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ENERGY CONSERVATIVE FINITE ELEMENT SEMI-DISCRETIZATION
FOR VIBRO-IMPACTS OF PLATES ON RIGID OBSTACLES

Cédric Pozzolini1, Yves Renard1 and Michel Salaün2

Abstract. Our purpose is to describe and compare some families of fully discretized approximations
and their properties, in the case of vibro-impact of plates between rigid obstacles with non-penetration
Signorini’s conditions. To this aim, the dynamical Kirchhoff–Love plate model is considered and an
extension to plates of the singular dynamic method, introduced by Renard and previously adapted to
beams by Pozzolini and Salaün, is described. A particular emphasis is given in the use of an adapted
Newmark scheme in which intervene a discrete restitution coefficient. Finally, various numerical results
are presented and energy conservation capabilities of several numerical schemes are investigated and
discussed.
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1. Introduction

The obtention of reliable and predictive simulations of the dynamics with impacts of thin plates with existing
numerical schemes remains very difficult. The vibro-impact of thin structures, plates and beams, intervene in the
study of many complex industrial structures. For instance, it is the case of structures which originally motivated
this study, namely satellite solar arrays. Indeed, during the launch of a satellite, the level of excitation is very
high and the repeated impacts introduce strong nonlinearities which give the interpretation of measured signals
very difficult.

Vibro-impact has been the subject of a wide literature which is particularly developped for rigid multi-body
dynamics (see for instance [4, 17, 22]). A main difficulty for modeling impacts of thin structures is that, for
usual models (Kirchhoff–Love or Mindlin–Reissner), the elasticity along the thickness is not taken into account.
Accordingly, at impact, the plate should instantly rebound and the level of restitution during impact must be
modeled. Contrary to what has been studied for the impact of rigid bodies, the relationship between numerical
schemes and impact law has not been established for thin elastic structures. Even the expression of such a
restitution law for thin elastic structures remains an open question.
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Nevertheless, an important result in that domain is due to Dumont and Paoli [10] and deals with vibro-impact
of Euler–Bernouilli beams. They show the weak convergence of a subsequence of numerical solutions, obtained
with finite elements in space and a (β, γ)-Newmark scheme (for γ = 1/2) in time. Moreover, a conditional
stability for β ∈ [0, 1/2) is established together with an inconditional stability for β = 1/2. However, no
information on any restitution law at impact is exhibited for the limit solution. Then, in [28], we have extended
Dumont’s and Paoli’s results to Kirchhoff–Love plates for β = γ = 1/2. So we have presented a convergence result
of a fully discrete scheme toward one solution of the continuous problem. This established both an existence
result for the solution of the continuous problem and ensured that one subsequence weakly converged toward
this solution. But we have not obtained any uniqueness result. In particular, such a result would certainly require
the ability to express an additional impact law (see [22, 24]). Moreover, in [28], we have also presented some
numerical experiments, using a classical Newmark scheme, which means use of a “classical” mass matrix (in
opposition to the reduced mass matrix which will be introduced in the following), and which is fully implicit (that
will be interpreted further as an absorbing shock). Those numerical results exhibited a decrease of mechanical
energy of the plate, due to impacts, while it should have been conserved in the case of a perfect impact. This
case will also be studied in Section 4.4. Following [27], in which an Euler–Bernouilli beam model was studied,
this paper aims at addressing the problems of energy conservation and impact law in numerical schemes for
bending plates.

Another difficulty appears in elastodynamic contact problems. Most of usual numerical schemes exhibit
spurious oscillations on the contact displacement and stress (see for instance [18]). This has already led to many
researches and a great variety of solutions were proposed. A first idea is to add damping terms, but it leads
to a loss of accuracy on the solution. However, let us remark that adding damping leads to some existence
results, such as [19]. Another way is to implicit the contact stress (see [5,9]) but kinetic energy of the contacting
nodes is lost at each impact. Looking for some energy conserving schemes is now a widely adressed problem, see
for example [15, 20, 21, 30]. Nevertheless, the proposed schemes exhibit large oscillations on the contact stress.
Besides, most of them do not strictly respect the constraint. Moreover, the way to establish balance of energy is a
mathematicaly very difficult problem, even in the simple case of viscoelastic bar model with Signorini condition
(see [25, 26]).

In [18], the authors studied the numerical instabilities caused by spatial semi-discretization for linear elasto-
dynamics frictionless contact problems in the small deformations framework. It was shown that the main cause
of ill-posedness is due to the inertia of the nodes on the contact boundary. Then an original Mass Redistribution
Method (MRM) which consists in the redistribution of the mass near the contact boundary is proposed to re-
cover the well-posedness of the semi-discrete problem and ensures the solution to be energy conserving for elastic
frictionless contact problems. Furthermore the MRM eliminates spurious oscillations on the contact boundary
and respects the non-penetration constraint. Following the seminal work of [18], the authors of [8, 12, 14, 16]
exploit the mass reduction technique to treat other dynamic contact problems.

An insight to the ill-posedness origin was given by Renard [29] as an adapted modified mass method (inspired
from the MRM, and named “singular dynamic method”). Indeed, it is known that velocities may be discon-
tinuous when an impact occurs. But velocities are regularized by a classical finite element discretization of the
displacement, with concentration of the mass to the nodes. The singular dynamic method consists in performing
different space semi-discretization for the velocity and displacement. Then the mass term is modified (in such
a way that the mass matrix is singular) and the contact condition is enforced by a variable inequality. Owing
to this mass modification, inertial forces cannot trigger spurious oscillations at the boundary. Furthermore, the
system tends to conserve its energy in frictionless contact problem, which ensures a good behavior in long time.

As the Kirchhoff–Love plate model is obtained by the same kind of assumptions than the Euler–Bernoulli
beam theory for bending, it is natural to expect to improve vibro-impacts numerical simulations by the same
way. Then, in this study, we use the singular dynamic method introduced in [29] and we follow the ideas
introduced in [27], for Euler–Bernouilli beam model, to extend those works to the Kirchhoff–Love plate model.
So it can be hoped this method will provide energy conserving finite element semi-discretizations.
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So, this paper is organized as follows. In the next section, the model problem we adress is described. Then, the
so-called singular dynamic method is introduced, for which stable singular mass matrices schemes are derived in
the case of our plate model. In Section 4 and 5, two fully discretized schemes are presented: a first one derived
from the Newmark scheme, with an adaptation that is intended to model a restitution coefficient, and a second
one obtained with a midpoint rule. Various numerical results investigate energy conservation capabilities of the
previous schemes.

2. Notations and statement of the problem

2.1. Variational formulation of the plate model

Let us consider a thin elastic plate i.e. a plane structure for which one dimension, called the thickness, is very
small compared to the others. For this kind of structures, starting from a priori hypotheses on the expression
of the displacement fields, a two-dimensional problem is usually derived from the three-dimensional elasticity
formulation by means of integration along the thickness. Then, the unknown variables are set down on the
mid-plane of the plate.

