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A TWO-FLUID FOUR-EQUATION MODEL WITH INSTANTANEOUS
THERMODYNAMICAL EQUILIBRIUM

Alexandre Morin
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and Tore Fl̊atten
2

Abstract. We consider an equilibrium version of a common two-fluid model for pipe flow, containing
one mixture mass equation and one mixture energy equation. This model can be derived from a five-
equation model with instantaneous thermal equilibrium, to which additional phase relaxation terms are
added. An original contribution of this paper is a quasilinear formulation of the instantaneous phase
relaxation limit. From this, the mixture sound speed intrinsic to the model can be extracted. This allows
us to directly prove some subcharacteristic conditions with respect to a previously established model
hierarchy of different relaxation processes. These subcharacteristic conditions reveal the fundamental
insight of this paper; in the hierarchy, thermodynamic versus velocity relaxation both reduce the mixture
sound velocity with a factor that is independent of whether the other type of relaxation has been
performed.
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1. Introduction

One-dimensional two-phase flows in pipelines may be modelled using the two-fluid approach [32, 35, 44, 46].
The two-fluid model is characterised by the fact that it has two separate momentum equations. Therefore, the
phase velocities are independent from each other, as opposed to drift-flux models [1,14,17,33,39] where there is
only one momentum equation for the mixture. A six-equation version of the two-fluid model is used for example
in the nuclear industry [6, 49]. In this version, the phases are in mechanical equilibrium – they are at the same
pressure at all time – but not in chemical and thermal equilibrium. A five-equation version has been chosen
for pipeline flow simulation [4], in which the phases are assumed to be in mechanical and thermal equilibrium.
A seven-equation version, where the phases are allowed to be totally out of equilibrium – both have their own
pressure, temperature and chemical potential – has also been derived [3, 38]. One quality of the latter model is
that it avoids the loss of hyperbolicity [19, 45] commonly associated with the six-equation model.
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Relaxation source terms may be added to the models to bring them towards some equilibrium at a finite rate.
This has been studied for example by [15, 23, 29, 34, 36–38, 48]. In this setting, the various equilibrium models
may be obtained from each other by taking the limit of infinitely stiff source terms.

For the simulation of the two-phase flow of a mixture with phase change (see for example [14, 20, 21]), the
equation of state plays an important role. In this context, a general framework for constructing state equations
for phase transitions was presented by Helluy and Seguin [22].

For two-phase mixtures of CO2, the Span-Wagner equation of state [43] is highly accurate. However it is
an equilibrium equation of state, which means that the fluid-dynamical model must handle a mixture that
is at equilibrium at all time. Munkejord and Hammer [31] used the two-fluid five-equation model presented
in [29], where the relaxation to chemical equilibrium is performed between each time step through a fractional
step approach. In the present paper, we derive the four-equation model from the five-equation model, where
we replace the individual phase mass-equations by a mixture mass equation and an instantaneous chemical
equilibrium assumption. Such a two-fluid model was considered in [40], and this model forms the basis for
our current paper. Herein, the momentum-exchange terms require a careful treatment when the phase change
becomes instantaneous. This allows us to find a convenient quasilinear form of the model. The formulation of
the model is independent of the equation of state. An example of numerical simulations with the Span-Wagner
equation of state can be found in [20].

The inclusion of stiff relaxation terms in a model will modify its wave structure. The linear stability condition
of the equilibrium limit is termed the subcharacteristic condition [9, 15, 26, 29, 34, 42]. A consequence of this
condition is that the velocities of the waves of an equilibrium system cannot exceed the maximum velocities of
the relaxation system. Several recent works have systematically investigated various two-phase flow models with
the aim of verifying this condition [15, 17, 27, 29]. In particular, Ferrer et al. [29] concentrated on velocity and
thermal relaxation. A main observation of that paper is that these relaxation processes “commute” in the sense
that the sound speed is reduced by the same factor regardless of the order in which the relaxation processes are
performed.

The objective of this paper is to extend this analysis to the less tractable phase relaxation process. In
particular, we will achieve the following 3 main goals:

(1) Derive a standard quasilinear formulation of the full equilibrium two-fluid model and calculate the mixture
sound velocity.

(2) Place our model in the established hierarchy of relaxation models and verify the subcharacteristic conditions.
(3) Extend the commutation principle observed in [29] to include the process of phase relaxation.

It should be noted that in this kind of linear analysis we consistently assume smooth solutions.
For full equilibrium models, where the phasic velocities are a priori set to be equal, strict hyperbolicity holds

subject to classical thermodynamical stability assumptions [2, 14]. However, a well-known and controversial
feature of the kind of two-fluid models we consider is their tendency to lose hyperbolicity when the relative
velocity between the phases exceed a critical value [6, 10, 12, 13, 35, 44, 46]. In fact, unless the velocities in each
phase are identical, there seems to be a fundamental incompatibility between the second law of thermodynamics
and the hope of obtaining a hyperbolic first-order model [16]. In this paper, we will not put a strong focus on this
issue; we simply observe that these models are extensively used in practice although an ultimate formulation
has not yet been agreed upon.

In this respect, we also wish to remark that the major analyses of this paper are based on the fluid-dynamical
equilibrium state where the phasic velocities are equal. In this case many of the various regularizing terms
proposed in the literature disappear, so our main results should still have a rather general validity despite the
controversies surrounding the precise model formulation.

The structure of the paper is as follows. In Section 2, we present the five-equation model investigated in [29], to
which we add relaxation source terms for phase and momentum transfer. These involve an interfacial momentum
velocity, for which we derive a precise expression with the help of entropy considerations. In Section 3, the stiff
limit of this model is formulated. In particular, we express the phase change relaxation source terms by means
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Table 1. Main symbols.

Symbol Signification
c Speed of sound
Cp Specific heat capacity at constant pressure
e Internal energy
s Specific entropy
E Phasic total energy (E = αρ(e + 1/2v2))
fi Components of the vector F
F Velocity relaxation coefficient
K Chemical relaxation coefficient
p Pressure
T Temperature
ui Components of the vector U
v Velocity
wi Components of the vector W
α Volume fraction
Γ First Grüneisen coefficient (Γ = 1/ρ(∂p/∂e)ρ)
ε Perturbation parameter
μ Chemical potential
ρ Density
A Jacobian
B Coefficient matrix in the non-conservative terms
F Vector of the fluxes
U Vector of the conserved variables
W Vector of the non-conservative variables
g Gas phase (Subscript)
� Liquid phase (Subscript)

of spatial derivatives, so that no algebraic terms remain in the system. Then, in Section 4, the system is written
in quasilinear form, which involves finding suitable variables in which to express the rather involved Jacobian
of the fluxes. In Section 5, the speed of sound of the model is evaluated, and the expected subcharacteristic
conditions with respect to other two-phase flow models are verified. A main result of the present paper is
the equation (5.27), which extends the commutation result established in [29] to include the phase relaxation
process.

In Section 6, we investigate to which degree an interfacial pressure correction term previously applied to
related models [6,10,12,13,35,46] can regularize our current model. Through a perturbation method, similar to
the approach followed in [46,47], we conclude that an expression widely used for the full six-equation two-fluid
model [8, 13, 32, 35, 45] has the precise same regularizing effect also on the phase equilibrium model considered
in this paper.

Finally, in Section 7, the results of our paper are summarized. The main symbols used are listed in Table 1.
Remaining symbols will be introduced in the text.

