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NONDIFFUSIVE CONSERVATIVE SCHEMES BASED ON APPROXIMATE
RIEMANN SOLVERS FOR LAGRANGIAN GAS DYNAMICS
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Abstract. In this paper, we present a conservative finite volume scheme for the gas dynamics in
Lagrangian coordinates, which is fast and nondiffusive. By fast, we mean that it relies on an approximate
Riemann solver, and hence the costly resolution of Riemann problems is avoided. By nondiffusive, we
mean that the solution provided by the scheme is exact when the initial data is an isolated admissible
shock, and discontinuities are sharply captured in general. The construction of the scheme uses two main
tools: the approximate Riemann solver of [Ch. Chalons and F. Coquel, Math. Models Methods Appl.
Sci. 24 (2014) 937–971.], which turns out to be exact on isolated admissible shocks, and a discontinuous
reconstruction strategy, which consists in rebuilding entropy satisfying shocks inside some well chosen
cells. Numerical experiments in 1D and 2D are proposed.
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1. Introduction

In this paper, we consider the barotropic gas dynamics equations in Lagrangian coordinates⎧⎪⎨
⎪⎩

∂tτ − ∂xu = 0,

∂tu + ∂xp(τ) = 0,

τ(0, x) = τ0(x), u(0, x) = u0(x),
(1.1)

where the pressure law p is a strictly convex and strictly decreasing function. This system is well-known to
be strictly hyperbolic, with eigenvalues ±

√
−p′(τ) and two genuinely nonlinear characteristic fields. The phase

space Ω of this system is
Ω = {(τ, u) ∈ R

2, τ > 0}.
As usual, we supplement (1.1) with the validity of the so-called entropy inequality

∂tU(τ, u) + ∂xW(τ, u) ≤ 0, (1.2)
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where (U ,W) is the entropy-entropy flux pair given by

U(τ, u) =
u2

2
+ e(τ), with e(τ) = −

∫ τ

p(y)dy and W(τ, u) = p(τ)u,

and we consider entropy weak solutions of (1.1) and (1.2), see [17] for example.
In order to motivate our study, let us temporarily assume that the initial data is a Riemann initial data{

τ0(x) = τL1x<0 + τR1x>0,

u0(x) = uL1x<0 + uR1x>0,
(1.3)

where the left and right states (τL, uL) and (τR, uR) verify the Rankine–Hugoniot relations

uL − uR = −s(τL − τR) and p(τL) − p(τR) = s(uL − uR), (1.4)

for a given speed of propagation s, and the triple
(
(τL, uL), (τR, uR), s

)
satisfies (1.2) in the weak sense, i.e.

−s (U(τR, uR) − U(τL, uL)) + (W(τR, uR) −W(τL, uL)) ≤ 0.

In that case the initial condition is such that the initial discontinuity will move at velocity s to form an admissible
entropy weak solution of (1.1) and (1.2), see again [17]. We say that we have an isolated shock wave.

On the other hand and from the numerical point of view, the Godunov method [18] and Godunov-type
methods based on exact or approximate Riemann solvers (see [26] for a review) are certainly the most celebrated
numerical schemes that provide good numerical approximations of (1.1) and (1.2) for general initial data. In
particular, the Lax–Wendroff theorem (see [17]) ensures the convergence to the entropy weak solution of (1.1)
and (1.2) provided that the method does converge and verifies a discrete version of (1.2).

When applied to the particular initial data leading to an isolated shock wave, such conservative finite volume
schemes are well-known to introduce numerical diffusion, which means here intermediate values that do not
correspond to values taken by the exact solution.

The basic motivation of this work is to propose a new conservative finite volume scheme which will be able
to exactly capture isolated shock waves; and more generally entropy weak solutions of (1.1) and (1.2) with no
numerical diffusion near shocks. By no numerical diffusion, we mean here that only one intermediate value will
be present in shock profiles and importantly that this intermediate value will correspond to the average of the
exact solution on a given cell for isolated shock wave. This is of course the best one can do.

To achieve this goal, let us first emphasize that the drawbacks of Godunov and Godunov-type methods are
two fold.

• First, the numerical diffusion already discussed above leads to a loss of accuracy of the approximate solutions,
especially around discontinuities.

• Second, the Godunov method uses the knowledge of the exact solution of (1.1)−(1.3) with any given left
and right states (τL, uL) and (τR, uR) in the phase space Ω. This exact Riemann solver is of course exact
when (1.3) is an isolated shock, but it can be very expensive or difficult to compute the exact solution in
general. When approximate Riemann solvers are used, it can be much less expensive but the property of
being exact when (1.3) is an isolated shock is generally lost.

To avoid these issues, we follow the following strategy. Concerning the first point, i.e. removing the numerical
diffusion, we use a discontinuous reconstruction strategy. The basic idea is to reconstruct entropy satisfying
shocks inside some cells of the mesh in order to regain accuracy. The idea of reconstructing an initial data from
the piecewise constant function given by the scheme is not new. For example, in the MUSCL scheme [27], an in-
cell linear reconstruction of the solution is used. It allows to built schemes with second-order accuracy in smooth
regions. On the contrary, the discontinuous reconstruction strategy is not built to be precise in smooth areas,
but yields to schemes that are exact on isolated shocks. This strategy was introduced in [9]. In the case of scalar
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advection, this scheme has an interpretation in terms of down-winding under up-winding constraints, and is
originally presented that way in [16]. The case of scalar conservation law has been deeply investigated in [6,21,22]
and more recently in [13]. It has been extended to the capture of contact discontinuities in [16] and [5]. In [3,23],
the reader can find other nondiffusive schemes based on discontinuous reconstructions. The ENO scheme with
subcell resolution [19] is also based on a discontinuous reconstruction; this is the only other scheme we know
which is also exact on isolated shocks. In parallel to this work, this type of discontinuous reconstruction strategy
has been applied to gas dynamics in Eulerian coordinates in [2], and to a scalar equation and a system arising in
nonlinear elastodynamics in which under compressive shocks appear, see [1, 9] respectively. Compared to [1, 2],
the main difference with the present paper is that the discontinuous reconstruction strategy is based on the use of
an exact Riemann solver, which is numerically costly. Here, we extend the discontinuous reconstruction strategy
to the use of an approximate Riemann solver and to the gas dynamics equations in Lagrangian coordinates.

Regarding the second point, i.e. the definition of a suitable approximate Riemann solver in order to avoid
the costly exact resolution of Riemann problems, we use the approximate solver proposed in [11]. Up to our
knowledge, this is the first (and only) entropy consistent approximate Riemann solver which is exact for isolated
shock waves. This is the key property an approximate Riemann solver should have to be successfully coupled
with the discontinuous reconstruction strategy. This is exactly what we propose to do in the present paper.

Using these tools together allows us to derive numerical schemes that are very precise near shocks. In par-
ticular, they have the new property of being exact when the initial data is an isolated shock wave. In order to
improve the accuracy of these schemes in smooth regions, a classical MUSCL-Hancock strategy is developed.
Moreover, it is important to notice that the proposed numerical schemes do not satisfy the validity of a discrete
entropy inequality, despite the facts that the Riemann solver does satisfy an entropy inequality and the in-cell
reconstruction procedure is concerned with entropy-satisfying shocks only. Indeed, we will observe that the
reconstruction procedure may increase the entropy, but does not prevent the schemes from converging to the
correct solution (and in particular does not create non physical shocks).

The paper is organized as follows. The derivation of the scheme is detailed in the first section. More pre-
cisely, we describe the approximate Riemann solver introduced in [11] and the proposed in-cell discontinuous
reconstruction strategy. Then we put these tools together and present the numerical fluxes. We prove in Sub-
section 2.4 that the scheme is exact whenever the initial data is an admissible isolated shock. In Section 3 we
present some 1-dimensional simulations showing that the scheme has a very low numerical dissipation. In the
third and last section, we extend the scheme to 2-dimensional situations by the mean of a directional splitting.

