
ESAIM: M2AN 51 (2017) 679–706 ESAIM: Mathematical Modelling and Numerical Analysis
DOI: 10.1051/m2an/2016033 www.esaim-m2an.org

A GENERALIZED MIMETIC FINITE DIFFERENCE METHOD
AND TWO-POINT FLUX SCHEMES OVER VORONOI DIAGRAMS
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Abstract. We develop a generalization of the mimetic finite difference (MFD) method for second
order elliptic problems that extends the family of convergent schemes to include two-point flux ap-
proximation (TPFA) methods over general Voronoi meshes, which are known to satisfy the discrete
maximum principle. The method satisfies a modified consistency condition, which utilizes element and
face weighting functions. This results in shifting the points on the elements and faces where the pressure
and the flux are most accurately approximated. The flux bilinear form is non-symmetric in general,
although it reduces to a symmetric form in the case of TPFA. It can be defined as the L2-inner product
of vectors in two H(Ω; div) discrete spaces, which are constructed via suitable lifting operators. A spe-
cific construction of such lifting operators is presented on rectangles. We note that a different choice is
made for test and trial spaces, therefore the method can be viewed as a H(Ω; div)-conforming Petrov–
Galerkin Mixed Finite Element method. We prove first-order convergence in pressure and flux, and
superconvergence of the pressure under further restrictions. We present numerical results that support
the theory.
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1. Introduction

Finite Volume Methods (FVM) are among the most widely used techniques for the numerical solution of
partial differential equations, especially those governing fluid flow problems [28]. The popularity of FVM is due
to the fact that they are locally conservative by construction, fast and robust for a wide range of problems,
and can preserve the maximum principle. FVM can be defined over a wide variety of mesh types, including
triangular/tetrahedral, quadrilateral/hexahedral and Voronoi type meshes [6, 28, 47]. The reader is referred
to [25, 26] for work on unstructred grids and full tensor permeabilities, and [1] for distorted grids and multi-
point flux approximations (MPFA).

FVM can be related to other discretization methods such as the Finite Difference Method and the Finite
Element Method. Of note is the connection established in [50] for mixed finite element (MFE) methods, where
the lowest order Raviart–Thomas element (RT0) [49] over rectangles was shown to be equivalent to cell-centered
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finite differences. The technique demonstrated how to reduce the number of degrees of freedom for RT0 and
produce a linear symmetric positive definite system for the pressure variable. This connection enabled a proof
of convergence for FVM based on the theory of MFE methods [55]. Many authors have subsequently built on
these ideas, producing further connections and more theoretical results. An extension for full-tensor coefficients
was developed in [4, 5]. Connections between MFE methods and FVM on simplicial meshes were established
in [8, 54]. Superconvergence for both the scalar and vector unknowns has been shown in [22, 27, 46]. Further
extensions include the use of the lowest order Brezzi-Douglas-Marini element (BDM1) [13] for connecting MFE
methods with MPFA [35,56,57]. A similar connection based on broken RT0 elements was developed in [38,39].

While there has been success in demonstrating the connection between MFE methods and FVM, some
types of FVM have not been connected with MFE methods. An example is the two-point flux approximation
(TPFA) over Voronoi diagrams and K-orthogonal grids (grids aligned with the eigenvectors of the permeability
tensor) [28]. Connecting such a method to MFE methods would require the construction of discrete H(Ω; div)
spaces over convex polyhedra with an arbitrary number of faces. While such spaces have been constructed via
a local triangulation of the cells [40], it remains uncertain if such an approach can be reduced to TPFA. The
work done in [14,15] on the Mimetic Finite Difference method (MFD) opens up some possibilities. The authors
of [14] use theoretical tools from MFE methods to demonstrate convergence of the MFD method over a very
general set of polyhedral cells. This is accomplished by avoiding the explicit construction of the velocity variable
on the interior, and directly solving for flux degrees of freedom on the faces of the cells. The definition of the
MFD method in [15] allowed for a reduction to TPFA for the case of regular polyhedra and rectangles. Later
work in [23] extended the MFD method to include TPFA for acute triangular cells. The authors of [41] provided
generalizations of the MFD method that included TPFA over centroidal Voronoi diagrams as well as MPFA
methods over general polyhedra; see also related work in [37].

The objective of our work is to provide a further generalization of the MFD method that allows for TPFA
type methods over general Voronoi diagrams. TPFA schemes on Voronoi diagrams are ubiquitous in reservoir
simulation, where they are used to mesh around horizontal and multi-lateral wells, to generate radial and hon-
eycomb meshes, as well as local refinements that satisfy the discrete maximum principle, see e.g. Schlumberger’s
Eclipse [52] and Aramco’s GigaPOWERS [30]. They are also used in major hydrology simulators such as Berkeley
Lab’s TOUGH [10, 29] and geology codes such as MODFLOW-USG developed by the USGS [48]. Therefore,
being able to connect these schemes to MFD methods has important practical applications. In particular, the
theoretical framework for analysis of MFD methods can be utilized to establish convergence and supercon-
vergence results and to develop higher-order postprocessing, a posteriori error estimation, and adaptive mesh
refinement for FVM over general Voronoi diagrams. From a point of view of MFD methods, the reduction to
TPFA results in improved efficiency of the method, as well as solutions that satisfy the maximum principle.

To establish the connection between MFD methods and TPFA methods over general Voronoi diagrams, we
propose a modified form of the consistency condition (S2) in [14], which we call here (S̃2). The modification
is inspired by the consistency conditions proposed by [23] and [41] and utilizes element and face weighting
functions. This results in shifting the points on the elements and faces where the pressure and the flux are most
accurately approximated. Our formulation results in a new extended family of MFD methods, parametrized
by the element and face weighting functions. The flux bilinear form is non-symmetric in general, although it
reduces to a symmetric form in the case of TPFA when the element points are the Voronoi generating points
and the face points are the Voronoi bisection points. It is also symmetric when the face weighting functions
are set to one, i.e., the face points are the face centroids. The flux bilinear form can be defined as the L2-inner
product of vectors in two H(Ω; div) discrete spaces, which are constructed via suitable lifting operators. A
specific construction of such lifting operators is presented on rectangles. We note that a different choice is made
for test and trial spaces, therefore the method can be viewed as a H(Ω; div)-conforming Petrov–Galerkin MFE
method.

We demonstrate the stability of the new family of methods as well as the convergence in the velocity and
pressure unknowns. As it is typical in MFD analysis, convergence is established in a discrete norm for the error
between the numerical solution and an interpolant of the true solution. Due the use of weighting functions,
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we consider both standard and weighted interpolants for the pressure and velocity and establish first-order
convergence for the two variables for both types of interpolants. Furthermore, we demonstrate superconvergence
in the pressure variable for the weighted interpolant, which corresponds to second order approximation of the
pressure at shifted points within the elements. We note that existing pressure superconvergence results for
MFD methods are limited to symmetric formulations, see e.g. [14,41]. To the best of our knowledge, we obtain
the first pressure superconvergence result for non-symmetric MFD methods. The techniques developed in this
paper could be used to establish pressure superconvergence for MPFA methods on general polyhedra, which are
inherently non-symmetric. We further note that the pressure superconvergence for the weighted interpolant
can be explored to reconstruct a second-order accurate piecewise linear approximation of the pressure. This is
outside the scope of the paper and will be studied in the future.

In recent years, there have been a number of developments in the area of discretization methods defined over
polygonal and polyhedral meshes. The Virtual Element Method (VEM) [19], which is strongly related to the
MFD method, is generalizable to higher-order discretizations. A mixed VEM has been developed in [16], which is
closely related to the mixed version of MFD methods studied in this paper. The Gradient Schemes [24] provide a
very general framework that is based on constructing a discrete gradient operator. Similar ideas are explored in
the Weak Galerkin method [45], the Hybridizable Discontinuous Galerkin method [2,18], as well as the Hybrid
High-Order method [21]. Many of these methods require the addition of scalar unknowns (Lagrange multipliers)
at the faces of the mesh, while such an addition remains optional for our approach. More importantly, all of
the above mentioned methods are symmetric, while our formulation is in general non-symmetric, due to the
introduction of the weighting functions. Unlike the above mentioned methods, this extra flexibility provides
a formulation that reduces to a convergent finite volume method on general Voronoi diagrams. Furthermore,
the extra flexibility of shifting points within the elements and along the faces can be explored to improve the
solution accuracy near singularities or to develop methods that satisfy the discrete maximum principle, similar
to the approach of M-adaptation for MFD methods [33]. A numerical experiment illustrating that shifting face
points can lead to a more accurate flux along a high permeability streak is presented in the numerical section.

The rest of the paper is organized as follows. In Section 2 we define the new generalized form of the MFD
method and provide the basic assumptions and definitions used in this work. The stability of the new method is
provided in Section 2.1, which is followed by first-order convergence proofs for velocity in Section 2.2 and pressure
in Section 2.3. Superconvergence of the pressure is presented in Section 2.4, which includes superconvergence with
special quadrature. Novel H(Ω; div) shape functions that satisfy the superconvergence criteria for rectangular
grids are presented in Section 2.4.1. We then discuss matrix construction for the general case in Section 3,
and the relation to TPFA schemes on Voronoi grids in Section 4. Numerical results confirming the theory and
illustrating the advantage of the ability to shift points are presented in Section 5.