2. The five equation model with phase relaxation

The two-fluid five-equation model studied by [29] describes a one-dimensional two-phase flow where the
pressure and the temperature are kept equal in both phases at all times. This follows from the assumption of
instantaneous mechanical and thermal equilibrium. However, the two phases will in general not be in chemical
equilibrium. Algebraic relaxation terms representing phase change should then act to attract the phases towards
equilibrium. In addition, the drag force between the phases will tend to equalize the phase velocities. After
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addition of phase and velocity relaxations, the five-equation model described in [29] becomes

∂αgρg

∂t
+

∂αgρgvg

∂x
= K(μ� − μg), (2.1)

∂α�ρ�

∂t
+

∂α�ρ�v�

∂x
= K(μg − μ�), (2.2)

∂αgρgvg

∂t
+

∂αgρgv
2
g

∂x
+ αg

∂p

∂x
= viK(μ� − μg) + F(v� − vg), (2.3)

∂α�ρ�v�

∂t
+

∂α�ρ�v
2
�

∂x
+ α�

∂p

∂x
= viK(μg − μ�) + F(vg − v�), (2.4)

∂(Eg + E�)
∂t

+
∂

∂x
((Eg + αgp)vg + (E� + α�p)v�) = 0, (2.5)

where the total energy Ek of phase k ∈ {g, �} is the sum of kinetic and internal energy:

Ek = αkρk

(
ek +

1
2
v2

k

)
, (2.6)

F and K are positive relaxation constants, μ is the chemical potential, and vi is some interface velocity. Assuming
that the phases are composed of only one component, we may express the chemical potential μk of phase
k ∈ {g, �} as

μk = ek +
p

ρk
− Tsk. (2.7)

We will first only consider the chemical relaxation and thus set the velocity relaxation coefficient to F = 0.
We will then have use for F �= 0 from Section 5, when we will discuss the drift-flux models.

2.1. Interfacial momentum velocity

Following in the footsteps of [11, 18], we are able to give an expression for the interface velocity vi through
entropy considerations.

Proposition 2.1. If we assume that the interface velocity vi is independent of μg − μ�, the second law of
thermodynamics uniquely determines

vi =
1
2
(vg + v�). (2.8)

Proof. We will derive the mixture entropy evolution equation, and impose that the source term should be non-
negative. We first derive the kinetic energy evolution equations, by multiplying the momentum equations (2.3)
and (2.4) by vg and v�, respectively. For the gas phase, after expansion of the derivatives, we obtain

v2
g

∂αgρg

∂t
+ αgρgvg

∂vg

∂t
+ v2

g

∂αgρgvg

∂x
+ αgρgv

2
g

∂vg

∂x
+ αgvg

∂p

∂x
= vgviK(μ� − μg). (2.9)

The same applies to the liquid phase. After the use of the mass equations (2.1)–(2.2) and reorganisation, the
equations read

∂

∂t

(
1
2
αgρgv

2
g

)
+

∂

∂x

(
1
2
αgρgv

3
g

)
+ αgvg

∂p

∂x
= vg

(
vi − 1

2
vg

)
K(μ� − μg), (2.10)

∂

∂t

(
1
2
α�ρ�v

2
�

)
+

∂

∂x

(
1
2
α�ρ�v

3
�

)
+ α�v�

∂p

∂x
= v�

(
vi − 1

2
v�

)
K(μg − μ�). (2.11)
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Using the latter equations, we can now cancel the kinetic energy contribution in the mixture total energy
equation (2.5), which gives

∂

∂t
(αgρgeg + α�ρ�e�) +

∂

∂x
(αgρgegvg + α�ρ�e�v�)

+ p
∂αgvg

∂x
+ p

∂α�v�

∂x
= (vg − v�)

(
vi − 1

2
(vg + v�)

)
K(μg − μ�). (2.12)

By the mass equations (2.1) and (2.2), we obtain an evolution equation for the material derivatives of the phasic
internal energy

αgρg
Dgeg

Dt
+ α�ρ�

D�e�

Dt
+ p

∂αgvg

∂x
+ p

∂α�v�

∂x
=
(

(vg − v�)
(

vi − 1
2
(vg + v�)

)
+ eg − e�

)
K(μg − μ�), (2.13)

where we have introduced the phase specific material derivative Dk

Dt = ∂
∂t + vk

∂
∂x .

Using the fundamental thermodynamic relation

dek =
p

ρ2
k

dρk + T dsk, (2.14)

we can transform the previous equation into an entropy equation. First, (2.14) is expressed in terms of material
derivatives and substituted in the internal energy equation (2.13)

αgρg

(
T

Dgsg

Dt
+

p

ρ2
g

Dgρg

Dt

)
+ α�ρ�

(
T

D�s�

Dt
+

p

ρ2
�

D�ρ�

Dt

)
+ p

∂αgvg

∂x
+ p

∂α�v�

∂x

=
(

(vg − v�)
(

vi − 1
2
(vg + v�)

)
+ eg − e�

)
K(μg − μ�). (2.15)

By the mass equations (2.1) and (2.2), it can be simplified to

αgρgT
Dgsg

∂t
+ α�ρ�T

D�s�

∂t
=
(

(vg − v�)
(

vi − 1
2
(vg + v�)

)
+ eg +

p

ρg
− e� − p

ρ�

)
K(μg − μ�), (2.16)

and using again the mass equations, we obtain the evolution equation for the mixture entropy

T

(
∂αgρgsg

∂t
+

∂α�ρ�s�

∂t
+

∂αgρgsgvg

∂x
+

∂α�ρ�s�v�

∂x

)
=
(

(vg − v�)
(

vi − 1
2
(vg + v�)

)
+ μg − μ�

)
K(μg − μ�)

(2.17)
since the chemical potential can be expressed as in (2.7). Let us name the right-hand side as

S =
(

(vg − v�)
(

vi − 1
2
(vg + v�)

)
+ μg − μ�

)
K(μg − μ�), (2.18)

where we remind that K > 0. It may be written as

S = K (wz + z2
)
, (2.19)

where

w = (vg − v�)
(

vi − 1
2
(vg + v�)

)
, (2.20)

z = μg − μ�. (2.21)
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Now, the second law of thermodynamics imposes

S ≥ 0. (2.22)

For any given set of velocities, the entropy production attains its minimum when

dS
dz

= K (w + 2z) = 0, (2.23)

hence when
z = −w

2
. (2.24)

Inserting this into (2.19), we obtain

S = −Kw2

4
. (2.25)

Thus, the second law of thermodynamics imposes

w = 0, (2.26)

which uniquely determines

vi =
1
2
(vg + v�). (2.27)

�

We remark that the identical expression was proposed by [44] in the context of the model we here consider.
Here we have presented a rigorous physical motivation for this expression.

3. The four-equation model

We wish to derive a four-equation model from the above five-equation model, where we assume the phase
change to be instantaneous. This is achieved by letting K → ∞ in the model (2.1)–(2.5). We then explicitly
assume that μg = μ�, a relation that holds only in the two-phase region defined by the boiling point curve. Fur-
thermore, in the limit α → 0+, the velocity of the vanishing phase does not disappear from our definition (2.27)
of vi. Hence, for the purposes of this paper, we limit our analysis to the genuinely two-phase region αk ∈ (0, 1)
and leave the study of transitions to one-phase flows to further works.

