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RECONSTRUCTION OF INDEPENDENT SUB-DOMAINS
FOR A CLASS OF HAMILTON–JACOBI EQUATIONS AND APPLICATION

TO PARALLEL COMPUTING

Adriano Festa
1

Abstract. A previous knowledge of the domains of dependence of a Hamilton–Jacobi equation can
be useful in its study and approximation. Information of this nature is, in general, difficult to obtain
directly from the data of the problem. In this paper we formally introduce the concept of an independent
sub-domain, discuss its main properties and provide a constructive implicit representation formula.
Through these results, we propose an algorithm for the approximation of these sets that is shown to
be relevant in the numerical resolution, via parallel computing.
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1. Introduction

A classical, powerful approach to optimal control problems consists of solving a verification partial differential
equation of Hamilton–Jacobi type, obtained using the Bellman’s Dynamic Programming principle. One remark-
able advantage of this approach, compared to the study of optimality conditions, is the ability to provide global
minima and closed-loop optimal controls. On the other hand, the study and the approximation of the value
function associated to the problem is an unavoidable, and often difficult, technical step. An exceptional achieve-
ment was made with the introduction of viscosity solutions, a weak notion of solution proposed by Crandall,
Evans and Lions in the 80s, and the subsequent refinements (for a whole presentation of this subject refer to
the monographs [3, 5]).

In this paper, we consider a related problem: the detection of a collection of sub-domains where the value
function is independent from its value in any other sub-domain. This knowledge is useful for several reasons: it
is related to stabilization problems, reconstruction of reachability sets and development of parallel algorithms
for fast numerical resolution. The latter point is of special interest. In fact it is well-known that the great-
est limitation to the use of the Bellman approach in optimal control comes from the difficulty to solve the
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associated Hamilton–Jacobi equation, even numerically, in a high dimensional context (the so-called curse of
dimensionality).

A classical strategy to speed up the computation is decomposing the domain into a collection of subsets
with the aim to lower the number of nodes to compute in every sub-problem. Then, the problem is solved in
parallel on every sub-domain with special conditions imposed in the interface between two different subsets.
Unfortunately, a technique of this kind typically requires an iterative process between the parallel resolution
on every sub-domain and the interface between them, with a consequent growth of the total complexity. For a
whole dissertation on the subject of domain decomposition techniques (DD) we refer to the monograph [22], for
Hamilton–Jacobi equations [8,21] and for a parallel version of the Fast Sweeping Methods [11,24]. An alternative
approach was proposed in [25], where the authors can handle a decomposition of the domain passing to a quasi
variational inequality formulation which is shown to be equivalent to the original problem.

A new direction of research was opened by Ancona and Bressan, in [1]. There, they introduced the original
concept of patchy feedback with the intention of studying an asymptotic stability problem. Navasca and Krener,
in [19], used these ideas to develop a technique of reconstruction for the feedback solution in some special
polynomial cases (patchy solutions). Those elements in turn inspired the work of Cacace et al. [7]. For a special
class of Hamilton–Jacobi equations, they propose a preliminary procedure called patchy decomposition. This
preliminary computation supplies a partition of the domain into sets which can be computed separately, without
any exchange of information between the interfaces. The result is achieved using a multi-grid idea. They pre-
compute a solution of the problem on a coarse grid, then they obtain an optimal control in a feedback map form
using the synthesis procedure (cf. [3], pp. 10−13). This map is used to detect a decomposition of the domain in
accordance with the geometry of the problem. It is shown in some interesting examples, that the error added
in this procedure is sufficiently small. Our paper can be considered a development of this idea.

We introduce in a rigorous way the concept of independent sub-domain (a different concept from patchy
subset) and obtain a procedure for its numerical reconstruction without the delicate step on the feedback
control. We use the technique developed to propose a parallel algorithm for the approximation of the solution,
proving a convergence result and some error estimates for it. With this framework, we enlarge significantly, with
respect to the tests performed in [7], the class of equations where the technique is appropriate.

The paper is organized as follows: in Section 2 we introduce the minimum property which is useful for
the decomposition and the concept of independent sub-domains. In Section 3 we propose an algorithm for
their location. The main result of this section is the necessary condition contained in Proposition 3.3 which
characterizes the points of the grid belonging to a certain independent domain. Finally in Section 4 we describe
a parallel algorithm for the approximation of the solution. The main benefit of our proposal is claimed in
Proposition 4.1, where the convergence of the technique and a bound for the error are proved. Through some
test examples, we exhibit the benefits of our approach.

2. Formulation of the problem and decomposition property

Let us first of all introduce the classical framework of an exit problem. We refer to the general structure of a
differential game. A generic optimal control problem can be viewed as sub-case.

We consider the following controlled dynamical system{
ẏ(t) = f(y(t), a(t), b(t)), a.e.
y(0) = x,

(2.1)

where x ∈ Ω is an open subset of R
n, a ∈ A := {a : R

+ → A, measurable}, and b ∈ B := {b : R
+ →

B, measurable} with A, B compact sets of R
m.
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Other data of the problem are the functions running cost l and exit cost g. Typical hypothesis for the
well-posedness of the problem are:

f : (Ω, A, B) → R, continuous function,
Lipschitz continuous in the first variable

l : (Ω, A, B) → (ρ, +∞], is a strictly positive continuous function,
Lipschitz continuous in the first variable,

g : Ω̄ → R is a continuous function.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (H0)

The regularity assumptions on f are enough to guarantee the existence of a solution of the dynamical system
yx(t, a(t), b(t)) which is called trajectory. The goal is to find the optimum (a sup− inf optimum) over A, B of
the functional

Jx(a, b) :=
∫ τx(a,b)

0

l(yx(s, a(s), b(s)), a(s), b(s))e−λsds

+ e−λτx(a,b)g(yx(τx(a, b))), λ ≥ 0,

where τ is the time of the first exit from the set Ω defined as

τx(a, b) := min {t ∈ [0, +∞) | yx(t, a(t), b(t)) /∈ Ω} .