2. Construction of the scheme

Let us start with a short discussion on the usual approximate Riemann solvers (abbreviated ARS in the
sequel) and the reason why they are not exact for isolated shock waves. We consider here the Suliciu relaxation
procedure [25] (see also [8]), but the same applies to most of the ARS available in the literature. The Suliciu
ARS is also the starting point to the solver proposed in [11] and used in the present paper. The idea is to
approach the solutions of (1.1) by the solutions of a larger but simpler system, namely⎧⎪⎨

⎪⎩
∂tτ − ∂xu = 0,

∂tu + ∂xπ = 0,

∂tT = 1
ε (τ − T ),

(2.1)

where π is related to the pressure p via the expansion

π = π(T ) = p(T ) + a2(T − τ).

When ε tends to 0, we recover asymptotically the p-system (1.1) we are interested in. For stability reason a
must be chosen larger than the maximum speed of the wave appearing in the initial system (1.1), see the next
section and [7, 10, 12, 14, 20] for more details. This is the so-called subcharacteristic stability condition.
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Figure 1. The approximate Riemann solver of Suliciu.

System (2.1) is actually simpler to solve than the original p-system (1.1) since the Riemann problem associated
to (2.1), namely ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tτ − ∂xu = 0,

∂tu + ∂xπ = 0,

∂tT = 0,

(τ, u, T )(t = 0, x) = (τL, uL, TL)1x<0 + (τR, uR, TR)1x≥0,

TL = τL and TR = τR,

(2.2)

where the initial data is taken at equilibrium, can be explicitly solved. The characteristic fields are easily shown
to be linearly degenerate, and the solution of (2.2) contains three contact discontinuities, propagating with
velocities −a, 0, and a. We denote by (τL,∗, uL,∗, TL,∗) the state on the left of the stationary wave, and by
(τR,∗, uR,∗, TR,∗) the state on its right (see Fig. 1). The notation are similar for the other quantities, and in
particular pL = p(τL) = πL and pR = p(τR) = πR.

The intermediate states can be obtained using the Rankine–Hugoniot relations across each contact disconti-
nuities, and are given by ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u∗ := uL∗ = uR∗ = uL+uR

2 − πR−πL

2a ,

π∗ := πL∗ = πR∗ = πL+πR

2 − a
2 (uR − uL),

τL∗ = τL + u∗−uL

a ,

τR∗ = τR − u∗−uR

a ,

TL∗ = τL,

TR∗ = τR.

(2.3)

We refer once again to [17] for details. Importantly, since a is chosen larger than any speed of propagation of (1.1)
for stability reasons, there is no hope to capture exactly isolated shocks with any Godunov-type method using
this approximate Riemann solver.

2.1. An exact approximate Riemann solver on isolated shock waves

In this section we briefly describe the approximate Riemann solver introduced in [11] to solve (1.1)−(1.3) and
refer to this paper for details. The idea of [11] is to modify the approximate Riemann solver given by (2.2) by
introducing a new wave propagating with a velocity σ in order for the new ARS to be exact on isolated shock
waves. The new wave pattern is depicted on Figure 2. Attached to this new wave is a parameter θ, which makes
the link between the case of an isolated shock (θ = 1, the other three waves are trivial) and the classical solver
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Figure 2. Structure of the Riemann solution depending on the sign of σ.

(θ = 0, the new wave is trivial and the solver coincides with (2.3)). Moreover, this parameter can be chosen in
such a way that the new ARS is entropy satisfying and exact on isolated shocks. In other words, the parameter
θ can be seen as a detection parameter for shocks. We also refer the reader to the recent paper [15] for a similar
approach and a convergence proof.

The proposed approximate solution is the exact solution of the following system with Riemann initial data
at equilibrium: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tτ − ∂xu = 0,

∂tu + ∂xπ(T ) = 0,

∂tT = M(θ)δx=σt,

(τ, u, T )(t = 0, x) = (τL, uL, TL)1x<0 + (τR, uR, TR)1x>0,

TL = τL and TR = τR.

(2.4)

System (2.4) is a modified version of (2.1), where the measure valued right hand side M(θ)δx=σt allows the
solution to jump along the line x = σt. The parameter σ is chosen such that if the initial datum is an isolated
shock, σ is the exact speed of this shock. The Rankine–Hugoniot relations (1.4) yield

s2 = −pL − pR

τL − τR
·

In [11] the authors then propose to set

σ = sign(τR − τL)
√
−pL − pR

τL − τR
, (2.5)

the role of the sign function is to distinguish in between entropy shocks of the first (resp. the second) eigenvalue
−
√
−p′ (resp.

√
−p′), for which the shock has a negative velocity and τR < τL (resp. a positive velocity and

τR > τL). The parameter θ will be chosen such that the approximate Riemann solver is entropy satisfying and
exact on isolated shockwaves.

The solution of System (2.4) has four waves, namely the three usual waves having speeds −a, 0 and a, and a
wave which propagates at speed σ driven by the source term. According to [11], this σ-wave has to be understood
as an approximation of the shock wave with the largest amplitude in the exact Riemann solution of (1.1)−(1.3).
This approximation turns out to be exact in the case of an isolated shock wave. The structure of the new ARS
is depicted on Figure 2.

To define the three intermediate states (and hence the nine unknowns), consistency relations and Rankine–
Hugoniot relations are imposed by the authors in [11]. We note in particular that u and π are constant through
the stationary wave while the quantity denoted by:

I = π(T ) + a2τ = p(T ) + a2T (2.6)
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is constant through the −a- and a-waves. We denote with a minus subscript (resp. a plus subscript) their values
on the left (resp. on the right) of the σ-wave. The intermediate states are found by solving a linear system (in τ ,
u and I) and are given, when σ > 0, by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u− = u∗ + σθ
2a (a − σ)(τR − τL),

u+ = u∗ − σθ
2a (a + σ)(τR − τL),

τ1 = τL + 1
a (u− − uL),

τ3 = τR + 1
a (uR − u+),

τ2 = τ3 − θ(τR − τL),

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π− = π∗ − σθ
2 (a − σ)(τR − τL),

π+ = π∗ − σθ
2 (a + σ)(τR − τL),

I1 = IL,

I2 = (1 − θ)IR + θIL,

I3 = IR.

(2.7)

and when σ < 0, by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u− = u∗ + σθ
2a (a − σ)(τR − τL),

u+ = u∗ − σθ
2a (a + σ)(τR − τL),

τ1 = τL + 1
a (u− − uL),

τ3 = τR + 1
a (uR − u+),

τ2 = τ1 + θ(τR − τL),

and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

π− = π∗ − σθ
2 (a − σ)(τR − τL),

π+ = π∗ − σθ
2 (a + σ)(τR − τL),

I1 = IL,

I2 = (1 − θ)IL + θIR,

I3 = IR.

(2.8)

The states denoted with a star subscript correspond to intermediate states in the Suliciu ARS. Their expressions
have been given in (2.3).

The key point of [11] is to pick θ is such a way that the solver satisfies a discrete entropy inequality and gives
the exact solution when the initial data is an isolated shock propagating with speed s (in which case σ = s
thanks to (2.5)). Under the classical subcharacteristic condition

|a| > max
τ∈{τL,τL∗,τR∗,τR}

√
−p′(τ), (2.9)

it can be achieved with the choice

σθ(IR − IL) = max
(
0, min

(
σ(IR − IL),−2a(a2 − σ2)A(vL, vR),

a2|σ|(a + |σ|)
a + |σ|/2

(τR∗ − τL∗)sign(σ)
))

,
(2.10)

where

A(vL, vR) =

∫ τR p(s) ds + πR

2a2 −
∫ τL p(s) ds − πL

2a2

IR − IL
− π∗

a2
·

We recall below the main result of [11].

Theorem 2.1. Under the subcharacteristic condition (2.9), the approximate Riemann solver defined by (2.5),
(2.7), (2.8) and (2.10) is conservative and entropy satisfying, preserves the phase space Ω, is Lipschitz continuous
with respect to the initial Riemann data, and is exact on isolated shocks (which, again, means that if the initial
condition is such that the exact solution is an isolated entropy shock wave, the proposed approximate solution
coincides with the exact one).