Let Ω be an open, bounded, connected subset of the plane R
2, with Lipschitz boundary. It will define the

mid-plane of the plate. Then, the plate in its stress free reference configuration coincides with domain

Ωε = Ω × ] − ε , +ε[=
{

(x1, x2, x3) ∈ R
3 / (x1, x2) ∈ Ω and x3 ∈ ]−ε ; ε[

}
,

where 2 ε > 0 is called the thickness.
In plate theory, it is usual to consider the following approximation of the three-dimensional displacements

for (x1, x2, x3) ∈ Ωε ⎧⎨⎩u1(x1, x2, x3) = u1(x1, x2) + x3 ψ1(x1, x2)
u2(x1, x2, x3) = u2(x1, x2) + x3 ψ2(x1, x2)
u3(x1, x2, x3) = u3(x1, x2).

(2.1)

In these expressions, u1 and u2 are the membrane displacements of the mid-plane points, u3 is the deflection,
while ψ1 and ψ2 are the section rotations. In the case of an homogeneous isotropic material, the variational plate
model splits into two independent problems: the first, called the membrane problem, deals only with membrane
displacements, while the second, called the bending problem, concerns deflection and rotations. In this paper,
only the bending problem is addressed, and we shall consider the Kirchhoff–Love model, which can be seen as
a particular case of (2.1) obtained by introducing the so-called Kirchhoff–Love assumptions

ψ = −∇ u3 ⇔
{
ψ1 = −∂1 u3,
ψ2 = −∂2 u3,

where ∂α stands for the partial derivative with respect to xα , for α = 1 or 2. Consequently, the deflection is
the only unknown for the bending Kirchhoff–Love plate problem. For convenience, it will be denoted by u all
along the following of this paper. So, if f is the resulting transverse loading, the variational formulation of the
Kirchhoff–Love elastodynamical model for a thin elastic plate reads as⎧⎪⎪⎨⎪⎪⎩

Find u = u(x, t) with (x, t) ∈ Ω × [0, T ] such that for any w ∈ V∫
Ω

2ρε
∂2u

∂t2
w dx+

∫
Ω

2 E ε3

3 (1 − ν2)
[
(1 − ν) ∂2

αβu+ ν Δu δαβ

]
∂2

αβw dx =
∫

Ω

f w dx,
(2.2)

where ∂2
αβu =

∂2u

∂xα ∂xβ
. The associated initial conditions are

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x), ∀x ∈ Ω. (2.3)
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Figure 1. Example of bending clamped plate between rigid obstacles.

In (2.2), the mechanical constants, for a plate made of a homogeneous and isotropic material, are its Young’s
modulus E, its Poisson’s ratio ν and its mass density ρ. Moreover, δαβ is the Kronecker’s symbol and the
summation convention over repeated indices is adopted, Greek indices varying in {1, 2}. If the plate is assumed
to be clamped on a non-zero Lebesgue measure part of the boundary ∂Ω denoted Γc and free on Γf , such as
∂Ω = Γc ∪ Γf , the space of admissible displacements is

V = { w ∈ H2(Ω) / w(x) = 0 = ∂nw(x) , ∀x ∈ Γc }, (2.4)

where ∂nw is the normal derivative along Γc andH2(Ω) is the classical Sobolev space, the definition of which can
be found in [1] for instance. Finally, let us recall that (2.2) is well-posed, as the bilinear form a : V × V → R

defined by

a(u,w) =
∫

Ω

2 E ε3

3 (1 − ν2)
[
(1 − ν) ∂2

αβu+ ν Δu δαβ

]
∂2

αβw dx, (2.5)

is a scalar product on V which is equivalent to the canonical scalar product of H2(Ω) (for more details, see [28]
for example).

2.2. Vibro-impact formulation of the plate model

Let us now introduce the dynamic frictionless Kirchhoff–Love equation with Signorini’s contact conditions
along the plate. We assume that the plate motion is limited by rigid obstacles, located above and below the
plate (see Fig. 1). So, the displacement is constrained to belong to the convex set K ⊂ V given by

K = {w ∈ V / g1(x) ≤ w(x) ≤ g2(x), ∀x ∈ Ω}, (2.6)

where g1 and g2 are two mappings from Ω to R̄ := R ∪ {−∞,+∞} such that there exists g > 0 with

g1(x) ≤ −g < 0 < g ≤ g2(x), ∀x ∈ Ω. (2.7)

Then, the mechanical frictionless elastodynamic problem for a plate between two rigid obstacles can be
written as the following variational inequality⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find u : [0, T ] → K such that for almost every t ∈ [0, T ] and for every w ∈ K∫
Ω

2ρε
∂2u

∂t2
(t) (w − u(t)) dx+ a(u(t), w − u(t)) ≥

∫
Ω

f (w − u(t)) dx

u(x, 0) = u0(x) ∈ K,
∂u

∂t
(x, 0) = v0(x) ∀x ∈ Ω.

(2.8)

Setting H = L2(Ω), if it is assumed that f ∈ L2(0, T ; H), u0 ∈ K and v0 ∈ H, we proved in [28] that problem (2.8)
has a solution u belonging to L2(0, T ; K). For this, we have extended to plates a result for Euler–Bernouilli beams
due to Dumont and Paoli [10], who established convergence of the solutions of fully discretized approximations
of the problem. As far as uniqueness is concerned, as a counterexample has been given in [2] for beams, we
cannot expect it for (2.8). Finally, there is no result about conservation of energy at the limit.
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Figure 2. HCT triangle and FVS quadrangle. Location of degrees of freedom and sub-triangles.

In fact, problem (2.8) does not describe completely the motion. A constitutive law for impact should be added
(see [22]). For example, if there is an impact at point x0 and time t0, this law should give the relation between
velocities before and after impact

∂u

∂t
(x0, t

+
0 ) = −e ∂u

∂t
(x0, t

−
0 ), (2.9)

where scalar e, called restitution coefficient, is a real number belonging to [0, 1]. e = 1 matches to a perfect
impact: Velocity is conserved, up to its sign, whereas e = 0 is an absorbing shock. Let us remark that, in [24],
the authors show that the restitution coefficient for a bar is a rather ill-defined concept. For instance, their
numerical experiments underline the observed restitution coefficient depends very strongly on the initial angle
of the bar with horizontal. Moreover, in the particular case of a slender bar dropped on a rigid foundation, the
chosen value of the restitution coefficient does not seem to have a great influence on the displacement limit when
the space step tends to zero. Despite the previous remarks, our idea is to explicitly incorporate those restitution
coefficient into (2.8), particularly when e = 1, and to observe how some numerical schemes will simulate the
experimental behavior of a vibrating plate.

