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NUMERICAL ASPECTS OF LARGE-TIME OPTIMAL CONTROL OF BURGERS
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Abstract. In this paper, we discuss the efficiency of various numerical methods for the inverse design
of the Burgers equation, both in the viscous and in the inviscid case, in long time-horizons. Roughly,
the problem consists in, given a final desired target, to identify the initial datum that leads to it along
the Burgers dynamics. This constitutes an ill-posed backward problem. We highlight the importance
of employing a proper discretization scheme in the numerical approximation of the equation under
consideration to obtain an accurate approximation of the optimal control problem. Convergence in the
classical sense of numerical analysis does not suffice since numerical schemes can alter the dynamics of
the underlying continuous system in long time intervals. As we shall see, this may end up affecting the
efficiency on the numerical approximation of the inverse design, that could be polluted by spurious high
frequency numerical oscillations. To illustrate this, two well-known numerical schemes are employed:
the modified Lax−Friedrichs scheme (MLF) and the Engquist−Osher (EO) one. It is by now well-
known that the MLF scheme, as time tends to infinity, leads to asymptotic profiles with an excess of
viscosity, while EO captures the correct asymptotic dynamics. We solve the inverse design problem by
means of a gradient descent method and show that EO performs robustly, reaching efficiently a good
approximation of the minimizer, while MLF shows a very strong sensitivity to the selection of cell and
time-step sizes, due to excess of numerical viscosity. The achieved numerical results are confirmed by
numerical experiments run with the open source nonlinear optimization package (IPOPT).
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1. Introduction

We analyze the numerical approximation of the inverse design problem for the Burgers equation, both in the
viscous and in the inviscid case: ⎧⎨

⎩
∂tu + ∂x

(
u2

2

)
= ν∂xxu, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R.

(1.1)
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Given a time T > 0 and a target function u∗ the aim is to identify the initial datum u0 so that the solution,
at time t = T , reaches the target u∗ or gets as close as possible to it. In particular, we focus on problems with
large values of T , for which convergence of the numerical schemes in the classical sense of numerical analysis
might not suffice to obtain accurate results.

Essentially, the question consists in solving the Burgers equation backwards, a problem that is ill-posed. In
the viscous case ν > 0, this is due to the intrinsic strong time-irreversibility of the parabolic Burgers equation
that is enhanced by the nonlinear phenomena governing the hyperbolic dynamics. In the inviscid hyperbolic
case ν = 0, the nonlinearity of the model that produces, in particular, the emergence of shock discontinuities,
makes the problem to be ill-posed too, having, in some cases, multiple solutions.

We formulate the problem from the point of view of optimal control. Using a least square approach, we
consider the minimization of the following functional:

J (u0) =
1
2

∫
R

(u(x, T ) − u∗(x))2 dx, (1.2)

where u is the solution of the Burgers equation and the initial data u0 lies in a suitable functional class, for
instance L1(R) ∩ L∞(R).

This issue is motivated by the challenging problem of sonic-boom minimization for supersonic aircrafts [2].
The propagation of the sonic-boom in the atmosphere, perceived as loud noises on the ground, is governed by
an augmented Burgers equation [12]. At present, in order to design the new generation of supersonic aircrafts,
the objective is to minimize the loudness of the sonic-boom on the ground, with the control variable being the
initial noise generated from the aircraft. The near field noise can be tailored via modifying the geometry of the
aircraft. The travel time of the signal to the ground is larger than the time scale of the initial disturbance by
orders of magnitude and this motivates our study of large time control of the sonic-boom propagation.

The optimal control problem above for the Burgers equation, a simplified version of the complete sonic-boom
model, arises naturally. One of the key ingredients is that the time horizon under consideration [0, T ], for practical
purposes, needs to be long. As we shall see, this makes the choice of the numerical scheme approximating the PDE
to be a sensitive issue, since schemes that do not yield the correct long-time dynamics are incapable of providing
an accurate approximation of the optimal control. We shall focus on this particular Burgers model. But similar
issues arise in other contexts, involving different PDE, in many applications in physical sciences, engineering,
economics and management disciplines. This is particularly the case in the context of data assimilation [16] with
applications in climate forecasting and hydrology modeling, or in identification of pollution source problems [30].

The optimal control problem (2.1) has already been addressed by several authors in the past, both from the
continuous and the discrete point of view, but not with emphasis on the effect of long time horizons as we do it
in here and that, as we shall see, has significant effects. As we already pointed out, the interplay of discretization
and optimization makes this issue really challenging.

In the past, special attention has been paid to inviscid equations and the effect that shock discontinuities may
have in optimal control problems. In this direction, among others, [4,6,27,36] address the issue of linearizing the
system around solutions developing shock discontinuities. There has been also an extensive research regarding
the corresponding adjoint system and its discretization (see, for instance, [5, 23, 28]). In [19, 20] the authors
analyze the pointwise convergence of the linearized and adjoint approximations for discontinuous solutions in
a discretize-then-optimize approach. In particular, they already point out the importance of controlling the
diffusion in order to obtain convergence to the corresponding solutions of the systems. Our approach confirms
this fact from a different perspective, showing that the addition of artificial viscosity to the system needs to
be tuned carefully, since the efficiency of the optimization algorithms can be negatively affected in long time
horizons.

Moreover, the interplay between the optimize-then-discretize and the discretize-then-optimize approaches was
analyzed in [35], where the author shows the critical role of the One-Sided Lipschitz condition (OSLC) in the
equivalence of both approaches. In the present paper we opt for the latter, which does not take into account
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the derivatives with respect to the location shocks. Nevertheless, our conclusions, concerning the performance
in long time horizons, can be applied to the former too.

In our numerical experiments we avoid discontinuities by considering targets and time-horizons, so that the
relevant solutions emerging in the optimization process do not have enough time to develop wavefronts. Thus,
the sensitivity of the location of shocks does not play an important role in our experiments. In that way, we focus
only on the large-time effect, which may remain hidden when shocks arise (see Rem. 4.1 for further details). Of
course, this would be an additional issue to be taken into account in the challenging inverse design problem for
the inviscid Burgers equation in the presence of shocks.

In this paper we consider both the viscous, ν > 0, and the inviscid case, ν = 0, of the Burgers equation.
The first one leads to a non-linear parabolic problem while the second one constitutes a nonlinear hyperbolic
conservation law. The solutions to the inviscid Burgers equation (ν = 0) may develop shocks and, if u0 ∈ L1(R),
as time tends to infinity, they converge towards a self-similar N-wave (cf. [32]). Even if the scaling is the same,
this behavior differs significantly from the viscous version (1.1), which is of parabolic nature (see [25]). The
self-similar profiles are then diffusive, smooth and of constant sign. Nevertheless, when ν is sufficiently small
and time is large (but not enough for the viscosity to be dominant), the behavior of the solutions is close to the
hyperbolic case [29].

At the numerical level, when solving (1.1) with usual finite-difference conservative schemes, this asymptotic
dichotomy for large time needs to be handled carefully since, in particular, the excess of numerical viscosity
may destroy the long-time hyperbolic dynamics to make it parabolic. This issue was carefully analyzed in [26]
where it was shown that, while the large time behavior of the inviscid dynamics is correctly captured by means
of the Engquist−Osher scheme, the Lax−Friedrichs scheme fails to do so, due to the excess of viscosity that
destroys the N-wave dynamics and leads to a viscous profile. This pathology may arise also for the viscous
Burgers equation when the numerical viscosity dominates the physical one.

In this work, we emphasize the consequences of this fact at the level of inverse design. This is done by means of
a gradient descent method, following a discretize-then-optimize strategy together with the adjoint methodology.
We also use IPOPT, an open-source software package for nonlinear optimization [37], to support our results.
Note, however, that the large-time behavior dichotomy can be extended to other methods.

Gradient descent methods, such as the steepest descent method or conjugate gradient method, are attractive
due to their algorithm simplicity. Descent methods do not require calculating second order derivatives. This
makes them be a suitable approach for optimizing large scale problems, where the cost of computing the Hessian
matrix and solving the corresponding linear system becomes prohibitive. The rate of convergence in gradient
methods is related to the condition number. Generally, as the condition number increases, the contours of the
functional elongates in one direction and convergence degrades. Also, in the case of non-convex functionals,
gradient descent provides sequences that exhibit highly oscillatory behaviors. Recently, however, a variety of
new descent methods was developed, based on Lojasiewicz’s inequality, which ensures convergence towards
critical points without requiring the convexity of the functional [1, 3, 24, 33].