Using the Elliot–Kalton’s notion [13] of non anticipating strategies, we define the value function of this
problem as

v(x) := sup
ϕ∈Φ

inf
a∈A

Jx(a, ϕ(a)), (2.2)

where
Φ := {ϕ : A → B : t > 0, a(s) = ã(s) for all s ≤ t implies ϕ[a](s) = ϕ[ã](s) for all s ≤ t}.

For a simpler presentation, we assume that the Isaacs’ conditions hold i.e. for all x ∈ Ω and for all p ∈ R
n,

min
b∈B

max
a∈A

{−f(x, a, b) · p − l(x, a, b)} = max
a∈A

min
b∈B

{−f(x, a, b) · p − l(x, a, b)},

then the value function of the problem exists, is unique and coincides with v. It is well-known that such function
is a viscosity solution of the problem{

λv(x) + H (x, Dv(x)) = 0, x ∈ Ω
v(x) = g(x), x ∈ Γ

(2.3)

where the Hamiltonian is defined as

H(x, p) := min
b∈B

max
a∈A

{−f(x, a, b) · p − l(x, a, b)},

and the set Γ is a subset of ∂Ω. To avoid a large number of technicalities and focus on our purposes, we state
as hypothesis:

the problem (2.3) has an unique Lipschitz continuous viscosity solution v(x). (H1)

This assumption will be essential in the following; conditions to ensure such regularity of the solution have been
largely discussed in literature (just to cite some monographs [3, 5, 9]).

A key property of the value function, that we will use in the following, is the possibility to solve a collection
of Hamilton–Jacobi equations obtaining the original solution as the point-wise minimum of such a family. This
property was discussed with some differences and with another purpose in the works [17, 18].
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Consider a decomposition of the set Γ as a union of a collection of subsets, i.e. Γ :=
⋃

i∈I Γi, with I :=
{1, . . . , m} ⊂ N. We call vi : Ω̄ → R a Lipschitz continuous viscosity solution of the problem{

λvi(x) + H (x, Dvi(x)) = 0 x ∈ Ω
vi(x) = gi(x) x ∈ Γ

(2.4)

where gi : Γ → R is a regular function such that

gi(x) = g(x), if x ∈ Γi,
gi(x) > g(x), otherwise. (2.5)

Also in this case, we assume the existence of a Lipschitz continuous solution of every equation (2.4).
The limiting superdifferential ∂Lv(x) of the continuous function v(·) at x is defined as:

∂Lv(x) := {p | ∃ sequences pi → p and xi → x s.t. pi ∈ D+v(xi) for each i} ,

where D+v(x) is the usual Fréchet superdifferential.
The active indices set is stated as

I(x) = {j ∈ {1, . . . , m} | vj(x) = min
i∈I

vi(x)}, for each x ∈ Ω.

We are now ready to state the decomposition result:

Theorem 2.1. Let (H0)−(H1) and the Isaacs’ conditions be verified. Define the set Υ ⊂ Ω as Υ := {x ∈
Ω| Card(I(x)) > 1} (where Card(A) is the cardinality of the set A) and the function v̄ : Ω → R as

v(x) := min
i∈I

vi(x).

Under the hypothesis

λv̄(x) + H

⎛⎝x,
∑

i∈I(x)

αipi

⎞⎠ ≤ 0, (H2)

where pi ∈ ∂Lvi(x) for each i ∈ I(x), x ∈ Υ , and any convex combination {αi | i ∈ I(x)}, we have that v̄ is the
unique viscosity solution of the problem (2.3).

Proof. We know that v always verifies the boundary conditions from the definition of value function and (2.5).
If we show that v is both subsolution and supersolution in Ω of the problem (2.3), the thesis follows by the
uniqueness of the solution.

We omit the proof that v̄(x) is a supersolution since it is classical in literature. The property of subsolution
is less trivial. If x /∈ Υ , i.e. I(x) contains a single index value j, the property is directly verified; so x ∈ Υ .
Now, vj(·) is Lipschitz continuous on a neighborhood of x for each j ∈ I(x). Since p ∈ D+v̄(x), it is certainly
the case that p ∈ ∂Lv̄(x). Using the property that v̄(x′) coincides with max{vj(x′) | j ∈ I(x′)} for x′ in some
neighborhood of x, we deduce from the max rule for limiting subdifferentials of Lipschitz continuous functions
(see, e.g. [23]) applied to −v̄(·) the following representation for p:

p =
∑

j∈I(x)

αjpj ,

for some convex combination {αj | j ∈ I(x)} and vectors pj ∈ ∂Lvj(x), j ∈ I(x). But then, by (H2),

λv̄(x) + H(x, p) = λv̄(x) + H

⎛⎝x,
∑

j∈I(x)

αjpj

⎞⎠ ≤ 0 .

This shows that u(x) is a subsolution and concludes the proof. �
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Remark 2.2. It is quite direct to show that the request (H2) is always verified with the presence of a convex
Hamiltonian. As consequence any optimal control problem is included in our framework (in an optimal control
problem the associated Hamiltonian is always convex). To pass to this special case, it is sufficient to restrict the
set B to a singleton.