2.2. Discontinuous reconstruction schemes

This approximate Riemann solver will be coupled with the discontinuous reconstruction strategy introduced
in [9] on the scalar conservation law with increasing flux, and extended in [2] to the system case of the Euler
equations using exact Riemann solvers. The aim of the discontinuous reconstruction strategy is to obtain non-
diffusive conservative finite volume schemes, which moreover are exact for isolated and admissible shock waves.
Let us first recall the formulation of finite volume schemes on a moving grid. We denote by t0 = 0 < t1 < t2 < . . .
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the time discretization and by Δtn = tn+1 − tn the nth time step. The real line is divided with cells that are
always of length Δx but the cells will move at each time step. In the sequel we will also propose a scheme
on a fixed grid, but for the sake of clarity it seemed more natural to us to begin with a (fixed-size) moving
grid. We denote by x0

j the centers of the cells at time t0 and by x0
j+1/2 = x0

j + Δx/2 their extremities. At the
nth iteration, a mesh velocity V n

mesh is given, and the mesh moves from time to time according to the mesh
velocity: xn+1

j = xn
j + Δtn V n

mesh, and accordingly xn+1
j+1/2 = xn+1

j + Δx
2 . We denote by U = (τ, u) the vector of

conservative variables and by F (U) = (−u, p(τ)) the flux. Integrating equation (1.1) on the space-time slab{
(t, x) ∈ R+ × R : tn ≤ t < tn+1, xn

j−1/2 + V n
mesh(t − tn) ≤ x < xn

j+1/2 + V n
mesh(t − tn)

}
,

we obtain the scheme
Un+1

j = Un
j − Δtn

Δx
(Fn

j+1/2 −Fn
j−1/2), (2.11)

where Un
j = (τn

j , un
j ) is supposed to be an approximation of the mean value of the exact solution at time tn on

the jth cell:

Un
j ≈ 1

Δx

∫ xn
j+1/2

xn
j−1/2

U(tn, x) dx,

and the numerical flux Fn
j+1/2 = (Fn,τ

j+1/2,F
n,u
j+1/2) is an approximation of the exact flux along the line xn

j+1/2 +
V n

mesh(t − tn), namely

Fn
j+1/2 ≈ 1

Δtn

∫ tn+1

tn

F (U(s, xn
j+1/2 + V n

mesh(s − tn)))

− V n
meshU(s, xn

j+1/2 + V n
mesh(s − tn)) ds.

The choice of a formula expressing Fn
j+1/2 as a function of the mean values (Un

k )k∈Z defines the finite volume
scheme. In the discontinuous reconstruction scheme presented below, the numerical flux Fn

j+1/2 will depend on
(Un

k )k∈{j−1,j,j+1} when V n
mesh is nonpositive and on (Un

k )k∈{j,j+1,j+2} when V n
mesh is nonnegative. The idea of

the scheme is to reconstruct entropy satisfying shocks inside each cell of the mesh, using the neighboring cells,
and let them evolve during a time Δtn to compute the flux. The use of a moving grid is crucial to avoid to deal
with waves interactions, but as already stated, a natural version of the scheme on fixed grids will be proposed
as well.

Let us first address the CFL restriction on the time step Δt and let us then describe precisely the derivation
of the discontinuous reconstruction scheme based on the ARS described in the previous section.

Moving mesh and CFL condition

For all integer j, we solve the Riemann problem (Rj) for the augmented system (2.4), with initial data at
equilibrium

(τL, uL, TL) = (τn
j−1, u

n
j−1, τ

n
j−1) and (τR, uR, TR) = (τn

j+1, u
n
j+1, τ

n
j+1), (2.12)

i.e. involving the neighboring cells [xn
j−3/2, x

n
j−1/2] and [xn

j+1/2, x
n
j+3/2].

We denote by ±an
j the speed of the extremal waves, such that (2.9) holds true, and by σn

j the speed of the
additional wave (in accordance with the notation of Fig. 2). We denote by (un

j,−, un
j,+, πn

j,−, πn
j,+, τn

j,1, τ
n
j,2, τ

n
j,3)

the intermediate states appearing in the solution, defined by (2.7) or (2.8) (depending on the sign of σn
j ),

with (2.12) for the left and right states. Then, we fix a mesh velocity V n
mesh such that

|V n
mesh| ≥ V n

waves := max
k∈Z

an
k . (2.13)

The time step Δt is constrained by the CFL condition

Δtn ≤ Δx

(|V n
mesh| + V n

waves)
· (2.14)
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Figure 3. Reconstruction of a shock in the jth cell.

Conditions (2.13) and (2.14) ensure the following facts, that will be widely used in the sequel.

• A wave emitted at time tn at point xn
j+1/2 will not cross the interface x = xn

j+1/2 + V n
mesh(t − tn) by (2.13).

By (2.14), it will not cross the neighboring interfaces x = xn
j−1/2+V n

mesh(t−tn) and x = xn
j+3/2+V n

mesh(t−tn)
within the time step either.

• More generally, a wave emitted somewhere in the cell [xn
j−1/2, x

n
j+1/2] at time tn can only cross the interface

x = xn
j+1/2 + V n

mesh(t − tn) if V n
mesh < 0 and the interface x = xn

j−1/2 + V n
mesh(t − tn) if V n

mesh > 0.
• If a wave emitted in the jth cell interacts with a wave emitted in the (j + 1)th cell this interaction occurs

inside a cell and the waves created by this interaction stay in that cell and do not interact with the interface
x = xn

j+1/2 + V n
mesh(t − tn). This last point is true for scalar conservation laws, because the velocity of the

waves is smaller after the interaction than before. When considering systems of conservation law s, this
velocity can increase, so that it is wiser to overestimate V n

mesh at least for the first iterations in time.

In practice, for some μ in (0, 0.5) referred to as the courant number, we take

Δtn =
μΔx

V n
waves

,

and V n
mesh = (−1)n Δx

2Δtn . Conditions (2.13) and (2.14) are fulfilled with this choice and we have xn+1
j = xn

j +
(−1)nΔx

2 . Note that the mesh moves alternatively with positive and negative speeds and has always cells of
size Δx.

Reconstruction of shocks

We denote by Un
j,− = (τn

j,−, un
j,−) and Un

j,+ = (τn
j,+, un

j,+) the states around the σn
j -wave in the Riemann problem

(Rj) (see Fig. 2 for the link between τ± and τ1, τ2, τ3 in formula (2.7) and (2.8)). The core of the discontinuous
reconstruction strategy is to see the mean value Un

j as the average of a shock between the state Un
j,− and the

state Un
j,+, located somewhere in the cell [xn

j−1/2, x
n
j+1/2] and propagating with velocity σn

j . This process and
the notation are illustrated on Figure 3.

If we use the conservation of τ at time tn on the cell [xn
j−1/2, x

n
j+1/2] to locate the reconstructed shock, we

obtain that it should lie at a distance dn,τ
j of xn

j−1/2 such that

dn,τ
j τn

j,− + (Δx − dn,τ
j )τn

j,+ = Δxτn
j ,
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which yields

dn,τ
j = Δx

τn
j,+ − τn

j

τn
j,+ − τn

j,−
· (2.15)

Similarly, if we use the conservation of u, we obtain that it should lie at the distance

dn,u
j = Δx

un
j,+ − un

j

un
j,+ − un

j,−
(2.16)

of xn
j−1/2. The two distances dn,τ

j and dn,u
j are different in general, but we will see later on that they do coincide

in the case of an isolated shock wave. If one of those distances is outside of the interval (0, Δx), we consider that
the mean value in cell j does not come from the average of a shock, and we do not perform any reconstruction
within the cell [xn

j−1/2, x
n
j+1/2]. It yields the following definition.