The functional J under consideration, due to the quadratic nonlinearity involved in the Burgers equation,
fails to be convex or, at least, there is no evidence of its convexity. Consequently, the existence of several critical
points cannot be excluded, in principle. However, in view of the recent literature mentioned above, because of
the analytic dependence of solutions on initial data and the fact that in those circumstances the �Lojaciewicz
inequality is fulfilled, one expects the convergence of gradient descent methods towards local minimizers. This
is something we observe in our numerical simulations, but the velocity of convergence turns out to depend
significantly on the numerical scheme that is employed for approximating the PDE and the gradient descent
method implemented. The main aim of this paper is to accurately describe the various phenomena that overlap
when handling numerically this inverse design problem.

As we shall see, while the direct implementation of a discrete approach based on the Enguist-Osher dis-
cretization leads to rather robust and satisfactory results at the level of the inverse design, the results turn
out to be very sensitive to the discretization parameters when employing the Lax−Friedrichs scheme and its
modified version coping with viscosity. With the latter, in some instances, the recovered inverse profile appears
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to be corrupted by unwanted spurious numerical high frequency components. Our numerical results are also
tested and compared with those obtained with the optimization package IPOPT to confirm our predictions and
conclusions.

The results in the present paper constitute an interesting warning about the necessity of employing numerical
approximation schemes, capable of mimicking the continuous large time dynamical properties of the system,
when addressing inverse design and optimal control problems in long time horizons. This was previously observed
when dealing with control problems for wave propagation [13,39]. It is interesting to see that the same pathologies
persist for the apparently more robust problem of inverse design for inviscid and viscous flows.

This paper is organized as follows. In Section 2 we discuss the existence of minimizers in the continuous
setting, distinguishing the viscous and inviscid case. In Section 3 we present the numerical tools that we use
for optimization and discretization processes. Then, in Section 4 we solve an optimal control problem in a
large period of time for Burgers equation with small viscosity using the gradient descent method and IPOPT.
Section 5 revisits the experiments done in Section 4 for the case of inviscid Burgers. In Section 6, we modify
some assumptions on the initial setting of the numerical experiments performed in previous sections to test. In
Section 7, we visualize functional landscapes and discuss the behavior of the minimizers further. We conclude
with some final remarks and perspectives in Section 8.

2. The continuous inverse design problem

In this section we briefly recall some of the main features of the continuous inverse design or optimal control
problem

min
u0

Jν(u0) = min
u0

1
2

∫
R

(uν(x, T ) − u∗(x))2 dx, (2.1)

subject to

⎧⎨
⎩

∂tu
ν + ∂x

(
(uν)2

2

)
= ν∂xxuν , x ∈ R, t > 0,

uν(x, 0) = u0(x), x ∈ R,

distinguishing the viscous, ν > 0, and the inviscid case, ν = 0.

2.1. Viscous Burgers

In the case ν > 0, (1.1) is a parabolic equation that is very well behaved. In particular, given the initial
datum in L1(R) ∩ L∞(R) (actually, L1(R) would suffice), equation (1.1) has a unique solution within the class
C([0,∞); L1(R)) ∩ L∞(R × (0,∞)) that is smooth for t > 0.

The optimization problem (2.1) was addressed in [10] with the aim of adapting the alternating descent method
introduced in [9] in the inviscid case. In [10] it was observed that the minimization problem (2.1) has always a
solution provided the minimization is performed within a class of a priori bounded initial data, i.e., under an
additional constraint of the form

||u0||L1(R)∩L∞(R) ≤ K. (2.2)

Under such a restriction, the proof of the existence of the minimizer follows by the classical Direct Method of
the Calculus of Variations.

As far as we know, the existence of the minimizer cannot be guaranteed in the absence of constraints on the
initial data, since minimizing sequences could be unbounded. As we shall see, this issue is very closely related
to the one-sided Lipschitz condition that the solutions of the viscous Burgers equation satisfy and that imposes
a universal threshold within the range of the semigroup at time t = T .
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Note however that, due to the parabolic nature of the equation, we can apply classical results of backward
uniqueness [14, 31] to the linearized model

⎧⎨
⎩

∂tv + 1
2∂x ((u1 + u2)v) = ν∂xxv, x ∈ R, t < T,

v(x, T ) = 0, x ∈ R,

u1 and u2 being two solutions the viscous Burgers equation such that u1(T ) = u2(T ). Thus, when the target u∗

is exactly reachable, the initial datum u0 leading to it (the minimizer of the functional J ) is unique, something
that fails to be true in the inviscid case [9].

2.2. Inviscid Burgers

In the case ν = 0, (1.1) is a nonlinear hyperbolic scalar conservation law. When the initial datum is in
L1(R) ∩ L∞(R) (actually, L1(R) would suffice), equation (1.1) has a unique entropy solution within the class
C([0,∞); L1(R)) ∩ L∞(R × (0,∞)). But in the present case, contrarily to the viscous one, smoothness cannot
be guaranteed for t > 0 since solutions may develop shock discontinuities.

In this hyperbolic context, the optimization problem (2.1) was addressed in [9] with the aim of developing
specific numerical techniques to treat the cases where optimal solutions develop shock discontinuities. Proceeding
as in [9], one can prove that also in the inviscid case the optimal control problem (2.1) has at least a minimizer,
provided the initial data are restricted by a constraint of the form (2.2).

Note that one of the main differences between the viscous and the inviscid case is that, for the latter, backward
uniqueness does not hold and, consequently, the minimizer is not unique in general.

To conclude this section, we recall the results on the existence of the minimizer, for both viscous and inviscid
cases, for the sake of completeness:

Theorem 2.1 (Thm. 2.1 from [9] and Thm. 1 from [10]). Let Ω ⊂ R a bounded interval and C > 0. Assume
that u∗ ∈ L2(R) and that

Uad = {u0 ∈ L∞(R), supp(u0) ⊂ Ω, ||u0||L∞(R) ≤ C}.

Then, both the minimization problems
min

u0∈Uad

J0(u0)

and
min

u0∈Uad

Jν(u0) (with ν > 0)

defined in (2.1), have at least one minimizer.

3. Description of the numerical algorithms

In this section, we describe the discrete techniques we employ for solving the optimal control problem (2.1).
First, we discuss two numerical discretization methods for the nonlinear PDE, namely the Engquist−Osher
(EO) and the modified Lax−Friedrichs (MLF) schemes. We also briefly introduce the discrete version of the
inverse design problem.

As we shall see, the wrong long time dynamics introduced by the MLF method or the correct one that EO is
capable of mimicking, will be the ultimate reason for the overall performance of the optimization methods, and
in particular for the spurious results that one observes in the experiments of Sections 4 and 5 when employing
MLF.
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3.1. Discretization schemes and large-time behavior

To implement the methods numerically, we opt for a discretization of (1.1) using classical conservative
schemes (cf. [22]). As we shall see in the experiments, the choice of the numerical flux is critical when dealing
with optimal control problems in large periods of time. Indeed, as pointed out in [26], numerical schemes that
add too much viscosity into the hyperbolic system may lead to solutions with the wrong asymptotic behavior. In
this section we adapt those results to low-viscosity regimes, in order to understand the underlying phenomena
in the previously described optimization problem.

Let us denote spatial nodes xj+1/2 = Δx(j + 1/2), j ∈ Z, and time instants tn = nΔt, n ∈ N ∪ {0}, where
Δx, Δt > 0 are the mesh size and time-step respectively. We approximate the solution u of (1.1) by a piecewise
constant function uΔ such that

uΔ(x, t) = un
j , x ∈ [xj−1/2, xj+1/2), t ∈ [tn, tn+1),

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

un+1
j = un

j − Δt

Δx
(gn

j+1/2 − gn
j−1/2)

+
νΔt

Δx2 (un
j−1 − 2un

j + un
j+1), j ∈ Z, n = 0, . . . , N,

u0
j =

1
Δx

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z.