2. A Generalized MFD method

Consider the homogeneous Dirichlet problem written in mixed form,

u = −K∇p, ∇ · u = f in Ω, p = 0 on ∂Ω. (2.1)

In porous media flow, u is Darcy velocity, p is pressure and K is the permeability tensor. The domain Ω ⊂
R

d (d = 2, 3) is assumed to be polyhedron with Lipschitz boundaries and is divided into a non-overlapping,
conformal partition Th of elements E. In three dimensions, E is a polyhedron with planar polygonal faces. We
follow the standard assumptions for the mesh used in previous work [14, 41]. That is, elements and faces are
shape-regular and non-degenerate, elements are star-shaped polyhedra, and faces are star-shaped polygons. Let
NQ be the total number of elements in the mesh and NX be the total number of faces in the mesh. Let |E|
denote the volume of E and hE be the diameter of E. We define h = max{E∈Th} hE . For each face e, let |e| be
the area, ne is a fixed unit normal, and ne

E is the unit normal to face e pointing out of element E. For each
element E, kE represents the number of faces. We note that the mesh assumptions imply that

|E| ∼ hd
E and |e| ∼ hd−1

E . (2.2)
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Let the space of discrete pressures Qh ⊂ R
NQ and fluxes Xh ⊂ R

NX be defined, respectively, as

Qh = {qh = {qE}E∈Th
: qE ∈ R}, Xh = {vh = {ve

E}e∈∂E
E∈Th

: ve
E ∈ R, ve

Ea
+ ve

Eb
= 0},

where Ea and Eb share a face e. Each degree of freedom qE represents the pressure on element E, while each
degree of freedom ve

E represents the flux normal to face e outward to E. The continuity of flux condition
ve

Ea
+ ve

Eb
= 0 implies a single velocity degree of freedom per face e.

In the following, we make use of the usual notation for Lebesgue spaces Lp(Ω), Sobolev spaces W k,p(Ω) and
Hilbert spaces Hk(Ω), see [11]. For q ∈ L1(Ω), define a projection operator on Qh as

(qI)E =
1
|E|

∫
E

q dV. (2.3)

For v ∈ (Ls(Ω))d, s > 2 and ∇ · v ∈ L2(Ω), define the projection operator on Xh as

(vI)e
E =

1
|e|

∫
e

v · ne
E dS. (2.4)

Let the permeability tensor K be symmetric and positive definite, and let

Kij ∈W 1,∞(Ω). (2.5)

Let K̄E denote a constant tensor over E such that

max
ij

‖Kij − K̄E,ij‖L∞(E) ≤ ChE , (2.6)

max
ij

‖K−1
ij − K̄−1

E,ij‖L∞(E) ≤ ChE . (2.7)

Throughout the paper, C denotes a generic positive constant independent of h.
Following the standard steps of the MFD method [43], we define the discrete divergence operator DIV :

Xh → Qh as

(DIV vh)E = DIV vE :=
1
|E|

∑
e∈∂E

ve
E |e|. (2.8)

We have from (2.3), (2.4), (2.8), and the divergence theorem that,

(DIV vI)E = (∇ · v)I
E . (2.9)

Next, define the scalar inner product as

[ph, qh]Qh
:=

∑
E∈Th

pEqE |E|.

The flux bilinear form is defined as

[uh, vh]Xh
:=

∑
E∈Th

[uE, vE ]E =
∑

E∈Th

vT
EMEuE , (2.10)

where uE ∈ R
kE is the vector with components ue

E and ME ∈ R
kE×kE is a given matrix. We discuss the

construction of ME in Section 3. We assume that [·, ·]Xh
satisfies:

(S1) (Stability). There exist two positive constants, s∗ and S∗, such that, for all E ∈ Th and ξ ∈ R
kE ,

s∗|E|ξT ξ ≤ ξT MEξ ≤ S∗|E|ξT ξ, (2.11)
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and

ξT MT
EMEξ ≤ (S∗)2|E|2ξT ξ. (2.12)

(S̃2) (Consistency). For every element E ∈ Th, for every linear function q1 on E, and for every vE ∈ Xh(E),

[(K̄E∇q1)I
E , vE ]E =

∑
e∈∂E

ve
E

∫
e

weq
1 dS −

∫
E

wEq
1DIV vE dV, (2.13)

where the function wE : E → R satisfies∫
E

wE dV = |E|,
∫

E

gwE dV = |E|xE , (2.14)

where xE is a point in E and g : R
d → R

d is the linear function g(x, y, z) = (x, y, z)T , and where the function
we : e→ R satisfies, ∫

e

we dS = |e|,
∫

e

gwe dS = |e|xe, (2.15)

where xe is a point on the plane of e and g is the linear function defined on Cartesian coordinates (x, y) in the
plane of e as g(x, y) = (x, y)T . Note that the point xe may lie outside of e. The original MFD is recovered when
wE = 1 and we = 1, in which case xE = CE , the centroid of cell E, and xe = Ce, the centroid of face e. We
require that the functions we and wE be bounded by positive constants independent of the mesh,

max
E∈Th

‖wE‖L∞(E) ≤ wmax
E , max

E∈Th

max
e∈∂E

‖we‖L∞(e) ≤ wmax
e .

Remark 2.1. The addition of weighting functions to the integrals was inspired by the modification suggested
in [23]. However, the form in [23] only weighted the integral over the volume, while in this work we weight
both the volume and the face integrals. The work in [41] modified the integral over the faces by integrating
over a subset of the face. Our work differs by allowing further freedom in point selection on the face, as well as
combining the weight over the volume as mentioned.

Define a discrete gradient operator G : Qh → Xh as the adjoint of DIV ,

[G ph, uh]Xh
= −[ph,DIV uh]Qh

. (2.16)

The numerical method can be represented in a “weak” saddle-point form. That is, find uh ∈ Xh and ph ∈ Qh

such that

[uh, vh]Xh
− [ph,DIV vh]Qh

= 0, ∀vh ∈ Xh, (2.17)

[DIV uh, qh]Qh
= [f I , qh]Qh

, ∀qh ∈ Qh. (2.18)

Remark 2.2. The theoretical results presented here follow the exposition found in [41]. We have made modi-
fications when necessary to adapt to the modified consistency condition (S̃2). Since the stability analysis does
not depend on the consistency condition (S̃2), the stability results from [14] and [41] still hold.
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2.1. Stability analysis

The analysis follows the classical approach to stability of mixed methods. We start by defining the following
norms over the pressure and flux spaces,

‖vh‖2
Xh

= [vh, vh]Xh
, ‖qh‖2

Qh
= [qh, qh]Qh

.

The fact that ‖ · ‖Xh
is a norm follows from

s∗|E|
∑

e∈∂E

|ve
E |2 ≤ [vE , vE ]E ≤ S∗|E|

∑
e∈∂E

|ve
E |2 ∀E ∈ Th, ∀vE ∈ Xh(E), (2.19)

which is a direct consequence of (2.11) in condition (S1). Note that (2.4) and (2.19) imply that for any v ∈
(H1(E))d,

‖vI‖Xh,E
≤ C‖v‖(H1(E))d . (2.20)

It is easy to see that (2.11) and (2.12) in (S1) imply the continuity of the bilinear form,

[uh, vh]Xh
≤ S∗

s∗
‖uh‖Xh

‖vh‖Xh
. (2.21)

We also define discrete H(Ω; div) norm

‖vh‖2
div = ‖vh‖2

Xh
+ ‖DIV vh‖2

Qh
.

We clearly have that ∀qh ∈ Qh and ∀vh ∈ Xh,

[qh,DIV vh]Qh
≤ ‖qh‖Qh

‖vh‖div.

Let Zh represent the discrete divergence-free subspace of Xh,

Zh = {vh ∈ Xh | [DIV vh, qh]Qh
= 0, ∀qh ∈ Qh} .

Note that since DIV vh ∈ Qh, vh ∈ Zh implies that DIV vh = 0. This immediately implies the coercivity of the
flux bilinear operator,

[vh, vh]Xh
= ‖vh‖2

div ∀vh ∈ Zh. (2.22)

The inf-sup condition for the bilinear operator [· ,DIV ·]Qh
, has been shown in [41].

Theorem 2.3 (inf-sup). There exists a positive constant β independent of h such that, for any qh ∈ Qh,

sup
{vh∈Xh,vh �=0}

[DIV vh, qh]Qh

‖vh‖div
≥ β‖qh‖Qh

. (2.23)

The existence and uniqueness of the solution (vh, ph) to (2.17)–(2.18) follows from (2.22) and Theorem 2.3,
using the general theory for saddle-point problems [12].

2.2. Velocity convergence

In this section we establish a first-order error estimate for the velocity variable. We will utilize an approxi-
mation result from [11]: for any element E and φ ∈ H2(E), there exists a linear function φ1

E such that

‖φ− φ1
E‖Hk(E) ≤ Chm−k

E |φ|Hm(E), k = 0, 1, m = 1, 2. (2.24)
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We will also utilize the trace inequalities [3]:

∀χ ∈ H1(E), ‖χ‖2
L2(e) ≤ C

(
h−1

E ‖χ‖2
L2(E) + hE |χ|2H1(E)

)
, (2.25)

∀ v ∈ (H1(E))d, ‖v · ne
E‖2

L2(e) ≤ C
(
h−1

E ‖v‖2
(L2(E))d + hE |v|2(H1(E))d

)
. (2.26)

A combination of (2.24) and (2.25) implies that for any φ ∈ H2(E), there exists a linear function φ1
E such that

‖φ− φ1
E‖2

L2(e) ≤ Ch3
E |φ|2H2(E). (2.27)

The main result of this section is the following theorem bounding the velocity error.