3. Singular dynamic method

3.1. Finite element model for the plate problem

First, let us introduce the space discretization of the displacement. As the Kirchhoff–Love model corresponds
to a fourth order partial differential equation, a finite dimensional approximation space V

h of the continuous
space H2(Ω) has to be built. In order to have a conformal method, i.e. V

h ⊂ H2(Ω), functions of V
h must be

continuously differentiable, which needs the use of C1 finite elements. Among the available elements having this
regularity (see [6]), the reduced HCT (Hsieh–Clough–Tocher) triangles and FVS (Fraeijs de Veubeke–Sanders)
quadrangles are of particular interest. For the HCT (resp. FVS) element, the triangle (resp. quadrangle) is
divided into three (resp. four) sub-triangles (see Fig. 2). The basis functions of these elements are P3 polynomials
on each sub-triangle and matched C1 across each internal edge. In addition, to decrease the number of degrees
of freedom, the normal derivative is assumed to vary linearly along the external edges of the elements (this
assumption does not hold on the internal edges). Finally, both for triangles and quadrangles, there are only
three degrees of freedom on each node: The values of the function and its first derivatives. So, these elements
have the two following properties:

(1) With the reduction, the computational cost is limited to three degrees of freedom for each node of the
mesh, like a classical Mindlin–Reissner element for which each node has also three degrees of freedom (the
deflection and the two section rotations).
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(2) For regular problems (see [7]), the theoretical error is in O(h) for the energy norm and O(h2) for the
displacement norm, where h stands for the mesh parameter.

Then, the reduced HCT or FVS elements and the standard Mindlin elements have the same features as far as
numerical cost and accuracy are concerned.

Remark 3.1. In the following numerical tests, we shall also consider the complete HCT triangle and the
classical Argyris triangle, which uses P5 polynomials and is another C1 finite element.

3.2. Well-posed space semi-discretization

The goal of this section is to present a well-posed space semi-discretization of problem (2.8). As usual, a
Galerkin method is used for space discretization but the original idea, due to Renard [29], is to introduce
different approximations for displacement u and velocity v = ∂u

∂t . So, let V
h and H

h be two finite dimensional
vector subspaces of V and H respectively. Let K

h ⊂ V
h be a closed convex nonempty approximation of K. The

new approximation of (2.8) reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh : [0, T ] → K
h and vh : [0, T ] → H

h such that for all t ∈ (0, T ]∫
Ω

2ρε
∂vh

∂t
(wh − uh) + a(uh, wh − uh) ≥

∫
Ω

f (wh − uh) dx, ∀ wh ∈ K
h

∫
Ω

2ρε
(
vh − ∂uh

∂t

)
qh dx = 0, ∀ qh ∈ H

h

uh(x, 0) = uh
0 (x), vh(x, 0) = vh

0 (x), ∀x ∈ Ω,

(3.1)

where uh
0 ∈ K

h and vh
0 ∈ H

h are approximations of u0 and v0 respectively. The case H
h = V

h clearly
corresponds to a standard Galerkin approximation of (2.8).

Let us now introduce some basis of V
h and H

h, say respectively φi (1 ≤ i ≤ NV ) and ψi (1 ≤ i ≤ NH).
The above discrete variational formulation is associated with matrices K (stiffness matrix), B and C (mass
matrices) of respective sizes N2

V , NH ×NV and N2
H , defined by

Kij = a(φi , φj), Bij =
∫

Ω

2ρε ψi φj dx, Cij =
∫

Ω

2ρε ψi ψj dx.

The related vectors, say F , U (components ui) and V (components vi), of size NV , NV and NH respectively,
are such that

Fi =
∫

Ω

f φi dx, uh(t) =
NV∑
i=1

ui(t)φi, vh(t) =
NH∑
i=1

vi(t)ψi.

Let us introduce the notations Ẇ =
∂W

∂t
and Ẅ =

∂2W

∂t2
. We remark that the second equation of (3.1) reads

C V (t) = B U̇(t).

Since C is always invertible, we obtain V (t) = C−1 B U̇(t) and, then, V̇ (t) = C−1 B Ü(t), which allows to
eliminate V . So the semi-discretized problem (3.1) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Find U : [0, T ] → K
h and V : [0, T ] → H

h such that for all t ∈ (0, T ]

(W − U(t))T (MÜ(t) + KU(t)) ≥ (W − U(t))T F, ∀W ∈ K
h,

C V (t) = B U̇(t),

U(0) = U0, V (0) = V0,

(3.2)
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where M is the so-called singular mass matrix defined by

M = BT C−1 B. (3.3)

Let us now explain how the approximation K
h of K is obtained. We recall that

K = {w ∈ V / g1(x) ≤ w(x) ≤ g2(x), ∀x ∈ Ω}.
For 1 ≤ i ≤ NN , let xi be the nodes of the mesh, except those which are clamped. Then, unilateral constraints
are only considered at these nodes. It means convex K

h is

K
h = {wh ∈ V

h / g1(xi) ≤ wh(xi) ≤ g2(xi), 1 ≤ i ≤ NN}. (3.4)

With vector notations, setting α−
i ≡ g1(xi) and α+

i ≡ g2(xi) for all i, this space may be written (we keep
the same notation for simplicity)

K
h = {W ∈ R

NV / α−
i ≤ (Gi)T W ≤ α+

i , 1 ≤ i ≤ NN},
where Gi is the vector of R

NV such that (Gi)T W = wh(xi), for each node xi .

Remark 3.2. As seen in Section 3.1, since we deal with a fourth order problem with respect to the space
derivative, it is not possible to consider a linear space approximation. In fact, for this plate model, the degrees
of freedom are node displacements and their derivatives. So, in the above approximation of K, we consider only
constraints on node displacements: In particular, the effect of the first derivatives, namely the curvature, is not
taken into account. Then, in this framework, the plate could cross the obstacle between two nodes, but we shall
neglect this aspect in the following.

Furthemore, functions g1 and g2 take their values in R̄, which means that α±
i may be equal to ±∞. In this

case, the corresponding constraint is worthless. For instance, it will be the case if the obstacles are reduced to
end stops along one edge of the plate (see Fig. 1). Moreover, it is assumed that the clamped edge satisfies the
constraints. So, it is natural to introduce the number, say NG , of “real” constraints. For example, NG is equal
to NN for flat obstacles up and under all the plate.

