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NUMERICAL APPROXIMATION OF A NON-SMOOTH PHASE-FIELD MODEL
FOR MULTICOMPONENT INCOMPRESSIBLE FLOW

L’uboḿır Baňas1 and Robert Nürnberg2

Abstract. We present a phase-field model for multiphase flow for an arbitrary number of immis-
cible incompressible fluids with variable densities and viscosities. The model consists of a system of
the Navier−Stokes equations coupled to multicomponent Cahn−Hilliard variational inequalities. The
proposed formulation admits a natural energy law, preserves physically meaningful constraints and
allows for a straightforward modelling of surface tension effects. We propose a practical fully discrete
finite element approximation of the model which preserves the energy law and the associated physical
constraints. In the case of matched densities we prove convergence of the numerical scheme towards a
weak solution of the continuous model. The convergence of the numerical approximations also implies
the existence of weak solutions. Furthermore, we propose a convergent iterative fixed-point algorithm
for the solution of the discrete nonlinear system of equations and present several computational studies
of the proposed model.
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1. Introduction

Let Ω be a bounded domain in Rd, d = 2, 3. We consider a mixture of N ≥ 2 immiscible incompressible fluids
and introduce a vector valued order parameter c = (c1, c2, . . . , cN )T : Ω → RN , where 0 ≤ ci ≤ 1, i = 1, . . . , N
are order parameters corresponding to the different fluid components. Physically meaningful values for the order
parameter c have nonnegative entries and satisfy

∑N
n=1 cn = 1. It is therefore convenient to define the Gibbs

simplex

G
N =

{
ζ ∈ R

N :
N∑

n=1

ζn = 1, ζ ≥ 0

}
⊂ R

N

as the set of meaningful values for c, i.e. c ∈ GN . For later use, we denote the corners of the Gibbs simplex
by ei, i = 1, . . . , N . Similarly we define the vector valued chemical potential as w = (w1, w2, . . . , wN )T ∈ RN .
In addition, we let u : Ω → Rd and p : Ω → R denote the velocity and pressure of the fluid mixture, with its

Keywords and phrases. Multiphase flow, phase field model, Cahn–Hilliard equation, Navier–Stokes equations, finite element
method, convergence analysis.

1 Department of Mathematics, Bielefeld University, 33501 Bielefeld, Germany. banas@math.uni-bielefeld.de
2 Department of Mathematics, Imperial College London, London, SW7 2AZ, UK. robert.nurnberg@imperial.ac.uk

Article published by EDP Sciences c© EDP Sciences, SMAI 2017

https://doi.org/10.1051/m2an/2016048
http://www.esaim-m2an.org
http://www.edpsciences.org
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density and viscosity defined by ρ(c) = cTρ and μ(c) = cTμ, respectively. Here ρ = (ρ1, ρ2, . . . , ρN )T ∈ RN

and μ = (μ1, μ2, . . . , μN )T ∈ RN denote the densities and viscosities of the individual fluid components, which
satisfy ρmin ≤ ρi ≤ ρmax, μmin ≤ μi ≤ μmin for i = 1, . . . , N , with ρmin, ρmax, μmin, μmax ∈ R>0. We propose
a phase-field model for a mixture of N incompressible immiscible fluids. The model consists of a system of
variable density multicomponent Cahn−Hilliard−Navier−Stokes equations

∂t(ρ(c)u) + ∇ · (ρ(c)u ⊗ u) + ∇ · (u ⊗ j) −∇ · (2μ(c)D(u)) + ∇p = ρ(c)g − λ(∇w)T c, (1.1a)
∇ · u = 0, (1.1b)

∂tc + ∇ · (c ⊗ u) = ∇ · (M∇w) , (1.1c)

w = −εΔc +
1
ε

∂Ψ(c)
∂c

, (1.1d)

where D(u) = 1
2 (∇u+ (∇u)T ) denotes the rate-of-deformation tensor and ∇η is the N × d matrix with entries

(∂ηm

∂xp
)m=1,...,N,p=1,...,d, for η ∈ RN . For a N × d matrix Λ = (Λmp)m=1,...,N,p=1,...,d, ∇ · Λ is the N × 1 vector

with entries
∑d

p=1
∂Λmp

∂xp
, m = 1, . . . , N . The mobility matrix M = (mij)i,j=1,...,N ∈ RN×N is described in more

detail below. Moreover, we define

j = −
N∑

i=1

ρi

N∑
j=1

mij∇wj = −(M∇w)Tρ. (1.2)

We consider homogeneous Neumann and Dirichlet boundary conditions for the Cahn−Hilliard variables c, w
and the velocity field u, respectively, i.e.

∂c
∂n

= M
∂w
∂n

= 0 and u = 0 on (0, T ) × ∂Ω, (1.3)

where n is the outward unit normal vector to ∂Ω. In addition, u and c satisfy the initial conditions

u(0,x) = u0(x) ∀x ∈ Ω and c(0,x) = c0(x) ∀x ∈ Ω. (1.4)

Here we assume the following properties for the initial condition c0 for the variable c

(a) c0(x) ≥ 0 and (b)
N∑

i=1

c0i (x) = 1 ∀x ∈ Ω, (1.5)

i.e. that c0(x) ∈ GN for all x ∈ Ω.
The Ginzburg-Landau free energy of the Cahn−Hilliard part of the system takes the form

Ech(c) =
∫

Ω

(
ε

2
|∇c|2 +

1
ε
Ψ(c)

)
, (1.6)

where the homogeneous free energy is expressed as

Ψ(c) = Ψ0(c) −
1
2
cTAc, (1.7)

with A a constant symmetric N ×N matrix that models the surface tension forces between the different fluids.
Here a physically reasonable assumption is that diag(A) = 0 and Aij < 0, for i 
= j. For equal surface tension
forces, which leads to equal 120◦ angle conditions at triple junctions, the matrix A in (1.7) takes the form

A = I − 11T , (1.8)
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where I is the N ×N identity matrix and 1 = (1, . . . , 1)T ∈ RN . The choice of A for more general contact angle
conditions has been discussed in e.g. [15, 29], see also Sections 2.4 and 5.2 below.

In this paper the term Ψ0 in (1.7) represents the obstacle free energy

Ψ0(c) =

{
0 if c ∈ G

N ,

∞ if c 
∈ G
N .