(3.1)

Here, N = �T/Δt	 is the number of time-steps needed to reach T . We denote gn
j+1/2 = g(un

j , un
j+1), where the

function g is the numerical flux. In this paper we compare two fluxes:

Engquist−Osher (EO): gEO(v, w) =
v(v + |v|)

4
+

w(w − |w|)
4

, (3.2)

Modified Lax−Friedrichs (MLF): gMLF (v, w) =
v2 + w2

4
− Δx

Δt

(
w − v

4

)
· (3.3)

These schemes are convergent in the classical sense of the numerical analysis (see, for instance, [22]), being of
first order of accuracy. Nevertheless, in accordance with the classification in [26], this is not enough when dealing
with large-time evolution problems. Given Δx, Δt > 0, convergence in the sense of asymptotic dynamics needs
to be taken into account too. The choice of the numerical fluxes has been made according to the parabolic-
hyperbolic dichotomy shown there.

Remark 3.1. In the continuous case (see Fig. 1), the changing sign N-waves are the asymptotic profiles as
t → ∞ if ν = 0 [32] and intermediate metastable states if ν > 0 [29]. In the hyperbolic regime, the key point
in the identification of the asymptotic N-wave, which belongs to a two-parameter family, is the preservation of
the quantities

p = −min
x∈R

∫ x

−∞
u0(y)dy and q = max

x∈R

∫ ∞

x

u0(y)dy. (3.4)

Note that the mass of the initial data u0 is, precisely, M = q−p. In the parabolic case, there is a period of time
when the dynamics are close to the hyperbolic ones. The larger min(p, q)/ν is, the longer the diffusion needs
to become dominant. Therefore, this needs to be taken into account at the discrete level, since the numerical
viscosity can interfere with the correct dynamics of the model.

In our simulations, we have implemented modified Lax−Friedrichs scheme instead of the usual Lax−Friedrichs
scheme. It can be shown that Lax−Friedrichs scheme has the maximum amount of numerical viscosity that is
allowed by linear stability theory (e.g. [10]) and the scheme becomes unstable in the presence of any physical
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Figure 1. Asymptotic profiles for the parabolic ν > 0 (red) and hyperbolic ν = 0 (blue) cases.
Here we consider t = 50, p = 0.05, q = 0.2, M = 0.15 and ν = 0.005. (Color online).

viscosity (ν > 0). This is not the case for modified Lax−Friedrichs scheme. Nevertheless, both schemes have
similar performance in terms of their large-time behavior.

It is well known (e.g. [22]) that (3.1) can be rewritten in its viscous form in the following manner:

un+1
j − un

j

Δt
+

(un
j+1)2 − (un

j−1)2

4Δx
= R(un

j , un
j+1) − R(un

j−1, u
n
j ) +

ν

Δx2 (un
j−1 − 2un

j + un
j+1), (3.5)

where R is uniquely defined by

R(u, v) =
1

2Δx

(
u2

2
+

v2

2
− 2g(u, v)

)
. (3.6)

In the case of the numerical fluxes that we consider in this paper, we have:

RMLF (u, v) =
v − u

4Δt
,

REO(u, v) =
1

4Δx
(v|v| − u|u|).

In [26], the authors show that the large-time behavior of uΔ depends on the degree of homogeneity of the
term R. In other words, let us assume that there exists α ∈ R such that

R(μu, μv) = μαR(u, v), ∀u, v ∈ R and ∀μ > 0.

It is clear that α = 2 for Engquist−Osher and α = 1 for modified Lax−Friedrichs. In the first case, the numerical
scheme introduces quadratic numerical viscosity. Thus, as proved in [26], it decays to zero as the L∞-norm of the
solution, vanishing in time and preserving the continuous dynamics. On the other hand, the numerical viscosity
inherent in MLF is linear and of the order of Δx2/Δt. This means that in the case of ν � Δx2/Δt, the system
is driven into a diffusive wave too early and, consequently, continuous metastable states are not reproduced
numerically.

Figure 2 shows this pathology of the MLF in the viscous case. It compares the solution to (1.1) with the
same initial data at different times, using EO and MLF. Both numerical solutions are similar at early stages.
Nevertheless, the one by MLF starts losing the N-wave shape earlier than EO and achieves the diffusive profile
in shorter time.
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Figure 2. Solutions of (1.1) with ν = 10−6 at t = 1, t = 100 and t = 5000, using (3.1) with
Δx = 0.2, Δt = 0.5 and numerical fluxes EO (blue) and MLF (red). (Color online).

3.2. The discrete optimization problem

There are two main ways of addressing optimal inverse design problems like the one we present in this work.
On the one hand, in the continuous approach, one first develops the optimization method at the continuous level
and then discretizes it. On the other hand, the discrete approach consists in discretizing every element involved
in the problem and then optimizing at the discrete level. See, for instance, [18] and the references therein for
an introduction on both approaches in the context of design in Computational Fluid Dynamics.

In the simulations done in this work, we follow the discrete approach to optimization. The discretization
of (1.1) is done according to (3.1). Regarding the discrete version of (1.2), we consider a simple quadrature rule:

JΔ(u0
Δ) =

Δx

2

∑
Z

(uN
j − u∗

j)2, (3.7)

where the target function u∗ has been discretized in the same manner as the initial data u0 in (3.1).
The class of admissible data for the discrete minimization problem (3.1)−(3.7) is an approximation of the

continuous one, constituted by piecewise constant functions satisfying (2.2). In the inviscid case, no further
assumptions are required by virtue of the OSLC satisfied by EO and MLF numerical fluxes [7]. To the best of
our knowledge, this condition is no longer available for the viscous case and, thus, an additional restriction is
required; namely,

‖u0‖L1(R)∩L∞(R) + TV (u0) ≤ K. (3.8)

Within that class of functions, the existence of minimizers for (3.1)−(3.7) is obvious since we are dealing
with a finite-dimensional problem. Indeed, if compactly supported initial data are chosen, solutions obtained by
explicit schemes have compact support too. The convergence of the discrete minimizers towards the continuous
one is less trivial. For the inviscid Burgers equation this fact was already proved in [9], where the authors used
the OSLC and a Γ -convergence argument. Regarding the viscous case, the same procedure is valid, but using
BV estimates to work around the lack of OSLC.

Remark 3.2. It is worth emphasizing that in [9] no distinction is made between EO and MLF (or any other
numerical scheme, as long as it is monotone and satisfies the OSLC) in terms of their numerical viscosity. In
fact, the convergence towards the continuous minimizer is true in both cases. However, as we show in this paper,
there is a significant difference in the rate of convergence, at least, in large-time problems.

3.3. Optimization techniques

Finally, we present two numerical techniques for solving (3.1)−(3.7). First we recall the classical gradient
descent method based on the adjoint methodology. Afterwards, we briefly describe some features of the open
source software IPOPT, which uses interior point optimization.
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For the sake of clarity, this section is developed without taking into account restriction (3.8). In fact, this
condition is not restrictive in our numerical experiments since the minimizing sequences we obtain do not activate
it. We refer to [11,34] for a review about classical methods for constrained problems, such as projected-gradient
methods and penalty-function methods.

3.3.1. Gradient descent by adjoint methodology

The gradient descent method is a widely spread technique to compute minimizers. This iterative process
consists in taking steps in the direction of the gradient of the functional with respect to the controls. Roughly
speaking, to minimize a functional J , starting from an initial guess z0, one iteratively computes

zk+1 = zk − εk∇J (zk), k ∈ N,

where εk > 0 is the size of the step. Since we are taking the gradient in a negative direction, J (zk+1) < J (zk) for
εk small enough, except for the case in which one reaches a minimum in a finite number of iterations: ∇J (zk) = 0.
Observe that, in general, as the minimum is approached, the gradient tends to zero and, hence, the sequence is
expected to converge to a (possibly local) minimizer. The convergence of the gradient descent method is well
understood when dealing with quadratic coercive functionals and, more generally, for C2 functionals exhibiting
strict convexity conditions (see [11]). More recently convergence results have been proved for a much larger class
of functionals satisfying the so-called �Lojaciewicz inequality (see, for instance, [1]).