Definition 2.2. The left and right reconstructed states in the jth cell at time tn, (τn
j,L, un

j,L) and (τn
j,R, un

j,R),
are defined as follow:

(τn
j,L, un

j,L) =

{
(τn

j,−, un
j,−) if dn,τ

j ∈ [0, Δx] and dn,u
j ∈ [0, Δx],

(τn
j , un

j ) otherwise,
(2.17)

and

(τn
j,R, un

j,R) =

{
(τn

j,+, un
j,+) if dn,τ

j ∈ [0, Δx] and dn,u
j ∈ [0, Δx],

(τn
j , un

j ) otherwise.
(2.18)

Computation of the fluxes

The fluxes are computed by letting the reconstructed shocks evolve during the time Δtn. To illustrate the
interest of using a moving mesh, consider the case in Figure 4, where a 2-shock is reconstructed in the cell
[xn

j−1/2, x
n
j+1/2] and a 1-shock is reconstructed in the cell [xn

j+1/2, x
n
j+3/2] (σn

j > 0 and σn
j+1 < 0). At time tn,

both shocks are located near xn
j+1/2, and they will interact within the time step. As it can be seen on Figure 4,

it is impossible to compute the flux on the interface x = xn
j+1/2 (blue bold vertical line) without resolving the

wave interaction. On the other hand, computing the flux along the interface x = xj+1/2 + V n
mesh(t− tn) (dashed

line) is much easier. Under conditions (2.13) and (2.14), this flux is piecewise constant and its computation only
requires the knowledge of the crossing time between the shock reconstructed in cell j when V n

mesh < 0 (in cell
j +1 when V n

mesh > 0) and the interface. Let us focus on the case where V n
mesh is negative. The two components

of the flux are computed in the same way, except that the position of the reconstructed shock in the jth cell
at the beginning of the time step is different for each conserved variable. More precisely, in order to compute
the flux in τ , we consider that the shock reconstructed in cell [xn

j−1/2, x
n
j+1/2] is initially located at the distance

dn,τ
j of xn

j−1/2. We recall that this ensures the conservation of τ inside the jth cell. As V n
mesh is negative, the

reconstructed shock crosses the right interface x = xn
j+1/2 + V n

mesh(t − tn) at the time tn + T n,τ
j , where T n,τ

j

verifies (whatever the sign of σn
j is)

xn
j−1/2 + dn,τ

j + σn
j T n,τ

j = xn
j+1/2 + V n

meshT n,τ
j ,

i.e.

T n,τ
j =

Δx − dn,τ
j

σn
j − V n

mesh

· (2.19)

As we already explained, under conditions (2.13) and (2.14), the only wave that can cross the interface x =
xn

j+1/2 + V n
mesh(t − tn) during the time step is the shock reconstructed in the jth cell. Thus the flux passing

through this interface (red dashed line on Fig. 4) is simply −uj,R −V n
meshτ

n
j,R before the crossing time tn + T n,τ

j
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σn
j

σn
j+1

tn

tn+1

xn
j+1/2

xn
j+1/2

xn
j+3/2

xn
j+3/2

xn+1
j+1/2

xn
j−1/2

xn
j−1/2

Un
j,R

Un
j,L

Un
j+1,R

Un
j+1,L

Un
j,R

Un
j,L

Un
j+1,L

Un
j+1,R

Figure 4. Top: Reconstruction of a 1-shock in the jth cell (σn
j > 0) and of a 2-shock in the

(j +1)th cell (σn
j+1 < 0). Bottom: In black, positions of the reconstructed shocks through time,

and the waves emitted when they interact. It is easy to compute the flux through the red dashed
and green dotted interfaces, but not through the blue bold vertical one. (Color online)

and −uj,L−V n
meshτn

j,L after it. Of course, T n,τ
j can be larger than Δtn, in which case the flux is −uj,R−V n

meshτ
n
j,R

during the whole time step. Eventually the flux in τ writes

ΔtnFn,τ
j+1/2 =

(
−un

j,R − V n
meshτn

j,R

)
min(Δtn, T n,τ

j )

+
(
−un

j,L − V n
meshτn

j,L

)
(Δtn − min(Δtn, T n,τ

j )).
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To compute the flux in the u variable, the only difference is that the shock reconstructed in the jth cell is
initially located at the distance dn,u

j of xn
j+1/2, using the conservation of u instead of τ . Thus the crossing time

is tn + T n,u
j with

T n,u
j =

Δx − dn,u
j

σn
j − V n

mesh

,

and we obtain similarly the second component of the numerical flux. Finally if V n
mesh is negative we have

ΔtnFn,τ
j+1/2 =

(
−un

j,R − V n
meshτn

j,R

)
min(Δtn, T n,τ

j )

+
(
−un

j,L − V n
meshτn

j,L

)
(Δtn − min(Δtn, T n,τ

j )),

ΔtnFn,u
j+1/2 =

(
πn

j,R − V n
meshun

j,R

)
min(Δtn, T n,u

j ) (2.20)

+
(
πn

j,L − V n
meshun

j,L

)
(Δtn − min(Δtn, T n,u

j )).

If V n
mesh is positive, the only wave that can cross the interface x = xn

j+1/2 + V n
mesh(t − tn) during the time

step is the shock reconstructed in cell j + 1, which propagates with velocity σn
j+1. In the variables τ and u

respectively, it needs a time

T n,τ
j+1 =

dn,τ
j+1

V n
mesh − σn

j+1

or T n,u
j+1 =

dn,u
j+1

V n
mesh − σn

j+1

to cross the interface. In that case, the flux Fn
j+1/2 passing through the interface is once again piecewise constant,

but this time is computed with Un
j+1,L before the crossing time, and with Un

j+1,R after it (green dotted interface
on Fig. 4). It writes

ΔtnFn,τ
j+1/2 =

(
−un

j+1,L − V n
meshτ

n
j+1,L

)
min(Δtn, T n,τ

j+1)

+
(
−un

j+1,R − V n
meshτn

j+1,R

)
(Δtn − min(Δtn, T n,τ

j+1)),

ΔtnFn,u
j+1/2 =

(
πn

j+1,L − V n
meshun

j+1,L

)
min(Δtn, T n,u

j+1) (2.21)

+
(
πn

j+1,R − V n
meshun

j+1,R

)
(Δtn − min(Δtn, T n,u

j+1)).

Finally, the conservative variables are updated with (2.11).

Remark 2.3. When no reconstruction is performed, i.e. when Un
j,L = Un

j,R = Un
j , we have, whatever the values

of dn
j , σn

j and T n
j are, {

Fn
j+1/2 = F (Un

j ) − V n
meshU

n
j if V n

mesh < 0,

Fn
j−1/2 = F (Un

j+1) − V n
meshUn

j+1 if V n
mesh > 0.

In other words in that case, the numerical fluxes (2.20) and (2.21) coincide with the Lax–Friedrichs scheme on
a moving grid, which is well-known to be stable under conditions (2.13) and (2.14).

On a fixed grid

In this section we present a discontinuous reconstruction scheme on a fixed grid. In this section only we take
xn+1

j+1/2 = xn
j+1/2 and thus V n

mesh = 0. There is at least three advantages in using a fixed grid:

• the Courant number can be taken in (0, 1), instead of in (0, 0.5) with a moving grid. Thus we can use time
steps that are twice larger;

• at equal Courant number in smooth regions, the scheme on a fixed grid is a little less diffusive than on a
moving grid. Note that in a similar way, the well-known Rusanov scheme, which can be interpreted in terms
of a moving grid as proposed here, is more diffusive than Godunov’s scheme.
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• dealing with boundary conditions is easier since the domain is fixed here.
The problem is to deal with interactions between reconstructed shocks near an interface. The basic idea is to
cancel some reconstructions when it happens. Typically in the example of Figure 4, where two reconstructed
shocks cross the blue bold vertical interface within the time step, we decide to cancel those two reconstructions
and to use a classical numerical flux. This will be sufficient to obtain the main property of the scheme, namely
to be exact when the initial data is an isolated shock.