Let us now define the concept of independent sub-domains.

Definition 2.3. A subset Σ ⊆ Ω is an independent sub-domain of the problem (2.2) if, given a point x ∈ Σ
and an optimal control (a(t), ϕ̄(a(t)) (i.e. Jx(a, ϕ̄(ā)) ≤ Jx(a, ϕ̄(a)) for every choice of a ∈ A, and Jx(a, ϕ̄(ā)) ≥
Jx(ā, ϕ(ā)) for any ϕ ∈ Φ), the trajectory yx(ā(t), ϕ̄(ā(t))) ∈ Σ for t ∈ [0, τx(ā, ϕ̄(ā))].

It is possible to establish a link between the decomposition result and the concept of independent sub-domain.
In particular we show that Theorem 2.1 provides a constructive way to build a independent sub-domains
decomposition of Ω.

Proposition 2.4. Let (H0), (H1), (H2) and the Isaacs’ conditions be verified. Given a collection of n − 1
dimensional subsets {Γi}i=1,...,m such that Γ = ∪m

i=1Γi, the sets defined as

Σi :=
{
x ∈ Ω | vi(x) = v(x)

}
, i = 1, . . . , m, (2.6)

where vi and v are defined accordingly to Theorem 2.1, are independent sub-domains of the problem (2.2).

Proof. We argue by contradiction using the Dynamic Programming Principle (cf. [3]). For a fixed i consider a
point x ∈ Σi. Let us then assume that the trajectory, for an optimal control of the original problem (ā, ϕ̄(ā))
exits from Σi i.e. yx(a(t), ϕ̄(a)) = x /∈ Σi for a certain t ∈ [0, τx(a(t), ϕ̄(a))]. If t = 0 contradiction comes
directly from the definition of Σi. If t > 0 we recall (Dynamic Programming Principle)

v(x) = sup
ϕ∈Φ

inf
a∈A

{∫ t

0

l(yx(a(s), ϕ(a(s))), a(s), ϕ(a(s)))e−λsds + e−λtv
(
yx(a(t), ϕ(a(t̄)))

)}
,

an analogue formula is obviously valid also for vi(x). Recalling vi(x) > v(x),

vi(x) = sup
ϕ∈Φ

inf
a∈A

{∫ t

0

l(yx(a(s), ϕ(a(s))), a(s), ϕ(a(s)))e−λsds + e−λtvi

(
yx(a(t), ϕ(a(t̄))

)}

> inf
a∈A

{∫ t

0

l(yx(a(s), ϕ̄(a(s))), a(s), ϕ̄(a(s)))e−λsds + e−λtvi (yx(a(s), ϕ̄(a(s)))

}

=
∫ t

0

l(yx(ā(s), ϕ̄(ā(s))), ā(s), ϕ̄(ā(s)))e−λsds + e−λtvi (x̄)

≥
{∫ t

0

l(yx(ā(s), ϕ̄(ā(s))), ā(s))e−λsds + e−λtv(x̄)

}
= v(x),

then vi(x) > v(x), which contradicts again the definition (2.6). �

That property of the trajectories plays an important role in the following; it guarantees the absence of crossing
information through the boundary of every independent sub-domain, or using different words, the solution of
the problem (2.3) in each sub-domain does not depend on the solution in other sub-domains.

A feature easy to derive from Proposition 2.4 is the connexion of the sets:

Corollary 2.5. Let (H0), (H1) and (H2) and the Isaacs’ conditions be verified. If Γi is connected, the respective
set Σi defined in (2.6) is also connected.
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Figure 1. Example 2.6, the auxiliary solution u1 and the independent sub-domains decomposition.

Proof. If Γi is connected we can always join two points x, y of the set using the respective optimal trajectories.
By Proposition 2.4 such trajectories are contained in the set. �

Let us to give a simple example of an independent sub-domains decomposition:

Example 2.6. The equation considered is, with Ω := (−1, 1)× (−1, 1),{
maxa∈B(0,1){a · Dv(x)} = 1 x ∈ Ω
v(x) = 0 x1 ∈ ∂Ω.

Stated ∂Ω = Γ := ∪iΓi = {±1} × (−1, +1) ∪ (−1, +1) × {±1}, we associate to Γ1 := (−1,−1) × {−1} the
function g1 : ∂Ω → R defined as {

g1(x) := 0 x ∈ Γ1

g1(x) := γ(1 + x2) x ∈ Γ \ Γ1,

for a chosen γ ∈ R
+. The other gis are defined in a symmetric manner. It is possible to verify that the unique

viscosity solution of such a problem is

v1(x) = (1 + γ) − max(|x1 − γ|, |x2|).
Finally the original value function v(x) = 1−max(|x1|, |x2|) is recovered as v(x) = min

i=1,...,4
vi(x). The decompo-

sition in independent sub-domains obtained are shown in Figure 1.

3. Independent sub-domains reconstruction

In this section we introduce a numerical technique for the approximation of the independent sub-domains,
based on the results of the previous section. The technique is not related to a special numerical scheme, but it
needs an a priori bound for the approximation; this is necessary to guarantee that the approximation includes
the desired set. As example of numerical scheme we consider a semi-lagrangian solver, but the procedure can be
easily adapted to other schemes e.g. finite differences, finite volumes. For further details about semi-lagrangian
techniques we refer to the monograph by Falcone and Ferretti [16].