Theorem 2.4 (Velocity Estimate). For the exact solution (u, p) of (2.1) and the MFD approximation (uh, ph)
solving (2.17)–(2.18), assuming that p ∈ H2(Ω), and u ∈ (H1(Ω))d, there exists a positive constant C indepen-
dent of h, such that

‖uI − uh‖Xh
≤ Ch(|p|H2(Ω) + |p|H1(Ω) + |u|(H1(Ω))d). (2.28)

Proof. Set vh = uI − uh. Note that, using (2.9),

DIV vh = DIV (uI − uh) = f I − f I = 0.

Thus,

‖uI − uh‖2
Xh

= [uI − uh, vh]Xh
= [uI , vh]Xh

− [ph,DIV vh]Qh
= [uI , vh]Xh

. (2.29)

Let p1 be a piecewise linear function such that p1|E = p1
E , which is defined in (2.24). By adding and subtracting

(K̄∇p1)I ,

[uI , vh]Xh
= [uI + (K̄∇p1)I , vh]Xh

− [(K̄∇p1)I , vh]Xh
≡ I1 + I2. (2.30)

The analysis of term I1 is identical to the argument in ([41], Thm. 3.1), implying

|I1| ≤ Ch
(
|p|H2(Ω) + |p|H1(Ω) + |u|(H1(Ω))d

)
‖vh‖Xh

.

Since DIV vh = 0, using condition (S̃2), the expression for I2 becomes

I2 = −
∑
E∈Ω

∑
e∈∂E

ve
E

∫
e

wep
1
E dS. (2.31)

Due to the continuity of p, we can subtract it from each element face in the summation above, obtaining

|I2| =

∣∣∣∣∣∑
E∈Ω

∑
e∈∂E

ve
E

∫
e

we(p1
E − p) dS

∣∣∣∣∣ ≤ ∑
E∈Ω

∑
e∈∂E

|e|1/2|wmax
e | |ve

E | ‖p1
E − p‖L2(e)

≤ C
∑
E∈Ω

(
|E|

∑
e∈∂E

|ve
E |2
)1/2

hE |p|H2(E) ≤ Ch|p|H2(Ω)‖vh‖Xh
, (2.32)

having used (2.2), (2.27), and (S1). Combining the bounds on I1 and I2 with (2.29) and (2.30) gives the desired
estimate. �
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2.2.1. Weighted projection operator

We also study the operator uIw ∈ Xh such that,

(uIw )e
E =

1
|e|

∫
e

weu · ne
E dS.

Note that this weighted operator appears in the consistency condition (S̃2) and therefore it can be expected
that the numerical flux uh provides an improved approximation to uIw , compared to uI . We study both errors
in the numerical results. We have the following result.

Corollary 2.5. Under the assumptions of Theorem 2.4,

‖uIw − uh‖Xh
≤ Ch(|p|H2(Ω) + |p|H1(Ω) + ‖u‖(H1(Ω))d).

Proof. The triangle inequality implies

‖uIw − uh‖Xh
≤ ‖uIw − uI‖Xh

+ ‖uI − uh‖Xh
.

The second term is bounded in Theorem 2.4. Letting,

ū · ne
E =

∫
e

u · ne
E dS,

for the first term we have,

‖uIw − uI‖2
Xh

≤ S∗
∑
E

|E|
∑

e∈∂E

|(uIw − uI)e
E |2 = S∗

∑
E

∑
e∈∂E

|E|
|e|2

(∫
e

we(u− ū) · ne
E

)2

≤ S∗(wmax
e )2

∑
E

∑
e∈∂E

|E|
|e|

∫
e

((u− ū) · ne
E)2 ≤ Ch2‖u‖2

(H1(Ω))d ,

where we have used an argument similar to ([56], Lem. 3.14) in the last inequality. Combining the above bounds
implies the statement of the corollary. �

2.3. Pressure convergence

We start by defining a weighted operator Iw such that

(pIw )E =
1
|E|

∫
E

wEp dV.

Note that the operator is exact for constant functions. We first establish a pressure estimate with respect to
the weighted operator (·)Iw . We then establish a bound for the regular projection operator (·)I .

Theorem 2.6. Let (u, p) be the exact solution to (2.1), and let (uh, ph) be the MFD method’s numerical ap-
proximation (2.17)–(2.18). Assuming that p ∈ H2(Ω) and u ∈ (H1(Ω))d, there exists a constant C independent
of h, such that

‖pIw − ph‖Qh
≤ Ch(|p|H2(Ω) + |p|H1(Ω) + |u|(H1(Ω))d)· (2.33)

Proof. From Theorem 2.3 we know that

‖pIw − ph‖Qh
≤ 1
β

sup
vh∈Xh,vh �=0

[DIV vh, p
Iw − ph]Qh

‖vh‖div
·
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Adding and subtracting (p1)Iw , where p1 is defined in (2.24), we get

[DIV vh, p
Iw − ph]Qh

= [DIV vh, (p− p1)Iw ]Qh
− [DIV vh, ph]Qh

+ [DIV vh, (p1)Iw ]Qh
.

Using (2.17) for the second term and condition (S̃2) for the third term, we have

[DIV vh, p
Iw − ph]Qh

= [DIV vh, (p− p1)Iw ]Qh
− [uh, vh]Xh

+
∑
E

∑
e

ue
E

∫
e

wep
1
E dS −

∑
E

[(K̄E∇p1
E)I , vh]E

≡ I3 + I4 + I5 + I6.

We can bound I3 by

[DIV vh, (p− p1)Iw ]Qh
=
∑
E

(DIV vh, wE(p− p1
E))L2(E)

≤ wmax
E

(∑
E

‖DIV vh‖2
L2(E)

)1/2(∑
E

‖p− p1
E‖2

L2(E)

)1/2

≤ Ch|p|H1(Ω)‖DIV vh‖Qh
(using (2.24)).

Expression I5 is identical to I2 in (2.31), implying

|I5| ≤ Ch|p|H2(Ω)‖vh‖Xh
.

Taking I4 and I6, and adding and subtracting uI , we have

I4 + I6 = [(K̄∇p1)I + uI , vh]Xh
− [uI − uh, vh]Xh

≡ Ĩ4 + Ĩ6.

Expression Ĩ4 is identical to I1 in (2.30), giving the bound

|Ĩ4| ≤ Ch(|p|H2(Ω) + |p|H1(Ω) + |u|(H1(Ω))d)‖vh‖Xh
.

Expression Ĩ6 is bounded by the velocity estimate in Theorem 2.4,

|Ĩ6| ≤ C‖uI − uh‖Xh
‖vh‖Xh

≤ Ch(|p|H2(Ω) + |u|(H1(Ω))d)‖vh‖Xh
.

Combining the bounds on I3-I6 gives the desired result. �

We can now derive a bound based on the L2 projection operator (·)I defined in (2.3).

Corollary 2.7. Under the assumptions of Theorem 2.6,

‖pI − ph‖Qh
≤ Ch(|p|H2(Ω) + |p|H1(Ω) + |u|(H1(Ω))d). (2.34)

Proof. We start with

‖pI − ph‖Qh
≤ ‖pI − pIw‖Qh

+ ‖pIw − ph‖Qh
.

The second term is bounded by Theorem 2.6. For the first term, we use the Bramble–Hilbert Lemma [11] and
that the operator (·)Iw is exact for constants. Letting p̄E = 1

|E|
∫

E
p dV , we have

‖pI − pIw‖Qh
=

(∑
E

1
|E|

(∫
E

wE(p̄E − p) dV
)2
)1/2

≤
(∑

E

1
|E|

(
‖wE‖L∞(E)

∫
E

|(p̄E − p)| dV
)2
)1/2

≤ wmax
E ‖p̄− p‖L2(Ω) ≤ Ch|p|H1(Ω).

Combining the above bounds implies the statement of the corollary. �
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2.4. Superconvergence of pressure

In this section we prove second-order convergence for ‖ph − pIw‖Qh
. Note that ‖ph − pI‖Qh

is not in general
superconvergent, i.e., there may not be second-order convergence at the centroids of the elements. This is
confirmed by numerical experiments in Section 5.

We require the existence of two lifting operators RE , R̃E : Xh(E) → H(E; div) defined locally over each
element and satisfying the following properties:

RE(vI
0) = v0, for all constant vectors v0, (2.35)

∇ · RE(vE) = DIV vE in E, (2.36)

∇ · R̃E(vE) = wEDIV vE in E, (2.37)
RE(vE) · ne

E = ve
E on e ⊂ ∂E, (2.38)

R̃E(vE) · ne
E = wev

e
E on e ⊂ ∂E, (2.39)

‖RE(vE)‖(L2(E))d ≤ C‖vE‖Xh,E
, (2.40)

‖R̃E(vE)‖(L2(E))d ≤ C‖vE‖Xh,E
. (2.41)

Lemma 2.8. The lifting operators RE and R̃E define a bilinear form,

[uE , vE ]E =
∫

E

K̄−1
E RE(uE) · R̃E(vE) (2.42)

that satisfies condition (S̃2).

Proof. We can demonstrate the result by observing that for all linear q1 and all vE ∈ Xh(E),

[(K̄E∇q1)I , vE ]E =
∫

E

K̄−1
E RE((K̄E∇q1)I) · R̃E(vE) dV

=
∫

E

K̄−1
E K̄E∇q1 · R̃E(vE) dV (using (2.35))

=
∑

e∈∂E

∫
e

q1R̃E(vE) · ne
E dS −

∫
E

q1∇ · R̃E(vE) dV

=
∑

e∈∂E

ve
E

∫
e

weq
1 dS −

∫
E

wEq
1DIV vE dV (using (2.39) and (2.37)). (2.43)

�

We assume that the choice of bilinear form (2.42) satisfies property (S1). In Section 2.4.1 we present a
construction of the lifting operators on rectangles that satisfies (S1). A discussion on the verification of (S1) in
the general case is given in Section 3.