Since the repartition of the mass in the phases now is entirely governed by thermodynamics, we only need
one mixture mass evolution equation, instead of one for each phase as in (2.1)–(2.2). We therefore sum (2.1)
and (2.2) to give the mixture mass evolution equation of the four-equation model

∂(αgρg + α�ρ�)
∂t

+
∂(αgρgvg + α�ρ�v�)

∂x
= 0, (3.1)

and specify μg = μ�. The remaining three other evolution equations of the four-equation model are the same as
in the five-equation model (2.3)–(2.5). However, since K → ∞ and μg = μ�, K(μg − μ�) is an undefined limit.
It needs to be substituted using the phase mass equations (2.1) and (2.2). This gives the model [40]

∂(αgρg + α�ρ�)
∂t

+
∂(αgρgvg + α�ρ�v�)

∂x
= 0, (3.2)

∂αgρgvg

∂t
+

∂αgρgv
2
g

∂x
+ αg

∂p

∂x
=

vg + v�

2

(
∂αgρg

∂t
+

∂αgρgvg

∂x

)
, (3.3)

∂α�ρ�v�

∂t
+

∂α�ρ�v
2
�

∂x
+ α�

∂p

∂x
=

vg + v�

2

(
∂α�ρ�

∂t
+

∂α�ρ�v�

∂x

)
, (3.4)

∂(Eg + E�)
∂t

+
∂

∂x
((Eg + αgp)vg + (E� + α�p)v�) = 0. (3.5)
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Further, the internal energy equation becomes

∂

∂t
(αgρgeg + α�ρ�e�) +

∂

∂x
(αgρgegvg + α�ρ�e�v�) + p

∂αgvg

∂x
+ p

∂α�v�

∂x
= 0. (3.6)

In the entropy equation (2.17), since K(μg − μ�) is finite, we have that K(μg − μ�)2 → 0. The entropy equation
becomes

∂αgρgsg

∂t
+

∂α�ρ�s�

∂t
+

∂αgρgsgvg

∂x
+

∂α�ρ�s�v�

∂x
= 0. (3.7)

Now, to be able to have the model in quasilinear form, we first need to express the time derivatives ∂tαgρg

and ∂tα�ρ� in terms of spatial derivatives.

3.1. Some differentials

Some useful differentials can be derived from the assumptions of equilibrium.

Proposition 3.1. The differential of the pressure can be related to that of the temperature by(
1
ρg

− 1
ρ�

)
dp =

L

T
dT, (3.8)

where
L = eg +

p

ρg
− e� − p

ρ�
(3.9)

is the latent heat.

Proof. From the expression of the thermodynamic potential (2.7) and the fundamental thermodynamic rela-
tion (2.14), we obtain

dμk =
1
ρk

dp − sk dT. (3.10)

Since μg = μ�, we can write (
1
ρg

− 1
ρ�

)
dp = (sg − s�) dT. (3.11)

Remark that, with the Clapeyron equation, we can write

sg − s� =
L

T
. (3.12)

Thus the differential becomes (
1
ρg

− 1
ρ�

)
dp =

L

T
dT. (3.13)

�

Then, we can obtain simplified entropy and internal energy differentials.

Proposition 3.2. For the phase k being either the gas or the liquid phase, the entropy differential is

dsk = −Cp,kχk dp, (3.14)

and the internal energy differential is

dek =
(

p

ρ2
kc2

k

Ψk − TCp,kχk

)
dp, (3.15)
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where

χk =
Γk

ρkc2
k

+
ρg − ρ�

ρgρ�L
, (3.16)

and
Ψk = 1 + ρkTCp,kΓkχk, (3.17)

in which the first Grüneisen parameter is defined as

Γk ≡ 1
ρk

(
∂p

∂ek

)
ρk

. (3.18)

Proof. An entropy differential may be found in [15]. For the gas phase, it reads

dsg = −ΓgCp,g

ρgc2
g

dp +
Cp,g

T
dT, (3.19)

which with the help of (3.8) becomes

dsg = −Cp,g

(
Γg

ρgc2
g

+
ρg − ρ�

ρgρ�L

)
dp. (3.20)

To simplify the results, the shorthands (3.16) and (3.17) have been defined for expressions which repetitively
appear in the present article. This gives the result (3.14).

On the other hand, an internal energy differential may be found in [17]. For the gas phase, it reads

deg =
(

∂eg

∂T

)
p

dT +
(

∂eg

∂p

)
T

dp

= Cp,g

(
1 − Γgp

ρgc2
g

)
dT +

(
p

ρ2
gc

2
g

− ΓgT

ρgc2
g

Cp,g

(
1 − Γgp

ρgc2
g

))
dp,

(3.21)

which can be written through (3.8) as

deg =
1

ρgc2
g

(
p

ρg
− TCp,g(ρgc

2
g − Γgp)

(
ρg − ρ�

ρgρ�L
+

Γg

ρgc2
g

))
dp. (3.22)

Using the shorthands (3.16) and (3.17), this gives the result (3.15). Note that this expression may be written,
through (3.14), as

deg =
p

ρ2
gc

2
g

Ψg dp + T dsg. (3.23)

The counterpart for the liquid phase of these differentials is found by symmetry of the phases. �

3.2. Treatment of the time derivatives

The momentum equations (3.3) and (3.4) contain time derivatives, which we wish to convert to spatial
derivatives.

Proposition 3.3. The relaxed gas-phase mass equation may be written as

∂αgρg

∂t
+

∂αgρgvg

∂x
= −P ∂p

∂x
− V

(
∂αgvg

∂x
+

∂α�v�

∂x

)
, (3.24)
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where

V =
T (αgρgCp,gχg + α�ρ�Cp,�χ�)

L
(

αg
ρgc2

g
Ψg + α�

ρ�c2
�
Ψ�

)
+ T (αgρgCp,gχg + α�ρ�Cp,�χ�)

ρg−ρ�

ρgρ�

, (3.25)

P =
αgα�T (vg − v�)

(
ρ�Cp,�χ�

Ψg
ρgc2

g
− ρgCp,gχg

Ψ�

ρ�c2
�

)
L
(

αg
ρgc2

g
Ψg + α�

ρ�c2
�
Ψ�

)
+ T (αgρgCp,gχg + α�ρ�Cp,�χ�)

ρg−ρ�

ρgρ�

· (3.26)

This expression can be substituted in the momentum equation for the gas phase (3.3), thus eliminating the time
derivatives. For the liquid phase, the relaxed mass equation reads

∂α�ρ�

∂t
+

∂α�ρ�v�

∂x
= P ∂p

∂x
+ V

(
∂αgvg

∂x
+

∂α�v�

∂x

)
· (3.27)

Proof. From the differentials (3.14) and (3.15) as well as the mixture mass equation (3.2), internal energy
equation (3.6) and entropy equation (3.7), we are able to find three relations between ∂tp, ∂tαgρg and ∂tα�ρ�

and spatial derivatives. Therefore we can find an expression for each of the time derivatives.
The first relation is the mass equation (3.2)

∂(αgρg + α�ρ�)
∂t

+
∂(αgρgvg + α�ρ�v�)

∂x
= 0. (3.28)

Then, the derivatives are expanded in the entropy equation (3.7). The derivatives ∂tsk and ∂xsk are subse-
quently substituted using the entropy differential (3.14) to obtain a second relation

− (αgρgCp,gχg + α�ρ�Cp,�χ�)
∂p

∂t
− (αgρgCp,gχgvg + α�ρ�Cp,�χ�v�)

∂p

∂x

+ sg
∂αgρg

∂t
+ s�

∂α�ρ�

∂t
+ sg

∂αgρgvg

∂x
+ s�

∂α�ρ�v�

∂x
= 0. (3.29)

Finally, the same treatment is applied to the internal energy equation (3.6) with the differential (3.15), which
gives a third relation