(1.9)

For the non-smooth free energy (1.7) the derivative ∂Ψ(c)
∂c = (∂c1Ψ(c), . . . , ∂cNΨ(c))T is only formal and the

equation (1.1d) has to be formulated as a variational inequality, cf. [29].
The mobility matrix M is symmetric positive semi-definite, with the natural property

M1 = 0. (1.10)

This property ensures that the constraint
∑N

i=1 ci = 1 is fulfilled during the evolution, as long as the initial
data satisfies (1.5b). Moreover, for the constant density case it follows from (1.2) and (1.10) that j vanishes,
meaning that our model is consistent with classical models for two- and multi-phase flow. For instance, in the
case of a constant mobility m0 ∈ R>0, the mobility matrix M = (mij)N

ij=1 is defined by the entries

mij =

{
m0(1 − 1/N) if i = j,

−m0/N if i 
= j.
(1.11)

An alternative option is a concentration dependent mobility matrix M(c) with entries

mij(c) = m0(ci + ν)
(
δij −

cj + ν

1 +Nν

)
, (1.12)

where ν > 0 is a fixed parameter. Note, that for ν → 0 in (1.12), we recover a degenerate concentration
dependent mobility matrix

mij(c) = m0ci(δij − cj), (1.13)

cf. [7, 29]. Other choices for the mobility matrix are also possible, see e.g. [7, 15, 29].
For simplicity we will consider the constant mobility (1.11) throughout the theoretical part of this paper.

However, it is straightforward to generalize the presented numerical approximations to the case of degenerate
and concentration dependent mobilities, such as, e.g., (1.13). In particular, all theoretical results from this paper
remain valid for the model with the regularized variant (1.12) of the degenerate mobility (1.13). Furthermore,
Lemmas 3.4, 3.7, 4.1 remain valid for the numerical approximation with degenerate mobility (1.13), however,
the existence of discrete solutions is not clear, cf. [7].

Energy preserving convergent numerical approximations of variable density Navier−Stokes equations have
been constructed for instance in [2,27]. In principle, the considered so-called ”sharp interface” model allows an
arbitrary number of components to be included. However, the corresponding numerical approximations suffer
from numerical diffusion. Furthermore, the inclusion of surface tension effects in variable density Navier−Stokes
equations is not straightforward. Phase-field models have the advantage that various physical effects, such as
surface tension, can be included in a straightforward way. Furthermore, the corresponding numerical approxi-
mations do not suffer from numerical diffusion, and preserve properties of the continuous models, such as mass
conservation and energy estimates. Phase-field models for binary fluid mixtures and their numerical approxima-
tions are well-studied. Convergence of numerical approximations for density independent models of two-phase
flows has been shown in [16,21]. A thermodynamically consistent phase-field model for two-phase flows has been
proposed in [1]; energy preserving numerical approximations for that model have been considered in [17, 20],
while convergence of a numerical approximation is shown in [18, 19]. Considerably fewer results are available
for mixtures of more than two fluids. For different approaches to construct phase-field models for ternary fluids
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with smooth homogeneous free energy, we refer to [9, 25], the review paper [24] and the references therein.
Stable numerical approximations for density dependent three-phase flows have been proposed in [10, 28], and
convergence of these numerical approximations towards weak solutions has been shown in the case of constant
density. Development of phase-field models for N > 3 fluid phases is not straightforward due to the complicated
modelling of surface tension effects, cf. [23, 26]. Recently, generalizations of the thermodynamically consistent
phase-field model from [1] for variable density flows with an arbitrary number of phases and their numerical
approximations have been proposed in [13, 14]. We also mention the work [11], which proposes consistent N -
component Cahn−Hilliard models with smooth free energy, as well as their numerical approximation and the
coupling with Navier−Stokes equations. For the numerical approximation of multicomponent Cahn−Hilliard
systems in the absence of fluid flow, including the case of degenerate mobility (1.13) and for the non-smooth
obstacle free energy (1.7), see e.g. [7, 29].

In the present work we propose a generalization of the thermodynamically consistent model from [1] for an
arbitrary number of fluid components. As far as we are aware, all existing phase-field models for fluid flow
use a smooth or regularized free energy formulation and the present model is the first one to employ a non-
smooth free energy. The advantage of the non-smooth obstacle energy (1.9) is that the pure phases are easily
identified, and that physically meaningful values for c are guaranteed throughout. We construct an energy stable
numerical approximation of the model and show convergence of the approximation to a weak solution in the
case of fluids with equal densities. Apart from the present paper, convergence of numerical approximations of
Cahn−Hilliard−Navier−Stokes systems for N > 2 components has only been show in [10,28]. We note that their
results are limited to N = 3 components, while the results presented in this paper hold for arbitrary N ≥ 2.
In addition, the convergence of our numerical approximations implies the existence of weak solutions to (1.1)
for a non-smooth energy, which is a new result even for N = 2. Furthermore, as detailed in Remark 3.3, the
existence of discrete solutions requires a velocity-pressure-density compatibility condition for the corresponding
finite element spaces to hold3.

The remainder of the paper is organized as follows. In Section 2 we discuss properties of the continuous model,
such as the energy inequality, surface tension effects and consistency with models for N = 2 fluid components.
The density independent model is considered in detail in Section 3. Here we propose a fully discrete energy
preserving numerical approximation of the model and prove convergence towards a weak solution. Furthermore,
we present a simple fixed point algorithm for the solution of the discrete nonlinear system of equations and
show its convergence. In Section 4 we construct an energy preserving numerical approximation of the density
dependent model. The paper concludes with Section 5, where we briefly discuss implementation issues, such as
mesh adaptivity and algebraic solvers, and where we present numerical studies of the model.

2. Properties of the model

Below we summarize the main properties of the model (1.1).

2.1. Energy law

An energy law for the system (1.1) can be obtained by the following formal calculations. Using the represen-
tation for the density ρ(c) = cTρ and (1.2) we obtain from (1.1c) that

∂tρ(c) + ∇ · (ρ(c)u) + ∇ · j = 0. (2.1)

3Note, that an analogical velocity-pressure-density compatibility condition was used previously in [2, 27] where the former used
a piecewise constant pressure-density spaces, and the latter used piecewise linear continuous pressure-density spaces.
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We multiply (2.1) by |u|2, integrate over Ω and use integration by parts in the second and third terms to get∫
Ω

∂tρ(c)|u|2 +
∫

Ω

[∇ · (ρ(c)u)]|u|2 +
∫

Ω

[∇ · j] |u|2

=
∫

Ω

∂tρ(c)|u|2 − 2
∫

Ω

ρ(c)(u · ∇)u · u− 2
∫

Ω

(j · ∇)u · u = 0. (2.2)

Next, we take a product of (1.1a), (1.1c), (1.1d) with u,w, ∂tc, respectively, use (1.1b) and integrate over Ω
and by parts to yield

1
2
∂t

∫
Ω

ρ(c)|u|2 +
∫

Ω

2μ(c)|D(u)|2 +
1
2

∫
Ω

∂tρ(c)|u|2

−
∫

Ω

ρ(c)(u · ∇)u · u −
∫

Ω

(j · ∇)u · u =
∫

Ω

ρ(c)g · u− λ

∫
Ω

(∇w)T c · u, (2.3a)∫
Ω

M∇w · ∇w = −
∫

Ω

∂tc ·w +
∫

Ω

(∇w)T c · u, (2.3b)

ε

2
∂t

∫
Ω

|∇c|2 +
1
ε
∂t

∫
Ω

Ψ(c) = (w, ∂tc). (2.3c)