Let us consider a grid on Ω made by a family of simplices Sj , such that Ω ∈ ∪jSj . We denote by xi,
i = 1, . . . , N the nodes of the triangulation,

Δx := max
j

diam(Sj) (3.1)
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the size of the mesh (diam(S) is the diameter of the set S). Let be G the set of the internal nodes of the grid
and Ĝ is the set of its boundary points; in the case of a bounded Ω we call also Φ the nodes corresponding to
the set R

n \Ω, those nodes typically act as ghost nodes. We remark that this discretization space includes the
classical case of regular meshes.

We map all the values at the nodes in V = (V (1), . . . , V (N)). By a standard semi-lagrangian discretiza-
tion [2, 16] of (2.3), it is possible to obtain the following scheme in fixed point form

V = T (V ), (3.2)

where T : R
N → R

N is defined component-wise by

[T (V )]i =

⎧⎪⎨⎪⎩
max
b∈B

min
a∈A

{
1

1+λh I[V ](xi − hf(xi, a, b)) − hl(xi, a, b)
}

xi ∈ G,

g(xi) xi ∈ Ĝ,
+∞ xi ∈ Φ.

(3.3)

The discrete value function V is extended on the whole space Ω by a linear n-dimensional interpolation,
represented by the operator I, as described in [4, 15].

The parameter h is the time step for the forward euler approximation of the controlled ordinary differential
equations (2.1). The minimum over A and the maximum over B are evaluated by direct comparison using a
discrete approximation of the control space A, B. Generally the fixed point of the equation (3.2) is found through
the iterative map V n+1 := T (V n) which is shown to be a contraction.

It is important to recall the following result of convergence for the semi-lagrangian scheme. The proof can be
found in [4, 20] for the case of differential games and in [12, 14] for optimal control problems.

Theorem 3.1. Let v and V be the solutions of, respectively, equations (2.3) and (3.2). Assume verified (H0)
and (H1) then

||v − V ||∞ ≤ C(Δx)q ,

where C is a positive constant independent from Δx, q ∈ R
+ depending on the regularity of the problem.

For differential games with a Lipschitz continuous solution, a possible estimate is

‖v − V ‖∞ ≤ C̄h
1
2

(
1 +

(
Δx

h

)2
)
· (3.4)

If the quantity Δx
h = 1, we have the relation described in Theorem 3.1 with q = 1/2. The constant C̄ depends

on the data of the problem and can be estimated.
In the case of an optimal control problem with λ > 0, a possible convergence bound is the following

‖v − V ‖∞ ≤ 2(Mv + Mvh
)h

1
2 +

(
Ll

λ(λ − Lf )
Δx

h

)
with Mv, Mvh

maxima of the absolute value of the continuous and semidiscrete solution and Ll, Lf Lipschitz
constants of the running cost l and the dynamics f . Then Theorem 3.1 holds for h2 = Δx3, C = 2(Mv +Mvh

)+
Ll

λ(λ−Lf ) and q = 1
3 .



1230 A. FESTA

Other examples of error estimates can be found in the literature, even of high order (i.e. q > 1) in some
smooth cases [16].

Using the numerical scheme described above we obtain an approximation of the solution of every decomposed
problem (2.4); these discrete solutions are called, in analogy with the continuous case, Vi for i ∈ I.

A simple observation brings us to the following Lemma:

Lemma 3.2. Let (H0), (H1), (H2) and the Isaacs’ conditions be verified. If a node xj ∈ Σi then there exists
C > 0 independent from Δx and q ∈ R

+ s.t.

|Vi(j) − v(xj)| ≤ C(Δx)q .

V (j) is the j-component of the vector V (related to the node xj) and the parameters C and q are the same than
in Theorem 3.1.

Proof. It is sufficient observe that |Vi(j) − v(xj)| ≤ |Vi(j) − vi(xj)| + |vi(xj) − v(xj)|. Proposition 2.4 and
Theorem 3.1 give the estimate. �

We can establish a necessary condition for the nodes of G to belong to a fixed independent sub-domain Σi.
Let be B(x, ρ) the n-dimensional ball centred in x and of radius ρ.

Proposition 3.3. Assume (H0), (H1), (H2) and the Isaacs’ conditions. Let be xj ∈ G such that, taken an
ε ∈ [0, Δx) and a direction d ∈ B(0, 1), the point x = xj − εd ∈ Ω verifies vi(x) = v(x) for a certain i ∈ I.
Then the following estimate holds

|Vi(j) − V (j)| ≤ 2(C(Δx)q + MΔx) (3.5)

with C and q as in Lemma 3.2 and M := max{Lvi , i ∈ I} where Lvi is the Lipschitz constant of the function
vi.

Proof. It is sufficient to observe that

|Vi(j) − V (j)| ≤ |Vi(j) − vi(xj)| + |vi(xj) − vi(x)| + |vi(x) − v(x)|
+ |v(x) − v(xj)| + |v(xj) − V (j)| ≤ ‖Vi(j) − vi(xj)‖∞ + ‖v(xj) − V (j)‖∞

+ |vi(xj) − vi(x)| + |vi(x) − v(x)| + |v(x) − v(xj)| ≤ 2C(Δx)q + 2MΔx + |vi(x) − v(x)|.