(
αgρg

(
p

ρ2
gc

2
g

Ψg − TCp,gχg

)
+ α�ρ�

(
p

ρ2
�c

2
�

Ψ� − TCp,�χ�

))
∂p

∂t

+
(

αgρg

(
p

ρ2
gc

2
g

Ψg − TCp,gχg

)
vg + α�ρ�

(
p

ρ2
�c

2
�

Ψ� − TCp,�χ�

)
v�

)
∂p

∂x

+ eg
∂αgρg

∂t
+ e�

∂α�ρ�

∂t
+ eg

∂αgρgvg

∂x
+ e�

∂α�ρ�v�

∂x
+ p

∂αgvg

∂x
+ p

∂α�v�

∂x
= 0. (3.30)

Solving these three relations, we obtain the relaxed gas-phase mass equation (3.24). To find the equation for
the liquid phase, we remark that the mixture mass equation (3.2) gives

∂α�ρ�

∂t
+

∂α�ρ�v�

∂x
= −∂αgρg

∂t
− ∂αgρgvg

∂x
, (3.31)

which gives the result through (3.24). �
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3.3. Regularising term

As with the six- and five-equation two-fluid models, we expect the present four-equation model not to be
hyperbolic when the gas and liquid velocities are different from each other [16, 19, 45]. The eigenvalues associ-
ated with the volume-fraction waves are expected to be complex. For the purposes of this paper, we consider
including a regularising term similar to the interfacial-pressure regularising term for the six-equation two-fluid
model [6, 10, 12, 13, 35, 46]. It consists in applying a pressure difference Δp between the two phases. The momen-
tum equations are transformed into

∂αgρgvg

∂t
+

∂αgρgv
2
g

∂x
+ αg

∂p

∂x
+ Δp

∂αg

∂x
=

vg + v�

2

(
∂αgρg

∂t
+

∂αgρgvg

∂x

)
, (3.32)

and

∂α�ρ�v�

∂t
+

∂α�ρ�v
2
�

∂x
+ α�

∂p

∂x
+ Δp

∂α�

∂x
=

vg + v�

2

(
∂α�ρ�

∂t
+

∂α�ρ�v�

∂x

)
, (3.33)

while the mass and energy equations are not modified. The effect of this term will be analyzed in Section 6.

3.4. Expression of the model

As a result of the present section, the four-equation model (3.2)–(3.5) can be written, using (3.24), (3.27),
(3.32) and (3.33), in the following form

∂(αgρg + α�ρ�)
∂t

+
∂(αgρgvg + α�ρ�v�)

∂x
= 0, (3.34)

∂αgρgvg

∂t
+

∂αgρgv
2
g

∂x
+
(

αg +
vg + v�

2
P
)

∂p

∂x
+

vg + v�

2
V ∂(αgvg + α�v�)

∂x
+ Δp

∂αg

∂x
= 0, (3.35)

∂α�ρ�v�

∂t
+

∂α�ρ�v
2
�

∂x
+
(

α� − vg + v�

2
P
)

∂p

∂x
− vg + v�

2
V ∂(αgvg + α�v�)

∂x
+ Δp

∂α�

∂x
= 0, (3.36)

∂(Eg + E�)
∂t

+
∂

∂x
((Eg + αgp)vg + (E� + α�p)v�) = 0. (3.37)

This model has been previously considered in [40, 44]. The original contribution of this section has been to
express the model in terms of spatial derivatives only; this will prove useful when we now turn to deriving the
quasilinear formulation.

4. Quasilinear form

We wish to write the model in quasilinear form

∂U

∂t
+ A(U)

∂U

∂x
= 0, (4.1)

where the vector of variables U is defined as

U =

⎛
⎜⎜⎜⎝

αgρg + α�ρ�

αgρgvg

α�ρ�v�

Eg + E�

⎞
⎟⎟⎟⎠ . (4.2)



A TWO-FLUID FOUR-EQUATION MODEL WITH INSTANTANEOUS THERMODYNAMICAL EQUILIBRIUM 1177

The matrix A(U ) is the Jacobian of the flux. The flux is split into a conservative and a non-conservative part,
such that the system can be written as

∂U

∂t
+

∂F c(U )
∂x

+ B(U)
∂W (U )

∂x
= 0, (4.3)

where the conservative flux is

F c(U ) =

⎛
⎜⎜⎜⎝

αgρgvg + α�ρ�v�

αgρgv
2
g

α�ρ�v
2
�

(Eg + αgp)vg + (E� + α�p)v�

⎞
⎟⎟⎟⎠ , (4.4)

while the non-conservative contributions are

B(U) =

⎛
⎜⎜⎜⎜⎝

0 0 0

αg + vg+v�

2 P vg+v�

2 V Δp

α� − vg+v�

2 P − vg+v�

2 V −Δp

0 0 0

⎞
⎟⎟⎟⎟⎠ and W =

⎛
⎜⎝

p

αgvg + α�v�

αg

⎞
⎟⎠ . (4.5)

4.1. Some differentials

In order to write the Jacobian of the fluxes, we need to express the differentials of some variables in terms of
the differential of the components of the variable vector U . We will find them with the help of the fundamental
relation of thermodynamics (2.14) as well as the differentials of the components of the vector U . First, we will
express all the differentials in terms of the differential of the gas density. Then, the other differentials will follow.

Proposition 4.1. The density differential may be expressed in terms of the differentials of the variable-vector
components ui as

dρg =
1
Φ

Ψg

c2
g

( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
(4.6)

where we have used the following shorthands

Φ = αg
p

ρgc2
g

Ψg + α�
p

ρ�c2
�

Ψ� − (αgρgTCp,gχg + α�ρ�TCp,�χ�)

+
1

ρg − ρ�

(
−eg +

1
2
v2
g + e� − 1

2
v2

�

)(
αgρ�

Ψg

c2
g

+ α�ρg
Ψ�

c2
�

)
(4.7)

and

E = −ρg

(
eg − 1

2
v2
g

)
+ ρ�

(
e� − 1

2
v2

�

)
. (4.8)

Proof. We recall from the previous section the differential (3.23)

deg =
p

ρ2
gc

2
g

Ψg dp + T dsg. (4.9)

By identification with the fundamental thermodynamic relation (2.14), we can deduce

Ψg dp = c2
g dρg, (4.10)
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and using the relation between pressure and temperature differentials (3.8), we obtain

−Ψg
ρgρ�L

T (ρg − ρ�)
dT = c2

g dρg. (4.11)

Now, we write the differential of the thermodynamic potentials for both phases in terms of their respective
density differentials, using (4.10) and (4.11)

dμg =
1
ρg

dp − sg dT =
1
ρg

c2
g

Ψg
dρg + sg

c2
g

Ψg

T (ρg − ρ�)
ρgρ�L

dρg (4.12)

dμ� =
1
ρ�

dp − s� dT =
1
ρ�

c2
�

Ψ�
dρ� + s�

c2
�

Ψ�

T (ρg − ρ�)
ρgρ�L

dρ� (4.13)

and equate them, using the assumption of chemical equilibrium. Implicitly, we also use the mechanical and
thermal equilibrium assumptions, since we have expressed the pressure and temperature differentials in terms
of the gas as well as of the liquid phase variables. This gives a relation between the density differentials:

c2
g

Ψg
dρg =

c2
�

Ψ�
dρ�. (4.14)

Next, we need a relation for the energy differentials. For the gas phase, we find it using the differential of
p(ρg, eg)

dp =
(

c2
g − Γg

p

ρg

)
dρg + Γgρg deg, (4.15)

where dp is replaced using (3.15). After simplification, we obtain

Ψg(
p

ρ2
gc2

g
Ψg − TCp,gχg

) deg = c2
g dρg. (4.16)

For the liquid phase, we first use the phase symmetry to obtain

Ψ�(
p

ρ2
�c2

�
Ψ� − TCp,�χ�

) de� = c2
� dρ�, (4.17)

and then replace the liquid density differential using (4.14)