In our case, the implementation of gradient methods requires a sensitivity analysis of J with respect to the
initial data u0. This can be developed in a very classical way for the viscous Burgers equation, because of its
parabolic nature and the regularity of solutions for t > 0. But this is a much more subtle issue in the hyperbolic
inviscid frame.

Let us consider perturbations of the form

uε
0(x) = u0(x) + εδu0(x),

with δu0 ∈ L1(R) ∩ L∞(R) and ε > 0. Then, the solution uε of (1.1) with initial data uε
0 is a classical solution

too. Moreover, it satisfies
uε = u + εδu + o(ε),

in a suitable functional setting and, in particular, in C([0,∞); L1(R))∩L∞(R× (0,∞)) and in classes of smooth
solutions for t > 0. Here, of course, δu stands for the solution of the linearized system:⎧⎨

⎩
∂tδu + ∂x (uδu) = ν∂xxδu, x ∈ R, t > 0,

δu(x, 0) = δu0(x), x ∈ R.
(3.9)

Thus, the Gateaux derivative of J at u0 in the direction δu0 is

δJ [δu0](u0) =
∫

R

(
u(x, T ) − u∗(x)

)
δu(x, T )dx. (3.10)

Now, to simplify this representation of δJ , we make use of the adjoint methodology. The corresponding
adjoint system to (1.1) is ⎧⎨

⎩
−∂tρ − u∂xρ = ν∂xxρ, x ∈ R, t > 0,

ρ(x, T ) = u(x, T ) − u∗(x), x ∈ R,
(3.11)

so that

δJ [δu0](u0) =
∫

R

ρ(x, 0)δu0(x)dx.
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Therefore, once we have computed the adjoint initial state, this expression provides us an easy way to compute
a descending direction for the continuous functional J :

δu0(x) = −ρ(x, 0), x ∈ R.

The new perturbed initial data that the gradient descent method yields will be given by

uε
0(x) = u0(x) − ερ(x, 0).

The same ideas apply in the inviscid case too, but the issue becomes much more technical because of the lack
of regularity of solutions. This leads to the necessity of developing suitable notions of solutions for the linearized
systems (see [5, 8, 9]).

Following the discrete approach, we now reproduce the same procedure at the discrete level. The discretization
of (2.1) is done according to (3.1)−(3.7). Now, it is easy to obtain the corresponding discrete adjoint system
for (3.1): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn
j = ρn+1

j + Δt
Δx

(
∂vg(un

j , un
j+1)

(
ρn+1

j+1 − ρn+1
j

)
+∂wg(un

j−1, u
n
j )

(
ρn+1

j − ρn+1
j−1

) )
+ νΔt

Δx2 (ρn+1
j−1 − 2ρn+1

j + ρn+1
j+1 ), j ∈ Z, n = N − 1 . . . , 0,

ρN
j = uN

j − u∗
j , j ∈ Z,

(3.12)

Remark 3.3. The same analysis as in (3.5) can be done for the discrete adjoint system, reordering (3.12) as
follows:

−ρn+1
j − ρn

j

Δt
− un

j

ρn+1
j+1 − ρn+1

j−1

2Δx
= R̄(ρn+1

j , ρn+1
j+1 , un

j ) − R̄(ρn+1
j−1 , ρn+1

j , un
j ) + ν

ρn+1
j−1 − 2ρn+1

j + ρn+1
j+1

Δx2 ,

where

R̄MLF (ρ, σ, u) =
σ − ρ

4Δt
,

R̄EO(ρ, σ, u) =
|u|

2Δx
(σ − ρ).

Of course, both systems are linear in the adjoint variables. Note that the numerical viscosity in EO is proportional
to the numerical solution uΔ, which decays towards zero as t → ∞ and, hence, vanishes in time [26]. On the
contrary, the amount of numerical viscosity for the MFL adjoint does not depend on the forward solution and,
hence, it is kept constant in time, as in (3.5). Thus, the large-time behavior of the discrete adjoint system is
affected in the same way as in (3.1).

To minimize (3.7), we will take the descent direction given by:

δu0
j = −ρ0

j , j ∈ Z. (3.13)

This direction is straightforwardly obtained following the same arguments as for the continuous level. Thus, the
new initial data u0,ε

Δ will be given by
u0,ε

j = u0
j − ερ0

j , j ∈ Z (3.14)

for some ε > 0 small enough. We refer to Section 6 for a discussion on the choice of the step-size ε.
Solving the adjoint system (3.12) requires knowing the solution of (3.1) at every time instant. For large-time

problems, storing the time-history solution can be computationally prohibitive. In our experiments we did not
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need to use such strategies, but problems like the sonic-boom minimization could require additional efforts. For a
detailed implementation of the adjoint methodology including memory-saving techniques, such as backtracking,
see [21].

Moreover, one cannot always expect this iterative process to finish successfully (i.e., finding an exact min-
imizer) in a reasonable time. When this occurs, additional stopping criteria need to be set. For instance, one
could stop the iterations by specifying:

• The smallest difference between two consecutive approximations of the optimal solution.
• The smallest value that the norm of the gradient can take.
• The smallest value that ε can take without descending.
• The absolute error between the approximation and the optimal solution, if this is known a priori.

Note that all of them are related to the proximity to a minimizer, either local or global. In our experiments we
opt for the third one, due to its algorithmic simplicity. We refer to [34] for an extended summary about these
and other method-specific stopping criteria. In conclusion, each iteration for the gradient descent method is as
shown in Algorithm 1.

Algorithm 1. Solve discrete optimization problem.

Input: Δx, Δt, N, {u0
j}j=0,...,M , {u∗

j}j=0,...,M

1: for j = 0 to M do
2: Set u0,new

j = u0
j

3: end for
4: compute {un

j }n=1,...,N
j=0,...,M from {unew,0

j }j=0,...,M using (3.1)

5: compute functional J (u0,new
Δ ) using (3.7)

6: while stopping criteria are not met do
7: for j = 0 to M do
8: set u0,old

j = u0,new
j

9: set ρN
j = uN

j − u∗
j

10: end for
11: compute {ρ0

j}j=0,...,M from {ρN
j }j=0,...,M and {un

j }n=1,...,N
j=0,...,M using (3.12)

12: compute descending step-size ε
13: for j = 0 to M do
14: set u0,new

j = u0,old
j − ερ0

j

15: end for
16: compute {un

j }n=1,...,N
j=0,...,M from {unew,0

j }j=0,...,M using (3.1)

17: compute functional J (u0,new
Δ ) using (3.7)

18: end while
19: for j = 0 to M do
20: set u∗,0

j = u0,new
j

21: end for
Output: Optimal solution {u∗,0

j }j=0,...,M

3.3.2. The interior-point optimization method with IPOPT

IPOPT has been developed for efficient optimization of large-scale nonlinear programing. It implements
interior-point or barrier methods, which provide a more attractive alternative to active set strategies in opti-
mizing problems with a large number of inequality constraints. IPOPT can converge to an optimal solution
even from infeasible starting points through using a filter line-search method. The underlying concept of filter
methods is to accept trial points along the line-search if they improve the objective function or improve the con-
straint violation instead of a combination of these two criteria defined by a combined merit function. The filter
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concept excludes the possibility of the solution to alternate between two iteration points, so that one improves
the objective function while the other avoids constraint violations (see [37]).

The optimal control problem discussed in (2.1) is formulated as a minimization problem with constraint
equations in the form of Partial Differential Equations (PDE). The PDE constraint is reduced to a set of
nonlinear algebraic equations through (3.1). The resulting nonlinear optimization problem is solved using a
primal-dual interior point algorithm implemented in the open-source IPOPT code.

Setting up a problem in IPOPT, as a general purpose optimization package, usually requires less effort and
time in comparison with developing an adjoint solver for a specific equation. However, IPOPT runs are more
computationally intensive due to the fact that IPOPT assembles and solves a linear system for the solution of
Karush–Kuhn–Tucker (KKT) optimality condition in each iteration if compared with less intensive backward
solution of the adjoint system adopted in GDM. IPOPT needs information on functional gradient, Jacobian of
constraints, and Hessian of augmented functional to form and solve the optimality condition using a Newton
method. In our implementation, we used automatic differentiation capabilities of AMPL to compute all required
derivatives [15].