The point x ∈ {x|vi(x) = v(x)} may not be on the grid G, but since v and vi are Lipschitz continuous
with Lipschitz constant bounded by M it is possible to estimate |v(x) − v(xj)| and |vi(xj) − vi(x)|. From
vi(x) = v(x), (3.5) follows. �

It is worth to note that such condition is verified by the nodes lying in the interior of such set but also by a
neighbourhood of the boundary, of thickness depending on the parameters C and M . This criterion is used in
the invariant sub-domains reconstruction algorithm; the list of the nodes of G belonging to the approximation
of the independent sub-domain Σi is denoted Σi. Consequently, the relative approximated set is the region
delimited by Σi.

Let us define union(X1, X2) the vector composed by all the elements present in X1 and X2.
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Independent Sub-Domains Reconstruction Algorithm (RA).

− Given a grid G with space step Δx and a collection of vectors Ĝi such that union(Ĝi, i = 1, . . . , m) = Ĝ.
(1) Resolution of auxiliary problems

for i = 1 . . . , m solve iteratively the problem
Vi = T (Vi) with T defined as (3.3)
with boundary conditions as (2.5) w.r.t. Ĝi.

end
(2) Check and reconstruction of the value function

If necessary, check numerically (H2),
then obtain V as V := mini=1,...,m{Vi}.

(3) Reconstruction of the sub-domains
for i = 1, . . . , m,

initialize Σi = ∅
for j = 1, . . . , N,

if |Vi(j) − V (j)| ≤ 2(C(Δx)q + MΔx)
then add xj to vector Σi

end
the i-subset is Σ̄i.

end.

Let us remark that, from the computational point of view, the difficult step is only the first one; successive steps
are faster and with a negligible complexity. In addition, step (1) is easily performed in parallel, since it consists
of a collection of independent problems, reducing the difficulty of resolution.

Remark 3.4. A delicate phase of the algorithm is the choice of the parameters C and M . Considered that our
approximation is done through a necessary condition, all the analytic results are still valid rounding up those
values. This is the easiest procedure from the practical point of view. In Section 4.1 we will show that even a not
so tight choice produces acceptable approximations of the desired sets, in some situations of interest. Instead
the penalization contained in the functions gis can be done just considering the nodes of Ĝ \ Ĝi ghost nodes
belonging to Φ. This is compatible with conditions (2.5) for a fixed Δx.

Remark 3.5. It is worth to stress an issue about the stopping criterion used in the iterative resolution (3.2)
contained in step (1). It is clear that if, in general, the exact discrete solution is not reached, then the stopping
criterion should be compatible with our requests of accuracy. For the case of the semi-Lagrangian approximation,
for a λ > 0, the classical estimate ‖V n − V n+1‖∞ ≤ 1

1+λh‖V n−1 − V n−2‖∞ brings us a link between the two
successive iterations and the distance (in the L∞ norm) from the discrete solution as, fixing h = Δx (differential
game case, (3.4)),

‖V n − V ‖∞ ≤
∞∑

t=n

(
1

1 + λΔx

)t

‖V n − V n+1‖∞

then a possible stopping criterion is

‖V n+1 − V n‖∞ ≤ ε, ε = 2λΔx(1 + λΔx)n−1(C(Δx)q + MΔx).

The RA builds an approximation of the independent sub-domains. It is guaranteed that such approximation
is performed exceeding the desired set, in the sense that Σi ⊆ Σi. Another important property coming from
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Figure 2. Example 3.6, the flatness of the central region depends on δ, in tones of grey the
incorrect division coming from numerical uncertainty.

Proposition 3.3 is that, for two discretization steps Δx1 and Δx2 such that Δx1 ≥ Δx2, the approximate
independent sub-domains for a given decomposition of Γ satisfy

Σ
Δx1

i ⊇ Σ
Δx2

i (3.6)

where Σ
Δx

i denotes the discrete independent set obtained performing the RA with discretization space step Δx.
A point to discuss is the relation with the decomposition technique proposed in [7]. Despite the analogies, in

particular the idea of finding a decomposition in sub-domains which preserves a certain mutual independence,
the resulting decomposition can be, in general, slightly different. Let us show it with an example.

Example 3.6. Let us consider the domain Ω := (−1, 1)× R the dynamics

f(x, a) := a1, λ := δ, a = B2(0, 1),

the running cost l(x, a) ≡ 1, and the set Γ := ∪2
i=1Γi, with Γ1 := {x1 = 1}, Γ2 := {x1 = −1}. Let us impose

g : Γ → R null in Γ1 and Γ2. It is possible to check that the solution is (Fig. 2)

v(x) =

{
1 − eδx1

eδ for x1 ≤ 0
−1 + eδx1

eδ otherwise.

We can notice that for every choice of δ the invariant domains relative to the two boundaries Γ1 and Γ2 are
respectively {x ∈ Ω | x1 ≥ 0} and {x ∈ Ω | x1 ≤ 0}.

For δ sufficiently small a numerical method, although reconstructing correctly the value function, is not able
to solve appropriately the synthesis problem. The assignment of the approximated optimal control of the region
“too flat” depends on the priority chosen in the computing. So using the patchy decomposition, the sub-domains
reconstructed is, for example {x ∈ Ω | x1 + r

δ ≥ 0} and {x ∈ Ω | x1 + r
δ ≤ 0}, r ∈ (0, c), for a fixed c depending

on the computing parameters, which are arbitrarily different (for a generic δ) from the correct division. On the
other hand, our implicit reconstruction produces {x ∈ Ω | x1 + c

δ ≥ 0} and {x ∈ Ω | x1 − c
δ ≤ 0} which are

larger sets containing the correct decomposition. This advantage comes from the fact that our decomposition
uses the approximated value function instead the approximated feedback control.