1(
p

ρ2
�
c2

�

Ψ� − TCp,�χ�

) de� =
c2
g

Ψg
dρg. (4.18)

Further, we seek an expression for the differential of the volume fraction. From the differential of the first
component of the vector U , we have

du1 = αg dρg + α� dρ� + (ρg − ρ�) dαg, (4.19)

where ρ� is eliminated using the differential (4.14)

(ρg − ρ�) dαg = du1 −
(

αg + α�

c2
gΨ�

c2
�Ψg

)
dρg. (4.20)
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Finally, we would like to find an expression for the velocity differentials. For the gas phase, we start from the
differential of the second component of the vector U

du2 = d(αgρgvg) = αgρg dvg + αgvg dρg + ρgvg dαg, (4.21)

where dαg is replaced using (4.20) to obtain

αgρg dvg = − ρgvg

ρg − ρ�
du1 + du2 +

vg

ρg − ρ�

(
αgρ� + α�ρg

c2
gΨ�

c2
�Ψg

)
dρg. (4.22)

By phase symmetry, we deduce that

α�ρ� dv� =
ρ�v�

ρg − ρ�
du1 + du3 − v�

ρg − ρ�

(
α�ρg + αgρ�

c2
�Ψg

c2
gΨ�

)
dρ�. (4.23)

In order to express it in terms of the differential for the gas density, we use (4.14) to obtain

α�ρ� dv� =
ρ�v�

ρg − ρ�
du1 + du3 − v�

ρg − ρ�

(
αgρ� + α�ρg

c2
gΨ�

c2
�Ψg

)
dρg. (4.24)

Now, using the differential of the mixture internal energy, we are able to deduce a differential for the gas
density dρg. We have that

d(αgρgeg) + d(α�ρ�e�) = du4 − vg

2
du2 − v�

2
du3 − 1

2
αgρgvg dvg − 1

2
α�ρ�v� dv�. (4.25)

After having replaced all the differentials using the expressions (4.14), (4.16), (4.18), (4.20), (4.22) and (4.24)
previously derived, we obtain the density differential (4.6). �

All the other differentials now follow. The differential of the volume fraction follows from (4.20) in which dρg

is replaced using (4.6)

dαg =
1

ρg − ρ�
du1 − 1

ρg − ρ�

1
Φ

(
αg

Ψg

c2
g

+ α�
Ψ�

c2
�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.26)

The differential of the pressure follows from (4.10)

dp =
1
Φ

( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.27)

The differential of the liquid density follows from (4.14)

dρ� =
1
Φ

Ψ�

c2
�

( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.28)

The differentials of the internal energies follow from (4.16) and (4.18)

deg =
1
Φ

(
p

ρ2
gc

2
g

Ψg − TCp,gχg

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
, (4.29)

de� =
1
Φ

(
p

ρ2
�c

2
�

Ψ� − TCp,�χ�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.30)
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The differentials of the velocities follow from (4.22) and (4.24)

αgρg dvg = − ρgvg

ρg − ρ�
du1 + du2 +

1
Φ

vg

ρg − ρ�

×
(

αgρ�
Ψg

c2
g

+ α�ρg
Ψ�

c2
�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
, (4.31)

α�ρ� dv� =
ρ�v�

ρg − ρ�
du1 + du3 − 1

Φ

v�

ρg − ρ�

×
(

αgρ�
Ψg

c2
g

+ α�ρg
Ψ�

c2
�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.32)

4.2. Jacobian of the fluxes

We are now able to derive the Jacobian of the conservative fluxes F c(U) (4.4) and of the vector W (U) in
the non-conservative fluxes (4.5). To do so, we express the differentials of the components of the vectors F c(U)
and W (U) in terms of the differentials of the components of U . First, we simply have

df1 = d(αgρgvg + α�ρ�v�) = du2 + du3. (4.33)

Then for the second component

df2 = d(αgρgv
2
g) = vg d(αgρgvg) + αgρgvg dvg = vg du2 + αgρgvg dvg, (4.34)

where dvg is substituted using (4.31)

df2 = − ρgv
2
g

ρg − ρ�
du1 + 2vg du2 +

1
Φ

v2
g

ρg − ρ�

×
(

αgρ�
Ψg

c2
g

+ α�ρg
Ψ�

c2
�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.35)

Similarly, for the third component

df3 = v� du3 + α�ρ�v� dv�, (4.36)

where dv� is substituted using (4.32)

df3 =
ρ�v

2
�

ρg − ρ�
du1 + 2v� du3 − 1

Φ

v2
�

ρg − ρ�

×
(

αgρ�
Ψg

c2
g

+ α�ρg
Ψ�

c2
�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.37)

Finally, the fourth component can be written as

df4 =
1
2
v2
g du2 +

1
2
v2

� du3 + (ρgegvg + vgp − ρ�e�v� − v�p) dαg

+ (αgvg + α�v�) dp + αgegvg dρg + α�e�v� dρ� + αgρgvg deg + α�ρ�v� de�

+
(
αgρg

(
eg + v2

g

)
+ αgp

)
dvg +

(
α�ρ�

(
e� + v2

�

)
+ α�p

)
dv�, (4.38)
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which after replacement of the differentials and simplification becomes

df4 =
−ρgv

3
g + ρ�v

3
�

ρg − ρ�
du1 +

(
eg +

3
2
v2
g +

p

ρg

)
du2 +

(
e� +

3
2
v2

� +
p

ρ�

)
du3

+
1
Φ

[
v3
g − v3

�

ρg − ρ�

(
αgρ�

Ψg

c2
g

+ α�ρg
Ψ�

c2
�

)
+ αgvg + α�v� − T (αgρgvgCp,gχg + α�ρ�v�Cp,�χ�)

]

×
( E

ρg − ρ�
du1 − vg du2 − v� du3 + du4

)
. (4.39)

Similarly, for the non-conservative part of the fluxes, we need to derive a Jacobian matrix for the vector W .
First, we can remark that

dw1 = dp, (4.40)

which gives after substitution of the differentials

dw1 =
1
Φ

( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.41)

For the second component, we have that

dw2 = d(αgvg + α�v�) =
1
ρg

(du2 − αgvg dρg) +
1
ρ�

(du3 − α�v� dρ�), (4.42)

which gives

dw2 =
1
ρg

du2 +
1
ρ�

du3 − 1
Φ

(
αgvg

Ψg

ρgc2
g

+ α�v�
Ψ�

ρ�c2
�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.43)

Finally, the third component is the volume fraction differential (4.26)

dw3 = dαg, (4.44)

thus

dw3 =
1

ρg − ρ�
du1 − 1

ρg − ρ�

1
Φ

(
αg

Ψg

c2
g

+ α�
Ψ�

c2
�

)( E
ρg − ρ�

du1 − vg du2 − v� du3 + du4

)
. (4.45)

4.3. The matrices in the quasilinear form

We can now write the matrix A(U) appearing in the quasilinear form (4.1). Following a flux-splitting strategy
(see for example [13]), we may split the matrix in a conservative part and a non-conservative part. With the
help of (4.33), (4.35), (4.37) and (4.39), the conservative part is written as

Ac(U) =
∂F c(U)