Now we use (2.2), multiply (2.3b) and (2.3c) by λ to cancel out the terms on the right-hand side, and sum the
equations up to get the energy identity

λ

[
∂tEch(c) +

∫
Ω

|M 1
2∇w|2

]
+ ∂tEns(c,u) +

∫
Ω

2μ(c)|D(u)|2 =
∫

Ω

ρ(c)g · u, (2.4)

where
Ens(c,u) =

1
2

∫
Ω

ρ(c)|u|2

is the kinetic energy of the Navier−Stokes part of the system (1.1).
The identity (2.2) was necessary for the derivation of the energy law (2.4). However, on the discrete level (2.1)

does not hold in general. Hence, a discrete energy estimate is not immediately obvious. To derive an energy
preserving numerical approximation, in Section 4 we consider an equivalent reformulation of (1.1). On noting
∇ · (u⊗ j) = (j · ∇)u + (∇ · j)u we obtain by a direct calculation that

∂t(ρ(c)u) + ∇ · (ρ(c)u ⊗ u) + ∇ · (u ⊗ j) = ρ(c)∂tu + (ρ(c)u · ∇)u + (j · ∇)u
+ [∂tρ(c) + ∇ · (ρ(c)u) + ∇ · j]u,

which implies that

1
2
[∂tρ(c) + ∇ · (ρ(c)u) + ∇ · j]u

=
1
2

{
∂t(ρ(c)u) −∇ · (u ⊗ [ρ(c)u + j]) − ρ(c)∂tu + ([ρ(c)u + j] · ∇)u

}
. (2.5)

The identities (2.5) and (2.1) then allow the momentum equation to be reformulated as follows

∂t(ρ(c)u) + ∇ · (ρ(c)u ⊗ u) + ∇ · (u ⊗ j) − 1
2
[∂tρ(c) + ∇ · (ρ(c)u) + ∇ · j]u︸ ︷︷ ︸

=0

= ∂t(ρ(c)u) + ∇ · (ρ(c)u ⊗ u) + ∇ · (u ⊗ j)

− 1
2
{
∂t(ρ(c)u) + ∇ · (u⊗ [ρ(c)u + j]) − ρ(c)∂tu − ([ρ(c)u + j] · ∇)u

}
=

1
2

{
∂t(ρ(c)u) + ∇ · (ρ(c)u ⊗ u) + ∇ · (u⊗ j) + ρ(c)∂tu + (ρ(c)u · ∇)u + (j · ∇)u

}
. (2.6)
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By (2.6) the momentum equation (1.1a) is equivalent to

1
2

{
∂t(ρ(c)u) + ρ(c)∂tu + ∇ · (ρ(c)u ⊗ u) + (ρ(c)u · ∇)u + ∇ · (u⊗ j) + (j · ∇)u

}
= ρ(c)g − λ(∇w)T c. (2.7)

Hence, the energy law (2.4) for the reformulated system (2.7), (1.1b)−(1.1d) then follows analogously as before,
with the exception that (2.2) is not used in the calculations, cf. Lemma 4.1 below.

2.2. Conservation properties

Next, we state conservation properties of the model which are due to the Cahn−Hilliard part of (1.1).
From (1.5) it follows, cf. [5, 6], that the solution of (1.1) satisfies

(a) c(t,x) ≥ 0 and (b)
N∑

i=1

ci(t,x) = 1 ∀x ∈ Ω, t ∈ [0, T ], (2.8)

where (2.8a,b) are enforced by the homogeneous free energy, since (1.9) becomes infinite for c /∈ GN . The
condition (2.8b) is also a consequence of (1.1c) and the incompressibility condition (1.1b). Namely, using (1.10)
and ∇ · u = 0 we obtain from (1.1c) that

∂t(1T c) + [u · ∇](1T c) = 0,

and so (1.5b) yields that 1T c = 1 holds for all times.
The boundary conditions imply that the mass of the individual components is preserved, i.e.,∫

Ω

c(t, ·) =
∫

Ω

c0 ∀t ∈ [0, T ]. (2.9)

Note that because of the conservative form of the convective term in (1.1c), the incompressibility condition
∇ · u = 0 is not required for the global mass conservation (2.9) to hold.

2.3. Consistency with binary phase-field models

In the case N = 2, assuming that A is of the form (1.8) and that M is of the form (1.11), we define c = c2−c1
and w = w2 − w1, cf. [4, 8]. We then obtain that (u, p, c, w) satisfy the following set of equations.

∂t(ρ̃(c)u) + ∇ · (ρ̃(c)u ⊗ u) + ∇ · (u ⊗ j) −∇ · (2μ̃(c)D(u)) + ∇p = ρ̃(c)g − 1
2λc∇w, (2.10a)

∇ · u = 0, (2.10b)
∂tc+ ∇ · (cu) −m0Δw = 0, (2.10c)

w = −εΔc+
1
ε

∂Ψ̃(c)
∂c

, (2.10d)

where ρ̃(c) = 1−c
2 ρ1 + 1+c

2 ρ2, and similarly for μ̃(c). Moreover,

Ψ̃(c) =

{
1
2 (1 − c2) if |c| ≤ 1,
∞ if |c| > 1,

(2.11)

is the standard obstacle potential. In deriving (2.10a) we have noted that for |c| < 1 it follows from (1.1d) that
∇w1 + ∇w2 = 0, and so we obtain that

(∇w)T c = c1∇w1 + c2∇w2 = c1∇w1 − c2∇w1 = −c∇w1 = c
1
2
(∇w2 −∇w1) =

1
2
c∇w.

Similarly, on noting Mii = 1
2 , we get j = −m0

2 (ρ2 − ρ1)∇w, which corresponds to the model developed in [1] for
the non-smooth free energy Ψ̃(c). Note that so far existence of solutions for the model from [1] has only been
shown in the case of a smooth free energy. Our convergence result, on the other hand, covers the non-smooth
case for a model with constant density (j = 0).
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2.4. Surface tension

The term λ(∇w)T c = λ
∑N

i=1 ci∇wi in (1.1a) models capillary forces, i.e., it introduces pressure jumps across
the interfaces between the different fluid components. In particular, the pressure jump induced at the interface
between the components i and j is proportional to the curvature of the interface and to the surface tension
coefficient σij . The coefficients σij are determined by the matrix A = (Aij)i,j=1,...,N , through the minimization
problem

σij = 2 inf
q

∫ 1

−1

|q′(s)|
√

1
2 Ψ(q(s)) ds, i, j ∈ {1, . . . , N}, (2.12)

where we recall (1.7) and where the infimum is over all q ∈ C1([−1, 1],RN) with q(−1) = ei and q(1) = ej ;
see ([29], Eq. (1.13)). In [22] it is shown that λ(∇w)T c, for N = 2, relates to the continuous surface tension
force formulation of the capillary force term, where the parameter λ is determined by the equilibrium profile
of the interface. In [23] a slightly more general formulation

∑N
i=1 λici∇wi with parameters λi, i = 1, . . . , N , is

considered. The author then shows that this choice can only be considered in the case N ≤ 3 for their CHNS
model. This is due to the fact that the determination of the parameters λi in their model, in order to model
the correct surface tension coefficients σij , leads to an overdetermined system of equations in the case N ≥ 4,
which has no solution in general.