The lifting operators RE and R̃E can be used to show that our MFD method is equivalent to a Petrov–
Galerkin MFE method. Let

Vh = {v ∈ H(Ω; div) : ∀E ∈ Th, v|E = RE(vh|E), vh ∈ Xh},

Ṽh = {v ∈ H(Ω; div) : ∀E ∈ Th, v|E = R̃E(vh|E), vh ∈ Xh}.
Note that, due to (2.38) and (2.39), vectors in Vh and Ṽh have continuous normal components across faces,
therefore both spaces are subspaces of H(Ω; div). For the scalar space, define Wh ⊂ L2(Ω) with Wh|E = P0(E).
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Proposition 2.9. The MFD method (2.17)–(2.18) with velocity bilinear form defined by (2.42) is equivalent to
the Petrov–Galerkin MFE method:

Find uh ∈ Vh and ph ∈Wh such that,∫
Ω

K̄−1uh · vh dV −
∫

Ω

ph∇ · vh dV = 0 ∀vh ∈ Ṽh (2.44)∫
Ω

∇ · uhqh dV =
∫

Ω

fqh dV ∀q ∈Wh. (2.45)

Proof. The equivalence of the velocity bilinear forms in (2.17) and (2.44) follows immediately from (2.42). The
equivalence of the divergence bilinear forms in (2.17) and (2.44) follows from (2.37) and the property (2.14)
of wE . Similarly, the equivalence of (2.18) and (2.45) follows from (2.36). �

Remark 2.10. The test velocity test space Ṽh is based on a non-zero modification of Vh on the boundaries
of the elements. Such a space is typically avoided in classical finite element implementations, as it makes the
task of maintaining conformity (in this case, continuity of the normal component) more difficult. However, this
presents very little difficulty in the setting of the MFD method, as we do not require construction of the vector
space on the interior, nor do we need to preform a quadrature in order to construct the stiffness matrix. In fact
we do not need to explicitly compute the weighting functions on the faces (we). All that is required is to make
a single choice of point xe for each face, and make sure to consistently use the same point when calculating the
local matrices over all the cells in the domain.

We will need the following result proved in Lemma 3.3 in [41]:

Lemma 2.11. For any v ∈ (H1(E))d, let v0 be the mean value of v on E. Then, there exists a constant C
independent of h such that

‖vI − vI
0‖Xh,E

≤ ChE |v|(H1(E))d . (2.46)

For the rest of this subsection we assume that wE ∈ H1(E) and we ∈ H1(e). In fact, one can construct affine
weighting functions satisfying (2.14) and (2.15), respectively. It is easy to check that ‖wE‖H1(E) and ‖we‖H1(e)

are independent of hE and he.
The lifting operator R̃E does not in general map constants to constants (as in (2.35)). However, we associate

R̃E with a tensor TE with the property that for a constant vector v0,

R̃E(vI
0) = TEv0. (2.47)

We require that the operator TE be bounded:

‖TEv0‖(L2(E))d + ‖∇ · TEv0‖L2(E) + ‖curlTEv0‖L2(E) ≤ C‖v0‖(L2(E))d . (2.48)

To justify the above assumption, we observe that in fact ∇ · TEv0 = 0 due to (2.37). In addition, we have the
freedom of fixing curl R̃E(vE) in a way that curlTEv0 = 0 or at least ‖curlTEv0‖L2(E) ≤ C‖v0‖(L2(E))d for
any constant vector v0, where C depends on |wE |H1(E) Note that fixing curl R̃E(vE) makes the definition of
R̃E(vE) unique and the space to which it belongs finite dimensional. We further note that (2.39) implies that
for a constant vector v0,

TEv0 · ne
E = wev0 · ne

E on e ⊂ ∂E,

which, due to (2.15) and the Friedrichs inequality [11], implies that

‖(TEv0 − v0) · ne
E‖L2(e) ≤ ChE‖v0 · ne

E‖L2(e), (2.49)
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where C depends on |we|H1(e). We next utilize the decomposition TEv0 − v0 = ∇ϕ + curlψ, where, in R
2,

ϕ ∈ H1(E) \ R is the unique solution to

Δϕ = ∇ · (TEv0 − v0) in E, ∇ϕ · nE = (TEv0 − v0) · nE on ∂E,

and ψ ∈ H1(E) is the unique solution to

Δψ = curl (TEv0 − v0) in E, ψ = 0 on ∂E,

with a similar representation in R
3, see [31]. Elliptic regularity and a scaling argument imply that

‖TEv0− v0‖(L2(E))d ≤ C(h1/2
E ‖(TEv0 − v0) ·nE‖L2(∂E) +hE‖∇ · (TEv0 − v0)‖L2(E) +hE‖curl (TEv0 − v0)‖L2(E)),

which, combined with (2.49), (2.48), and the trace inequality h1/2
E ‖v0 ·nE‖L2(∂E) ≤ C‖v0‖(L2(E))d , implies that

‖TEv0 − v0‖(L2(E))d ≤ ChE‖v0‖(L2(E))d . (2.50)

We have the following results.

Lemma 2.12. Assume that an operator TE with properties (2.47) and (2.48) exists. Then, for all v ∈ (H1(E))d,

‖RE(vI) − v‖(L2(E))d ≤ ChE |v|(H1(E))d , (2.51)

‖R̃E(vI) − v‖(L2(E))d ≤ ChE‖v‖(H1(E))d . (2.52)

Proof. Let v0 be the L2(E) projection of v. Using (2.35), (2.40) and (2.46), we have

‖RE(vI) − v‖(L2(E))d ≤ ‖RE(vI − vI
0)‖(L2(E))d + ‖v0 − v‖(L2(E))d ≤ ChE |v|(H1(E))d ,

where we also used that

‖v − v0‖(L2(E))d ≤ ChE |v|(H1(E))d . (2.53)

Similarly, using (2.41), (2.46), (2.47), (2.50) and (2.53),

‖R̃E(vI)− v‖(L2(E))d ≤ ‖R̃E(vI − vI
0)‖(L2(E))d + ‖TEv0 − v0‖(L2(E))d + ‖v0 − v‖(L2(E))d ≤ ChE‖v‖(H1(E))d . �

Theorem 2.13. Assume the existence of lifting operators RE and R̃E with properties (2.35)–(2.41) and the
choice of velocity bilinear form (2.42). Assume also that (2.42) satisfies (S1) and that Ω is convex. Then the
solution ph to (2.17)–(2.18) satisfies

‖ph − pIw‖Qh
≤ Ch2(|p|H2(Ω) + |p|H1(Ω) + ‖u‖(H1(Ω))d + |f |H1(Ω)). (2.54)

Proof. We start by defining ϕ and ψ such that

ϕ = K∇ψ, ∇ · ϕ = ph − pIw in Ω, ψ = 0 on ∂Ω. (2.55)

In the above, by abuse of notation, ph − pIw is identified with a piecewise constant function. Let ϕh = ϕI , and
note that by (2.9), ϕh satisfies

DIV ϕh = ph − pIw .

We require H2-regularity of problem (2.55). Conditions can be found in [32], which in this case can be satisfied
by assuming convexity of Ω and using (2.5). As a result we have,

‖ψ‖H2(Ω) ≤ C‖ph − pIw‖L2(Ω) = C‖ph − pIw‖Qh
. (2.56)
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We have

‖ph − pIw‖2
Qh

= [ph − pIw ,DIV ϕh]Qh

= [uh, ϕh]Xh
−
∫

Ω

p∇ · R̃(ϕh) dV (using (2.17) and (2.37))

= [uh, ϕh]Xh
+
∫

Ω

∇p · R̃(ϕh) dV

=
∑
E

[∫
E

K̄−1
E (RE(uE) − u) · R̃E(ϕE) dV +

∫
E

(K̄−1
E −K−1)u · R̃E(ϕE) dV

]
=
∑
E

[∫
E

(K̄−1
E −K−1)(RE(uE) − u) · R̃E(ϕE) dV

+
∫

E

K−1(RE(uE) − u) · R̃E(ϕE) dV +
∫

E

(K̄−1
E −K−1)u · R̃E(ϕE) dV

]
≡ J1 + J2 + J3

For J1, using (2.7), we have,

|J1| ≤ Ch‖R(uh) − u‖(L2(Ω))d‖R̃(ϕ)‖(L2(Ω))d ≤ Ch2(|p|H2(Ω) + |p|H1(Ω) + |u|(H1(Ω))d)‖ph − pIw‖Qh
,

where for the second step we used

‖R(uh) − u‖(L2(E))d ≤ C‖R(uh − uI)‖(L2(Ω))d + ‖R(uI) − u‖(L2(Ω))d

≤ C‖uh − uI‖Xh
+ ‖R(uI) − u‖(L2(Ω))d (using (2.40))

≤ Ch(|p|H2(Ω) + |p|H1(Ω) + |u|(H1(Ω))d) (by Thm. 2.4 and (2.51)), (2.57)

as well as, using (2.41), (2.20), (2.5), and (2.56),

‖R̃(ϕh)‖(L2(Ω))d ≤ C‖ϕh‖Xh
≤ C‖ϕ‖(H1(Ω))d ≤ C‖ψ‖H2(Ω) ≤ C‖ph − pIw‖Qh

. (2.58)

For J2, we start by adding and subtracting ϕ,

J2 =
∫

Ω

K−1(R(uh) − u) · (R̃(ϕh) − ϕ) dV +
∫

Ω

K−1(R(uh) − u) · ϕ dV ≡ J21 + J22.