∂U
=

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 0

− ρgv2
g

ρg−ρ�
+ v2

gE
ρg−ρ�

Σρ 2vg − v3
gΣρ −v2

gv�Σρ v2
gΣρ

ρ�v2
�

ρg−ρ�
− v2

�E
ρg−ρ�

Σρ vgv
2
� Σρ 2v� + v3

� Σρ −v2
� Σρ

a41 a42 a43 (v3
g − v3

� )Σρ + Ω

⎞
⎟⎟⎟⎟⎟⎠ (4.46)
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where

a41 =
−ρgv

3
g + ρ�v

3
�

ρg − ρ�
+
(
(v3

g − v3
� )Σρ + Ω

) E
ρg − ρ�

, (4.47)

a42 =
(

eg +
3
2
v2
g +

p

ρg

)
− ((v3

g − v3
� )Σρ + Ω

)
vg, (4.48)

a43 =
(

e� +
3
2
v2

� +
p

ρ�

)
− ((v3

g − v3
� )Σρ + Ω

)
v�. (4.49)

We have also introduced the shorthands

Σρ =
1
Φ

1
(ρg − ρ�)

(
αgρ�

Ψg

c2
g

+ α�ρg
Ψ�

c2
�

)
(4.50)

and
Ω =

1
Φ

(αgvg + α�v� − αgρgvgTCp,gχg − α�ρ�v�TCp,�χ�) . (4.51)

For the non-conservative part, we can express the Jacobian of the vector W (U) using (4.41), (4.43) and (4.45)

M(U) =
∂W (U)

∂U
=

⎛
⎜⎜⎝

1
Φ

E
ρg−ρ�

− vg
Φ − v�

Φ
1
Φ

− E
ρg−ρ�

Σv
1
ρg

+ vgΣv
1
ρ�

+ v�Σv −Σv

1
ρg−ρ�

− E
ρg−ρ�

Σ vgΣ v�Σ −Σ

⎞
⎟⎟⎠ (4.52)

where

Σ =
1
Φ

1
ρg − ρ�

(
αg

Ψg

c2
g

+ α�
Ψ�

c2
�

)
, (4.53)

Σv =
1
Φ

(
αgvg

Ψg

ρgc2
g

+ α�v�
Ψ�

ρ�c2
�

)
. (4.54)

The Jacobian of the non-conservative fluxes then follows from

Ap(U) = B(U) · M (U). (4.55)

The Jacobian of the whole system is then

A(U) = Ac(U) + Ap(U ). (4.56)

5. Subcharacteristic condition

The stiff limit of a relaxation model is linearly stable if and only if the equilibrium eigenvalues interlace those
of the relaxation system [9,42]. This criterion is known as the subcharacteristic condition, and is implied by the
stronger stability criteria given in [7,9]. In particular, stability requires that the wave speeds of the equilibrium
system do not exceed the maximum wave speed of the relaxation system [9,15, 26, 28, 34].

We expect the two-fluid models mentioned in the present paper to respect this condition when the underlying
physical models describe a stable reality. Figure 1 presents the model hierarchy, where TFn and DFn, respec-
tively, denote the two-fluid and the drift-flux models, and the index n the number of conservation equations in
the model. The complete hierarchy can be found in [25]. Each arrow designates the relaxation performed from
one model to the next. Specifically for the model (2.1)–(2.5), the μ-relaxation means to let K → ∞, while the
v-relaxation means to let F → ∞. The subcharacteristic condition has been proved for some of the relaxation
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TF6
T

v

TF5
μ

v

TF4

v

DF5
T

DF4
μ

DF3

Figure 1. A hierarchy of two-phase flow models. TF: Two-phase model. DF: Drift-flux model.
Index: Number of conservation equations.

processes by [29] and [15]. In the present section, we prove a subcharacteristic condition for the remaining
relaxation processes TF5 → TF4 and TF4 → DF3.

Herein, the notation TF4 refers to the model described in this paper (Sect. 3.4). The model TF5 is considered
in [29], and constitutes our starting point (2.1)–(2.5). The model DF3 is the full equilibrium model considered
for instance in Section 6 of [15]. We refer to [15, 29] for a more detailed description of the remaining models in
the hierarchy.

5.1. Speed of sound

The eigenvalues of the Jacobian of the fluxes A(U ) are the propagation velocities of the quantities defined
by the eigenvectors of A(U), also called waves. In the present model, these waves are the volume-fraction waves
and the pressure waves.

For the purposes of the current paper, we define the two-phase speed of sound as the speed of pressure waves
relative to a reference frame moving with the average velocity of the waves. That is, for a two-phase mixture
we define c and vm through

λp+ = vm + c, (5.1)
λp− = vm − c (5.2)

where λp+ is the velocity of the right-going pressure wave and λp− is the velocity of the left-going pressure
wave. For subsonic flows in the models we consider, the pressure waves will be the fastest waves. Hence vm and
c are uniquely determined through

vm =
1
2

(λmax + λmin) , (5.3)

c =
1
2

(λmax − λmin) . (5.4)

Note that this is a fluid-mechanical definition of speed of sound, which does not necessarily coincide with the
thermodynamical expression

c2 =
(

∂p

∂ρ

)
s

(5.5)

for mixture variables ρ and s. In fact, for two-fluid models the definition (5.4) of c will generally imply that c
depends on the relative velocity (vg − v�).

For vg �= v�, it is well-known [44] that no tractable exact expression exists for the eigenvalues. Hence our
following eigenvalue analysis will be limited to vg = v�.
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Proposition 5.1. When the liquid and gas velocities are equal to each other, the eigenvalues of the two-fluid
four-equation model are

ΛTF4 =

⎛
⎜⎜⎜⎜⎝

vm − cTF4

vm

vm

vm + cTF4

⎞
⎟⎟⎟⎟⎠ , (5.6)

where the velocities have been substituted by vg = vm and v� = vm, and the speed of sound of the model is
given by

cTF4 =

√√√√ α�ρg + αgρ�

ρgρ�

(
αg

ρgc2
g

+ α�

ρ�c2
�

+ T (αgρgCp,gχ2
g + α�ρ�Cp,�χ2

�)
) · (5.7)

Proof. When vg = 0 and v� = 0, the matrix A(U) becomes

A(U (vg = 0, v� = 0)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0

αg(ρgeg−ρ�e�)c
2
TF4

(α�ρg+αgρ�)T (sg−s�)
0 0 − αg(ρg−ρ�)c

2
TF4

(α�ρg+αgρ�)T (sg−s�)

α�(ρgeg−ρ�e�)c
2
TF4

(α�ρg+αgρ�)T (sg−s�)
0 0 − α�(ρg−ρ�)c

2
TF4

(α�ρg+αgρ�)T (sg−s�)

0 eg + p
ρg

e� + p
ρ�

0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.8)

where

cTF4 =

√√√√ α�ρg + αgρ�

ρgρ�

(
αg

ρgc2
g
Ψg + α�

ρ�c2
�

Ψ� + T (αgρgCp,gχg + α�ρ�Cp,�χ�)
ρg−ρ�

ρgρ�L

) · (5.9)

Its eigenvalues are then 0, 0, cTF4 and −cTF4. The waves with zero velocity are the volume-fraction waves, while
the two other are the pressure waves. We deduce that cTF4 is the speed of sound of the model. This speed of
sound is dependent on the thermodynamical assumptions, here that the phases are at all times at equilibrium.
The expression (5.9) uses the variable blocks that are involved in the Jacobian matrices. We can also reorganise
it to the more compact form 5.7.