The advantage of our model (1.1) is that the surface tension can be modelled by λ(∇w)T c with a single
scaling parameter λ. To see this, we formally consider an interface between the fluid components i and j, so
that in the interfacial region ci, cj ∈ (0, 1) and cl = 0 for all l ∈ {1, . . . , N} \ {i, j}. Hence the Cahn−Hilliard
part in (1.1) yields for the chemical potentials that (recall that we assume Aii = 0 and Aij < 0, for i 
= j)

wi = −εΔci −
|Aij |
ε

cj and wj = −εΔcj −
|Aij |
ε

ci. (2.13)

Setting c = ci − cj ∈ (−1, 1), w = wi − wj we obtain that

w = −εΔc− |Aij |
ε

c.

Hence, the Cahn−Hilliard part of (1.1) reduces to the Cahn−Hilliard equation for two component mixtures with
interfacial parameter ε̃ = ε√

|Aij |
. Furthermore, since ci = 1 − cj and wi = − |Aij|

ε − wj , we obtain by taking a

gradient of the sum of the two equations in (2.13) that ∇wi = −∇wj . As in the previous section we obtain that
ci∇wi + cj∇wj = 1

2 (c∇w). Then we can rewrite the capillary term across the interface Γij , using the scaling
of [22], as

λ

2
c∇w =

λ

2

√
|Aij |

1
ε̃
c∇w̃.

The above corresponds to a capillary force with surface tension coefficient λ
2

√
|Aij |, where the scaling constant

λ has to be determined from the equilibrium profile, in order to match the surface tension coefficient σij in the
sharp interface limit, cf. [22].

The above considerations show that our model with capillary term λ(∇w)T c can reproduce correct capillary
forces and surface tension effects for any number of components. The formulation (1.1) does not need to be
modified for N ≥ 4, which is not the case for the multicomponent model considered in [23]. A potential
disadvantage of our model (1.1) is that the widths of the diffuse interfaces are proportional to the surface
tension coefficients σij , which leads to different interface widths in the case of unequal surface tensions.
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3. Density independent model

In the case of fluids with constant density ρ(c) ≡ 1, i.e. when ρ = 1 ∈ RN , the model (1.1) reduces to

∂tu + (u · ∇)u −∇ · (2μ(c)D(u)) + ∇p = g − λ(∇w)T c,
∇ · u = 0,

∂tc + ∇ · (c ⊗ u) = ∇ · (M∇w) ,

w = −εΔc +
1
ε

∂Ψ(c)
∂c

,

(3.1)

where we have noted from (1.2) and (1.10) that j = 0, together with the boundary and initial conditions (1.3)
and (1.4).

We let L2(Ω) = [L2(Ω)]N , H1(Ω) = [H1(Ω)]N , and similarly L2(Ω) = [L2(Ω)]d, Hj(Ω) = [Hj(Ω)]d, j = 1, 2.
Moreover, we let (·, ·) denote the L2-inner product over Ω with the natural extensions to vector and matrix
valued functions, e.g., for N ×M matrices A, B with entries in L2(Ω) we let (A,B) =

∑N
i=1

∑M
j=1(Aij , Bij).

The L2-norm will be denoted as ‖ · ‖, the H1-norm as ‖ · ‖1, the L∞-norm as ‖ · ‖∞. The same notations will be
used for the corresponding norms of vector valued functions. In addition, the duality product between

(
H1(Ω)

)′
and H1(Ω) will be denoted by 〈·, ·〉, and similarly for vector valued functions.

We introduce the following function spaces

V = {v ∈ C∞
0 (Ω); ∇ · v = 0},

V = {v ∈ H1
0(Ω); ∇ · v = 0},

H = {v ∈ L2(Ω); ∇ · v = 0 weakly in Ω, v · n|∂Ω = 0},
H1

+ = {φ ∈ [H1(Ω)]N ; φ ≥ 0},
K = {φ ∈ H1

+; 1Tφ = 1}.

Note that V and H are obtained as the closures of V in the H1 and L2 norms, respectively.

Definition 3.1 (Weak solution). Let T > 0 and suppose that u0 ∈ H, c0 ∈ K and g ∈ L2(0, T ;L2(Ω)). A
weak solution of (3.1) with (1.3) and (1.4) is given by functions

u ∈ L2(0, T ;V) ∩ L∞(0, T ;H),

c ∈ L∞(0, T ;K) ∩H1(0, T, (H1(Ω))′),
w ∈ L2(0, T ;H1(Ω)),

such that

−
∫ T

0

(u, ∂tv) +
∫ T

0

(u · ∇u,v) +
∫ T

0

(2μ(c)D(u), D(v))

= (u0,v(0)) +
∫ T

0

(g,v) − λ

∫ T

0

((∇w)T c,v), (3.2a)∫ T

0

〈∂tc,ψ〉 +
∫ T

0

(M∇w,∇ψ) =
∫ T

0

(c ⊗ u,∇ψ), (3.2b)∫ T

0

(w,φ− c) ≤ ε

∫ T

0

(∇c,∇(φ − c)) − ε−1

∫ T

0

(Ac,φ− c) , (3.2c)

for all (v,ψ,φ) ∈ H1(0, T ;V) × L2(0, T ;H1(Ω)) × L2(0, T ;K) with v(T ) = 0.
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3.1. Numerical approximation

Let Ω ⊂ R
d be an open bounded polyhedral domain and let {Th}h>0 be a quasi-uniform partitioning of Ω

into disjoint open simplices σ with hσ = diam(σ) and h = maxσ∈Th
hσ, so that Ω = ∪σ∈Th

σ. Let Pm(σ) denote
the space of polynomials of degree ≤ m on σ. Associated with Th are the finite element spaces

Sh = {φ ∈ C(Ω); φ|σ ∈ P1(σ) ∀σ ∈ Th},
Sh = [Sh]N ,
S+

h = {φ ∈ Sh; φi ≥ 0 for i = 1, . . . , N},
Kh = {φ ∈ Sh; 1Tφ = 1},

K0
h =

{
φ ∈ Kh;

∫
Ω

φ =
∫

Ω

c0

}
,

Wh = {v ∈ [C(Ω)]d ∩H1
0(Ω); v|σ ∈ P2(σ) ∀σ ∈ Th},

Vh = {v ∈ Wh; (∇ · v, q) = 0, ∀q ∈ Sh}.

Note that the pair Wh × Sh is the classical P2-P1 lowest order Taylor-Hood element for the discretization of
Navier−Stokes equations, which satisfies the inf-sup condition.