For J21, using (2.52) and (2.57), we have

|J21| ≤ Ch2(|p|H2(Ω) + |p|H1(Ω) + |u|(H1(Ω))d)‖ph − pIw‖Qh
.

We can bound J22 by noting that,

J22 =
∫

Ω

(R(uh) − u) · ∇ψ dV = −
∫

Ω

∇ · (R(uh) − u)ψ dV =
∫

Ω

(f I − f)(ψ − ψI) dV,

which, combined with the Bramble–Hilbert Lemma, implies that

|J22| ≤ Ch2|f |H1(Ω)‖ph − pIw‖Qh
.

For J3, we add and subtract ϕ, obtaining

J3 =
∑
E

∫
E

[
(K̄−1

E −K−1)u · (R̃E(ϕE) − ϕ) dV +
∫

E

(K̄−1
E −K−1)u · ϕdV

]
≡ J31 + J32.



692 O. AL-HINAI ET AL.

Using (2.7) and (2.52) and an argument similar to (2.58), J31 is bounded by,

|J31| ≤ Ch2‖u‖(L2(Ω))d‖ph − pIw‖Qh
.

For expression J32, we have,

J32 =
∑
E

∫
E

(K̄−1
E −K−1)u ·K∇ψ dV =

∑
E

∫
E

(K − K̄E)K̄−1
E u ·K−1K∇ψ dV

=
∑
E

∫
E

(K − K̄E)K̄−1
E (u− u0) · ∇ψ dV +

∫
E

(K − K̄E)K̄−1
E u0 · (∇ψ − (∇ψ)0) dV.

An application of (2.6) and the Bramble–Hilbert Lemma gives

|J32| ≤ Ch2‖u‖(H1(Ω))d‖ph − pIw‖Qh
.

Combining all bounds gives the desired result. �

Remark 2.14. An alternative approach to pressure superconvergence is to use a velocity bilinear form that is
an approximate quadrature rule for the integral of the product of the lifting operators. In this case, we restrict
[·, ·]E to a symmetric form. Let

σE(K−1;uE , vE) = [uE, vE ]E −
∫

E

K−1RE(uE) · R̃E(vE) dV. (2.59)

The proof of the result below follows the exposition found in ([41], Thm. 3.3).

Theorem 2.15. Assume the existence of lifting operators RE and R̃E with properties (2.35)–(2.41) and that
the choice of a symmetric velocity bilinear form [·, ·]E satisfies for all u, v ∈ (H1(E))d

|σE(K−1; (uI)E , (vI)E)| ≤ Ch2
E‖u‖(H1(E))d‖v‖(H1(E))d . (2.60)

Then the solution ph to problem (2.17)–(2.18) satisfies

‖ph − pIw‖Qh
≤ Ch2(|p|H2(Ω) + |p|H1(Ω) + ‖u‖(H1(Ω))d + |f |H1(Ω)).

Remark 2.16. The superconvergence result ‖ph−pIw‖Qh
≤ Ch2 can be explored to reconstruct a second-order

accurate piecewise linear approximation of the pressure. For example, following the approach in [17], one can
consider on each element E the linear function

pR
E(x) = pE + ∇E pE · (x− xE),

where ∇E pE is a discrete gradient based on a constant velocity reconstruction. We note that pR
E(xE) = pE ,

i.e., the linear reconstruction matches the computed constant pressure at the shifted superconvergent point xE .
A detailed analysis of the post-processing is beyond the scope of the paper and it will be investigated in the
future.

2.4.1. Lifting operators for a square element

We present an example of lifting operators RE and R̃E satisfying (2.35)–(2.41) over a square reference element
E = [0, 1]2, see Figure 1 (left), where xE = (x̃, ỹ)T , xe2 = xe4 = x̃, xe1 = xe3 = ỹ. For operator RE , we use the
standard lowest order Raviart–Thomas (RT0) interpolant:

RE(vE) =
(
v3 + (v1 − v3)x
v4 + (v2 − v4)y

)
,
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Figure 1. Right: The reference element for the lifting operator R̃. Center: Vectors ri and ni

used in the definition of matrices RE and NE . Right: A two-dimensional Voronoi diagram (solid
line) and the lines joining adjacent Voronoi generating points (dashed line).

where vi = vei

E . It is well-known [12] that the RT0 interpolant satisfies (2.35), (2.36) and (2.40). The lifting
operator R̃E is defined as

R̃E(vE) =
(

(v3 + (v1 − v3)Wx(x))wy(y)
(v4 + (v2 − v4)Wy(y))wx(x)

)
,

with

Wx(0) = 0, Wx(1) = 1,
∂

∂x
Wx = wx, (2.61)

and similarly for Wy , where wx(x) and wy(y) are the weighting functions on the horizontal and vertical faces,
respectively. The lifting operator R̃E directly satisfies conditions (2.37) and (2.39), with the corresponding
volume weighting wE(x, y) = wx(x)wy(y). We can construct functions of the form Wx(x) = a

2x
2 + bx, and

wx(x) = ax+ b. One can verify that the choice a = −6 + 12x̃, b = 4− 6x̃, results in functions that satisfy (2.15)
and (2.61). It is easy to check that (2.41) holds and that (2.47) and (2.48) hold with

TE =
(
wy 0
0 wx

)
.

Lemma 2.17. The matrix ME formed by the bilinear form (2.42) satisfies condition (S1).

Proof. Consider an element E = (0, hx) × (0, hy). The result can be observed directly by first formulating ME

in terms of x̃, ỹ and the width of the element hx, hy, giving

ME =
1
12

⎛⎜⎝hy(7hx − 6x̃) 0 −hy(hx − 6x̃) 0
0 hx(7hy − 6ỹ) 0 −hx(hy − 6ỹ)

hy(5hx − 6x̃) 0 hy(hx + 6x̃) 0
0 hx(5hy − 6ỹ) 0 hx(hy + 6ỹ).

⎞⎟⎠ .

A direct calculation produces two distinct double eigenvalues { 1
6hxhy,

1
2hxhy}, which implies that ME satis-

fies (2.11). The eigenvalues of MT
EME are dependent on the choice of x̃ and ỹ. The maximum eigenvalue attained

over the ranges x̃ ∈ (0, hx) and ỹ ∈ (0, hy) is 19+5
√

13
72 (hxhy)2, which guarantees (2.12). �

We have shown that the lifting operators satisfy all conditions needed for the pressure superconvergence in
Theorem 2.13 with velocity inner product defined by (2.42). For the alternative approach to pressure supercon-
vergence with quadrature found in Theorem 2.15, consider the case of diagonal permeability with

K̄E =
(
kx 0
0 ky

)
.
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We can define the velocity inner product via (2.10) with a diagonal quadrature matrix ME:

M(1,1)
E =

1 − x̃

kx
, M(2,2)

E =
1 − ỹ

ky
, M(3,3)

E =
x̃

kx
, M(4,4)

E =
ỹ

ky
· (2.62)

Note that the positivity of the entries ensures satisfaction of condition (S1) and that condition (S̃2) is satisfied
by the above choice of inner product. The choice of quadrature (2.62) satisfies condition (2.60) and the proof is
shown in Appendix A.

3. Matrix construction

We have explicitly defined the DIV operator, as well as the pressure inner product [·, ·]Qh
. What remains is

to define, for the general case, the velocity bilinear form [·, ·]E . The discretization yields a convergent solution if
the inner product satisfies the stability (S1) and consistency (S̃2) conditions. The second condition is the main
focus of constructing the appropriate inner product.

Define matrices RE ∈ R
kE×d and NE ∈ R

kE×d as

RE =

⎛⎜⎝ |e1|(xe1 − xE)T

...
|ekE |(xekE

− xE)T

⎞⎟⎠ , NE =

⎛⎜⎝ (K̄E ne1)T

...
(K̄E nekE

)T

⎞⎟⎠ , (3.1)

see Figure 1 (center). Condition (S̃2) can be guaranteed with ME defined to satisfy

MENE = RE . (3.2)

Note that by setting wE = 1 and we = 1 we retrieve the original definition of the MFD method [15], in which
case, xE corresponds to the centroid of element E, and xe would correspond to the centroid of face e. Also note
that we do not require explicit construction of the weighting functions in order to build the linear system.

The authors of [15] demonstrate how to construct ME to satisfy (3.2). This is done by first defining CE ∈
R

kE×kE−d such that NT
ECE = 0. It is shown in [15] that without boundary weights,

RT
ENE = |E|K̄E . (3.3)

As a result, ME defined as

ME =
1
|E|REK̄

−1
E RT

E + CEUECT
E , (3.4)

for a positive-definite UE ∈ R
(KE−d)×(KE−d) satisfies (3.2). Due to the modification (S̃2) of condition (S2),

equality (3.3) no longer holds. However, we can still proceed by using the form proposed by [43],

ME = RE(RT
ENE)−1RT

E + CEUECT
E .

We note that RT
ENE may not always be invertible, although this occurs very rarely in practice. Singularity can

be detected numerically by the direct solver, in which case one can use an alternative form found in [41],

ME = RE(NT
ENE)−1NT

E + CEUECT
E .