Note that the speed of sound can be used to simplify (3.25) and (3.26)

V =
ρgρ�

α�ρg + αgρ�

T

L
(αgρgCp,gχg + α�ρ�Cp,�χ�)c2

TF4, (5.10)

P =
αgα�ρgρ�(vg − v�)

α�ρg + αgρ�

T

L

(
ρ�Cp,�χ�

Ψg

ρgc2
g

− ρgCp,gχg
Ψ�

ρ�c2
�

)
c2
TF4· (5.11)

The eigenstructure for the general case is not accessible. However, when vg = v�, we are able to find the
exact eigenvalues of the system. For this, we write the characteristic polynomial of the matrix A(U ) where the
velocities have been substituted with vg = vm and v� = vm

ΠA,vg=v�
= Det(A(Uvg=v�

) − λ · I4), (5.12)

where I4 is the identity matrix of rank 4. This polynomial can be simplified to

ΠA,vg=v�
= (λ − vm)2 · (λ − (vm + cTF4)) · (λ − (vm − cTF4)), (5.13)

which is solved by the eigenvalues presented in (5.6). �
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5.2. Speed of sound in other models

The speed of sound of the five-equation model is given by [29]. In order to express it in terms of the parameters
used in the present article, we first derive a relation. In [29], the parameter

ζ =
(

∂T

∂p

)
s

= − 1
ρ2

(
∂ρ

∂s

)
p

(5.14)

is used. The triple product rule gives

ζ =
1
ρ2

(
∂p

∂s

)
ρ

/(
∂p

∂ρ

)
s

, (5.15)

where (
∂p

∂ρ

)
s

= c2, (5.16)

and, from [32], (
∂p

∂s

)
ρ

=
(

∂p

∂e

)
ρ

(
∂e

∂s

)
ρ

Γ≡ 1
ρ ( ∂p

∂e )
ρ= ρΓ

(
∂e

∂s

)
ρ

de=Tds−p/ρ2dρ
= ΓρT. (5.17)

Thus

ζ =
ΓT

ρc2
· (5.18)

The speed of sound in the five-equation model, taken from [29] and simplified, is

cTF5 =

√√√√√√√
αgρ� + α�ρg

ρgρ�

⎛
⎝ αg

ρgc2
g

+ α�

ρ�c2
�

+
αgρgCp,gα�ρ�Cp,�T

(
Γg

ρgc2g
− Γ�

ρ�c2
�

)2

αgρgCp,g+α�ρ�Cp,�

⎞
⎠
· (5.19)

We also know from [15] the speed of sound in the drift-flux three-equation model. This model can be seen
as the limit of the drift-flux four-equation model with instantaneous phase relaxation, or as the limit of the
two-fluid four-equation model (3.34)–(3.37) with instantaneous velocity relaxation. This is obtained by summing
equations (3.35) and (3.36) and assuming vg = v�. After simplification, the speed of sound can be written

cDF3 =
1√

(αgρg + α�ρ�)
(

αg
ρgc2

g
+ α�

ρ�c2
�

+ T (αgρgCp,gχ2
g + α�ρ�Cp,�χ2

�)
) · (5.20)

Proof. According to [15], the speed of sound in the drift-flux three-equation model is

c−2
DF3 = c−2

DF4 +

[
(αgρg + α�ρ�)T

αgρgCp,g + α�ρ�Cp,�

(
ρg − ρ�

ρgρ�(hg − h�)
(αgρgCp,g + α�ρ�Cp,�) +

ΓgαgρgCp,g

ρgc2
g

+
Γ�α�ρ�Cp,�

ρ�c2
�

)2
]
,

(5.21)
where cDF4 is the speed of sound in the drift-flux model with instantaneous pressure and temperature relaxation.
Substituting the definition of χk (Eq. (3.16)) in cDF3, as well as hg − h� = L, gives

c−2
DF3 = c−2

DF4 +
(αgρg + α�ρ�)T

αgρgCp,g + α�ρ�Cp,�
(αgρgCp,gχg + α�ρ�Cp,�χ�)

2 · (5.22)



1186 A. MORIN AND T. FLÅTTEN

Now, the speed of sound cDF4 is [15]

c−2
DF4 = c−2

DF5 + ρT
αgρgCp,gα�ρ�Cp,�

αgρgCp,g + α�ρ�Cp,�

(
Γ�

ρ�c2
�

− Γg

ρgc2
g

)2

, (5.23)

where cDF5 is the speed of sound in the drift-flux model with instantaneous pressure equilibrium. Substituting
the definition of χk (Eq. (3.16)) in cDF4, as well as cDF5 from ([15], Eq. (3.9)), gives

c−2
DF4 = ρ

(
αg

ρgc2
g

+
α�

ρ�c2
�

)
+ ρT

αgρgCp,gα�ρ�Cp,�

αgρgCp,g + α�ρ�Cp,�
(χ� − χg)

2
. (5.24)

Substituting this result in equation (5.22) and simplifying gives the result. �

5.3. Comparison of the speeds of sound

Ferrer et al. [29] compared the speeds of sound of four of the two-phase flow models in Figure 1 – the TF6,
TF5, DF5 and DF4 models. They showed that the effect of the instantaneous relaxation of a given type on the
mixture speed of sound is independent of the order in which relaxations are performed. For example, the effect
of relaxing the velocity multiplies the speed of sound by a constant factor

cTF5

cDF4
=

cTF6

cDF5
=

√
(αgρg + α�ρ�)

(
αg

ρg
+

α�

ρ�

)
. (5.25)

By rearranging the expression above, they also arrive at
cDF5

cDF4
=

cTF6

cTF5
, (5.26)

which shows that the same conclusion applies to the effect of thermal relaxation.
Now, in the present work, we derived TF4 from the TF5 model previously mentioned by performing in-

stantaneous phase relaxation, and found its sound speed (5.7). By comparing it to the speed of sound in the
DF3 (5.20), we immediately see that we can extend the ratio relation (5.25) with

cTF4

cDF3
=

cTF5

cDF4
=

cTF6

cDF5
, (5.27)

which shows that the velocity relaxation once more has an independent effect on the speed of sound. From the
above relation, we can deduce

cDF4

cDF3
=

cTF5

cTF4
, (5.28)

hence, the effect of phase relaxation on the sound speed is also independent from the order of the relaxation
steps.

Using the results of [29] on the ordering of the speeds of sound, we can write from (5.27)

cDF3 ≤ cTF4. (5.29)

Now, we take the difference between the two speeds of sound cTF4 and cTF5, or more precisely the inverse of
their squares, which gives

c−2
TF4 − c−2

TF5 =
ρgρ�

α�ρg + αgρ�

T (αgρgCp,gχg + α�ρ�Cp,�χ�)2

αgρgCp,g + α�ρ�Cp,�
· (5.30)

This difference is always non-negative, which proves that

cTF4 ≤ cTF5. (5.31)

Consequently, from (5.28)
cDF3 ≤ cDF4. (5.32)
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Table 2. Methane gas-liquid mixture under atmospheric pressure.

Quantity Gas Liquid
Temperature (K) 111.67 111.67
Density (kg/m3) 1.8164 422.36
Sound speed (m/s) 271.46 1338.1
Cp (J/(kg K)) 2217.7 3481.1
Entropy (m2/(s2 K)) 4574.6 −2.5 × 10−10

Γ (dimensionless) 0.333 1.78
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Figure 2. Gas-liquid methane mixture at atmospheric pressure. Mixture sound velocities for
models with different equilibrium assumptions.

5.3.1. A methane two-phase mixture

In this section, we illustrate our results applied to a liquid-gas methane mixture at atmospheric pressure.
Similar illustrations for CO2 and water-steam may be found in the references [15, 25, 27, 29].

As stated in Table 2, we apply physical parameters representative of methane at atmospheric pressure at
the boiling point curve [41]. The various sound velocities are plotted in Figure 2 as functions of liquid volume
fraction. Herein, DF6 refers to the basic 6-equation drift-flux model where only velocity equilibrium is imposed,
i.e. the model has no relaxation in mass, volume or energy transfer [15].