We define the orthogonal L2 and H1-projections on to Vh, respectively, as

(v − Ph
0v,w) = 0 ∀w ∈ Vh and (∇[v − Ph

1v],∇w) = 0 ∀w ∈ Vh.

We note that following error estimates, see for instance [2, 18]

‖v − Ph
1v‖ + h‖∇[v − Ph

1v]‖ ≤ Chj‖v‖Hj , (3.3a)

‖v − Ph
0v‖ ≤ Chj‖v‖Hj , (3.3b)

for v ∈ V ∩Hj(Ω), j = 1, 2. Furthermore, Ph
0 is H1 stable on V, see [18].

We also introduce the nodal interpolation operator Ih : C(Ω) → Sh and note the standard interpolation
estimate

‖φ− Ihφ‖ + h‖∇[φ− Ihφ]‖ ≤ Ch2‖φ‖H2(Ω). (3.4)

We naturally extend the definition of Ih to vector valued functions. We also define the discrete inner product

(φ, ψ)h =
∫

Ω

Ih(φψ). We recall the well-known estimate

|(φ, ψ) − (φ, ψ)h| ≤ Ch‖φ‖‖ψ‖1 ∀φ, ψ ∈ Sh. (3.5)

With the discrete inner product we associate the norm ‖φ‖h = [(φ, φ)h]
1
2 and recall its equivalence with the L2

norm for all φh ∈ Sh

‖φh‖2 ≤ ‖φh‖2
h ≤ (d+ 2)‖φh‖2. (3.6)

The discrete L2-projection Qh : L2(Ω) → Sh is defined as

(Qhv,w)h = (v,w) ∀w ∈ Sh,

and satisfies the following estimate (cf. [7], Eq. (2.20))

‖v − Qhv‖ + h‖∇[v − Qhv]‖ ≤ Ch‖∇v‖ ∀v ∈ H1(Ω). (3.7)

Let
Fh = {ψ ∈ L2(Ω);

∫
Ω ψ = 0, (1Tψ, w) = 0, ∀w ∈ Sh},

F̂h = {ψ ∈ C(Ω);
∫

Ω I
hψ = 0, 1Tψ(x
) = 0 for � = 1, . . . , L},

Vh = F̂h ∩ Sh,
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where {x
}L

=1 is the set of all the nodes of Th. Then the discrete Green’s operators Gh

M : Fh → Vh, Ĝh

M :
F̂h → Vh are defined as

(M∇[Gh
Mv],∇w) = (v,w) ∀w ∈ Sh,

(M∇[Ĝh

Mv],∇w) = (v,w)h ∀w ∈ Sh.
(3.8)

We note that there exist constants λM
max, λ

M
min > 0, such that (cf. [7], Eqs. (2.7), (2.9))

λM
min‖ξ‖
2 ≤ ξMξT ≤ λM

max‖ξ‖
2 , (3.9)

holds for all ξ ∈ RN with 1T ξ = 0 with the mobility defined by (1.11) as well as (1.12). Hence, the well-posedness

of Gh
M and Ĝh

M follows in both cases as in [3, 7].
For our numerical approximation we consider the splitting

A ≡ A+ +A−, where A+(−) is symmetric positive (negative) semi-definite.

We construct an equidistant partition {tk}K
k=0, tk = kτ of the time interval [0, T ] into subintervals [tk−1, tk],

k = 1, . . . ,K with a step size τ = T/K and denote dtU
k = Uk−Uk−1

τ . We set C0 = Qhc0 ∈ K0
h and U0 =

Ph
0u

0 ∈ Vh.
For k = 1, . . . ,K we propose the following fully discrete numerical approximation of (3.1): find

(Uk, P k,Wk,Ck) ∈ Wh × Sh × Sh × S+
h such that

(dtUk,v) +
1
2

{
([Uk−1 · ∇]Uk,v) − ([Uk−1 · ∇]v,Uk)

}
+

(
2μ(Ck−1)D(Uk), D(v)

)
+ (P k,∇ · v) = (g,v) − λ((∇Wk)T Ck−1,v), (3.10a)

(∇ ·Uk, q) = 0, (3.10b)

(dtCk,ψ)h +
(
M∇Wk,∇ψ

)
= (Ck−1 ⊗ Uk,∇ψ), (3.10c)

ε(∇Ck,∇(φ− Ck)) − (ε−1A−Ck + Wk,φ− Ck)h ≥ ε−1(A+Ck−1,φ− Ck)h, (3.10d)

for all (v, q,ψ,φ) ∈ Wh × Sh × Sh × S+
h .

In the next lemma we prove that the numerical solution exactly preserves the physically motivated con-
straints (2.8), (2.9).

Lemma 3.2. Let C0 ∈ K0
h. Then the numerical solutions Ck, k = 1, . . . ,K, obtained by the

scheme (3.10a)−(3.10d) satisfy Ck ∈ K0
h, i.e. in particular

(a)
∫

Ω

Ck =
∫

Ω

c0 and (b) 1TCk = 1. (3.11)

Proof. By definition Ck ∈ S+
h , and so in order to show Ck ∈ K0

h, we only need to prove (3.11). To show (3.11a)
we set ψ = ei for i = 1, . . . , N in (3.10c) and get∫

Ω

Ck
i = (Ck, ei)h = (Ck−1, ei)h =

∫
Ω

Ck−1
i = . . . =

∫
Ω

C0
i =

∫
Ω

c0i .

In order to prove (3.11b), we set ψ = ψ1 in (3.10c), for ψ ∈ Sh. Then we obtain, on recalling (1.10) and (3.10b),
that

(dtCk, ψ1)h = −
(
M∇Wk,1⊗∇ψ

)
+ (Ck−1, [1⊗ (∇ψ)]Uk)

= ((Ck−1)T1, (∇ψ)T Uk) = (Uk,∇ψ) = −(∇ ·Uk, ψ) = 0 ∀ψ ∈ Sh. (3.12)
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It immediately follows from (3.12) that

(1T Ck, ψ)h = (1T Ck−1, ψ)h ∀ψ ∈ Sh,

and hence (3.11b) follows by induction. �

Remark 3.3. The above proof implies that in order to preserve (3.11b), the finite element space used for
the phase-field components Ck

i should be a subset of the finite element space used for the pressure P k. I.e.,
a compatibility condition needs to hold for the pressure-density finite element spaces: if P k ∈ Uh for some
finite element space Uh, and if Ck ∈ Sh = [Sh]N , then we require Sh ⊂ Uh in order to guarantee (3.11b).
In addition, the pressure-density compatibility condition is required for the well-posedness of a fixed point
iteration for (3.10), and to be able to prove the existence of solutions to (3.10), see Remark 3.6 and the proof
of Lemma 3.7 below. We also refer to [2, 27], where the pressure-density condition is required to guarantee
a maximum principle for the discrete densities. Hence, the combination of the pressure-density compatibility
condition for P k, Ck and the usual inf-sup condition for Uk, P k defines a velocity-pressure-density compatibility
condition, which guarantees well-posedness of finite element discretizations of multicomponent flows. Note that
the pressure-density compatibility condition is not required in the case of binary fluids N = 2, where (3.11b) is
enforced implicitly when using the equivalent reformulation in terms of c = c1 − c2, recall Section 2.3.