The matrix NT
ENE is guaranteed to be invertible, since the shape regularity of the elements and the the fact

that K is symmetric and positive definite imply that NE has full rank.
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Remark 3.1. As we pointed above, RT
ENE reduces to |E|K̄E in the case when no boundary points are shifted,

resulting in a symmetric ME . Keeping the boundary points set to the centroids of the faces corresponds to the
Hybrid Mimetic Mixed (HMM) method [23], which is also related to the more recent development of gradient
schemes [24]. Therefore our method can be viewed as an extension to the framework of gradient schemes.

Remark 3.2. The verification of assumption (S1) in the general non-symmetric case is a difficult task and it
depends on the shape regularity of the elements and the anisotropy of permeability tensorK. We refer the reader
to [37,41] for analysis in the case of MPFA methods. In the next section we show that on general Voronoi meshes
and isotropic permeability, a special choice of the element and face points results in a diagonal matrix ME that
satisfies (S1).

4. Finite volume methods and the MFD method

Finite Volume Methods (FVM) are based on an application of the divergence theorem to each element E in
the domain, ∫

E

∇ · u dV =
∑

e∈∂E

∫
e

u · ne
E dS ≈ 1

|E|
∑

e∈∂E

|e|ue
E .

Finite volume discretizations are distinguished by how the flux (ue
E) is approximated. In the case of porous media

applications, the flux of the fluid is a function of the fluid pressure. Each element in the domain has a single,
piecewise constant pressure degree of freedom (pE), and each face in the mesh has a single flux representing the
normal component of the velocity across that face (ue

E). The flux is then related to the pressure via a function

ue
E = F (ph).

The choice of function F is what distinguishes a particular FV method. When the velocity at face e is approx-
imated using two adjacent pressures, we have a two-point flux approximation (TPFA). When more than two
pressures are used, the method is referred to as a multi-point flux approximation (MPFA).

The MFD method, much like the related MFE method, produces a saddle-point problem with both velocity
and pressure unknowns: (

M −DIV∗

DIV 0

)(
uh

ph

)
=
(

0
f I

)
.

One can observe the relation between FVM and the MFD method by explicitly expressing the velocity unknown
as a function of pressure:

uh = −M−1DIV∗ ph = FMFD(ph).

The nature of the relation between ph and uh is a direct consequence of the structure of M−1. In general,
the matrix M−1 is dense, causing the velocity at every face to be a function of all the pressure unknowns.
However, constructing a diagonal matrix M leads trivially to a diagonal M−1. In this case, due to the structure
of matrix DIV∗ , velocities are a linear function of two pressures, resulting in a TPFA scheme.

There is a simple geometric criterion that indicates when diagonality can be achieved in the MFD method.
The global matrix M is formed from the summation of local matrices, M =

∑
E ME . Matrices ME must satisfy

the relation (3.2). When the rows of NE are collinear to the rows of RE , a simple scaling of the rows of NE

satisfies (3.2), i.e., a diagonal matrix ME suffices. Therefore, our objective is to construct matrices RE with
rows collinear to the rows of NE . The original MFD method sets the point xE to the centroid of the cells and
the points xe to the centroids of the faces. Our generalization allows the point xE to be shifted on the interior
of the cell, and the points xe to be shifted on the plane of the faces. By shifting these points, we can establish
collinearity of the rows of RE and NE , resulting in a diagonal matrix ME. This can be achieved for general
Voronoi meshes when K is a scalar function. A Voronoi diagram is a tessellation of R

d relative to a set of points
known as generators.
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Definition 4.1. Voronoi Diagram. Given a set of generating points, V = {Vi ∈ R
d}, we define the Voronoi

tessellation Th = {Ei} as

Ei = {x ∈ R
d | d(x, Vi) ≤ d(x, Vj) ∀j = i}.

It is a direct consequence of the definition of Voronoi diagrams that the line joining two adjacent generating
points is always perpendicular to the common face between them and bisected by the plane of the face. For two
adjacent points, Vi and Vj , with associated face e, we refer to the midpoint between them as be.

Lemma 4.2. For a Voronoi polyhedron with isotropic permeability (K̄E = κEI), by setting xE = VE and
xe = be, a diagonal matrix ME can be constructed that satisfies both conditions (S1) and (S̃2).

Proof. Let us denote the rows of RE and NE by RT
e and NT

e , respectively. Since the line joining two adjacent
generating points is orthogonal to the Voronoi face between them, the vectors Re are collinear to Ne. That is,

Re =
|e|‖Re‖
κE

Ne,

where ‖ · ‖ is the Euclidean norm on R
d. Therefore, a diagonal matrix ME with choice of entries (ME)ii =

|ei|‖Rei
‖

κE
satisfies (3.2), which implies condition (S̃2). It is also easy to see that it satisfies condition (S1). �

Note that the point be may fall outside of the boundary faces, see the red circle in Figure 1 (right). This,
however, presents no problems for our definition, as we allow the function we to be negative, which can shift
the boundary point xe outside of the face.

5. Numerical results

5.1. Convergence study

In this section we present numerical results for our proposed generalization of the MFD method. The per-
meability tensor K̄E is computed at the centroid of each cell E. Given a set of points zE ∈ E, ∀E ∈ Th,
define

PressErr(zE) =

(∑
E

|E|(p(zE) − pE)2
)1/2

.

Note that

‖pIw − ph‖Qh
=

(∑
E

|E|((pIw )E − pE)2
)1/2

≈
(∑

E

|E|(p(xE) − pE)2
)1/2

= PressErr(xE).

Note that for linear p|E , pIw

E = p(xE), therefore the above is a second-order approximation. Similarly,

‖pI − ph‖Qh
=

(∑
E

|E|((pI)E − pE)2
)1/2

≈
(∑

E

|E|(p(CE) − pE)2
)1/2

= PressErr(CE),

which is also a second order approximation.
We can establish similar norms for the velocity errors. Given a set of points ze ∈ e, define

VelErr(ze) =

(∑
E

|E|
∑

e∈∂E

(u(ze) · ne
E − ue

E)2
)1/2

.
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Figure 2. Left and center: The four test cases based on different locations for points xe and
xE . Right: An illustration of the cell centered points and the Voronoi generating points used
for the two-dimensional rectangular grids.

Note that

‖uIw − uh‖Xh
≈
(∑

E

|E|
∑

e∈∂E

((uIw )e
E − ue

E)2
)1/2

≈
(∑

E

|E|
∑

e∈∂E

((u(be) · ne
E − ue

E)2
)1/2

= VelErr(be).

Note that this is a second order approximation, since for linear u · ne
E on e, (uIw)e

E = u(be) · ne
E. Similarly,

‖uI − uh‖Xh
≈
(∑

E

|E|
∑

e∈∂E

((uI)e
E − ue

E)2
)1/2

≈
(∑

E

|E|
∑

e∈∂E

((u(ce) · ne
E − ue

E)2
)1/2

= VelErr(ce).

For each mesh, we test four different methods based on choices of points xE and xe in (S̃2):

Case 1: xE = CE , xe = ce, Case 2: xE = VE , xe = ce, Case 3: xE = CE , xe = be, Case 4: xE = VE , xe = be.

These four cases are illustrated in Figure 2. In all cases we compute the pressure errors for zE = CE , the
centroid of E, and zE = VE , the generating point for the Voronoi diagram and the velocity errors for ze = ce,
the centroid of e, and ze = be, the Voronoi bisection point.

For Cases 1 and 3, we have

PressErr(CE) = PressErr(xE) ≈ ‖pIw − ph‖Qh
= ‖pI − ph‖Qh

,

PressErr(VE) is not directly related to either error.

For Cases 2 and 4, we have

PressErr(CE) ≈ ‖pI − ph‖Qh
,

PressErr(VE) = PressErr(xE) ≈ ‖pIw − ph‖Qh
.

For Cases 1 and 2, we have

VelErr(ce) = VelErr(xe) ≈ ‖uIw − uh‖Xh
= ‖uI − uh‖Xh

,

VelErr(be) is not directly related to either error.
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For Cases 3 and 4, we have

VelErr(ce) ≈ ‖uI − uh‖Xh
, VelErr(be) ≈ ‖uIw − uh‖Xh

.

The theory predicts for Cases 1 and 3 the following pressure convergence rates:

PressErr(CE) = O(h2), PressErr(VE) = O(h).

For Cases 2 and 4, we expect the following convergence rates:

PressErr(CE) = O(h), PressErr(VE) = O(h2).

We expect at least O(h) for all velocity errors. Recall from Section 2.2 that we expect better accuracy for
‖uIw − uh‖Xh

compared to ‖uI − uh‖Xh
, which translates to better accuracy for VelErr(ce) in Cases 1 and 2

and for VelErr(be) in Cases 3 and 4.
In 2D we consider the following solution and permeability tensor from [15] over the unit square domain

Ω = (0, 1)2,

p(x, y) = x3y2 + x sin(2πxy) sin(2πy), K =
(

(x+ 1)2 + y2 −xy
−xy (x + 1)2

)
.

In three dimensions, we use solve a problem over the unit cube Ω = (0, 1)3 with

p(x, y, z) = x3y2z + x sin(2πxy) sin(2πyz) sin(2πz), K =

⎛⎝1 + y2 + z2 −xy −xz
−xy 1 + x2 + z2 −yz
−xz −yz 1 + x2 + y2

⎞⎠ .

The matrix UE for all cases is chosen to be UE = |E|
trace(KE) I.