We observe that imposing pressure equilibrium changes the mixture sound velocity to being dominated by
gas rather than the liquid sound velocity. Temperature relaxation has little influence. Note also that the one-
phase limits of DF3 and TF4 are equal, but unlike the other models, do not correspond to the one-phase sound
velocities. This discontinuity, particular to full thermodynamical relaxation, is well known and was commented
also in [5, 15].
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5.4. Subcharacteristic condition and model hierarchy

Following the definition stated in [9] and the arguments of [15, 29], we observe that for our models the
subcharacteristic condition can be expressed as follows:

When the velocities in each phase are equal, model X satisfies the subcharacteristic condition with respect to
model Y if and only if the mixture sound velocities satisfy

cX ≤ cY . (5.33)

Regarding the model hierarchy of Figure 1, we are now able to state the following results:

SC1: The model DF4 satisfies the subcharacteristic condition with respect to DF5.
SC2: The model DF4 satisfies the subcharacteristic condition with respect to TF5.
SC3: The model DF5 satisfies the subcharacteristic condition with respect to TF6.
SC4: When the velocities of each phase are equal, the model TF5 satisfies the subcharacteristic condition with

respect to TF6.
SC5: The model DF3 satisfies the subcharacteristic condition with respect to TF4.
SC6: The model DF3 satisfies the subcharacteristic condition with respect to DF4.
SC7: When the velocities in each phase are equal, the model TF4 satisfies the subcharacteristic condition with

respect to TF5.

Herein, the results SC5 and SC7 are new to this paper and follow directly from (5.29) and (5.31). The remaining
results follow from [15,29]. Note that it is the limit of equal phasic velocities that is of interest here. Due to the
expected loss of hyperbolicity for unequal phase velocities, there is little reason to expect that the conditions
SC4 and SC7 will hold more generally. This is also nontrivial to check, due to the high algebraic complexity of
the eigenvalues when the velocities are not equal.

This observation is another indication that a satisfactory mathematical framework for this kind of two-phase
models is still lacking. As a consequence of this, ad hoc regularization terms are commonly introduced into the
models. In the next section, we discuss the consequence of introducing one such term in the present model.

6. Condition for hyperbolicity

The canonical model derived above, with Δp = 0, is generally not hyperbolic. Identically to the two-fluid
six-equation model, the eigenvalues related to the volume-fraction waves are complex as soon as the gas and
liquid velocities are different from each other [19,45]. The pressure difference term Δp has been added to make
the model hyperbolic. In order to find an expression for Δp, we will use a perturbation method around the state
where vg = v�. Based on the experience from the two-fluid six-equation model [8,13,32,35,45], we look for it in
the form Δp = C · (vg − v�)2. This formulation also generalizes to multifluid models [24].

We know, from the section above, the speed of sound of the model, cTF4. The variable defined as

ε =
vg − v�

2 · cTF4
(6.1)

is small for subsonic velocities and is therefore suitable as a perturbation parameter. We first evaluate the
characteristic polynomial

ΠA = Det(A(U) − λ · I4), (6.2)

where I4 is the identity matrix of rank 4. In this polynomial, we make a variable change through

λ =
vg + v�

2
+ a · cTF4, (6.3)
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where a is the new unknown. Then, all the occurrences of the velocity are eliminated by substituting

vg = vm + ε · cTF4, (6.4)
v� = vm − ε · cTF4, (6.5)

where vm is the arithmetic average of vg and v�. This is in compliance with the definition of ε (6.1).
Now, we perform a power-series expansion of the eigenvalues in terms of the degree of ε. To do so, the variable

a is substituted by

a =
N∑

i=0

(
bi · εi

)
, (6.6)

where N must be higher than the highest degree of ε that we wish in the expansion. Then we will sequentially
solve

degree(ΠA, ε, i) = 0 (6.7)

for the coefficients bi, starting from i = 0, where degree(ΠA, ε, i) returns the coefficient of the ith degree of ε in
ΠA(ε).

The zeroth degree gives a fourth order equation in b0,

ρ4
gρ

4
�(α�ρg + αgρ�)4L4

(ρg − ρ�)8c4
TF4

(b0 − 1)(b0 + 1)b2
0 = 0, (6.8)

whose four solutions are b0 = −1, b0 = 1, and twice b0 = 0. The first two give the approximate eigenvalues

λ =
vg + v�

2
± cTF4 + O

(
vg − v�

2 · cTF4

)
, (6.9)

which are clearly the eigenvalues related to the pressure waves. The double solution b0 = 0 corresponds to
the volume-fraction waves, which are of interest here. For this wave family, we push to the next degree of the
expansion. However, the first degree of the polynomial ΠA(ε) vanishes when b0 = 0. We then go to the second
degree. Fortunately, b2 vanishes from the second degree, and we are left with a second order equation in b1

((αgρ� + α�ρg)b2
1 + 2(αgρ� − α�ρg)b1 + (αgρ� + α�ρg) − 4C) · ρ4

gρ
4
�L

4(αgρ� + α�ρg)3

c4
TF4(ρg − ρ�)8

= 0. (6.10)

The reduced discriminant of the equation is

Δ = (αgρ� − α�ρg)2 − (αgρ� + α�ρg)(αgρ� + α�ρg − 4C)
= −4αgα�ρgρ� + 4(αgρ� + α�ρg)C.

(6.11)

Therefore b1 will only be real if
C ≥ αgα�ρgρ�

αgρ� + α�ρg
, (6.12)

which is the same constraint as the one obtained for the six-equation model [45]. The solutions are then

b1 =
−αgρ� + α�ρg ± 2

√−αgα�ρgρ� + (αgρ� + α�ρg)C
αgρ� + α�ρg

· (6.13)

This gives the approximate eigenvalues for the volume-fraction waves

λ =
vg + v�

2
+

−αgρ� + α�ρg ± 2
√−αgα�ρgρ� + (αgρ� + α�ρg)C
αgρ� + α�ρg

vg − v�

2
+ O

(
vg − v�

2 · cTF4

)
· (6.14)
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We deduce from the above that the model with the regularising term expressed as

Δp =
αgα�ρgρ�

αgρ� + α�ρg
(vg − v�)2 (6.15)

is hyperbolic at first order around the state where vg = v�. The same expression was previously derived for
other models [8,13,32,35,45]. To make them actually hyperbolic when vg �= v�, the pressure difference in these
models has commonly been defined as

Δp = δ
αgα�ρgρ�

αgρ� + α�ρg
(vg − v�)2, (6.16)

where δ > 1 [8, 13, 32, 35].
This analysis shows that the most common approach used to regularize similar models is equally valid here.

7. Conclusion

We have investigated a two-fluid four-equation model arising as the limit of a five-equation model when the
phase relaxation becomes instantaneous. The phase relaxation source terms involve an interfacial momentum
velocity, for which we found an expression respecting the second law of thermodynamics. This model was then
put in quasilinear form by deriving the differentials of the primary variables. By this, we have extended previous
works [40, 44] where these terms were treated as instantaneous relaxation source terms. This formulation has
some advantages, including the possibility of using some standard numerical schemes for hyperbolic systems,
following for instance the approach of [30].

We have placed our model in a hierarchy of two-phase flow relaxation models, and extracted its intrinsic
speed of sound. Extending on previous works, we have shown that for smooth solutions a subcharacteristic
condition holds for each relaxation process in this hierarchy. A major result of our paper is the simple and
general relation (5.27) between the sound velocities of the various relaxation models. In our paper, this relation
is obtained from a direct calculation and it is far from obvious why it should hold.
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