Regarding the stopping criterion, the one in IPOPT is based on the norm of the residual in the optimality
condition. At the optimum point, the optimality condition has no residual. Optimization algorithm in IPOPT
stops when the norm of the residuals in the optimality condition gets smaller than a predefined tolerance, the
default value being 10−8.

4. Numerical experiments for the viscous Burgers equation

In this section we present a first numerical experiment showing the influence of the numerical viscosity
outlined in the previous section. The main aim is to emphasize that ignoring the dynamics of the continuous
model at the numerical level can produce undesired results in optimal control problems in large time horizons.

On one hand, we show that the gradient descent method performs successfully whenever the numerical flux
and the mesh sizes are chosen appropriately. On the other hand, we present examples where excessive numerical
viscosity dominates the physical one. In those cases, we show that IPOPT produces solutions with amplified
spurious numerical oscillations. We refer the reader to Section 4.4 for a comparison between the different
approaches.

4.1. Description of the numerical scheme

In order to show the numerical phenomena described above, let us choose the following target function:

u∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

3
2000

(
− e−(5

√
20+x)2 + e−(2

√
20+x)2

+
√

π x
(

erf(5
√

20 − x) + erf(2
√

20 + x)
))

, |x − 5| ≤ 25,

0, elsewhere.

(4.1)

The final time T , and viscosity ν have been chosen to be self-similar with the sonic-boom propagation in the
atmosphere which is characterized by low value of viscosity present in a long time duration. In doing so, we
selected the dimensionless number of Tν

ρ|u|2 where ρ represents density. ρ = 1 in Burgers equation in (1.1). In
other words, we chose T = 50, ν = 10−4 such that the dimensionless number is of the same order of magnitude
as that of the sonic boom propagation in the atmosphere.

Regarding the discretization parameters, in each experiment we first fix the mesh-size Δx. Then, the time-step
is chosen according to the stability condition of the scheme, that is

Δt

Δx
max
j∈Z

|u0
j | + 2ν

Δt

Δx2 ≤ Csta. (4.2)
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Figure 3. Target function and sampling for Δx = 0.2.

In the case of EO, Csta = 1, while for MLF, Csta = 1/2 (e.g. [10, 22]). However, in our experiments we use
Csta = 1/2 in both cases, unless otherwise specified, which allows us to better compare their performances. The
computational domain is chosen large enough to avoid reflection from boundaries.

Remark 4.1. Note that this target, being of compact support, is not exactly reachable for the viscous Burgers
equation. Indeed, in view of the Hopf–Cole transformation ([38], Chap. 4), it can be seen that the value of
solutions at the final time cannot vanish on an open set. Observe also that this target is not too steep (see Fig. 3).
In that way, we avoid the numerical consequences on the behavior of the algorithms caused by quasi-shocks [10]
and there is no need to increase the number of nodes across them [19]. This will allow us to better focus on the
impact of the large-time behavior on the performance of optimization techniques.

4.2. Results using GDM

We initialize the gradient descent method from the function u0 = 0. For each of the numerical fluxes, we
repeat the experiment using different mesh sizes, namely Δx = 0.1, 0.2, 0.4, 0.8.

As we observe in Figure 4, with EO we are able to compute a quite satisfactory minimizer even for Δx = 0.8,
which returns an optimal value below 10−5. Making Δx smaller, the obtained result is even better (blue lines in
Fig. 6) but yielding always a similar minimizer. This shows the robustness of the method, the optimal solution
being similar in the four cases.

Nevertheless, as we expected, the GDM does not perform so well when coupled with MLF. In Figure 5
we observe that large enough mesh-sizes introduce small over-shootings around the most steep regions of the
target function. This is due to the numerical viscosity that MLF introduces, which is proportional to Δx2/Δt.
When that ratio is comparable with ν, the dynamics of the numerical solution cannot preserve the positive and
negative masses (3.4) along the control horizon [0, T ]. As a consequence, the obtained initial datum requires
those oscillations in order to maintain the N-wave shape after large periods of time.

Figure 6 shows that, furthermore, the results obtained this way are always worse than the ones obtained
using EO. Note that, despite the oscillations, the optimal solution approaches the one obtained using EO as
Δx gets smaller. This is in agreement with the results of Section 3 on the convergence of discrete minimizers
towards the continuous ones. But, as expected, convergence is much slower as the mesh-size decreases for the
MLF.

Nevertheless, the values corresponding to MLF stay always above the ones obtained using EO after the same
number of iterations. In fact, GDM+MLF meets the stopping criteria much before than GDM+EO.



1384 N. ALLAHVERDI ET AL.

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-30 -20 -10  0  10  20  30  40  50

EO Solution (T=50) with N=100 nodes

u0
uT

Target

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-30 -20 -10  0  10  20  30  40  50

EO Solution (T=50) with N=200 nodes

u0
uT

Target

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-30 -20 -10  0  10  20  30  40  50

EO Solution (T=50) with N=400 nodes

u0
uT

Target

-0.05

 0

 0.05

 0.1

 0.15

 0.2

-30 -20 -10  0  10  20  30  40  50

EO Solution (T=50) with N=800 nodes

u0
uT

Target

Figure 4. Optimal solutions (red) for (2.1) with ν = 10−4 and their corresponding state at
time T = 50 (green) compared to the target (blue), using GDM+EO. From left to right and
top to bottom, Δx = 0.8, 0.4, 0.2 and 0.1 respectively. (Color online).

4.3. Results using IPOPT

In this section, the numerical experiment for viscous Burgers is solved with IPOPT using both EO and MLF
numerical fluxes introduced in equations (3.2) and (3.3). As explained in Section 3, the algebraic constraints
consists of the discretized form of the Burgers equation shown in equation (3.1).

The optimization results obtained with IPOPT are shown in Figure 7 for the EO discretization and in Figure 8
for the MLF scheme. The initial data u0 that is sought is shown in red solid lines, while the final solution at
time T and the target function u∗ are plotted respectively in green and blue lines, being indistinguishable within
plotting tolerance. For each scheme, the optimization problem is solved for four different cell sizes from coarse
to refined meshes corresponding to Δx = 0.2, 0.13̄, 0.10, 0.08. Both EO and MLF fluxes achieve a discrete initial
condition which reduce the functional to values less than 10−8.

The spurious oscillations in initial data obtained with MLF are due to the numerical viscosity that MLF
scheme introduces. In cases where numerical viscosity in MLF is comparable with the physical viscosity, MLF
discretization can alter the dynamics of the continuous system, especially in long time horizons. This fact
constitutes a warning regarding the selection of cell size and time-step when MLF discretization is employed.
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Figure 5. Optimal solutions (red) for (2.1) with ν = 10−4 and their corresponding state at
time T = 50 (green) compared to the target (blue), using GDM+MLF. From left to right and
top to bottom, Δx = 0.8, 0.4, 0.2 and 0.1 respectively. (Color online).
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Figure 6. Descent of the functional J using GDM coupled with EO and MLF. We take,
respectively, Δx = 0.8, Δx = 0.4, Δx = 0.2 and Δx = 0.1 for the case ν = 10−4 and T = 50.
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Figure 7. Optimal solutions for (2.1) with ν = 10−4 and T = 50, using EO flux discretization.
From left to right and top to bottom, Δx = 0.2, 0.13̄, 0.10, 0.08 mesh sizes respectively.

Indeed, from the inverse problem point of view, extra numerical viscosity in MLF makes the inverse problem
even more ill-posed.

Remark 4.2. To show that oscillations in MLF results are artifacts of the numerical viscosity, the MLF initial
data are evolved with a Burgers equation solver which adopts EO discretization and the result is shown in
Figure 9 on the left. The fact that EO retains oscillations from MLF initial condition corroborates the oscillations
in MLF results do not have any physical significance with regard to the Burgers equation and they are merely
undesirable artifacts of numerical viscosity of MLF. On the right plot of Figure 9, the optimization results
obtained from EO are evolved with MLF. As observed, the numerical viscosity in MLF solver causes more
dissipation in final solution u when it is compared with the target function u∗. In summary, the optimal initial
datum obtained by one method is not necessarily the best fit for the functional if it is evolved with a scheme
that introduces a different degree of numerical viscosity. Similar issues were already detected in [17], regarding
the different amount of numerical viscosity when solving the forward and the adjoint systems, respectively.