4. Application to parallel computing

In this section we show how the independent sub-domains can be used to compute in parallel the correct
solution of the discrete problem (3.2). We prove the convergence of the technique, and provide a bound for the
numerical error. Roughly speaking the proposal is based on the reconstruction of a collection of independent
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subsets, computed in parallel on a coarse grid, and successively the computation of the solution on every
sub-domain on a fine grid, recovering at the end the result, using the minimum property on the regions of
overlapping.

Let us state more rigorously the technique. Consider two families of simplices: a coarse grid K with space
step ΔxK and a fine grid G with step ΔxG which both cover the domain Ω, (i.e. Ω ⊆ ∪jSj ⊆ ∪jKj). We
denote by zk, k = 1, . . . , N1 the nodes of the first grid and by xk, k = 1, . . . , N2 the nodes of the second grid.
Grids are chosen such that N1 � N2. The set of the nodes of K corresponding to Γ is called K̂. The parallel
invariant sub-domains based algorithm is the following:

Independent-Sets Algorithm (ISA).

− Given a grid K and a collection of vectors K̂i such that

union(K̂i, i = 1, . . . , M) = K̂

(1) Reconstruction of the approximated independent sub-domains
Using RA get a collection Σ

Δxk

i , i = 1, . . . , M subsets of the grid K.
(2) Projection on the fine grid

Project Σ
ΔxK

i on the grid G getting Σ
G

i for i = 1, . . . , M ,
(3) Resolution on the fine grid

for i = 1, . . . , M solve iteratively the problem on Σ
G

i

Vi = T (Vi) with T defined as (3.3)
end

(4) Assembly of the final solution
for j = 1, . . . , N2

V (j) = min{Vi(j)|xj ∈ Σ
G

i }
end

Some observations about the algorithm described above:

• Computing of the RA at step (1) it is not more expensive than a single computation on the coarse grid. RA
is an algorithm which can work in parallel, and the number of threads that it needs, is the same requested
at step (4).

• The projection is very easy if the grids are chosen to be partially superimposed i.e. every point zi ∈ K is
also a point of the fine grid G; in every case the condition to impose is

xj ∈ Σ
G

i ⇐⇒ xj ∈ Con({zj | j ∈ Σ
ΔxK

i });
where Con(·) we mean the union of the simplexes with vertexes in the set. The computational cost of this
passage is negligible.

• It is evident from definitions and from (3.6) that

Σi ⊆ Σ
ΔxG

i ⊆ Σ
G

i ≡ Σ
ΔxK

i . (4.1)

• Resolution on the fine grid is done in a subsection of the original domain. New boundaries created by the
technique are numerically treated adding a neighborhood of ghost nodes. This does not condition the values
inside the region.

This last observations guarantee a delicate point about the convergence of the method, as we show in the
following proposition:

Proposition 4.1. Assume (H0), (H1), (H2) and the Isaacs’ conditions. Called V the exact discrete solution of
the ISA algorithm (i.e. all Vi = T (Vi) are verified exactly) and V the solution of (3.2), then there exists C > 0



1234 A. FESTA

and q ∈ R
+ independent from ΔxG such that

‖V − v‖∞ ≤ 3C(ΔxG)q + 2MΔxG

holds. The parameters C, M and q are the same of Theorem 3.1.

Proof. By observation (4.1) we know that the independent sub-domains eventually obtained on the fine grid,
should be subsets of the sub-domains we used in the algorithm. Let us take a xj ∈ G, through Proposition 3.3
and (4.1) it is assured that there exists at least one index i ∈ {1, . . . , M} such that v(xj) = vi(xj) (solution
of (2.4), note that possibly Vi(j) �= V̄ (j) but it can be estimated by (3.5)). Then, using Lemma 3.2 and again
Proposition 3.3 on the fine grid

|V (j) − v(xj)| ≤ |V (j) − Vi(j)| + |Vi(j) − v(xj)| ≤ ‖Vi − vi‖∞ ≤ 3C(Δx)q + 2MΔx

for the arbitrariness of the choice of xj we have the thesis. �

We observe that in the typical case q ≤ 1 the convergence is O(Δxq).

4.1. Some examples

In this section we give some examples of problems solved with ISA. We show practically that the procedure of
the independent domain approximation RA is computationally cheap and does not add an excessive number of
nodes, even when the coarse grid K consists of a small number of points. Moreover we verify that our technique
does not add a numerical error with respect to the solution found on the whole domain and we briefly compare
the performances of our proposal to the literature. Let us first of all recall the discrete analogue of the L∞, L1

norms for a vector X of N elements:

‖X‖Δ∞ := max
j=1,...,N

|X(j)|, ‖X‖Δ1 :=
1
N

N∑
j=1

|X(j)|.

Example 4.2 (Distance function). Let us start with the very easy case shown in Example 2.6, which is useful
to observe some general features. Therefore we consider the Eikonal equation on the set Ω := (−1, 1)2 with
the boundary value fixed to zero on Γ := ∂Ω. This equation models the distance from the boundary of such
set. Here λ = 1 corresponds to a nonlinear monotone scaling of the solution (this relation is classically shown
through the Kruzkov transform, see [3]), so the correct viscosity solution is the function

v(x) = 1 − min{e|x1|, e|x2|}
e

,

solution of the equation
v(x) + max

a∈B(0,1)
{a · Dv(x)} = 1.