Now, let us introduce matrix G, of size NG × NV , which components are Gij = (Gi)j . As the previous
choice is clearly such that vectors Gi are linearly independent, using the Lagrange multipliers, the discrete
problem (3.2) is also equivalent to the following one⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find U : [0, T ] → K
h and V : [0, T ] → H

h such that for all t ∈ (0, T ]

MÜ(t) + KU(t) = F +
NG∑
i=1

Λi(t)Gi,

⎧⎨⎩Λi(t) ≥ 0 , (Gi)T U(t) ≥ α−
i , Λi(t)

(
(Gi)T U(t) − α−

i

)
= 0

or
Λi(t) ≤ 0 , (Gi)T U(t) ≤ α+

i , Λi(t)
(
(Gi)T U(t) − α+

i

)
= 0

⎫⎬⎭ 1 ≤ i ≤ NG,

C V (t) = B U̇(t),

U(0) = U0, V (0) = V0.

(3.5)

Here, the Lagrange multipliers Λi are the reaction forces.
Now, let us introduce the following subspace F

h of V
h , defined by

F
h =

{
wh ∈ V

h /

∫
Ω

2ρε wh ξhdx = 0, ∀ξh ∈ H
h

}
.

With the previous definitions, we have: F
h = kerB, and the proof of the following result is given in [29].
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Theorem 3.3. If V
h, H

h and K
h satisfy the following Inf-Sup condition

inf
Q∈R

NG\{0}
sup

W∈Fh\{0}

QT G W

‖Q‖ ‖W‖ > 0, (3.6)

then problem (3.2) has a unique solution U(t). Moreover, this solution is Lipschitz-continuous with respect to t
and verifies the following persistency condition

Λi(t) (Gi)T U̇(t) = 0, ∀t ∈ (0, T ], 1 ≤ i ≤ NG.

Finally, solution U(t) is energy conserving in the sense that the discrete energy

Eh(t) =
1
2
U̇T (t) M U̇(t) +

1
2
UT (t) K U(t) − UT (t) F,

is constant with respect to t.

Remark 3.4. The persistency condition (see [20, 21]), which links velocity U̇(t) and reaction forces Λi, is a
stronger condition than the classical complementary condition between solution U(t) and Lagrange multipliers
Λi. It is important to note that energy conservation is proved thanks to those persistency condition.

3.3. Numerical discretization

Thanks to the above theorem, proving condition (3.6) is sufficient to obtain well-posedness of the discrete
problem (3.2). Let us remark this condition is equivalent to the fact that matrix G is surjective on F

h. So we
must have

dim F
h ≥ NG and then dim H

h ≤ dim V
h − NG.

This prescribes conditions on the approximation spaces V
h, H

h and also K
h. In practice, for our space dis-

cretizations, the following finite element schemes are chosen (see Sect. 3.1):

• For triangles: Velocity is constant on each element (P0 approximation) while displacement uses complete
HCT, reduced HCT or Argyris elements.

• For quadrangles: Velocity is constant again on each element (Q0 approximation) while displacement uses
reduced FVS elements.

So, here, the dimension of H
h, say NH , is equal to the number of elements of the mesh.

For Euler–Bernouilli beam model and Hermite’s finite elements, inf-sup condition (3.6) has been established
theoretically in [27]. In the case of our plate model and our finite element method, a direct proof of such an inf-
sup condition is a more difficult question and remains open. Nevertheless, we suggest a numerical verification.
It is given by the following lemma which presents a sufficient condition to ensure (3.6).

Lemma 3.5. If one subdivises the set of degrees of freedom into two groups:

• The first group contains the degrees of freedom which intervene in vectors Gi , 1 ≤ i ≤ NG , representing
the contact conditions (in our case, the degrees of freedom representing the transverse displacement),

• The second group contains the remaining degrees of freedom (in our case, the derivative ones).

If vectors Gi are linearly independent and if the sub-matrix of B, being the restriction of B to the columns
corresponding to the degrees of freedom of the second group, is of rank NH (which is the number of rows of B),
then we can conclude that the inf-sup condition (3.6) is satisfied.

Proof. If the hypotheses are satisfied, then for each vector Gi corresponding to a contact condition, the linear
combination of column of B corresponding to the product BGi can be written has a linear combination of the
column of B corresponding to the degrees of freedom of the second group. Consequently, for each vector Gi,
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we can build a vector Zi ∈ F
h which is equal to Gi on the components corresponding to the degrees of freedom

of the first group. Since vectors Gi are linearly independent, vectors Zi are also independent and the square
matrix Ḡ being the restriction of G to the subspace spanned by Zi , 1 ≤ i ≤ NG , is invertible. This is sufficient
to satisfy (3.6) since it means that, for any vector Q ∈ R

NG , there exists a linear combination Z̄ of Zi such that
Q = GZ̄ and G is surjective on F

h. �

In our case, the vectors Gi are linearly independent. Thus it is sufficient to check numerically that there
exists a subset of columns of B, associated with the derivative degrees of freedom, which contains a family of
linearly independant vectors, which size is equal to the number of elements of the mesh. In all the forthcoming
numerical tests, this condition was numerically checked.

4. Fully discretized Newmark-type schemes

In this section, we introduce and test β-Newmark schemes for time discretization, in the cases of regular and
singular mass matrices. These schemes are interesting since they are energy conserving during the linear part
of the motion (equation without constraint). The goal of this section is then to study their capabilities to be
energy conserving in the non-linear case. In addition, Δt will be the time step and e the restitution coefficient.

4.1. Case of a regular mass matrix

As Dumont–Paoli [10] for beams and us [28] for plates, to solve problem (2.8), the following implicit (β, γ =
1/2)-Newmark scheme is used⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Find Un+1 ∈ K
h such that for all W ∈ K

h

(
W − Un+1

)T (
Mr

Un+1 − 2Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

))
≥ (

W − Un+1
)T

Fn,β

(4.1)

where
Fn,β = βFn+1 + (1 − 2β)Fn + βFn−1, (4.2)

F k being the vector which components are F k
i =

∫
Ω

f(x, kΔt) φi(x) dx. Finally, (φi)i stand for the basis

functions defining space V
h and Mr is the associated regular mass matrix, which generic term reads

(Mr)ij =
∫

Ω

2ρε φi φj dx.

To take into account the restitution coefficient e defined by (2.9), we follow Paoli–Schatzman (see [23, 24]).
It consists in replacing Un+1 by Un+1+e Un−1

1+e . Then, a more general discretization of (2.8) becomes the e-β-
Newmark scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find Un+1,e ≡ Un+1 + eUn−1

1 + e
∈ K

h such that for all W ∈ K
h

(W − Un+1,e)T

(
Mr

Un+1 − 2Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

))
≥ (

W − Un+1,e
)T

Fn,β .

(4.3)

Let us remark that (β, γ = 1/2)-Newmark implicit scheme corresponds to e = 0. In this case, we established
in [28] unconditional stability for β = 1/2 and a weak convergence result (up to a subsequence).
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Remark 4.1. Let us define the total energy by

E(w, ẇ) :=
1
2

∫
Ω

2ρε ẇ(x, t))2 dx+
1
2
a(w(., t) , w(., t)) −

∫
Ω

f(x, t) w(x, t) dx.