The next lemma shows that solutions for the scheme (3.10a)−(3.10d) satisfy a discrete counterpart of the
energy inequality (2.3).

Lemma 3.4. Let {Uk, P k,Ck,Wk}K
k=1 be a solution of (3.10a)−(3.10d) . Then the energy estimate

ελ

2
‖∇Ck‖2 +

λ

ε
(Ψ(Ck), 1)h +

1
2
‖Uk‖2 + τ

k∑
j=1

[
2‖μ 1

2 (Cj−1)D(Uj)‖2 + λ‖M 1
2∇Wj‖2

]

+
k∑

j=1

[
λ

2
‖∇(Cj − Cj−1)‖2 +

1
2
‖Uj − Uj−1‖2

]

≤ ελ

2
‖∇C0‖2 +

λ

ε
(Ψ(C0), 1)h +

1
2
‖U0‖2 + τ

k∑
j=1

(g,Uj)

holds for all k = 1, . . . ,K.

Proof. To prove the energy estimate we set v = Uk, q = P k, ψ = Wk, φ = Ck−1 in (3.10a)−(3.10d) to obtain

(dtUk,Uk) + 2‖μ 1
2 (Ck−1)D(Uk)‖2 + (P k,∇ ·Uk) = (g,Uk) − λ((∇Wk)T Ck−1,Uk),

(∇ ·Uk, P k) = 0,(
M∇Wk,∇Wk

)
= −(dtCk,Wk)h + (Ck−1 ⊗ Uk,∇Wk),

ε(∇Ck,∇dtCk) − ε−1
[
(A−Ck, dtCk)h + (A+Ck−1, dtCk)h

]
≤ (Wk, dtCk)h.

Next, we multiply the last two equations above by λ, sum all the equations and get

(dtUk,Uk) + 2‖μ 1
2 (Ck−1)D(Uk)‖2 + λ‖M 1

2∇Wk‖2

+ λε(∇Ck,∇dtCk) − λε−1(A−Ck +A+Ck−1, dtCk)h ≤ (g,Uk). (3.13)
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From (3.13) and Lemma 3.2 it follows that

1
2
‖Uk‖2 +

1
2
‖Uk − Uk−1‖2 − 1

2
‖Uk−1‖2 + 2τ‖μ 1

2 (Ck−1)D(Uk)‖2

+ λτ‖M 1
2∇Wk‖2 +

ελ

2
‖∇Ck‖2 +

ελ

2
‖∇(Ck − Ck−1‖2 − ελ

2
‖∇Ck−1‖2

+
λ

ε
(Ψ(Ck), 1)h − λ

ε
(Ψ(Ck−1), 1)h +

1
2
((A+ −A−)(Ck − Ck−1),Ck − Ck−1)h

≤ (g,Uk), (3.14)

where we have employed the identity 2(a− b)TBa = aTBa + (a− b)TB(a− b)−bTBb for symmetric N ×N
matrices B ∈ RN×N . Summing (3.14) for k replaced by j = 1, . . . , k yields the desired energy estimate. �

Remark 3.5. We define the following discrete counterpart of (1.6)

Eh
ch(Ck) =

ε

2
‖∇Ck‖2 +

1
ε
(Ψ(Ck), 1)h,

and the discrete Navier−Stokes energy

Eh
ns(U

k) =
1
2
‖Uk‖2.

Using the above notation, the energy inequality from Lemma 3.4 can be rewritten as

λEh
ch(Ck) + Eh

ns(U
k) + λτ

k∑
j=1

‖M 1
2∇Wj‖2 + 2τ

k∑
j=1

‖μ 1
2 (Cj−1)D(Uj)‖2

+
k∑

j=1

[
λ

2
‖∇(Cj − Cj−1)‖2 +

1
2
‖Uj − Uj−1‖2

]
≤ τ

k∑
j=1

(g,Uj) + λEh
ch(C0) + Eh

ns(U
0).

The nonlinear system (3.10a)−(3.10d) is solved using the following fixed-point algorithm.

Algorithm 1

1. Given Uk−1 ∈ Vh, Ck−1 ∈ K0
h set Uk,0 = Uk−1, Ck,0 = Ck−1 and choose δfix > 0.

2. For l ≥ 1 compute (Uk,l, P k,l,Wk,l,Ck,l) ∈ Wh × Sh × Sh × S+
h such that(

Uk,l − Uk−1

τ
,v

)
+

1
2

{
([Uk−1 · ∇]Uk,l,v) − ([Uk−1 · ∇]v,Uk,l)

}
+

(
2μ(Ck−1)D(Uk,l), D(v)

)
+ (P k,l,∇ · v) = (g,v) − λ((∇Wk,l)T Ck−1,v), (3.15a)

(∇ · Uk,l, q) = 0, (3.15b)(
Ck,l − Ck−1

τ
,ψ

)
h

+
(
M∇Wk,l,∇ψ

)
= (Ck−1 ⊗ Uk,l−1,∇ψ), (3.15c)

ε(∇Ck,l,∇(φ− Ck,l)) − (ε−1A−Ck,l + Wk,l,φ− Ck,l)h ≥ ε−1(A+Ck−1,φ− Ck,l)h, (3.15d)

for all (v, q,ψ,φ) ∈ Wh × Sh × Sh × S+
h .

3. If ‖Ck,l −Ck,l−1‖∞ + ‖Uk,l −Uk,l−1‖∞ ≤ δfix set Uk = Uk,l, Ck,l = Ck,l and terminate; else set l → l+ 1
and proceed to step 2.

Let us fix k ≥ 1. Then, for each l ≥ 1 the system (3.15a)−(3.15d) decouples into the Navier−Stokes part (3.15a),
(3.15b) and Cahn−Hilliard part (3.15c), (3.15d). In each iteration of the fixed-point Algorithm 1 we first compute
the solution (Ck,l, Wk,l) of (3.15c), (3.15d), which is then used in finding the solution (Uk,l, P k,l) of (3.15a),
(3.15b).
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Remark 3.6.
The pressure-density compatibility condition from Remark 3.3 implies that ∇· [Ck−1 ⊗Uk,l−1] ∈ Fh. To see

this, note that it follows from Ck−1 ∈ Kh and Uk,l−1 ∈ Vh that

(1T∇ · [Ck−1 ⊗ Uk,l−1], w) = (∇ ·Uk,l−1, w) = 0 ∀w ∈ Sh.

Hence, by (3.8a) it holds that(
M∇Gh

M (∇ · [Ck−1 ⊗ Uk,l−1]),∇ψ
)

= (∇ · [Ck−1 ⊗ Uk,l−1],ψ) = −(Ck−1 ⊗ Uk,l−1,∇ψ)

for all ψ ∈ Sh. Consequently, we may rewrite (3.15c) as(
Ck,l − Ck−1

τ
,ψ

)
h

+
(
M∇Wk,l,∇ψ

)
= −

(
M∇Gh

M (∇ · [Ck−1 ⊗ Uk,l−1]),∇ψ
)
.