We consider a uniform decomposition of the set Γ , for example in a 2-treads decomposition Γ1 := [−1, 1] ×
{−1}∪{−1}× [−1, 1], Γ2 := [−1, 1]×{1}∪{1}× [−1, 1], in a 4-treads Γ1 := [−1, 1]×{−1}, Γ2 := {1}× [−1, 1],
Γ3 := [−1, 1]× {1}, Γ2 := {−1} × [−1, 1]; etc.

In this case it is easy also to give an estimation of the constants introduced above, M = 1, C = 1 and
ε = 10−3, q = 1/2. Clearly, the precision of the independent sub-domains reconstruction is affected by the
discretization step used in the procedure. In Table 1 we report a comparison of such accuracy, in the case
of a 4-subsets decomposition. The percentages correspond to the ratio between the maximal extension of an
approximated subset Σi and the total area of Ω. In every case the exact decomposition is contained in the
approximated one. It is worth noting how, even for a very coarse grid (with 102 or 152 elements) the technique
is able to provide a sufficiently accurate estimate, giving a good reduction of the dimension of the subproblems
with a cost of the pre-computing step absolutely negligible. Figure 3 reports the exact decomposition and two
approximation sets Σ1, Σ3 with Δx = 0.2.
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Table 1. Distance function: Comparison of the accuracy of the decomposition with different
discretization steps.

N. of variables ΔxK Time elapsed maxi |Σi|/|Ω| maxi |Σi|/|Ω|
52 0.4 1 × 10−3 50%

72 0.28 2 × 10−3 43%

102 0.2 4 × 10−3 38%

152 0.133 2 × 10−2 35% 25%

202 0.1 5 × 10−2 33%

302 0.06 1.01 30%

402 0.05 3 29%

502 0.04 11 28.3%

Figure 3. Distance function: Exact decomposition and two (of the four) approximated inde-
pendent subsets found with a coarse grid of 152 points (the third tone of grey in the centre is
the superposition area between the two sets).

After the decomposition, the problem can be solved separately, and possibly at the same time on each Σi.
It is consequential a large gain in term of computational cost. We show, in Table 2, the time of computation of
the resolution in the whole domain ND, compared with a standard domain decomposition methods DD (4 equal
sub-domains, no superposition, as described in [8]) where we show also the number of iterations between the
sub-domains necessary to reach the solution and our algorithm ISA. Our performances are comparable to a
single iteration of the DD, which consists of a resolution on a part of the grid containing the 25% of the nodes
of Ω. The ISA is performed on a approximated independent sub-domains decomposition obtained using RA on
a 202 grid; accordingly as shown in Table 1 the dimension of such decomposed domain is approximately 33% of
the original one.

Table 3 shows the experimental error in various fine grids, in the case of the original problem (solved on the
whole domain Ω) or in presence of independent domain decomposition. The error introduced in not affected by
the discretization step of the coarse grid.

Example 4.3 (Van Der Pol oscillator). A well-known example is the Van Der Pol oscillator, here formulated
as target problem. We consider Γ := ∂B(0, ρ) (in this case ρ = 0.2) and Ω := (−1, 1)2 \ B̄(0, ρ). The dynamics
of the nonlinear system is the following:

f(x, a) =
(

x2

(1 − x2
1)x2 − x1 + a

)
.
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Table 2. Distance function: Comparison between the efficiency of the various methods (ND
no decomposition, DD domain decomposition, ISA Independent set decomposition).

N. of variables ΔxK Time ND Time (it) DD Time ISA

252 0.08 0.13 0.06 (2) 0.035

502 0.04 7.02 1.2 (2) 0.68

752 0.026 57.5 12.2 (3) 4.8

1002 0.02 1.5 × 103 65.3 (3) 16.6

2002 0.01 1.9 × 105 1.2 × 104 (5) 3 × 103

3002 0.006 >106 1.8 × 105 (11) 4.6 × 104

Table 3. Distance function: Approximation error Error in norm Δ∞ (and Δ1).

502 1002 2002

original 1.2 × 10−2(1.1 × 10−2) 6.5 × 10−3(3.6 × 10−3) 2.5 × 10−3(1.6 × 10−3)

2-subsets 1.2 × 10−2(7.2 × 10−3) 6.5 × 10−3(3.7 × 10−3) 2.5 × 10−3(1.4 × 10−3)

4-subsets 9 × 10−3(7.2 × 10−3) 4.6 × 10−3(3.6 × 10−3) 1.4 × 10−3(1.3 × 10−3)

8-subsets 9 × 10−3(7.2 × 10−3) 4.6 × 10−3(3.6 × 10−3) 1.4 × 10−3(1.3 × 10−3)

The others parameters of the system are:

Ω = (−1, 1)2, A = [−1, 1], λ = 1, l(x, y, a) = (x2
1 + x2

2)
1
2 , g(x) ≡ 0.

For this problem we do not have an analytic formula for the solution, then we consider exact (in the error
estimation) the numerical solution computed on a grid of 4002 elements.

We consider a division of the target in “slices of a cake”, meaning that a 2-parts division is Γ1 := {x ∈
B(0, 0.2)|x2 ≥ 0}, Γ2 := {x ∈ B(0, 0.2)|x2 ≤ 0} and a 4-parts, Γ1 := {x ∈ B(0, 0.2)|x1 ≥ 0, x2 ≥ 0}, Γ2 := {x ∈
B(0, 0.2)|x1 ≥ 0, x2 ≤ 0}, Γ3 := {x ∈ B(0, 0.2)|x1 ≤ 0, x2 ≤ 0}, Γ4 := {x ∈ B(0, 0.2)|x1 ≤ 0, x2 ≥ 0}, etc.