Introductory discussion
If a shock is reconstructed in the jth cell and has a positive speed (σn

j > 0), it is tempting to use the flux
formula (2.20) which gives the flux passing through the j + 1/2 interface if the initial data were{

τ0(x) = τn
j,L × 1x<xn

j−1/2+dn,τ
j

+ τn
j,R × 1x>xn

j−1/2+dn,τ
j

,

u0(x) = un
j,L × 1x<xn

j−1/2+dn,u
j

+ un
j,R × 1x>xn

j−1/2+dn,u
j

,

(see what happens through the red dashed interface of the bottom of Fig. 4).
However, if a shock is reconstructed in the j + 1 cell and has a negative speed (σn

j+1 < 0), it is similarly
tempting to use the flux formula (2.21), which gives the flux passing through the j + 1/2 interface if the initial
data were {

τ0(x) = τn
j+1,L × 1x<xn

j+1/2+dn,τ
j+1

+ τn
j+1,R × 1x>xn

j+1/2+dn,τ
j+1

,

u0(x) = un
j+1,L × 1x<xn

j+1/2+dn,u
j+1

+ un
j+1,R × 1x>xn

j+1/2+dn,u
j+1

,

(see what happens through the green dotted interface of the bottom of Fig. 4).
In the variable τ , the two shocks interact at time tn + T n,inter,τ

j+1/2 such that

dn,τ
j + σn

j T n,inter,τ
j+1/2 = Δx + dn,τ

j+1 + σn
j+1T

n,inter,τ
j+1/2 .

We obtain similarly a different interaction time T n,inter,u
j+1/2 in the variable u. We evaluate the time after which

the two shocks interact by

T n,inter
j+1/2 = min(T n,inter,τ

j+1/2 , T n,inter,u
j+1/2 ) = min

(
dn

j+1 + Δx − dn
j

σn
j − σn

j+1

)
,

where the second minimum is taken on the two components of the vectors dn
j and dn

j+1. The interaction can
also occur when σn

j and σn
j+1 have the same sign and σn

j > σn
j+1. If this time is smaller than Δtn, the shocks

interact within the time step and the waves created by the resulting interaction are likely to meet the (j+1/2)th
interface (which was not the case on a moving grid under condition (2.13), see once again Fig. 4). In that case,
we do not take into account the reconstructions in cells j and j + 1, and simply use the Godunov-type flux
(associated with (2.4)) instead of the reconstruction flux (2.20) or (2.21).

Definition of the fluxes
Let us now be more precise and introduce some notations. We denote by FGOD(UL, UR) the Godunov-type
scheme associated with the ARS (2.4):

FGOD(UL, UR) =

{
(−u−, π−) if σ > 0,

(−u+, π+) if σ ≤ 0,
(2.22)

(see Fig. 2). We also denote by Fn,←
j+1/2 the flux given by (2.21) and by Fn,→

j+1/2 the flux given by (2.20) (with
V n

mesh = 0). Moreover, we use the convention σn
j = 0 if no reconstruction is performed in cell j, and we extend

the definition of the interaction time by

T n,inter
j+1/2 =

{
min

(
dn

j+1+Δx−dn
j

σn
j −σn

j+1

)
if σn

j > σn
j+1, and σn

j+1σ
n
j �= 0

+∞ otherwise.
(2.23)
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j
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xxn
j−1/2 xn

j+1/2

Figure 5. Left: the structure of the ARS used to determine Un
j,L and Un

j,R. Right: the waves
emitted in the reconstructed solution: there is only a wave at speed an

j between Un
j,R and Un

j+1,
which is faster than the reconstructed shock. Thus the flux through the interface j + 1/2 is
easily computed and given by Fn,→

j+1/2.

We propose the following fluxes:

Fn
j+1/2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fn,→

j+1/2 if σn
j > 0, T n,inter

j+1/2 > Δt and σn
j+1 ≥ 0,

Fn,←
j+1/2 if σn

j+1 < 0, T n,inter
j+1/2 > Δt and σn

j ≤ 0,

FGOD(Un
j , Un

j+1) if (σn
j > 0 and σn

j+1 < 0) or T n,inter
j+1/2 ≤ Δt,

FGOD(Un
j,R, Un

j+1,L) otherwise.

(2.24)

In particular, for simplicity, we cancel the reconstructions in cells j and j + 1 if σn
j > 0 and σn

j+1 < 0.
We now justify the choice of flux Fn,→

j+1/2 if σn
j > 0 and σn

j+1 = 0, which corresponds to the case where a shock
with positive speed is reconstructed in the jth cell and no shock is reconstructed in the (j + 1)th cell. In that
case, the approximate Riemann solver (2.4) between the left state Un

jR and the right state Un
j+1 has only one

nontrivial wave, namely the right extremal one, which has speed an
j . This is illustrated on Figure 5. Thus, as

an
j > σn

j , no wave interaction occurs at interface j + 1/2. The flux through the interface j + 1/2 is indeed easily
computed and given by Fn,→

j+1/2.

2.3. Coupling the reconstruction scheme with higher order methods

In Remark 2.3, we observed that the reconstruction scheme behaves like the Lax–Friedrichs scheme when no
reconstruction is performed. In practice, no reconstruction are performed in smooth areas of the solution, and
thus the scheme is very diffusive in those areas, while it is very sharp near shocks (see the numerical simulations
in Sects. 3 and 4 below). A simple cure is to use another flux when no reconstruction is performed. In this
paper we chose to use a MUSCL-Hancock flux [26], with a minmod slope limiter and the approximate Riemann
solver [11]. The flux is computed as follows,

1. The average value Un
i in cell i at time tn is replaced by a linear function

x 	→ Un
i +

Δn
i (x − xn

i )
Δx

,

where the slope Δn
i is given by

Δn
i = minmod(Un

i − Un
i−1, U

n
i+1 − Un

i )

where
minmod(a, b) =

sign(a) + sign(b)
2

min(|a|, |b|)
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(other choices are possible, see [26]). We denote by

Un,MH
i,L = Un

i − Δn
i

2
and Un,MH

i,R = Un
i +

Δn
i

2

the boundary extrapolated values.
2. We evolve those boundary extrapolated values for a time tn+1−tn

2 and compute{
U

n+1/2,MH
i,L = Un

i,L + tn+1−tn

2Δx (f(Un,MH
i,L ) − f(Un,MH

i,R )),
U

n+1/2,MH
i,R = Un

i,R + tn+1−tn

2Δx (f(Un,MH
i,L ) − f(Un,MH

i,R )).

3. Eventually, the flux is given by

Fn,MH
j+1/2 = Fn,GOD

j+1/2

(
U

n+1/2,MH
j,R , U

n+1/2,MH
j+1,L

)
.

To couple the discontinuous reconstruction scheme with the MUSCL-Hancock flux on a fixed grid, we proceed
as follow.

1. We compute the discontinuous reconstruction flux (2.24), and keep in memory the interface that are not
concerned by any reconstruction (i.e. σn

j = 0 and σn
j+1 = 0).

2. On those specific interfaces, we use the MUSCL-Hancock flux, with the choice

Δn
i = minmod(Un

i − Un
i−1,R, Un

i+1,L − Un
i ).

2.4. Exact approximation of isolated shocks

We now prove a nontrivial property that states that if the initial data is an isolated admissible shock wave,
the discontinuous reconstruction scheme (on a moving or on a fixed grid) is exact. Let us start this section by
the following proposition, which is easily verified.

Proposition 2.4. The numerical fluxes (2.20) and (2.21) (on a moving grid) and (2.24) (on a fixed grid) are
consistent: if Un

j−1 = Un
j = Un

j+1 = Un
j+2 := U , then Fn

j+1/2 = f(U) − V n
meshU (we recall that on a fixed grid,

V n
mesh = 0).

The aim of this subsection is to prove the following theorem.

Theorem 2.5. The discontinuous reconstruction scheme is exact whenever the initial data is an isolated entropy
satisfying shock. More precisely, suppose that the initial data is{

τ0(x) = τL1x<0 + τR1x>0,

u0(x) = uL1x<0 + uR1x>0,

with uL > uR and (τL, uL) and (τR, uR) linked by the Rankine–Hugoniot relations (1.4). Then Un
j is the average

of the exact solution at time tn over the interval [xn
j−1/2, x

n
j+1/2] for all j in Z.

Remark 2.6. In particular, this theorem means that for such particular initial data, no spurious numerical
diffusion is created by the scheme. For general initial data, the same behavior is observed, see Section 3 below.