We construct two kinds of meshes, rectangular grids and random Voronoi meshes. The rectangular grids are
generated by perturbing evenly spaced points with spacing h by

ξi = ih+
3
50

| sin(4πih)|, ξ = x, y, z.

These points serve as the shifted location VE for point xE . The mesh is then constructed as a Voronoi diagram
using these points as generating points, see Figure 2 (right). This is equivalent to constructing a rectangular
mesh in a point-centered fashion, where faces are placed midway between two adjacent points. The centroids
of the cells formed by this procedure are the points CE , see Figure 2 (right). The second kind of mesh, the
random Voronoi diagrams, are constructed by selecting uniformly distributed random points in the domain as
generating points. The mesh is refined by selecting a larger number of randomly generated points unrelated to
the previous mesh. Examples of the meshes used can be seen in Figure 3.

The convergence results for Cases 1–4 on rectangular and Voronoi meshes in both two and three dimensions
can be seen in Tables 1–4. As predicted by the theory, in all cases we achieve at least first-order convergence
for both the pressure and flux variables.

Regarding superconvergence, as predicted, we observe O(h2) convergence for the pressure at the points xE ,
i.e., at points CE for Cases 1 and 3, and at points VE for Cases 2 and 4. We observe a reduced convergence rate
at the points that are not used in the construction of matrix ME. We observe velocity superconvergence of at
least O(h3/2) on rectangular grids in both two and three dimensions. As expected, the convergence is somewhat
better at the points xe, i.e. at points ce for Cases 1 and 2, and points be for Cases 3 and 4.
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Figure 3. The meshes used for the convergence study in two and three dimensions. The plot
on the right is a slice of the mesh showing the inner structure of the Voronoi diagram.

Table 1. Convergence rates on rectangular grids in two dimensions.

(Case 1: xE = CE, xe = ce)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
32 3.217e-03 – 8.850e-03 – 2.068e-01 – 2.413e-01 –
64 8.616e-04 1.90 2.766e-03 1.68 6.191e-02 1.74 7.524e-02 1.68
128 2.214e-04 1.96 8.903e-04 1.64 1.753e-02 1.82 2.297e-02 1.71
256 5.607e-05 1.98 2.968e-04 1.58 4.829e-03 1.86 7.088e-03 1.70

(Case 2: xE = VE, xe = ce)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
32 7.948e-03 – 3.638e-03 – 2.728e-01 – 3.029e-01 –
64 2.558e-03 1.64 9.376e-04 1.96 7.654e-02 1.83 8.526e-02 1.83
128 8.480e-04 1.59 2.371e-04 1.98 2.110e-02 1.86 2.398e-02 1.83
256 2.887e-04 1.55 5.949e-05 1.99 5.849e-03 1.85 6.911e-03 1.80

(Case 3: xE = CE , xe = be)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
32 4.154e-03 – 9.510e-03 – 3.177e-01 – 2.754e-01 –
64 1.134e-03 1.87 2.931e-03 1.70 9.395e-02 1.76 8.025e-02 1.78
128 2.929e-04 1.95 9.253e-04 1.66 2.719e-02 1.79 2.258e-02 1.83
256 7.427e-05 1.98 3.037e-04 1.61 8.007e-03 1.76 6.335e-03 1.83

(Case 4: xE = VE , xe = be)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
32 7.501e-03 – 3.184e-03 – 2.844e-01 – 2.436e-01 –
64 2.438e-03 1.62 7.901e-04 2.01 8.754e-02 1.70 7.079e-02 1.78
128 8.230e-04 1.57 1.960e-04 2.01 2.716e-02 1.69 2.070e-02 1.77
256 2.840e-04 1.54 4.877e-05 2.01 8.694e-03 1.64 6.237e-03 1.73

5.2. Improved flux approximations

The main objective in this work has been to reduce the MFD method to a TPFA scheme for general Voronoi
meshes. As a by-product, our generalization extends the MFD method into a family of non-symmetric Petrov–
Galerkin type methods. In this example, we demonstrate the benefits of this additional flexibility.

Consider the domain Ω = (0, 1)2 discretized on a 10×10 mesh with high permeability blocks on the diagonal.
Dirichlet boundary condition is set on the bottom left and top right faces of the domain, and no-flux is imposed
on the rest of the boundary, see Figure 4a. We test three different positions for the face points xe in the high
permeability cells, see Figure 4b. Case A shifts the points away from the diagonal, Case B keeps the points at the
centroid (the original MFD method), and Case C shifts the points toward the diagonal. The three methods are
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Table 2. Convergence rates on random Voronoi grids in two dimensions.

(Case 1: xE = CE, xe = ce)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
32 4.394e-03 – 1.653e-02 – 1.043e+00 – 1.233e+00 –
64 1.241e-03 1.82 8.758e-03 0.92 5.100e-01 1.03 5.978e-01 1.04
128 2.857e-04 2.12 4.234e-03 1.05 2.439e-01 1.06 2.860e-01 1.06
256 7.639e-05 1.90 2.126e-03 0.99 1.213e-01 1.01 1.413e-01 1.02

(Case 2: xE = VE, xe = ce)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
32 1.687e-02 – 6.539e-03 – 1.188e+00 – 1.334e+00 –
64 8.947e-03 0.91 2.080e-03 1.65 5.098e-01 1.22 5.880e-01 1.18
128 4.249e-03 1.07 4.299e-04 2.27 2.359e-01 1.11 2.742e-01 1.10
256 2.129e-03 1.00 1.285e-04 1.74 1.164e-01 1.02 1.345e-01 1.03

(Case 3: xE = CE , xe = be)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
32 5.317e-03 – 1.710e-02 – 1.292e+00 – 1.136e+00 –
64 1.452e-03 1.87 8.783e-03 0.96 6.384e-01 1.02 5.565e-01 1.03
128 3.960e-04 1.87 4.248e-03 1.05 2.947e-01 1.12 2.596e-01 1.10
256 1.043e-04 1.92 2.128e-03 1.00 1.473e-01 1.00 1.288e-01 1.01

(Case 4: xE = VE , xe = be)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
32 1.646e-02 – 5.631e-03 – 1.379e+00 – 1.202e+00 –
64 8.822e-03 0.90 1.587e-03 1.83 5.995e-01 1.20 5.052e-01 1.25
128 4.240e-03 1.06 3.695e-04 2.10 2.804e-01 1.10 2.365e-01 1.09
256 2.127e-03 1.00 9.556e-05 1.95 1.396e-01 1.01 1.172e-01 1.01

Table 3. Convergence rates on rectangular grids in three-dimensions.

(Case 1: xE = CE, xe = ce)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
8 3.193e-02 – 5.662e-02 – 1.532e+00 – 1.626e+00 –
16 1.129e-02 1.50 2.728e-02 1.05 6.270e-01 1.29 7.277e-01 1.16
32 3.217e-03 1.81 8.850e-03 1.62 2.068e-01 1.60 2.413e-01 1.59
64 8.616e-04 1.90 2.766e-03 1.68 6.191e-02 1.74 7.524e-02 1.68

(Case 2: xE = VE, xe = ce)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
8 4.356e-02 – 5.520e-02 – 2.651e+00 – 2.677e+00 –
16 2.702e-02 0.69 1.830e-02 1.59 1.332e+00 0.99 1.401e+00 0.93
32 8.829e-03 1.61 5.354e-03 1.77 4.329e-01 1.62 4.525e-01 1.63
64 2.798e-03 1.66 1.481e-03 1.85 1.285e-01 1.75 1.339e-01 1.76

(Case 3: xE = CE , xe = be)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
8 3.796e-02 – 5.994e-02 – 2.054e+00 – 2.037e+00 –
16 1.824e-02 1.06 3.153e-02 0.93 1.283e+00 0.68 1.222e+00 0.74
32 5.741e-03 1.67 1.033e-02 1.61 4.520e-01 1.50 4.238e-01 1.53
64 1.612e-03 1.83 3.151e-03 1.71 1.376e-01 1.72 1.287e-01 1.72

(Case 4: xE = VE , xe = be)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
8 3.699e-02 – 4.889e-02 – 2.221e+00 – 2.123e+00 –
16 2.368e-02 0.64 1.313e-02 1.90 8.970e-01 1.31 8.320e-01 1.35
32 7.515e-03 1.66 3.230e-03 2.02 2.911e-01 1.62 2.512e-01 1.73
64 2.439e-03 1.62 7.949e-04 2.02 8.887e-02 1.71 7.242e-02 1.79
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(a) (b) (c)

Figure 4. Flux accuracy test: (a) permeability field and boundary conditions; (b) three dif-
ferent sets of positions of the shifted face points for cells on the high permeability diagonal; (c)
flux in the x-direction computed on the fine scale.

Table 4. Convergence rates on random Voronoi meshes in three-dimensions.