In this case the choice of the constants is less elementary: we overestimate them as C = 1, M = 1, ε = 10−3,
q = 3

4 (it is possible to check this choice numerically).
Figure 4 shows a comparison between the exact division in sub-domains and two approximated sets (Σ1, Σ3).
Table 4 contains the accuracy of the 4-independent subset reconstruction with various discretization steps.

In this case it is possible to see an inherent limitation of the effectiveness of such decomposition for parallel
computing: the exact division in independent subset is not balanced, then the reduction of dimension in the
greater subset is less considerable. In some cases this problem could even nullify the efficacy of the method
(we can obtain a decomposition in some empty sets and the whole Ω), we discuss this point in the conclusions
section.

In Table 6 we show as the decomposition does not affect the convergence to the solution.

Example 4.4 (A pursuit-evasion game). The following example is a decomposable differential game. We con-
sider a pursuit evasion game, where two agents have the opposite goal to reduce/postpone the time of capture.
The dynamics are the following:

f(x, a, b) :=
(

f1(x)(a1 − b1)
f2(x)(a2 − b2)

)
where the functions f1, f2 are f1(x) := x2

2 + 1 and f2(x) := 1. The running cost is l(x, a, b) := x2
1 + 0.1. This is

a modification of the classical pursuit-evasion game on a plane presented here to emphasize another aspect of
our technique. The controls are taken in the unit ball for the pursuer A = B(0, 1) and B = B(0, 1/2) for the



INDEPENDENT SUB-DOMAINS RECONSTRUCTION 1237

Figure 4. Van Der Pol: Exact decomposition and two (of the four) approximated independent
subsets found with a coarse grind of 152 points.

Table 4. Van Der Pol: Comparison of the accuracy of the decomposition with different dis-
cretization steps.

N. of variables ΔxK Time elapsed maxi |Σi|/|Ω| maxi |Σi|/|Ω|
52 0.4 1.4 × 10−3 62%

102 0.2 0.011 55%

202 0.1 0.103 47% 42.2%

302 0.06 1.47 45%

402 0.05 5.6 44.6%

502 0.04 16.3 44.1%

Table 5. A pursuit-evasion game: Comparison of the accuracy of the decomposition with
different discretization steps.

N. of variables ΔxK Time elapsed maxi |Σi|/|Ω| maxi |Σi|/|Ω|
52 0.4 10−3 60%

102 0.2 0.008 46%

302 0.06 1.38 38% 25%

502 0.04 15.9 36.1%

evader. The capture occurs when the trajectory is driven to touch the small ball B(0, ρ), (ρ = 0.2, in this case),
then the set Γ is, as in the previous example Γ := ∂B(0, 0.2).

It is possible to show that the Hamilton–Jacobi equation associated to this problem verifies the decompos-
ability condition (H2): consider the norm

‖p‖∗ := max
a∈B(0,1)

(
f1(x)
f2(x)

)
aT · p,

the Hamiltonian associated is equivalent to

H(x, p) := ‖p‖∗ − ‖p‖∗
2

− (x2
1 + 0.1) =

‖p‖∗
2

− (x2
1 + 0.1)
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Figure 5. A pursuit-evasion game: Approximated value function of the differential game pre-
sented in Example 4.4.

Figure 6. A pursuit-evasion game: Exact decomposition and two (of the four) approximated
independent subsets found with a coarse grid of 402 points.

Table 6. Van Der Pol: Approximation error error in norm Δ∞ (and Δ1).

502 1002 2002

original 0.09 (0.07) 0.03 (0.01) 0.01 (6 × 10−3)

2-subsets 0.09 (0.07) 0.03 (0.01) 0.01 (6 × 10−3)

4-subsets 0.09 (0.07) 0.03 (0.01) 0.01 (6 × 10−3)

8-subsets 0.09 (0.07) 0.03 (0.01) 0.01 (6 × 10−3)

evidently convex everywhere with respect to p; then (H2) is automatically verified.

The value function of the game is shown in Figure 5. The function is very flat along the axis x2 = 0, this
produces a critical effect in the sets approximation, shown in Figure 6 and in Table 6, in this test, the parameter
are estimated as C = 1, M = 3, q = 1/2. The convergence to the exact division in independent subsets is very
slow.
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5. Conclusions

We have shown a constructive procedure to obtain a decomposition in independent subsets of the domain
of a Hamilton–Jacobi equation verifying condition (H2). These independent subsets have the property of being
computed independently from each other. The new method resumes some general ideas already presented in [7],
clarifying the theoretical background, enlarging the class of equations where the technique is relevant, proving
the convergence of the parallel algorithm ISA and producing some estimates for the error. Those estimates are
asymptotically coincident with the resolution in the whole domain and confirmed by tests.

A detailed evaluation of the performances of ISA is still an open question postponed to a forthcoming work.
We can expect results similar to [7] since our pre-computing step gives (as shown in the Sect. 4.1) a division
into sub-domains sufficiently close to a partition.

Some further improvements can be adapted to the technique. The critical occurrence shown in Example 4.3,
about the balance in size of the subsets, can be solved with a recursive refinement of the division of Γ , producing a
more balanced division. The case presented in example 4.4 is more critical. Here, for the moment, it is impossible
to obtain a satisfactory reduction of the dimension of the decomposed domains without solving the problem on
a sufficiently fine grid.
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