Proof. We prove the result for a 2-shock (the reasoning is identical for a 1-shock), thus in the following we
suppose that τL < τR. Suppose that the property is verified for an integer n. Then, there exists an integer jn

0

and a distance dn
jn
0
∈ [0, Δx] such that

Un
k =

⎧⎪⎨
⎪⎩

UL if k < jn
0 ,

djn
0

Δx UL +
Δx−djn

0
Δx UR if k = jn

0 ,

UR if k > jn
0 .



NONDIFFUSIVE CONSERVATIVE SCHEMES FOR LAGRANGIAN GAS DYNAMICS 1901

By construction, the approximate Riemann solver of [11] is exact on (Rjn
0
). Therefore, the shock is correctly

reconstructed in cell jn
0 , and (2.5) ensures that it has the correct speed

σ :=
uL − uR

τR − τL
·

The two distances dτ
jn
0

and du
jn
0

given by (2.15) and (2.16) are both equal to dn
jn
0
, and correspond to the exact

position of the shock at time tn. On the other hand, no reconstruction is performed in cells jn
0 − 1 and jn

0 + 1,
because it is impossible to have dn,τ

jn
0 −1 or dn,τ

jn
0 +1 in (0, Δx).

Let us indeed explain in detail the case of the cell jn
0 − 1. Consider the Riemann problem between the left

state (τL, uL) and (τ̃R, ũR) := (ατR + (1 − α)τL, αuR + (1 − α)uL), where α = 1 −
dn

jn
0

Δx . We denote by σ̃ the
speed of the shock wave in this Riemann problem, which by (2.5) is given by

σ̃ :=
√

pL − p̃R

τ̃R − τL
, where p̃R = p(τ̃R).

As τ+ ≥ τ−, if τ− is larger than τL, it is impossible to reconstruct τ in cell jn
0 − 1 in a conservative manner. We

use (2.7) to express the difference τ− − τL expresses as a function of θ:

τ−(θ) − τL = τ+(θ) − θ(τ̃R − τL) − τL

= τ̃R +
1
a
(ũR − u+(θ)) − θ(τ̃R − τL) − τL

= (1 − θ)(τ̃R − τL) +
1
a

(
ũR − u∗ +

σ̃θ

2a
(a + σ̃)(τ̃R − τL)

)

= (τ̃R − τL) +
ũR − u∗

a
− θ(τ̃R − τL)

(
1 − σ̃

2a2
(a + σ̃)

)
.

This function is decreasing with respect to θ. Indeed, τ̃R is larger than τL, and as a is larger than σ̃ by the
subcharacteristic condition (2.9), we have

σ̃(a + σ̃)
2a2

≤ 1.

Thus for all θ in [0, 1],

τ−(θ) − τL≥τ−(θ = 1) − τL =
1
a

(
ũR − u∗ +

σ̃

2a
(a + σ̃)(τ̃R − τL)

)
.

Let us prove that the quantity

Q := ũR − u∗ +
σ̃

2a
(a + σ̃)(τ̃R − τL)

is positive. Replacing u∗ by its value, we obtain

Q =
ũR − uL

2
+

π̃R − πL

2a
+

σ̃

2a
(a + σ̃)(τ̃R − τL).

Now, we divide by τ̃R − τL and use the definition of σ̃ to write

2Q

τ̃R − τL
= −σ − σ̃2

a
+

σ̃

a
(a + σ̃) = σ̃ − σ.

We conclude by remarking that as the pressure is convex,

π̃R = p(ατR + (1 − α)τL) ≤ απR + (1 − α)πL

and thus

σ̃ =
√

πL − π̃R

τ̃R − τL
≥
√

πL − πR

τR − τL
= σ.
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Proving that no reconstruction is performed in cell jn
0 +1 follows the same lines. We now focus on the Riemann

problem between the left state (τ̃L, ũL) := (ατL + (1 − α)τR, αuL + (1 − α)uR) and (τR, uR) with α = dn
jn
0
/Δx.

We have

u+ − uR ≥ u∗ −
σ̃

2a
(a + σ̃)(τR − τ̃L) − uR

=
ũL − uR

2
− πR − π̃L

2a
− σ̃

2a
(a + σ̃)(τR − τ̃L)

=
τR − τ̃L

2

(
σ +

σ̃2

a
− σ̃

a
(a + σ̃)

)

=
τR − τ̃L

2
(σ − σ̃) .

It follows that u+ is larger than uR, because

σ̃ =
√

π̃L − πR

τR − τ̃L
≤
√

πL − πR

τR − τL
= σ.

Thus, τ+ = τR + 1
a (uR − u+) is smaller than τL, and as τ− is smaller than τ+, it is impossible to reconstruct τ .

The rest of the proof consists in an elementary checking that (2.20) and (2.21) give the correct flux. The case
of a fixed grid follows because no reconstruction is cancelled. �

3. One dimensional numerical simulations

In this section we present several numerical simulations to test the non diffusive behavior of the schemes
presented in the previous section. The space interval [−1, 1] is discretized with 100 cells and the pressure law is
p(τ) = τ−2. We take

Δtn = 0.45
Δx

V n
waves

and V n
mesh = (−1)n Δx

2Δtn
,

so that both (2.13) and (2.14) hold true. In each case, we compare the discontinuous reconstruction schemes on
a moving and on a fixed grid (abbreviated RecMG and RecFG in the sequel), the Godunov-type scheme and a
MUSCL-Hancock scheme, all based on the approximate Riemann solver of [11]. The flux of the “Godunov-type
scheme” is computed on a fixed grid (V n

mesh = 0) and its expression is given in (2.22).
The first three test cases are taken from [11], the fourth one is a variant of the fast shock of Arora and Roe [4].

On test cases involving only shockwaves, the results given by the reconstruction schemes on moving and fixed
grids are very close to each other, and we only show the results given by the scheme on a moving grid. The
main difference between the two schemes lies on the fact that the scheme on a fixed grid is a little less diffusive
in the smooth areas, see test case 2.
Test 1: Isolated shock
Our first test is the Riemann problem (1.3) with

τL = 1, uL = 0, τR = 2 and uR = −
√

3/2.

It corresponds to an isolated shock. Theorem 2.5 is illustrated on Figure 6, namely the shock is perfectly advected
by the reconstruction scheme, while it is diffused by the Godunov-type scheme. On the bottom of this figure,
we can see that there is only one intermediate value in the shock profile given by the reconstruction scheme,
which corresponds to the average of the exact solution on the cell.

Test 2: Rarefaction and shock

For this test case, the initial data is (1.3) with

τL = 0.3, uL = 0, τR = 0.6 and uR = 0.
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Figure 6. Test 1: Specific volume (top left) and velocity (top right) at time t = 0.15. Bottom:
close-up on the piecewise constant shock profile.

The solution contains a 1-rarefaction wave and a 2-shock. On Figure 7, we can see that the shock is sharply
captured by the reconstruction schemes. The comparison in the rarefaction wave shows first, that the recon-
struction scheme on a fixed grid is slightly less diffusive than the one on a moving grid, and second, that it has
the same amount of diffusion as the Godunov scheme in the smooth areas. This was expected: in the rarefaction
the σ-wave is trivial and the fluxes (2.24) and (2.20-2.21) coincide with the Godunov fluxes, see Remark 2.3.
In particular the reconstruction scheme in this form is not competitive with the second order MUSCL-Hancock
scheme. A simple and computationally affordable cure is to replace the Godunov flux by the MUSCL-Hancock
flux at the interfaces which are not concerned by any reconstruction, as explained in Section 2.3. We obtain
a new scheme, abbreviated in Rec+MUSCL in the legends, which behaves as the reconstruction scheme near the
shock and as the MUSCL-Hancock scheme inside the rarefaction. Figure 8 is a zoom around the shock. The
slight overshoots are created in the first iterations in time. Once the rarefaction and the shock are separated,
the behavior of the reconstruction scheme around the shock is driven by Theorem 2.5.

Test 3: Shock and shock

We consider the Riemann problem (1.3) with

τL = 0.5, uL = 2, τR = 0.6 and uR = 1.
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Figure 7. Test 2: Specific volume and velocity at time t = 0.04.
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Figure 8. Test 2: Close-up on the piecewise constant shock profile.

It contains a 1-shock and a 2-shock. Figure 9 clearly demonstrates that they are both sharply captured, with
only one point of numerical diffusion.