(Case 1: xE = CE, xe = ce)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
8 7.371e-02 – 9.495e-02 – 6.986e+00 – 7.120e+00 –
16 2.671e-02 1.46 3.461e-02 1.46 3.502e+00 1.00 3.562e+00 1.00
32 7.586e-03 1.82 1.329e-02 1.38 1.636e+00 1.10 1.647e+00 1.11
64 2.016e-03 1.91 5.777e-03 1.20 7.552e-01 1.12 7.707e-01 1.10

(Case 2: xE = VE, xe = ce)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
8 1.227e-01 – 1.176e-01 – 7.683e+00 – 7.713e+00 –
16 4.176e-02 1.55 3.465e-02 1.76 3.695e+00 1.06 3.792e+00 1.02
32 1.482e-02 1.49 9.737e-03 1.83 1.680e+00 1.14 1.728e+00 1.13
64 6.013e-03 1.30 2.548e-03 1.93 7.613e-01 1.14 7.968e-01 1.12

(Case 3: xE = CE , xe = be)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
8 8.705e-02 – 1.092e-01 – 7.781e+00 – 7.432e+00 –
16 3.115e-02 1.48 3.880e-02 1.49 3.901e+00 1.00 3.650e+00 1.03
32 8.613e-03 1.85 1.405e-02 1.47 1.851e+00 1.08 1.679e+00 1.12
64 2.243e-03 1.94 5.882e-03 1.26 8.525e-01 1.12 7.678e-01 1.13

(Case 4: xE = VE , xe = be)
n PressErr(CE) Conv. PressErr(VE) Conv. VelErr(ce) Conv. VelErr(be) Conv.
8 1.030e-01 – 9.719e-02 – 7.557e+00 – 7.202e+00 –
16 3.858e-02 1.42 3.108e-02 1.64 3.680e+00 1.04 3.460e+00 1.06
32 1.404e-02 1.46 8.689e-03 1.84 1.724e+00 1.09 1.584e+00 1.13
64 5.886e-03 1.25 2.278e-03 1.93 7.822e-01 1.14 7.138e-01 1.15

compared to a solution computed on a fine scale mesh with 250× 250 elements, see Figure 4c for the computed
fine scale flux in the x-direction, and Figure 5 for the comparison of the four methods.

The original MFD method, Case B, underestimates the flux on the diagonal, while the modified method
computes a more accurate flux, as seen in Case C. The reason is that the velocity is highest near the corners
where two high permeability blocks meet, see Figure 4c. The choice of placing the face points near these
corners produces a better sampling of the exact flux, thus producing a more accurate average flux on the
faces. Furthermore, this improvement does not require refining the mesh and increasing the number of degrees
of freedom. We also note that the introduced non-symmetry is restricted to elements on the diagonal and
their neighbors. Most of the local matrices remain symmetric and consistent with the original MFD method.
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Figure 5. Comparison of the flux in x-direction between three shifted face point positions (A,
B, C) and a fine scale reference solution (right).

The extended space of MFD methods we present can indeed result in more accurate solutions on a given
mesh. We note that moving the face points away from the diagonal results in less accurate flux. In practice,
advanced knowledge of large scale permeability features could be utilized in the choice of face and element
points. Furthermore, the family of MFD methods can be parametrized and searched, which is similar to the
approach of M-adaptation for MFD methods [33].

6. Conclusions

The MFD method defines a family of discretizations on a very general set of polyhedral meshes. Solving over
general polyhedra allows for better representation of complex geometric features. Special care must be taken
when solving for porous media multi-phase flow equations, as they can be sensitive to the kind of discretization
used. Methods such as the two-point flux approximation (TPFA) have been well established for such equations.
While the original MFD method definition encompasses TPFA over rectangular grids, it does not include TPFA
for cases such as Voronoi meshes. We have demonstrated the connection between the MFD method and TPFA
over Voronoi grids by defining a generalization of the original MFD method. Establishing this connection results
in a reduction of the saddle-point system associated with the MFD method to a symmetric-positive definite
system through a Schur complement. In the case of rectangular grids, we have observed that the generalization
connects the MFD method with point-centered schemes.

We have presented a proof of stability and convergence of the generalization using tools from MFE methods
and standard MFD methods. The analysis suggests that the modification made to the MFD method maintains
first-order convergence for both the pressure and velocity unknowns. We have also demonstrated second-order
convergence (or superconvergence) of the pressure unknown by employing special lifting operators. In the case of
two-dimensional rectangular grids, we explicitly constructed such operators, which can be considered as shape
functions for a traditional MFE method. The method corresponds to different choices for the test and trial
H(Ω; div) spaces, or a Petrov–Galerkin type method.

Further connections with methods from the Finite Volume literature should be investigated. This includes
various MPFA methods [1] and point-centered schemes [26]. The method defined here might open further
possibilities for finding discretization schemes that satisfy the discrete maximum principle [42]. In addition, we
plan to extend the theoretical results of this work to include velocity superconvergence and construction of
lifting operators for more element types.

The visualization in this work was generated using Paraview scientific visualizer [34]. The code used to
produce results was written in Python and uses the NumPy [53], SciPy [36] and Cython [9] libraries. The code
uses sparse direct solvers found in spsolve library of SciPy. For larger models, the code has been coupled with
PETSc [7] using the petsc4py interface [20]. For cell volume and centroid computations, the code uses the
algorithm defined in [44]. The Voronoi diagrams were generated using the Voro++ software package [51].
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Appendix A. Quadrature estimate

We demonstrate that the choice of quadrature (2.62) satisfies condition (2.60). For simplicity, we consider
first E = [0, 1]2. Notice that for a constant vector u0 on E, denoting u0,E = (u0)I

E , we have

σE(K̄−1
E ;u0,E, vE) = 0, (A.1)

which can be observed by setting u0 = (1, 0)T and vE = (1, 0, 0, 0):∫
E

K̄−1
E RE(u0,E) · R̃E(vE) dV =

∫
E

K̄−1
E

(
1
0

)
·
(
Wxwy

0

)
dV =

1 − x̃

kx
= [u0,E , vE ]E .

The same argument can be extended to all other combinations of u0 and vE . Due to non-symmetry of σE , in
general

σE(K̄−1
E ; vE , u0,E) = 0.

However, we can proceed by first defining an operator T̂E ,

T̂E =
(
ŵx 0
0 ŵy

)
, with

∫
e

xŵx dS = 1 − x̃,

∫
e

ŵx dS = 1,

and similarly for ŵy. We now observe that for any vE and u0,

[vE , u0,E]E =
∫

E

K̄−1
E RE(vE) · T̂ETEu0 dV, (A.2)

since for vE = (1, 0, 0, 0) and u0 = (1, 0)T we have∫
E

K̄−1
E RE(vE) · T̂ETEu0 dV =

∫
E

k−1
x xŵxwy dV =

1 − x̃

kx
= [vE , u0,E]E ,

and for vE = (0, 0, 1, 0) and u0 = (1, 0)T ,∫
E

K̄−1
E RE(vE) · T̂ETEu0 dV =

∫
E

k−1
x (1 − x)ŵxwy dV =

x̃

kx
= [vE , u0,E]E ,

and similarly for all other combinations of vE and u0. We note that for a constant vector u0 = (ux
0 , u

y
0)

T on any
E ∈ Th, since∫

E

ŵx dV =
∫

E

ŵy dV = |E|, then
∫

E

(T̂ETEu0 − TEu0) dV =
∫

E

(
(ŵx − 1)wyu

x
0

(ŵy − 1)wxu
y
0

)
dV =

(
0
0

)
,

and the Friedrichs inequality [11] implies that

‖T̂ETEu0 − TEu0‖(L2(E))2 ≤ ChE‖u0‖(L2(E))2 . (A.3)

Lemma A.1. The choice of velocity inner product with matrix (2.62) satisfies condition (2.60).

Proof. Given u ∈ (H1(E))d and v ∈ (H1(E))d, let uE = uI
E and vE = vI

E . We have

σE(K−1;uE, vE) = σE(K̄−1
E ;uE, vE) +

∫
E

(K̄−1
E −K−1)RE(uE) · R̃E(vE) dV ≡ J̃1 + J̃2.
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Let u0 and v0 be the mean values of u and v, respectively, and let u0,E = (u0)I
E and v0,E = (v0)I

E . For J̃1 we
have, using (A.1) and (A.2),

J̃1 = [uE, vE ]E −
∫

E

K̄−1
E RE(uE) · R̃E(vE) dV,

= [uE − u0,E, vE − v0,E ]E −
∫

E

K̄−1
E RE(uE − u0,E) · (R̃E(vE) − T̂ETEv0) dV

= [uE − u0,E, vE − v0,E ]E −
∫

E

K̄−1
E RE(uE − u0,E) · R̃E(vE − v0,E) dV

−
∫

E

K̄−1
E RE(uE − u0,E) · (TEv0 − T̂ETEv0) dV.

Using Lemmas 2.11, and 2.12, (A.3) and (2.50), we obtain

|J̃1| ≤ Ch2
E‖u‖(H1(E))2‖v‖(H1(E))2 .

Expression J̃2 can be divided into

J̃2 =
∫

E

(K̄−1
E −K−1)RE(uE − u0,E) · R̃E(vE) dV +

∫
E

(K̄−1
E −K−1)RE(u0,E) · R̃E(vE − v0,E) dV

+
∫

E

(K̄−1
E −K−1)RE(u0,E) · R̃E(v0,E) dV ≡ J̃21 + J̃22 + J̃23

We can bound J̃21 + J̃22 using (2.7), (2.40)–(2.41) and (2.53),

|J̃21 + J̃22| ≤ Ch2
E‖v‖(H1(E))2‖u‖(H1(E))2 .

For expression J̃23, setting K−1TE = 1
|E|
∫

E K
−1TE and using (2.6), we have

|J̃23| =
∣∣∣∣∫

E

(K̄E −K)K̄−1
E u0 ·K−1TEv0 dV

∣∣∣∣ =
∣∣∣∣∫

E

(K̄E −K)K̄−1
E u0 · (K−1TE −K−1TE)v0 dV

∣∣∣∣
≤ Ch2

E‖u‖(L2(E))2‖v‖(L2(E))2 .

Combining the above expressions gives the desired result. �
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