4.4. Comparing GDM and IPOPT results

Here, we compare qualitatively the optimization results of GDM and IPOPT. The results obtained from
GDM and IPOPT are quite similar in the case of EO. However, in the case of MLF, results obtained from
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Figure 8. Optimal solutions for (2.1) with ν = 10−4 and T = 50, using MLF flux discretization.
From left to right and top to bottom, Δx = 0.2, 0.13̄, 0.10, 0.08 mesh sizes respectively.

IPOPT contain more oscillations when compared with those of GDM. It is seen that even for the smallest cell
size corresponding to Δx = 0.08, IPOPT still maintains oscillations. From the frequency domain perspective, as
cells are refined, IPOPT will have the opportunity to include high frequency oscillations that were not resolved
on coarser meshes. IPOPT via using a higher order optimization scheme is capable of including high oscillations.

In the case of GDM, which employs gradient information calculated by solving the adjoint equation, it does
not allow high frequency oscillations due to the boundedness of backward adjoint solutions as we iterate in time.
This observation is consistent with the ill-posedness of the backward solution for viscous processes. Lower order
convergence of gradient method with adjoint methodology acts as a regularizing effect for the ill-posed problem
of the numerical viscosity term introduced by MLF method.

Another interesting observation regarding the extent of oscillations observed in GDM methods will be dis-
cussed in Section 6 in relation with the choice of the step-size in descent methods. It will be shown that adopting
big step-size ε in the line-search method may result in oscillatory results even in GDM+EO case as shown in
Figure 15. The aggressive optimal step-size may not guarantee a smooth descent toward the solution in the case
of Burgers equation. The sensitivity of the optimization algorithm to the initialization and to the step-size have
been further elaborated in Section 6.
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Figure 9. Optimal solutions (red lines) for (2.1) with ν = 10−4 and T = 50 obtained from
IPOPT+MLF (left) and IPOPT+EO (right), using Δx = 2/15. Initial data obtained with MLF
is evolved with EO discretization and vice versa, reaching solutions (green lines) which deviate
from the target function (blue lines). The optimal initial data obtained for one scheme is not
necessarily the best fit for the functional if it is evolved in time with a different scheme. (Color
online).

5. Numerical experiment for inviscid Burgers equation

So far, we have focused on the viscous Burgers equation with small viscosity. In this section, we revisit the
experiment shown in Section 4, but for the inviscid case, in which ν = 0.

It is important to recall that the inviscid Burgers equation is not time reversible. Thus, in principle, not all
states lead to a unique minimizer. Let us remark also that, in the absence of viscosity, shock discontinuities may
arise in finite time even for smooth initial data. Nevertheless, the target function (4.1) has been chosen in order
to avoid the severe influence of shocks on the optimization process to the extent possible. We refer to discussion
in Section 6 for more details about this issue in the context of the small viscosity and quasi-shocks, which can
be extended to the inviscid case.

The results obtained from the gradient descent method, using both EO and MLF, are shown in Figure 10.
In Figure 11 we display the results for the same experiment using IPOPT. One can immediately notice that
neglecting the physical viscosity does not cause any substantial difference in the performance of the algorithms.
As in the viscous case, EO performs well, while spurious oscillations pollute MLF results.

Remark 5.1. The conclusions of this experiment and the ones of the following section can also be extended to
the targets with shocks. Note that in those cases, the large-time effects may remain hidden due to the presence
of shocks. In Figure 12 one can observe EO performing better than MLF even when the target function is
discontinuous.

6. Other variants of numerical experiments

It is well known that iterative algorithms can be sensitive to the underlying assumptions considered in their
initialization. This section constitutes a warning on how results could be affected if intrinsic characteristics of
the optimal control problem (mainly, those related to the PDE and its discretized version) are not taken into
account. We revisit the experiment of Section 4, based on the viscous case, while modifying the initial settings
of the numerical optimization process. All the same, the conclusions can be extended to the inviscid case too.
In particular, we consider the following variants:

• Sensitivity to the initialization of optimization algorithms.
• Choice of the step-size in descent methods.
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Figure 10. Initial data u0(x) for inviscid Burgers equation obtained from GDM+EO (top)
and GDM+MLF (bottom). We use Δx = 0.8 (left) and Δx = 0.1 (right).

• Reducing the time-step.
• Prescribing an unreachable target function.

6.1. Sensitivity to the initialization of the optimization algorithm

In all numerical experiments presented so far, the initial data considered to initialize the optimization algo-
rithm were taken to be identically zero. To evaluate the impact of this choice, we solve (3.1)−(3.7) for target (4.1)
starting from other initial guesses: a sinusoidal function and a step function. The results obtained with GDM
are shown in Figure 13, while the ones for IPOPT are shown in Figure 14.

It is worth underlying the numerical results obtained by means of the step function initialization. This choice
of the initialization gives rise to a spike on the optimal initial datum regardless the method we employ. As
a matter of fact, the presence of discontinuities in the initial data, even in the viscous Burgers equation, is a
delicate issue to deal with (e.g, see [10]). Once they are raised, they have the tendency to persist when employing
discrete approaches as in here.

In terms of the value of the functional J , the presence of this kind of spikes in the initial data does not bear
any consequences, since it is attenuated during the evolution process. Let us remark that, in what concerns the
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Figure 11. Initial data u0(x) for inviscid Burgers equation obtained from IPOPT to fit target
function u∗(x) at time T = 50 using EO (top) and MLF (bottom) flux discretizations. We use
Δx = 0.2 (left) and Δx = 0.1 (right).
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Figure 12. Obtained initial data for a discontinuous target function under inviscid Burgers
dynamics, using EO (left) and MLF (middle) with Δx = 0.2. Resulting from the presence of
shocks, overshootings appear in their neighborhood, mixing large-time effects and oscillations
due to discontinuities. In any case, the functional clearly diminishes more in the case of EO.
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Figure 13. Optimal initial data u0(x) obtained with the GDM, using sinusoidal (left column)
and step function initialization (right). We compare EO (top) and MLF (bottom) numerical
fluxes. The experiment was performed for Δx = 2/15, T = 50 and ν = 10−4.

inviscid dynamics, p and q in (3.4) are not very sensitive to this kind of perturbations; a conclusion that can
be extrapolated to the viscous case. Nevertheless, misplaced discontinuities and, more generally, quasi-shocks
affect severely the optimization process.

6.2. Choice of the step-size in descent methods

Gradient descent methods based on the adjoint equation, that we introduced in Section 3, have several
variations depending on the way of choosing the descending direction or the step-size. We refer to [11, 34]
for basic reference about some of those. The main objective of these variations is, usually, to obtain a better
convergence rate. In this section we want to highlight that a quick descent at the very first iterations does not
imply a better global convergence. In other words, being conservative at the beginning can lead into a better
global performance of the optimization process.

In the method that we introduced in Section 3 we did not specify the way one should choose ε in (3.14).
Taking δu0 = −ρ(0) and a sufficiently small ε guarantees a descending step, even if it might not be optimal. In
the experiments of this paper concerning the GDM, in each iteration, we have chosen ε in the following manner:

εnew = 0.5r(1.2εold), (6.1)
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Figure 14. Optimal initial data u0(x) obtained from IPOPT to fit the target function u∗(x),
using sinusoidal (left column) and step function initialization (right). We compare EO (top) and
MLF (bottom) numerical fluxes. The experiment was performed for Δx = 2/15, T = 50 and
ν = 10−4.

with the smallest r = 0, 1, 2, . . . such that

J (u0,new
Δ ) ≤ J (u0,old

Δ ).

Remark 6.1. The chosen step-size is enough to show the pathological results that numerical viscosity produces
in long-time horizon problems. Note that we do not claim this step-size to be the best choice for this type
of problems. Indeed, steepest descent or conjugate gradient methods, together with an adequate line-search
strategy, should be more efficient generally. However, even in those cases, the same issues described along this
paper would arise too.