Test 4: Shock and strong shock

The aim of this test case is in some sense to test the robustness of Theorem 2.5. The initial Riemann data is
given by (1.3) with

τL = 1, uL = 1, τR = 52 and uR = −8.
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Figure 9. Test 3: Specific volume and velocity at time t = 0.03.

It is a slight modification of the fast shock considered in [4], in which the right state is τR = 50.981 and
uR = −6.068, and the solution is an isolated 2-shock, and thus is covered by Theorem 2.5. With our modification,
the solution also contains a nontrivial 1-wave of small strength.

When computing a strong shock (also called fast shock), spurious oscillations appear in the velocity when
using usual Godunov-type methods. They also appear clearly in the characteristic variable u ±

√
8/τ . Those

two quantities are plotted on Figure 10. Theorem 2.5 states that the scheme is exact on isolated strong shocks.
We can see on Figure 10 that the ability of the reconstruction scheme to approach correctly fast shocks is not
lost when we introduce a perturbation (here, a second wave in the Riemann problem).

Test 5: Isentropic compression

This test case consists in reversing the time starting from a developed 1-rarefaction wave, to recover a dis-
continuity. This is a difficult test case which shows a limitation of the discontinuous reconstruction strategy
considered here, since we will see that the schemes do not satisfy the validity of a discrete entropy inequality
(even though the computed solutions are perfectly admissible from a physical point of view).

Let us denote
(t, x) 	→ Urar(x/t; UL, UR) = (τrar(x/t; UL, UR), urar(x/t; UL, UR))

the self-similar rarefaction wave associated with the Riemann initial condition UL1x<0 + UR1x≥0, with UL =
(τL, uL), UR = (τR, uR) and

τL = 0.5, uL = 10, τR = 5 and uR = uL −
√

2
(
τ
−1/2
R − τ

−1/2
L

)
.

For this test case, the initial data is

τ0(x) = τrar(−x/Trar) u0(x) = urar(−x/Trar)

with Trar = 0.2. This initial condition is plotted on Figure 11. For times t < Trar, the exact solution is
U(t, x) = Urar(−x/(Trar − t)), and for times t ≥ Trar, the solution coincides with the solution of the Riemann
problem associated with left state UR and right state UL (at time t − Trar), which contains a 1-shock and a
2-rarefaction. In particular at time t = Trar the exact solution is nothing but a discontinuity between UR and
UL and located at x = 0.
We compare the reconstruction scheme on a moving grid and on a fixed grid at five different times. This is the
only test case where the results are significantly different for the two schemes. On Figures 12−14 we plot the
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Figure 10. Test 4: Velocity (left) and u −
√

8/τ (right) at time t = 0.3. Domain [−1 : 1] on
the top and domain [−0.6 : 0.1] on the bottom (close-up).

solutions for t = 0.14, t = 0.17, t = 0.2, t = 0.23 and t = 0.26. To ease the reading the x-axis is translated of 0.2
between two times; the dot indicates where x = 0 is. We observe a spike near the discontinuity when the time t
is close to Trar. It seems that the reconstruction scheme starts to reconstruct a little before t = Trar the expected
shock that will appear in the exact solution for times t > Trar, and that will be eventually sharply computed
by the proposed schemes. The maximal height of the spike is at t = Trar, and it diminishes rapidly afterwards,
the shock being correctly approximated after Trar. The spike does not prevent the scheme from converging in
L1, and its size is independent from the Courant number. On this test case, we observe that on the left of the
solution, the results given on a fixed grid are much better than the ones given on a moving grid. On the other
hand, we note that the Godunov-type scheme does not create any spike, but introduces numerical diffusion on
the shock wave for times t > Trar, as it is expected. On Figure 15, we plot the evolution of the entropy during
the time interval [0, 4] for this test case. More precisely, we plot the evolution of the quantity

∫
U(τn

rec(x), un
rec(x))dx −

∫
U(τn−1

rec (x), un−1
rec (x))dx

+ (tn − tn−1)((W(τR, uR) − V n−1
meshU(τR, uR)) − (W(τL, uL) − V n−1

meshU(τL, uL)))

where

τn
rec(x) =

∑
j

(τn
j,L1x<xn

j−1/2+dn,τ
j

+ τn
j,R1x≥xn

j−1/2+dn,τ
j

)1
x∈
[
xn

j−1/2,xn
j+1/2

]
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Figure 11. Initial condition for test 5.
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Figure 12. Solutions of test 5 at different times with the reconstruction scheme on a moving
grid. The exact solutions are in black.
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Figure 13. Solutions of test 5 at different times with the reconstruction scheme on a fixed
grid. The exact solutions are in black.
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Figure 14. Solutions of test 5 at different times with the Godunov scheme. The exact solutions
are in black.
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Figure 15. Evolution of the entropy through time in test 5, on the time interval [0, 4] (top),
and a zoom before time Trar (bottom).
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Figure 16. L1-error at time Trar with the Godunov-type scheme and with the discontinuous
reconstruction schemes.
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Figure 17. In black, the reconstructed solution U0
rec, i.e. the solution reconstructed from the

initial data before any iteration in time is done. We take Trar = 0.015 and 500 cells. In blue,
the piecewise constant function corresponding to (U0

j )j∈ Z. (Color online)

and

un
rec(x) =

∑
j

(un
j,L1x<xn

j−1/2+dn,u
j

+ un
j,R1x≥xn

j−1/2+dn,u
j

)1
x∈
[
xn

j−1/2,xn
j+1/2

]

are the reconstructed solution at time tn (we recall than on a fixed grid, V n−1
mesh = 0 for all n). One can see

that this quantity oscillates around 0 and often takes positive values until the time Trar = 0.2. It indicates that
the scheme is not entropy satisfying in the strict sense, but only in a “weak” sense to be defined. Indeed, the
scheme seems to converge toward the correct solution in the L1-norm. The order of convergence is plotted on
Figure 16. Note also that even though the scheme is not entropy satisfying, it contains entropy information
since the underlying approximate Riemann solver of [11] is entropy satisfying. It is thus likely that the problem
comes from the discontinuous reconstruction strategy. More precisely, we believe that some reconstructions
are not entropy satisfying and should be cancelled using a stronger constraint than the ones proposed in (2.17)
and (2.18) (i.e. dn,τ

j ∈ [0, Δx] and dn,u
j ∈ [0, Δx]). For example in this case, we expect the reconstructed solution

Un
rec = (τn

rec, u
n
rec) to be monotonous for times t < Trar, but as depicted on Figure 17, this is not the case at all
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Figure 18. Test 6: Comparison at time 0.1.

in the course of the first iteration (n = 0). In the scalar case, entropy satisfying versions of the anti-diffusive
scheme of [16] (which can be reinterpreted in terms of discontinuous reconstruction) have been proposed in [6],
but remain to be adapted to the present setting. It is a challenging and open problem at the stage of the present
work.

Test 6: Waves interactions

The aim of this test case is to test the ability of the reconstruction scheme to properly deal with waves in-
teractions. We will consider both rarefaction/shock and shock/shock interactions at the same time. The initial
data is ⎧⎨

⎩
τ0(x) = 0.5 ∗ 1x≤−1/3 + 0.6 ∗ 1−1/3<x<1/3 + 0.3 ∗ 1x≥1/3

u0(x) = 2 ∗ 1x≤−1/3 + 1−1/3<x<1/3 + 2 ∗ 1x≥1/3

on the interval [−1, 1] with periodic boundary conditions. One thus have three distinct Riemann problems,
each of them containing 2 distinct waves. We compare the reconstruction scheme (Rec) and the reconstruction
scheme coupled with the MUSCL-Hancock strategy (Rec+MH), both on moving grids, with the Godunov scheme
with and without MUSCL-Hancock strategy. The results are displayed on Figures 18−20 at times 0.1, 0.3
and 0.6. At these times, several waves interactions have already taken place. We observe that the shocks
are still extremely sharp with the reconstruction schemes (only 1 or 2 intermediate values), even for long
times.
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Figure 19. Test 6: Comparison at time 0.3.