In general, for fully-discretized schemes, energy dissipation (i.e. E(un+1 , vn+1) ≤ E(un , vn), ∀n) can fail to
hold. We would like to obtain a numerical scheme which energy is conserved as long as the plate does not touch
the obstacles and which doesn’t create energy when plate reaches them. The following numerical results will
suggest that conservation of energy may hold for generic initial conditions, if a singular mass matrix is used.

4.2. Case of a singular mass matrix

To derive a Newmark scheme using the singular mass matrix approach, let us start from the equilibrium
equation given in (3.5)

M Ü + K U = F + Λ ≡ F̃ ,

where Λ stands for the reaction, which is zero when there is no contact. Moreover, the singular mass approach
introduces matrices C and B such that C V = B U̇ , the singular mass matrix being M = BT C−1 B. The
usual (β, 1/2)-Newmark scheme reads⎧⎨⎩Un+1 = Un +Δt U̇n + (1

2 − β) Δt2Ün + βΔt2Ün+1,

U̇n+1 = U̇n + Δt
2 Ü

n + Δt
2 Ü

n+1.

Multiplying left by B and using C V = B U̇ , we deduce⎧⎨⎩B Un+1 = B Un +Δt C V n + (1
2 − β) Δt2B Ün + βΔt2B Ün+1,

C V n+1 = C V n + Δt
2 B Ün + Δt

2 B Ün+1.
(4.4)

It is well-known it is possible to derive a two-step scheme by eliminating velocity from this relations. First, we
write {

B Un = B Un−1 +Δt C V n−1 + (1
2 − β) Δt2B Ün−1 + βΔt2B Ün,

B Un+1 = B Un +Δt C V n + (1
2 − β) Δt2B Ün + βΔt2B Ün+1,

which leads to

B (Un+1 − 2 Un + Un−1) = Δt C (V n − V n−1)

+Δt2 B
(
βÜn+1 +

(
1
2
− 2β

)
Ün −

(
1
2
− β

)
Ün−1

)
,

and finally, with the second equation of (4.4), written at step n instead of n+ 1

B (Un+1 − 2 Un + Un−1) = Δt2 B
(
βÜn+1 + (1 − 2β)Ün + βÜn−1

)
.

Multiplying this relation by BT C−1, we obtain

M (Un+1 − 2 Un + Un−1) = Δt2 M
(
βÜn+1 + (1 − 2β)Ün + βÜn−1

)
,

where M is the singular mass matrix. As usual for Newmark scheme, we replace acceleration by its value, given
by the equilibrium equation. Hence, in the case of the singular mass matrix approach, Newmark scheme reads

M
Un+1 − 2 Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

)
=
(
βF̃n+1 + (1 − 2β)F̃n + βF̃n−1

)
,
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which looks exactly as the Newmark scheme except the regular mass matrix Mr has been replaced by the
singular one. Therefore, in the case of Newmark scheme, the singular mass matrix approach leads to a scheme
similar to (4.3)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find Un+1,e =
Un+1 + eUn−1

1 + e
∈ K

h such that for all W ∈ K
h

(
W − Un+1,e

)T (
M

Un+1 − 2Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

))
≥ (

W − Un+1,e
)T

Fn,β.

(4.5)

To conclude, let us remark that, as matrix K is positive definite, this variational inequality has always a unique
solution even if M is singular.

4.3. Some aspects of numerical implementation

To explain how the algorithm works in the general case, let us begin with the implicit (e = 0)-β-Newmark
scheme (4.1). First, it can be rewritten as⎧⎪⎪⎨⎪⎪⎩

Find Un+1 ∈ K
h such that for all W ∈ K

h

(
W − Un+1

)T (
Mr

Δt2
Un+1 + β KUn+1

)
≥ (

W − Un+1
)T

F̃n
(4.6)

where

F̃n = Fn,β − Mr
−2Un + Un−1

Δt2
− K

(
(1 − 2β)Un + βUn−1

)
,

Fn,β being given by (4.2). Since matrix A ≡ 1
Δt2 Mr + β K is positive definite and symmetric, equation (5.4)

is equivalent to the following minimization problem

Un+1 = ArgminW∈Kh

(
1
2
WT A W − (F̃n)T W

)
.

Let us remark that, as constraints defining K
h are linear, the above minimization problem is a linear quadratic

problem, which is solved in Getfem++ [13] by an algorithm derived from the Alart–Curnier augmented
Lagrangian formulation [3].

Now, as we look for energy conservative schemes, we consider also equation (4.3) but it is studied in the
particular case e = 1, corresponding to a perfect impact. Then it reads⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find Ũn+1 =
Un+1 + Un−1

2
∈ K

h such that for all W ∈ K
h

(W − Ũn+1)T

(
Mr

Un+1 − 2Un + Un−1

Δt2
+ K

(
βUn+1 + (1 − 2β)Un + βUn−1

))

≥
(
W − Ũn+1

)T

Fn,β.

Then, it is possible to express Un+1 as Un+1 = 2 Ũn+1 − Un−1 and to replace it in the previous inequality

(W − Ũn+1)T

(
Mr

2Ũn+1 − 2Un

Δt2
+ K

(
2β Ũn+1 + (1 − 2β)Un

))
≥
(
W − Ũn+1

)T

Fn,β
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and the problem becomes⎧⎪⎪⎨⎪⎪⎩
Find Ũn+1 ∈ K

h such that for all W ∈ K
h

(
W − Ũn+1

)T
(

Mr

Δt2
Ũn+1 + β KŨn+1

)
≥
(
W − Ũn+1

)T

Gn
(4.7)

where

Gn =
1
2

(
Fn,β +

2 Mr

Δt2
Un − (1 − 2β) K Un

)
.

It exactly looks like (5.4) and is solved in the same way.
Consequently, the way to solve (4.3) follows Paoli–Schatzman [24]. First, we calculate Qn+1 ≡ A−1 F̃n.

Second, the following alternative holds:

• If
Qn+1 + Un−1

2
belongs to K

h, equation (4.7) is verified and we set Un+1 = Qn+1.

• If
Qn+1 + Un−1

2
is not in K

h, we solve (4.7) with an augmented Lagrangian derived method, and set

Un+1 = 2 Ũn+1 − Un−1.

It has to be noticed that even if Ũn+1 belongs to K
h, it doesn’t mean that Un+1 belongs to K

h. By the way,
it doesn’t but it is close. This phenomenon was also pointed out by Paoli–Schatzman [24].

Remark 4.2. The case of a singular mass matrix (Eq. (4.5)) is handled exactly in the same way as matrix
1

Δt2 M + β K has the same properties than the above defined matrix A.