It follows, cf. [4, 7, 8], that

Wk,l = −Ĝh

M

(
Ck,l − Ck−1

τ

)
+Ξk,l1 +Λk,l − Gh

M (∇ · [Ck−1 ⊗ Uk,l−1]), (3.16)

with Ξk,l ∈ Sh and Λk,l = (Λk,l
1 , . . . , Λk,l

N )T ∈ RN , with 1TΛk,l = 0, are the Lagrange multipliers associated
with the constraints (3.11b) and (3.11a), respectively. Hence, (3.15c), (3.15d) is equivalent to

ε(∇Ck,l,∇(φ− Ck,l)) − (ε−1A−Ck,l − Ĝh

M

(
Ck,l − Ck−1

τ

)
− Gh

M (∇ · [Ck−1 ⊗ Uk,l−1]),φ− Ck,l)h

≥ (Ξk,l1 +Λk,l + ε−1A+Ck−1,φ− Ck,l)h ∀φ ∈ S+
h . (3.17)

We can now show that the fixed point iteration in Algorithm 1 is well-defined, and converges to a solution
of (3.10).

Lemma 3.7. Given (Uk−1,Ck−1) ∈ Vh × K0
h, for each l ≥ 1 there exists a solution (Uk,l, P k,l,Wk,l,Ck,l) ∈

Vh × Sh × Sh × K0
h to (3.15a)−(3.15d). Here (Uk,l,Ck,l) is unique, and P k,l is unique up to an additive

constant. Moreover, the fixed-point iteration in Algorithm 1 is a contraction. Consequently, there exists a solution
(Uk, P k,Wk,Ck) ∈ Vh × Sh × Sh × K0

h, to (3.10a)−(3.10d).

Proof. We divide the proof into two parts. To simplify the presentation we assume that λ = 1, μmin = 1,
m0 = λM

min = 1 and g = 0. However, it is straightforward to extend the proofs for the general case.
Note, that in general Wk,l is not unique. We denote by

W̃k,l = −Ĝh

M

(
Ck,l − Ck−1

τ

)
− Gh

M (∇ · [Ck−1 ⊗ Uk,l−1]), (3.18)

the uniquely defined part of Wk,l, cf. (3.16), (3.8). Next, we observe that((
∇Wk,l

)T
Ck−1,v

)
=

([
∇(W̃k,l +Ξk,l1 +Λk,l)

]T
Ck−1,v

)
=

([
∇W̃k,l + 1⊗∇Ξk,l

]T
Ck−1,v

)
=

((
∇W̃k,l

)T
Ck−1,v

)
∀v ∈ Vh. (3.19)

Here we used the identity([
1⊗∇Ξk,l

]T
Ck−1,v

)
=

(
(1TCk−1)∇Ξk,l,v

)
= (∇Ξk,l,v) = −(Ξk,l,∇ · v) = 0,
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which holds due to Ck−1 ∈ Kh, Ξk,l ∈ Sh, v ∈ Vh and the velocity-pressure-density compatibility condition.
Hence, (3.19) implies that for v ∈ Vh equation (3.15a) is equivalent to(

Uk,l − Uk−1

τ
,v

)
+

1
2

{
([Uk−1 · ∇]Uk,l,v) − ([Uk−1 · ∇]v,Uk,l)

}
(3.20)

+
(
2μ(Ck−1)D(Uk,l), D(v)

)
= (g,v) − λ

(
(∇W̃k,l)T Ck−1,v

)
.

The equivalence between the two formulations turns out to be convenient for the arguments below.

(a) Existence of solutions for (k, l) > 0. First, we derive an energy bound for l > 0. We fix k > 0 and assume
that (Ck−1,Uk−1,Wk−1) ∈ K0

h × Vh × Sh satisfy the energy bound

ε

2
‖∇Ck−1‖2 +

1
ε
(Ψ(Ck−1), 1)h +

1
2
‖Uk−1‖2 + τ2‖D(Uk−1)‖2 + τ‖∇W̃k−1‖2 ≤ C̃

for some fixed C̃ > 0. Next, we choose (v, q,ψ,φ) = (Uk,l, P k,l,Wk,l,Ck−1) in (3.15a)−(3.15d), employ (3.19)
and obtain

Ẽk,l =
ε

2
‖∇Ck,l‖2 +

1
ε
(Ψ(Ck,l), 1)h +

1
2
‖Uk,l‖2 + τ2‖D(Uk,l)‖2 + τ‖∇W̃k,l‖2

≤ ε

2
‖∇Ck−1‖2 +

1
ε
(Ψ(Ck−1), 1)h +

1
2
‖Uk−1‖2

+ τ(Ck−1 ⊗ Uk,l−1,∇W̃k,l) − τ((∇W̃k,l)T Ck−1,Uk,l).

Since Ck−1 ∈ Kh we estimate the last term on the right-hand side using Cauchy−Schwarz and Young’s inequal-
ities as follows

τ((∇W̃k,l)T Ck−1,Uk,l) ≤ τ‖Ck−1‖∞‖∇W̃k,l‖‖Uk,l‖ ≤ τ
4‖∇W̃k,l‖2 + τ‖Uk,l‖2,

and similarly we bound the last but one term as

τ(Ck−1 ⊗ Uk,l−1,∇W̃k,l) ≤ τ‖Ck−1‖∞‖∇W̃k,l‖‖Uk,l−1‖ ≤ τ
4 ‖∇W̃k,l‖2 + τ‖Uk,l−1‖2.

Using the previous two bounds we obtain for τ ≤ 1
4 that

Ẽk,l ≤ 2C̃ + τ4Ẽk,l−1.

Hence, we conclude recursively for τ ≤ 1
8 that

ε

2
‖∇Ck,l‖2 +

1
ε
(Ψ(Ck,l), 1)h +

1
2
‖Uk,l‖2 + τ2‖D(Uk,l)‖2 + τ‖∇W̃k,l‖2 ≤ 4C̃ (3.21)

for any l ≥ 0.
We note that (3.17) for φ ∈ K0

h is the Euler−Lagrange equation of the strictly convex minimization problem,
cf.:

minzh∈K0
h

{ ε
2
‖∇zh‖2 − 1

2ε
(A−zh, zh)h +

1
2τ

‖M 1
2∇[Ĝh

M (zh − Ck−1)]‖2

−1
ε
(A+Ck−1, zh)h + (Gh

M (∇ · [Ck−1 ⊗ Uk,l−1]), zh)
}
,

and the existence of unique Ck,l ∈ K0
h, as well as the existence of suitable Lagrange multipliers Ξk,l and Λk,l,

follows from standard optimization theory (see e.g. [7], Proof of Thm. 2.1). The existence of Wk,l ∈ Sh then
follows from (3.16), and Remark 3.6 implies that (Ck,l, Wk,l) is a solution to (3.15c), (3.15d).
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On noting the uniqueness of Ck,l and W̃k,l ≡ W̃k,l(Ck,l,Uk,l−1) and (3.21) the existence of a unique
Uk,l ∈ Vh in (3.20) (and hence also (3.15a)) follows by the Lax−Milgram theorem. Since the Taylor−Hood
element Wh × Sh satisfies the inf-sup condition, the existence of P k,l ∈ Sh, which is unique up to a constant,
such that (Uk,l, P k,l) solves (3.15a), (3.15b) follows from standard theory on the numerical approximation of
Navier−Stokes equations, see for instance [30].