A bigger value for the initial ε0 will imply a deeper modification of the initial data in the earlier steps and,
possibly, a bigger decrease of the functional. Nevertheless, this does not guarantee a better convergence. As a
matter of fact, in Figure 15 we present the initial data obtained in the experiment of Section 4 after the first
iterations of the GDM+EO method with Δx = 0.1. In this case, we have chosen the step size according to (6.1),
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Figure 15. Initial data obtained after 1, 2 and 14 iterations of the GDM+EO method, started
from u0

Δ = 0, using ε0 = 0.1 (top) and ε0 = 1 (bottom) as initial step-sizes for (6.1). As shown in
Figure 16, the descent gained in the first iteration using a bigger step is lost due to the creation
of a misplaced quasi-shock.
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Figure 16. A big step at the beginning can take the descending path through flat regions.
For instance, the creation of a quasi-shock in an incorrect place, as in Figure 15, can lead to
a slower convergence. On the right, evolution of the functional using GDM+EO with ε0 = 0.1
(green) and ε0 = 1 (red) as initial step-sizes. (Color online).

but starting from ε0 = 0.1 and ε0 = 1. One can clearly notice that, after the first iteration, the initial data
obtained using ε0 = 1 produces a closer solution to the target function.

The cost of creating a misplaced quasi-shock is high and it is reflected in the subsequent iterations. Dealing
with quasi-shocks in optimal control problems like the one we present in this paper is a very hard task. Even
if solutions of (1.1) are continuous for t > 0, very steep regions (quasi-shocks) may arise if ν is small. From
the numerical point of view, these behave almost like shocks and, thus, their presence in incorrect places is not
desirable. Since the gradient descent method of Section 3 is designed from the point of view of smoothness of
solutions, it finds difficult to bypass quasi-shock misplacements. In a figurative manner, this can be represented
as in Figure 16. Note that taking a big step can reduce drastically the functional, but in exchange for a
badly located quasi-shock. This ends up driving the descending path through flatter regions that are harder to
overcome.
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Remark 6.2. Let us emphasize that this issue becomes critical in the presence of shocks or quasi-shocks. The
adjoint methodology seems to recover a rarefaction wave from which the wavefront arises in the end. Thus, big
perturbations of the initial data in the first steps end up with oscillations like the ones shown in Figure 15, deeply
affecting the efficiency of the algorithm. Of course, this issue could be mitigated if more complex techniques,
capable of handling shocks, were used. For instance, the alternating descent method developed for the hyperbolic
case in [9] and applied to the parabolic case in [10], allows to move the location of the discontinuities in the
initial data, reducing the number of iterations drastically. But the extension to solutions without discontinuities
is an interesting application that remains open.

6.3. Reducing the time-step

So far, we have chosen the largest time-step Δt that (4.2) allows, reducing Δx to illustrate the convergence
of the algorithms. However, one could think on taking a smaller time-step instead, choosing Δt such that

Δt < Δtmax = Csta
Δx2

Δx max
j∈Z

|u0
j | + 2ν

· (6.2)

In terms of stability of the numerical schemes, this is permitted. But, as we show below in Figure 17, the
optimization results can be severely affected by this fact.

In the case of EO, a smaller time-step does not have much influence on the results. On the contrary, MLF is
strongly affected by this situation. Let us recall that the large-time asymptotic profile of the MLF is given by
a viscous Burgers equation in which the viscosity parameter is proportional to Δx2/Δt. Therefore, a smaller
Δt implies a higher numerical viscosity. Figure 17 highlights this pathology in the case of the gradient descent
method.

The enhancement of the numerical oscillations on the recovered initial datum when reducing Δt for MLF
appears to be a purely linear issue. Actually, one can observe the same performance when solving the heat
equation numerically backwards in time. Let us apply the same technique of the MLF to the heat equation:

vt − νvxx = 0 ≈ vn+1
j − vn

j−1+2vn
j +vn

j+1
4

Δt
+ ν

vn
j−1 − 2vn

j + vn
j+1

Δx2 = 0.

In the Fourier space we have that
v̂(t, ξ) = e−νtξ2

v̂(0, ξ)

and

v̂n(ξ) =
(

1 −
(

4ν
Δt

Δx2 + 1
)

sin2

(
ξΔx

2

))n

v̂0(ξ).

Hence, the inverse problem is clearly ill-posed, both from the continuous and the discrete points of view. In
fact, we get, respectively,

v̂(0, ξ) = eνTξ2
v̂(T, ξ) (6.3)

and

v̂0(ξ) =
(

1 −
(

4ν
Δt

Δx2 + 1
)

sin2

(
ξΔx

2

))−N

v̂N (ξ). (6.4)

Note that, of course, a final solution v(x, T ) in L2(R) does not guarantee that the initial data is in L2(R),
since each frequency ξ ∈ R is weighted by an exponential term eνTξ2

. Moreover, for the corresponding initial
datum to be in L2(R), one needs the final target to be in an exponentially weighted space in the frequency
domain.

The discrete case is even more sensitive. In fact, a Taylor expansion of the weights in (6.3) and (6.4) already
denotes a substantial difference in the second term:

eνTξ2
= 1 + νT ξ2 + O(ξ4),
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Figure 17. Initial data u0(x) for inviscid Burgers equation obtained after 300 iterations of
the GDM+EO (top) and GDM+MLF (bottom). We use Δx = 0.1 and Δt = Δtmax (left) and
Δt = 0.2Δtmax (right).

while, taking N = T/Δt,

(
1 −

(
4ν

Δt

Δx2 + 1
)

sin2

(
ξΔx

2

))−N

= 1 +
(

Δx2T

4Δt
+ νT

)
ξ2 + O(ξ4).

Therefore, the dissipation is enhanced in the whole spectrum when making Δt smaller for a fixed Δx.

6.4. The set of reachable target functions

The aim of the forthcoming discussion is to informally illustrate the underlying performance of the discrete
approximations with less degree of rigor in the terminology.

Let us denote by S(t) the semigroup corresponding to equation (1.1). The approximated solutions given
by (3.1) generate a semigroup too. Let us denote by SEO

Δ (t) the one corresponding to Engquist−Osher and by
SMLF

Δ (t) the one for modified Lax−Friedrichs. The previous experiments exhibit that SEO
Δ (T )[L1(R)] approxi-

mates quite accurately the set S(T )[L1(R)], even for large values of T . On the other hand, MLF requires smaller
values of Δx to reproduce S(T )[L1(R)] (see Fig. 18). For large enough Δx, MLF looks for the closest solution
within SMLF

Δ (T )[L1(R)], producing the spurious oscillations that we have shown.
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• u∗

•
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opt

S(T )[L1]

SMLF
Δ (T )[L1]

Δx → 0

S(T )[L1]

SMLF
Δ (T )[L1]

Figure 18. Set of functions that are reachable at time T by the semigroup S(t) of the
Burgers equation for L1 initial data and the semigroup SMLF

Δ (t) associated to the modified
Lax−Friedrichs scheme. As Δx → 0, the set SMLF

Δ (T )[L1(R)] gets closer to S(T )[L1(R)].

•u∗

•uT
opt S(T )[L1]

SMLF
Δ (T )[L1]

•u∗

•
uT

opt

S(T )[L1]

SEO
Δ (T )[L1]

Figure 19. Projection of the target function onto the reachable sets by modified
Lax−Friedrichs (left) and Engquist−Osher (right). The approximation obtained by EO is closer
than the one by MLF.

In all previous experiments we have used target functions that can be very well approximated following the
dynamics of the Burgers equation. In particular, we have chosen functions that satisfy the Oleinik condition. It
is well known that solutions to (1.1) satisfy ux ≤ 1/t in the sense of distributions.