4.4. Numerical results for a clamped plate with Newmark type schemes for e = 0 or
e = 1

A steel rectangular panel is considered, of width L1 = 40 cm, length L2 = 120 cm, and thickness ε = 0.5 cm. It
means domain Ω is ]0, L1[ × ]0, L2[ . The mechanical parameters are Young’s modulus E = 210 GPa, Poisson’s
ratio ν = 0.3 and mass density ρ = 7.77 103 kg/m3. This plate is clamped along one edge and free along
the three others. The numerical tests are performed with Getfem++ [13], using structured meshes (see Figs. 3
and 4).

Moreover, only the following kind of obstacle will be considered here (see (3.4) for definition of convex K
h).

It is a flat obstacle under the whole plate, which reads

g2(x1, x2) = +∞, g1(x1, x2) = −0.1, ∀ (x1, x2) ∈ Ω. (4.8)

Finally, as we are mainly interested to study conservation of energy, in all the next paragraphs, we consider the
case where there is no loading f(x, t) ≡ 0 for all x and t. All energy is contained in an initial displacement
u0 , obtained as the static equilibrium of the plate under a constant load f0 = 14 600 N and an initial velocity
v0 = 0.

Remark 4.3. Other numerical tests are given in [28], such as flat symmetric obstacles along the plate and
sine-sweep base forced vibration, with various frequencies. But, in that paper, only a e-β-Newmark scheme was
used with only a regular mass matrix.

In this section, we only consider Newmark type schemes and we compare, on the one hand, the regular mass
matrix discretization (4.1) with the singular one (4.5) and, on the other hand, the effect of the restitution
coefficient e. Let us just observe that e = 1 is only tested with the singular mass matrix approach. So, the
next figures give the numerical displacement of one corner of the plate, located on the edge opposite to the
clamped one. For all Newmark schemes, parameter β is taken equal to 1/2, which insures unconditional stability
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Figure 3. Bending clamped plate above a rigid obstacle: FVS quadrangular mesh.

Figure 4. Bending clamped plate above a rigid obstacle: FVS quadrangular mesh.

when e = 0. Finally, complete and reduced HCT triangles, Argyris triangles and reduced FVS quadrangles are
compared. As expected, it appears that displacements, which are obtained with e = 1, are less softened, at the
beginning, than the others. However, these results are not obvious to interpret. So, we will focus on energy.

In the following computations, the effects on energy of the mass matrix discretization and of the restitution
coefficient e are investigated. So, the discrete energy En reads

En =
1

8Δt2
(Un+1 − Un−1)T M (Un+1 − Un−1) +

1
2

(Un)T K Un,

as there is no loading.
Figures 9–11 give energy evolutions for different time steps, in the frame of a e-β-Newmark scheme, with

β = 1/2.
First, let us observe the energy curves obtained for different time steps, with the singular mass matrix, when

the restitution coefficient e is zero. Let us recall that the fully implicit scheme (e = 0) is known to be globally
dissipative as illustrated for beams by numerical examples in [10]. Indeed, it can be seen the energy remains
constant between two successive impacts and decreases only at these ones. Nevertheless, when the time step
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Figure 5. Reduced HCT, 80 triangles. e-β-Newmark scheme. Δt = 5 × 10−6. e = 0 or e = 1,
regular or singular mass matrices.

Figure 6. Complete HCT, 80 triangles. e-β-Newmark scheme. Δt = 5× 10−6. e = 0 or e = 1,
regular or singular mass matrices.

goes to zero, the loss of energy is weaker and weaker and it can be expected that energy conservation will hold
at the limit. For comparison, the energy, obtained with regular mass matrix, is given only for the smallest time
step. It appears that, with a singular mass matrix, the loss of energy is much lower than with a regular one.

Second, when e = 1, energy is weakly increasing but can be stabilized when the time step is sufficiently
small. Moreover, it can be observed this condition seems more restrictive for triangles than for quadrangles, if
it depends on the mesh size, as these ones are of the same order of magnitude in the case of our meshes (each
quadrangle leads to two triangles, see Figs. 3 and 4).
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Figure 7. Argyris element, 80 triangles. e-β-Newmark scheme. Δt = 5× 10−6. e = 0 or e = 1,
regular or singular mass matrices.

Figure 8. Reduced FVS, 40 quadrangles. e-β-Newmark scheme. Δt = 5×10−6. e = 0 or e = 1,
regular or singular mass matrices.

Finally, it is worth to notice the effect of restitution coefficient e is hard to understand, in the case of the
singular mass matrix. Indeed, if the numerical scheme is always dissipative when e = 0, and always energy
increasing when e = 1, both seem to lead to an energy conserving scheme, when the time step goes to zero.
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Figure 9. Energy for different time steps. Reduced HCT, 80 triangles. e-β-Newmark scheme.
e = 0 or e = 1, regular or singular mass matrices.

Figure 10. Energy for different time steps. Argyris element, 80 triangles. e-β-Newmark scheme.
e = 0 or e = 1, regular or singular mass matrices.

4.5. Numerical results for a free plate with Newmark type schemes for e = 0 or e = 1

Now, the plate is free and all energy is contained in an initial velocity v0 = 1 m/s, and the initial displacement
u0 = 0. There is still no loading f(x, t) ≡ 0 for all x and t. Moreover, there is only one impact in this case,
during which the restitution coefficient e should play a crucial part.
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Figure 11. Energy for different time steps. Reduced FVS, 40 quadrangles. e-β-Newmark
scheme. e = 0 or e = 1, regular or singular mass matrices.

First, as intended, let us observe that, in all cases, the energy is constant before and after impact. Then, as in
the previous example, it can be seen that the fully implicit scheme (e = 0) remains dissipative while e = 1 leads
to an energy increasing scheme, for both mass matrices. Nevertheless, these effects are weaker for the singular
mass matrix than for the regular one. Moreover, as illustrated by displacement figures (Figs. 15–17), for our
time step, the numerical solutions are very close for the singular mass matrix for both restitution coefficients.
The question of the interpretation of this coefficient is again asked ourselves.

Finally, for both mass matrix schemes, it appears that the energy variation is the greatest for reduced
HCT triangles and reduced FVS quadrangles, for which the magnitude is the same, and the lowest for Argyris
triangles. Well, this last element is more precise than the previous ones, which have the same level of precision
(see Sect. 3.1). This could explain the better numerical results we obtained in this case for Argyris element.

5. Fully discretized midpoint scheme

In this section, we recall and investigate midpoint scheme capabilities for time discretization, in the case of
singular mass matrices. The goal of this section is then to show the performance of this scheme applied on the
same benchmarks than in previous section.