4. Two dimensional simulations

In two space dimensions, the p-system writes⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tτ − ∂xu − ∂yv = 0,

∂tu + ∂xp(τ) = 0,

∂tv + ∂yp(τ) = 0,

τ(0, x, y) = τ0(x, y), u(0, x, y) = u0(x, y), v(0, x, y) = v0(x, y),

(4.1)

where u and v denote the horizontal and vertical velocity components. In order to extend the
method proposed in the previous sections to 2D configurations, we propose to consider cartesian
meshes and to use a standard directional splitting strategy. More precisely, the approximate solution
(τ̃ (Δt, x, y), ũ(Δt, x, y), ṽ(Δt, x, y)) of (4.1) at time Δt will be defined thanks to the following two steps. One
first define (τ̄ (Δt, x, y), ū(Δt, x, y), v̄(Δt, x, y)) as the solution at time Δt of (4.1) in the x-direction, namely⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tτ − ∂xu = 0,

∂tu + ∂xp(τ) = 0,

∂tv = 0,

τ(0, x, y) = τ0(x, y), u(0, x, y) = u0(x, y), v(0, x, y) = v0(x, y).

(4.2)
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Figure 20. Test 6: Comparison at time 0.6.

Note that the initial condition in (4.2) is the same as in (4.1). In the second step, we define
(τ̃ (Δt, x, y), ũ(Δt, x, y), ṽ(Δt, x, y)) as the solution at time Δt of (4.1) but now in the y-direction, namely⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂tτ − ∂yv = 0,

∂tu = 0,

∂tv + ∂yp(τ) = 0,

τ̃(0, x, y) = τ̄ (Δt, x, y), ũ(0, x, y) = ū(Δt, x, y), ṽ(0, x, y) = v̄(Δt, x, y),

(4.3)

where the initial condition is now taken to be equal to the solution obtained at the end of the first step. Using
cartesian grids then allows to simply apply the 1D schemes proposed in the previous section to approximate
the solutions of (4.2) and (4.3).

The numerical simulations are performed on a fixed grid with the pressure law p(τ) = τ−2 and we compare
as before the approximate solutions given by the reconstruction scheme (Rec in the legend), the reconstruction
scheme coupled with a MUSCL-Hancock strategy (RecMH), the Godunov type scheme (God) and the MUSCL-
Hancock scheme (MH).

4.1. Oblique shock and strong shock

We first start by reproducing the Test 4 of the 1D section in 2D, considering that the direction of propagation
of the shock is not aligned with the mesh and given by (cos(θ), sin(θ)). The initial data is⎧⎪⎨

⎪⎩
τ0(x, y) = 1cos(θ)x+sin(θ)y≤0 + 52 ∗ 1cos(θ)x+sin(θ)y>0,

u0(x, y) = cos(θ) ∗ 1cos(θ)x+sin(θ)y≤0 − 8 cos(θ) ∗ 1cos(θ)x+sin(θ)y>0,

v0(x, y) = sin(θ) ∗ 1cos(θ)x+sin(θ)y≤0 − 8 sin(θ) ∗ 1cos(θ)x+sin(θ)y>0,
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Figure 21. Apparition of oscillations in the Riemann invariant.
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Figure 22. Comparison of several schemes on a oblique Riemann problem.

and we take θ = π
4 + 0.01. The computational domain is the (x, y)-rectangle [−1.5, 1.5]× [−1, 1] and the mesh

is made of 420 × 280 cells. The courant number is set to 0.45 and we consider Neumann boundary conditions.
Figure 21 shows a 1D-cut along the direction of propagation of the shock of the Riemann invariant u// −

√
8/τ

(u// is the velocity in the direction of propagation of the shock), for which the oscillation are the most visible.
We observe that the ability of the reconstruction scheme to compute an isolated admissible shock exactly is
lost. This is clearly expected and due to the fact that an isolated admissible oblique shock cannot be admissible
in the x-direction and in the y-direction with the same left and right constant states. Obtaining an analogue
of Theorem 2.5 for 2D admissible isolated shocks (whatever the direction of propagation is) is out of reach
with the proposed 2D extension of the method. On the contrary, it certainly necessitates the development
of a relevant genuinely 2D extension of the 1D method (instead of using a directional splitting) together with new
ideas.
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Figure 23. Solutions at time 4.5.

4.2. Oblique Riemann problem

This test case corresponds to the Test 3 of the 1D section but it is now performed in 2D with a direction of
propagation given by (cos(θ), sin(θ)) with θ = π

4 + 0.01. More precisely, the initial data is given by⎧⎪⎨
⎪⎩

τ0(x, y) = 0.5 ∗ 1cos(θ)x+sin(θ)y≤0 + 0.6 ∗ 1cos(θ)x+sin(θ)y>0,

u0(x, y) = 2 ∗ cos(θ) ∗ 1cos(θ)x+sin(θ)y≤0 + cos(θ) ∗ 1cos(θ)x+sin(θ)y>0,

v0(x, y) = 2 ∗ sin(θ) ∗ 1cos(θ)x+sin(θ)y≤0 + sin(θ) ∗ 1cos(θ)x+sin(θ)y>0,

and the space and time discretizations are the same as in the previous 2D simulation. Figure 22 shows a 1D-cut
of the specific volume along the first diagonal. One can observe that the proposed reconstruction strategy
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gives sharp shock profiles but at the price of significant overshoots and undershoots compared to the Godunov
scheme. Unfortunately, we are not able to propose a precise explanation of such a behaviour. However, we
believe that developing a reconstruction criterion which takes into account the validity of an entropy inequality
might significantly improve the quality of the results.

4.3. 2D implosion

To conclude this section, we present a genuine 2D simulation. The computational domain is the square
[−1, 1]2 with rigid wall boundary conditions, and the initial data is taken to be

{
τ0(x, y) = 1√

x2+y2≥0.5
+ 2 ∗ 1√

x2+y2<0.5
,

u0(x, y) = v0(x, y) = 0,

which corresponds to a fluid at rest (u = v = 0) with a smaller density inside the circle which has its center at
point (0, 0) and a radius of 0.5. We consider a Courant number of 0.45 and a fixed grid made of 100×100, 200×200
and 400×400 cells. Figure 23 shows that the specific volume is much less diffused with the reconstruction scheme
than with the Godunov scheme. However, oscillations are still present with the reconstruction scheme.

5. Conclusions and perspectives

We proposed in this paper a new conservative finite volume method for the gas dynamics equations in
Lagrangian coordinates. The method is based on the use of a relevant approximate Riemann solver which has the
property of being exact for isolated admissible shock discontinuities, together with an in-cell discontinuous
reconstruction strategy in order to remove the numerical diffusion near such discontinuities. Theorem 2.5 shows
that the 1D scheme is exact for isolated shock waves, and numerical results prove that it captures discontinuities
very sharply in more general situations. Despite the real quality of the numerical results, it was observed
numerically that the numerical scheme may exhibit oscillations and not satisfy a discrete entropy inequality.
The first main perspective of this work is thus to propose a stronger reconstruction criterion to ensure the
validity of this property, which means in some sense adding numerical diffusion by removing the reconstruction
step in the regions where the property is false, but without affecting the validity of Theorem 2.5. Entropy
fixes for numerical schemes based on a reconstruction strategy have already been proposed in [21] for scalar
conservation laws, but their extension to the system case is not trivial at all.

We performed 2D numerical simulations with the proposed method by simply considering cartesian meshes
and a classical directional splitting strategy so that the 1D scheme could be used without any modification
in each direction x and y. We obtained good and promising numerical results but the consequences of such a
simple approach is that the validity of Theorem 2.5 is clearly lost, while the drawbacks related to the validity
of an entropy inequality and the possible presence of oscillations are still present. To our opinion, the second
main perspective of this work is to find a genuinely multidimensional extension of the 1D reconstruction scheme
(instead of using a simple directional splitting) so that the validity of Theorem 2.5 is not lost. This issue is
completely open at the moment.

At last, extending the proposed reconstruction scheme to the full system of gas dynamics (with energy
equations) in Lagrangian and Eulerian coordinates is already a relevant perspective in 1D.
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