If the target is not in S(T )[L1(R)] (for instance, it is enough to take a function u∗ such that u∗
x(T ) > 1/T in

some interval), both numerical semigroups will project the target onto their reachable sets (Fig. 19). Since the
set SMLF

Δ (T )[L1(R)] is smaller than S(T )[L1(R)], MLF will make use of spurious oscillations again.
Let us illustrate this with another experiment. Let us consider a new target function u∗∗, given by

u∗∗(x) =

⎧⎪⎪⎨
⎪⎪⎩

1
100

(
− e−(5

√
20+x)2 + e−(2

√
20+x)2

+
√

π x
(

erf(5
√

20 − x) + erf(2
√

20 + x)
))

, |x − 5| ≤ 25,

0, elsewhere.

(6.5)

Note that u∗∗ is the same as u∗, but with a larger amplitude. In this case, we have chosen the target function
such that u∗∗

x (x) > 1/50 in some interval. Therefore, u∗∗ cannot be reached at T = 50 following the dynamics
of the Burgers equation, not even approximately.
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Figure 20. Initial data u0(x) obtained using GDM+EO (top) and GDM+MLF (bottom) to
solve (3.1)−(3.7) for the target function u∗∗. We use Δx = 0.8 (left) and Δx = 0.1 (right) with
ν = 10−4.

Indeed, we can observe in Figure 20 that the optimal solutions do not fit u∗∗. Let us remark that the closest
function that GDM can recover at final time T = 50 is precisely the one that has slope of 1/50 in the intermediate
part which is the maximum slope allowed by the Oleinik condition.

Let us reinterpret the situation from a different point of view. Assume we are given a time T in which u∗∗

can be fully reached. The way the GDM tries to recover u∗∗ is by moving both peaks back towards x = 0
and slightly increasing their amplitude. As the final time T is increased, the peaks will be moved further to
x = 0. There exists a maximum finite time this can be done before forcing the initial data to be multivalued.
The maximum time is inversely proportional to ‖u∗∗

x ‖∞, according to the Oleinik condition. When dealing with
T larger than this maximum time allowed, GDM follows the same procedure but from the closest achievable
function which satisfies ux ≤ 1/T , as we show in the simulations.

7. Functional landscapes

In this section we plot some of the landscapes of the functionals we have minimized, in order to explain
the observed phenomena in the behavior of the minimizers. As discussed in Section 4, the obtained minimizers
exhibit a critical sensitivity to the choice of EO, or MLF in large-time behavior regime.

The difference among the obtained solutions could correspond to the presence of multiple local minimizers
of the functionals under consideration. In order to shed light on this issue a simple experiment is proposed to
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Figure 21. Initial conditions are constructed from superposing parameterized sinusoidal oscil-
lations on a base “smooth N-wave” (left). Target function u∗ is constructed from the evolution
of the initial data corresponding to the N-wave and free from any oscillations. The optimal
solution would be a N-wave without superposed oscillations. Final time is T = 50 and physical
viscosity is ν = 10−4.

visualize the functional J (u0) for a set of initial conditions parameterized with two degrees of freedom. The
functional landscape is plotted as these parameters vary, to check the possible presence of multiple wells.

For constructing the initial data, a set of parameterized sinusoidal waves are superposed on a smooth N-wave
shaped function w, obtained by subtracting and scaling two error functions. The oscillatory signals are placed
only in the neighborhood of sharp slopes of the N-wave and they are parameterized with their amplitude r and
frequency s as follows:

u0
r,s(x) =

{
w(x) + r sin(sx), near steep fronts,
w(x), elsewhere,

where

w(x) = h x
(

erf(m(x − a)) − erf(m(x − b)
)

Parameters a and b are related to the location of the peaks and m to the sharp slopes they create. Also, the
slope of the middle part of the N-wave is proportional to h. In any case, we will fix all of them, leaving r and s
the only degrees of freedom. A sample initial condition with sinusoidal oscillations is depicted in Figure 21(left).

The target function that we choose in this case is selected such that it corresponds to the solution of viscous
Burgers equation at t = T starting from u0

0,0; this means that the desired initial condition does not contain any
sinusoidal oscillation. Hence, optimal solutions will be achieved for all pairs of (r, 0), and (0, s) where r, s ∈ R

(which, indeed, correspond to the same function). Of course, the cost function value corresponding to these
pairs would be exactly zero. A plot of the target function and its corresponding initial condition is shown in
Figure 21(right).

In our experiment, we first sample pairs of (r, s) ∈ [−0.025, 0.025] × [0, 2π]. Then, we compute uΔ(x, T )
using (3.1) (with ν = 10−4) from initial condition u0

r,s(x) and evaluate the corresponding cost function JΔ(u0
r,s).

In particular, we set w with a = −10, b = 20, h = 0.003 and m = 0.3; that is,

w(x) = 0.003 x
(

erf(0.3(x + 10)) − erf(0.3(x − 20)
)
.
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Figure 22. Functional landscape (r, s,J ); Engquist−Osher (top row) and modified
Lax−Friedrichs (bottom row) fluxes are used for discretizing the viscous Burgers equation with
Δx = 0.2 (left), and Δx = 0.10 (right). The landscape of MLF is less sensitive to the variation
of parameters (r, s) due the dissipative nature of MLF.

The surface plots of the cost function J (u0
r,s) for the sampled (r, s) are shown in Figure 22. In the top row,

uΔ is calculated using EO flux with Δx = 0.2 (left), and Δx = 0.1 (right) mesh-sizes; while in the bottom row,
uΔ is evaluated by using MLF flux.

As observed from figures, for the range of initial conditions considered, the functional landscapes obtained
from EO and MLF discretizations show no presence of multiple wells. The landscape obtained from EO shows
more sensitivity to the variation of the parameters. On the contrary, MLF dissipates sinusoidal signals and the
landscape obtained from MLF is less sensitive to higher frequencies s � 1. Moreover, in the case of MLF the
choice of Δx (and, Δt) also impacts the sensitivity of the landscape.

8. Conclusions and perspectives

This paper further builds on the previous work done on analyzing discretization schemes that preserve the
large-time behavior [26]. Here, we showed some of the pathologies that may arise in numerical approximation
of optimal control problems in such regimes. In particular, we highlighted the performance of classical flux
discretization methods and the consequences if the discretization scheme is not chosen properly. It was shown
how the choice of the discretization scheme can alter the underlying dynamics of the system and its corresponding
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functional. Moreover, the optimal initial datum obtained by one discretization scheme may not be the best fit
for the functional if it is evolved in time with a different numerical scheme.

In this regard, we presented several numerical experiments based on the resolution of the Burgers equation
(both viscous and inviscid) for large times. We emphasize that, in large-time regime, the effect of numerical
viscosity is pronounced. The optimization was done employing gradient descent method (GDM) and an open
source interior point optimization software (IPOPT), but the conlusions can be extended to other optimization
techniques.

In summary, following conclusions are made:

• The performance of MLF is not satisfactory in comparison with EO. The initial data obtained with MLF
can be quite oscillatory in the vicinity of sharp slopes for course grids. Also, the convergence rate of MLF is
slower in comparison with EO for similar grids.

• The performance of EO when employed in GDM or IPOPT is satisfactory. The initial data obtained is less
sensitive to the choice of Δx and Δt. Furthermore, the results are also less sensitive to the initial setting of
the optimization algorithms.

• The numerical viscosity present in MLF is proportional to Δx2/Δt; hence, the solution is quite dependent on
the domain discretization. While coarse discretizations result in more numerical viscosity, small time steps
can increase the numerical viscosity too. This point underlines the importance of selecting a proper CFL
number in the simulations done with MLF.

• Results obtained from IPOPT with MLF were more oscillatory in comparison with those of GDM method.
The MLF functional shows insensitivity to the high frequency oscillations as it was illustrated in the func-
tional landscape. It is likely to obtain two dissimilar solutions in terms of high frequency contents if we
slightly perturb the convergence tolerance in the optimization algorithm. This observation is consistent with
the ill-posedness of the backward solution of the diffusion process.

• The possibility of presence of multiple distinct local minima in the functional landscape, when the target is
approximately reachable, is excluded based on the functional landscape visualization. However, the functional
landscape shows flatness (or lack of sensitivity) in the neighborhood of minimizers in the case of MLF.

• For optimization problems with physically unreachable target functions, which they do not satisfy Oleinik
inequality, the optimization solvers try to fit the target as best as possible within their reachable sets. In
these situations, EO performance is again more robust compared with MLF.
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