5.1. Derivation of the midpoint scheme in the framework of a singular mass matrix

The midpoint scheme applied to problem (3.2) consists in finding Un+1/2 in K
h such that (see for instance [29])⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(W − Un+1/2)T (MAn+1/2 + KUn+1/2) ≥ (W − Un+1/2)T Fn, ∀W ∈ K
h,

Un+1/2 =
Un + Un+1

2
, V n+1/2 =

V n + V n+1

2
,

BUn+1 = BUn +ΔtCV n+1/2, CV n+1 = CV n +ΔtBAn+1/2,

(5.1)
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Figure 12. Energy evolution. Reduced HCT, 80 triangles. Δt = 5 × 10−6. e-β-Newmark
scheme. e = 0 or e = 1, regular or singular mass matrices.

Figure 13. Energy evolution. Argyris element, 80 triangles. Δt = 5 × 10−6. e-β-Newmark
scheme. e = 0 or e = 1, regular or singular mass matrices.

where An+1/2 is acceleration at ”middle time step” n+ 1/2. As matrix C is invertible, we have

V n+1 = 2V n+1/2 − V n = 2C−1 B
Un+1 − Un

Δt
− V n = 4C−1 B

Un+1/2 − Un

Δt
− V n.

Moreover, An+1/2 can be eliminated in the following way

M An+1/2 = BT C−1 B An+1/2 = BT C−1 CV n+1 − CV n

Δt
= BT V n+1 − V n

Δt
,



ENERGY CONSERVATIVE SEMI-DISCRETIZATION FOR VIBRO-IMPACTS OF PLATES 1603

Figure 14. Energy evolution. Reduced FVS, 40 quadrangles. Δt = 5 × 10−6. e-β-Newmark
scheme. e = 0 or e = 1, regular or singular mass matrices.

Figure 15. Displacement evolution. Reduced HCT, 80 triangles. Δt = 5×10−6. e-β-Newmark
scheme. e = 0 or e = 1, regular or singular mass matrices.

or more explicitly

M An+1/2 = 4BT C−1 B
Un+1/2 − Un

Δt2
− 2BT V n

Δt
=

4
Δt2

M Un+1/2 − 4
Δt2

M Un − 2
Δt

BT V n.
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Figure 16. Displacement evolution. Argyris element, 80 triangles.Δt = 5×10−6. e-β-Newmark
scheme. e = 0 or e = 1, regular or singular mass matrices.

Figure 17. Displacement evolution. Reduced FVS, 40 quadrangles. Δt = 5 × 10−6. e-β-
Newmark scheme. e = 0 or e = 1, regular or singular mass matrices.

Then, a new formulation of (5.1) is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Un and V n being given, find Un+1/2 ∈ K
h such that

(W − Un+1/2)T ( 4
�t2 MUn+1/2 + KUn+1/2) ≥ (W − Un+1/2)T F̄n, ∀W ∈ K

h,

where F̄n = Fn + 4
Δt2 M Un + 2

ΔtB
T V n

Un+1 = 2Un+1/2 − Un, V n+1 = 2C−1 B Un+1−Un

Δt − V n.

(5.2)
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Figure 18. Energy for different time steps. Reduced HCT, 80 triangles. Midpoint scheme,
singular mass matrix.

Exactly as for Newmark scheme, this variational inequality has always a unique solution even if M is singular.

Remark 5.1. The case H
h = V

h, which corresponds to the classical discretization where displacement and
velocity are approximated in the same way, leads to a scheme similar to (5.2), the only differences being the
singular mass matrix M is replaced by the regular one Mr and C = B = BT so C−1 B = I. Finally, we do not
prove the convergence of these schemes towards a solution of the continuous problem. Nevertheless, we shall
observe good numerical results with singular mass discretization and instabilities for regular ones.

5.2. Numerical results for a clamped plate with midpoint scheme

In the following figures are given the energy evolutions for different time steps, for midpoint scheme with
singular mass matrix. The regular mass matrix is not illustrated here as it is unstable. Moreover, this scheme
involves no restitution coefficient e. So only the choice of finite elements can be addressed by these numerical
results.

However, let us observe that midpoint scheme could correspond to a perfect elastic impact. Indeed, when
a shock occurs, Un+1/2 belongs to the boundary of K

h. At this moment, “mechanically speaking”, it means
the corresponding velocity V n+1/2 should be zero. Naturally, this condition is not prescribed in the numerical
scheme, so is not true. Nevertheless, it is clear that V n+1/2 = 0 leads to V n+1 = −V n: velocity just after impact
is the same, up to its sign, than before. It is in that sense midpoint scheme would correspond to e = 1.

Keeping this remark in mind, we notice exactly the same phenomena than with e-β-Newmark scheme when
e = 1. Energy is weakly increasing and can be stabilized when the time step decreases. And the numerically
observed stability condition seems to be more restrictive for triangles than for quadrangles.

5.3. Numerical results for a free plate with midpoint scheme

Now, the plate is free and all energy is contained in an initial velocity v0 = 1 m/s, the initial displacement
being u0 = 0. There is still no loading f(x, t) ≡ 0 for all x and t.
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Figure 19. Energy for different time steps. Complete HCT, 80 triangles. Midpoint scheme,
singular mass matrix.

Figure 20. Energy for different time steps. Argyris element, 80 triangles. Midpoint scheme,
singular mass matrix.
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Figure 21. Energy for different time steps. Reduced FVS, 40 quadrangles. Midpoint scheme,
singular mass matrix.

Figure 22. Energy for different time steps. Reduced HCT, 80 triangles. Midpoint scheme with
singular mass matrix.

Figures 22–24 give energy evolutions for different time steps, for midpoint scheme with singular mass matrix.
It can be noticed that energy is weakly increasing and can be stabilized when the time step decreases. Moreover,
the numerically observed stability condition seems to be more restrictive for triangles than for quadrangles.

Finally, displacements of free corners are given Figures 25–27. It appears the curves are the closest in the
case of Argyris element, while they are very similar for reduced HCT and reduced FVS. Like Newmark scheme,
it could originate in the precision of these elements.
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Figure 23. Energy for different time steps. Argyris element, 80 triangles. Midpoint scheme
with singular mass matrix.

Figure 24. Energy for different time steps. Reduced FVS, 40 quadrangles. Midpoint scheme
with singular mass matrix.

5.4. Semi-analytical solution for free impact of a rectangular panel

Now, we would like to summarize a brief analysis of the previous free impact problem which corresponds to
a loading f(x, t) = 0 (except when impact occurs), initial position u0(x) = 0 and initial velocity v0(x) = −1,
the obstacle being flat at level g1(x) = −0.1, for all x ∈ Ω.
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Figure 25. Displacement for different time steps. Reduced HCT, 80 triangles. Midpoint scheme
with singular mass matrix.

Figure 26. Displacement for different time steps. Argyris element, 80 triangles. Midpoint
scheme with singular mass matrix.

