inequality, we can

apply Proposition 1.1 in [10], p. 189. The theorem is proved. �
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Figure 1. Domain Ωc with the crack Γc.

Remark 5.2. If for each k ≥ 0 we set μc,k = 0, Algorithm1 converges to solution of the problem which
approximates (as p→ ∞) the equilibrium problem of elastic body with a crack whose faces are free of traction,
i.e.,

σν(u) = 0, στ (u) = 0 a.e. on Γc.

6. Numerical experiments

Algorithm 1 was realized by using FreeFEM++ ([14]).
Let us consider 2D-Lamé problem with a rectilinear crack. We choose Ω as the square (see Fig. 1)

Ω = (−1, 1) × (−1, 1),

which decomposed into two subdomains

Ω1 = (−1, 1) × (−1, 0), Ω2 = (−1, 1)× (0, 1)

with a common boundary
Σ = (−1, 1) × {0}.

Let Γc = (−1/2, 1/2)× {0} be a crack; then Γg = Σ \ Γ c = ((−1,−1/2) ∪ (1/2, 1)) × {0} is a part of common
boundary of subdomains Ω1 and Ω2, where “gluing” occurs. The body is fixed on ΓD = ({−1}∪ {1})× (−1, 1).
By Γ 1

N = (−1, 1) × {−1} and Γ 2
N = (−1, 1) × {1} we denote the lower boundary and the upper boundary of

square, respectively.
The plane-stress Lamé model of an isotropic solid is given in term of the stress tensor (see, e.g., [23], Exam-

ple 6.5, p. 156)
σ11(u) = (2μ+ λ)ε11(u) + λε22(u), σ12(u) = σ21(u) = 2με12(u),

σ22(u) = λε11(u) + (2μ+ λ)ε22(u),

μ =
E

2(1 + ν)
, λ =

2νμ
1 − 2ν

,

where the strain tensor is given in (2.1). We take the following values of material parameters (see [18])

ν = 0.3, E = 6.9 × 104 mPa.
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Figure 2. Partial closing of the of the crack faces.

We assume that in all numerical experiments below θ = 2500, p = 107. The stopping criterion is

max
(‖u1,k − u1,k−1‖V1

‖u1,k‖V1
,
‖u2,k − u2,k−1‖V2

‖u2,k‖V2

)
< 10−6.

The spaces Vi, i = 1, 2, are approximated by finite-element spaces consisting of piecewise linear functions –
Lagrange P1-elements (see, e.g., [1], Def. 6.3.5, p. 176).

Example 1 (Partial closing of the of the crack faces). At Γ 1
N and Γ 2

N we impose loading by the following
traction forces: f = 10−3μx on Γ 1

N and f = −10−3μx on Γ 2
N . Such loading provides the closing of the crack

faces in the vicinity of its right tip and opening mode in the vicinity of the left one.
Let N be the number of nodes lying on the interface Σ; M be the number of nodes lying on the external

boundary ∂Ω. In this example, we shall investigate dependence of Algorithm1 on various value N and M . In the
Table 1 we report minimal and maximal mesh sizes hα

min and hα
max, the number of nodes Nodesα and triangles

Triangleα in the subdomain Ωα, α = 1, 2; the number of iterations iter.

From the data of Table 1 we can conclude that the number of iterations practically does not depend on mesh
size.

On the left in Figure 2 the domain Ωc after deformation in Lagrange coordinates x + 300u(x) with an
amplification factor and Von Mises stresses are presented. We can see the singularities near the left tip of the
crack and its absence at the right tip. This is consistent with theoretical results (see, e.g., [2]). On the right in
Figure 2 the jump of normal displacements is shown.

As mentioned in the introduction, for the crack problems with linear boundary conditions imposed on cracks
it is possible to get the mutual penetration of crack faces. On Figure 3 the solution of linear problem with
the same loading is represented. The mesh corresponds to N = 48, M = 80; the number of iteration is 2613.
Resulting deformations and Von Mises stresses are depicted on the left; the graph of the jump of the normal
displacements is given on the right. We see that the mutual penetration of crack faces occurs.

Example 2 (Opening mode). At the boundaries Γ 1
N and Γ 2

N we impose loading by the following traction forces:
f = −10−3μ on Γ 1

N and f = 10−3μ on Γ 2
N . Such loading provides an opening mode of the crack.

The resulting deformations in Lagrange coordinates x+30u(x) with an amplification factor 30 and Von Mises
stresses are depicted on the left in Figure 4; the jump of normal displacements along the interface Σ is shown
on the left. In this example, the number of iteration is 4508 for N = 48, M = 80.
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Table 1. Dependence on the mesh for the partial closing case.

N M h1
min h1

max h2
min h2

max Nodes1 Triangle1 Nodes2 Triangle2 iter

12 32 0,092 0,365 0,099 0,365 111 180 116 190 2370

24 48 0,041 0,242 0,044 0,242 289 504 286 498 2868

48 80 0,021 0,157 0,02 0,157 921 1704 911 1684 2659

96 144 0,01 0,086 0,01 0,086 3121 5976 3133 6000 2692

128 192 0,0075 0,062 0,0078 0,062 5493 10 632 5525 10 696 2463

Figure 3. Solution of linear problem.

Figure 4. Opening mode.

Example 3 (Solution for curvilinear crack). In this example we investigate the performance of Algorithm1 for
a curvilinear crack. Let us consider the following configuration of the domain. We again choose Ω as the square
with the crack

Γc = {(x, y) | y = 1/10sin(2πx), x ∈ (−1/2, 1/2)}.
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Table 2. Parameters of mesh for curvilinear crack.

N M h1
min h1

max h2
min h2

max Nodes1 Triangle1 Nodes2 Triangle2

48 80 0,019 0,153 0,02 0,157 903 1668 905 1672

Figure 5. Curvilinear crack.

Let Γg = {(x, y) | y = 0, x ∈ (−1,−1/2) ∪ (1/2, 1)} and Σ = Γc ∪ Γg. We shall consider two cases of
loadings:

Case 1. We assume that the body is fix on right and left sides of the square Ω. We impose loading by the
following traction forces: f = 10−3μx on the bottom side (−1, 1)×{−1} and f = −10−3μx the top side
(−1, 1) × {1} of the square Ω.

Case 2. We assume that the body is fix on right side of the square Ω. Constant traction forces f = 10−3μ acts
on the left sides of the square Ω.

In Table 2 Parameters of mesh for both cases are given.
Resulting deformations and Von Mises stresses are depicted in Figure 5: on the left – for Case 1 (an ampli-

fication factor is equal to 300, iter = 3535), on the right – for Case 2 (an amplification factor is equal to 50,
iter = 4238).

7. Conclusion

The work presents the iteration algorithm of solving the equilibrium problem of two-dimensional elastic
body with a crack under the nonpenetration condition. To construct the algorithm, we used the technique
of domain decomposition and Uzawa’s algorithm of numerical solving of problems with unilateral constraint.
The suggested algorithm has advantages such as the simplicity of its realization, parallelization of computing
processes, possibility of using nonconforming discretization. However, the algorithm has the disadvantage which
consists in low convergence velocity. For example, the primal-dual active set strategy determines the exact
solution of the discretized model in a few iterations [15, 16]; the iterative process of penalty iteration method
convergences exponentially to the solution of the penalized problem [26]. To accelerate of the Algorithm1 we can
use, for example, the augmented Lagrangian which is combination of penalty method and Lagrange multiplier
approach (for notion of augmented Lagrangian see, e.g., [17]).
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