First, let us observe that, if the plate is considered as a rigid body, the exact solution of our impact problem
is a rigid body vertical translation, which reads

ũ1(t) = |v0(t− timpact)| + g1.

for a perfect impact (e = 1), while the totally dissipative solution, corresponding to e = 0, is

ũ0(t) = [v0 (t− timpact) + g1] 1I]0,timpact[(t),

1I]0,timpact[ being the indicatrice function for interval ]0, timpact[. It can be noted that the previous numerical
experiments confirm such a behavior before impact, for all numerical schemes, with all mass matrices.
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Figure 27. Displacement for different time steps. Reduced FVS, 40 quadrangles. Midpoint
scheme with singular mass matrix.

Now, let us consider the plate as an elastic body. Then, we set Γc = ∅ in (2.4), and we assume the plate
is rectangular: Ω =]0, L1[ × ]0, L2[ . Under these assumptions, we rewrite (2.8) as a single impact problem at
timpact, and displacement u verifies in the distributions sense the equation

2ρεü+K(u) = 2ρε e δt = timpact with u ∈ K and K =
2E ε3

3 (1 − ν2)
Δ2. (5.3)

Since the fourth order differential operator K is an elliptic self-adjoint operator, with our boundary conditions,
there exists a sequence of real eigenvalues 0 = λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . ., with limi λi = ∞. Moreover, the
eigenfunctions ϕi are an orthonormal basis of H in the sense of the mass operator, that means∫

Ω

2ρε ϕi(x) ϕj(x) dx = δij

where δij is the Kronecker symbol, and ϕi satisfy⎧⎨⎩K(ϕi) = λiϕi on Ω

Boundary conditions on ∂Ω
(5.4)

with ϕi(x1, x2) = ϕ2i−1(x1) ϕ2i(x2) and{
ϕ2i−1(x1) = A2i−1 cosh(λ

1
4
2i−1(x1)) +B2i−1 cos(λ

1
4
2i−1x1) + C2i−1 sinh(λ

1
4
2i−1x1) +D2i−1 sin(λ

1
4
2i−1x1),

ϕ2i(x2) = A2i cosh(λ
1
4
2ix2) +B2i cos(λ

1
4
2ix2) + C2i sinh(λ

1
4
2ix2) +D2i sin(λ

1
4
2ix2).

With the boundary conditions, we have a homogeneous system to determine Ai, Bi, Ci, Di and λi. Unfortu-
nately, there is no exact analytical solution ϕi for a rectangular plate free on four edges. Exact solutions to the
vibration of rectangular plates are only available for plates with two opposite edges subject to simply supported
or clamped conditions. Otherwise, they are analysed by using approximate methods [31]. Nevertheless, it is pos-
sible to obtain a very good approximation of the eigenvalues and eigenvectors associated to a free rectangular
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plate, and express the displacement u solution of (5.3) in semi-analytical form. Then we can write

u(x, t) =
∑
i≥1

qi(t) ϕi(x).

Introducing this expression in the more general form of (5.3), which can be written

ü+K(u) = f(x, t) on Ω×]0, T [,

we obtain
f =

∑
i≥1

q̈i(t) ϕi(x) +
∑
i≥1

qi(t) K(ϕi)(x) =
∑
i≥1

q̈i(t) ϕi(x) +
∑
i≥1

λi qi(t) ϕi(x)

which leads to
q̈i(t) + λi qi(t) = fi(t) ≡

∫
Ω

2ρε ϕi(x) f(x, t) dx,

associated with the initial conditions

u(x, 0) =
∑
i≥1

qi(0) ϕi(x) = 0 ⇒ qi(0) = 0,

and
u̇(x, 0) =

∑
i≥1

q̇i(0) ϕi(x) = v0 ⇒ q̇i(0) = v0i ≡
∫

Ω

2ρε ϕi(x) v0(x) dx.

So, in our case, before impact, where f(x, t) = 0 and v0 = −1, we obtain

qi(t) =
v0i√
λi

sin(
√
λi t) = −2ρε

∫
Ω

ϕi(x) dx
√
λi

sin(
√
λi t).

However, this part of the analytical solution can be omitted as the plate acts as a rigid body.

At impact, occuring at timpact, we have u(x, timpact) = g1 and u̇(x, timpact) = −e v0 (if we assume a rigid
body behavior of the plate). The problem to be solved reads

ü+K(u) = f(x, t) = 0 on Ω×]timpact, T [,

associated with the previous initial conditions. This problem can be solved as before and we have

qi(t) = qi(timpact) cos(
√
λi (t− timpact)) + q̇i(timpact)

sin(
√
λi (t− timpact))√

λi

,

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
qi(timpact) =

∫
Ω

2ρε ϕi(x) g1 dx = 2ρε g1
∫

Ω

ϕi(x) dx,

q̇i(timpact) =
∫

Ω

2ρε ϕi(x) (−e v0) dx = −2ρε e v0
∫

Ω

ϕi(x) dx.

Impact excites linear modes of the plate, which are the eigenfunctions of operator K. Then the solution
presents free vibrations as we can see on the previous numerical tests. Finally, the singular dynamic method
tends to select the conservative solution of (5.3). Thank to this remarks, numerical convergence between semi-
analytical and numerical solutions to compare the properties of standard and reduced mass approaches has to
be investigated in future works.
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6. Conclusion

This paper presents an application of the Singular Dynamic Method to fourth order plate impact problems.
This strategy has proved its capabilities as illustrated by numerous numerical results. Two schemes, which are
conservative in energy, are disclosed. The following of this work would be to improve this model by taking into
account friction and damping. On a more theoretical point of view, strong convergence of the discrete solution
has also to be adressed. Let us just discuss some points very briefly. Ahn and Stewart [2] show that the amount
of energy in high frequency modes, related to the fourth-order operator, is almost zero under the assumption
of strong convergence to the solution of the elastodynamic problem for a beam between rigid obstacles. From a
mechanical point of view, it means that high frequency modes would be damped. As the singular mass matrix
method transforms the elastodynamic inequality problem (2.8) into a Lipschitz-O.D.E., for a given space step,
every convergent scheme for a Lipschitz-O.D.E. will converge when Δt goes to zero, and the limit is obviously
the unique solution of (3.2) which is conservative. So, if it can be proved the weak convergence of the solution
of (4.5) to the problem (2.8), the strong convergence will follow from the balance of energy with the singular mass
matrix (3.3). However, a new problem occurs. Indeed, equation (2.8) doesn’t include the restitution coefficient
introduced by (2.9), nor the derived Lipschitz-O.D.E. Consequently, the complete link between fully discretized
schemes, including restitution coefficient, and initial P.D.E. has to be investigated in depth. In particular, the
main difficulty is to write the continuous problem associated to a singular mass operator and, also, to take into
account that velocity is a bounded variation function, including its reliance on restitution coefficient.
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