The above considerations imply that we may write (Uk,l,Ck,l) = Fk(Uk,l−1,Ck,l−1), where Fk : Vh×K0
h →

Vh×K0
h is a well-defined mapping represented implicitly by Algorithm 1. Below we show that Fk is a contraction

mapping and hence the Banach fixed point theorem yields the existence of the solution (Uk,Ck) as the unique
fixed-point of the mapping Fk.

(b) Contraction property. We denote by Ek,l

φ
= φk,l − φk,l−1, and similarly for Ek,l

φ and Ek,l
φ . Then subtract-

ing (3.15a)−(3.15c), with l replaced by l − 1, from (3.15a)−(3.15c) yields

(Ek,l
U ,v) +

1
2

{
([Uk−1 · ∇]Ek,l

U ,v) − ([Uk−1 · ∇]v, Ek,l
U )

}
+

(
2μ(Ck−1)D(Ek,l

U ), D(v)
)

+ (Ek,l
P ,∇ · v) = −((∇Ek,l

W̃
)T Ck−1,v), (3.22a)

(∇ ·Ek,l
U , q) = 0, (3.22b)

(Ek,l
C ,ψ)h + τ

(
M∇Ek,l

W̃
,∇ψ

)
= τ(Ck−1 ⊗ Ek,l−1

U ,∇ψ). (3.22c)

Furthermore, setting φ = Ck,l−1, φ = Ck,l in (3.15d) for l, l − 1, respectively, and addition of resulting
inequalities gives

ε‖∇Ek,l
C ‖2−1

ε
(A−Ek,l

C ,Ek,l
C )h − (Ek,l

W̃
,Ek,l

C )h ≤ 0.

On recalling that A− is negative semi-definite and that Ck,l,Ck,l−1 ∈ K0
h, we obtain from a Poincaré inequality

that

ε‖Ek,l
C ‖2 − (Ek,l

W̃
,Ek,l

C )h ≤ 0. (3.23)

Next, we set v = Ek,l
U , q = Ek,l

P in (3.22a), (3.22b), respectively, integrate by parts in (3.22b) and add the
resulting identities to obtain

1
τ
‖Ek,l

U ‖2 + 2‖D(Ek,l
U )‖2 = −((∇Ek,l

W̃
)TCk−1, Ek,l

U ). (3.24)

We estimate the right-hand side of (3.24) using Cauchy−Schwarz and Young’s inequalities as

τ((∇Ek,l

W̃
)T Ck−1, Ek,l

U ) ≤ τ‖∇Ek,l

W̃
‖‖Ck−1‖∞‖Ek,l

U ‖

≤ Cτ2‖∇Ek,l

W̃
‖2 +

1
4
‖Ek,l

U ‖.
(3.25)

After substituting (3.25) into (3.24) we obtain for sufficiently small τ

‖Ek,l
U ‖2 + τ2‖D(Ek,l

U )‖2 ≤ Cτ2‖∇Ek,l

W̃
‖2 +

1
4
‖Ek,l

U ‖2 ≤ τ

4
‖∇Ek,l

W̃
‖2 +

1
4
‖Ek,l

U ‖2. (3.26)

Next, we subtract (3.15c) for l, l − 1 and set ψ = Ek,l

W̃

(Ek,l
C ,Ek,l

W̃
)h + τ

(
M∇Ek,l

W̃
,∇Ek,l

W̃

)
= τ(Ck−1 ⊗ Ek,l−1

U ,∇Ek,l

W̃
). (3.27)
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We add together (3.27) and (3.23) and obtain

ε‖Ek,l
C ‖2 + τ‖∇Ek,l

W̃
‖2 ≤ τ(Ck−1 ⊗ Ek,l−1

U ,∇Ek,l

W̃
). (3.28)

The right-hand side in the above expression is estimated using the fact that Ck−1 ∈ Kh

τ(Ck−1, (∇Ek,l

W̃
)Ek,l−1

U ) ≤ τ‖Ek,l−1
U ‖‖Ck−1‖∞‖∇Ek,l

W̃
‖

≤ τ

4
‖∇Ek,l

W̃
‖2 + Cτ‖Ek,l−1

U ‖2.
(3.29)

Hence we obtain that

ε‖Ek,l
C ‖2 + τ‖∇Ek,l

W̃
‖2 ≤ τ

4
‖∇Ek,l

W̃
‖2 + Cτ‖Ek,l−1

U ‖2. (3.30)

We add together (3.26) and (3.30) to obtain the inequality

‖Ek,l
U ‖2 + τ2‖D(Ek,l

U )‖2 + ε‖Ek,l
C ‖2 + τ‖∇Ek,l

W̃
‖2 ≤ τ

2
‖∇Ek,l

W̃
‖2 +

1
4
‖Ek,l

U ‖2 + Cτ‖Ek,l−1
U ‖2.

The first two terms on the right hand side with index l can be absorbed into the left hand side. Hence, we get

ε‖Ek,l
C ‖2 + ‖Ek,l

U ‖2 + τ‖∇Ek,l

W̃
‖2 ≤ C∗τ‖Ek,l−1

U ‖2, (3.31)

and the fixed-point algorithm defines a contraction mapping for sufficiently small τ . The Banach fixed point
theorem then implies existence of unique limits and convergence Uk,l → Uk and Ck,l → Ck for l → ∞. In
addition, (3.31) implies the convergence W̃k,l → W̃k, cf. (3.18). For the unique (Uk, Ck) the existence of P k

and Wk = W̃k +Ξk1 +Λk, such that (Uk, P k,Wk,Ck) solves (3.10), is implied by the inf-sup condition and
Remark 3.6, respectively. �

Remark 3.8. Given a W ∈ Sh we denote by
∑
− W = 1

N

∑N
i=1Wi ∈ Sh,

∫
−W = |Ω|−1

∫
Ω W ∈ RN , W =

W − 1
∑
− W, W̃ = W −

∫
−W and note that 1TW̃ = 1TW = 0,

∫
−W̃ = 0. Due to the degeneracy of the

mobility matrix M , it is not immediately obvious how to control the gradient of Wk, since Lemma 3.4 and (3.9)
only imply the bound ‖∇W

k‖ ≤ C. However, cf. [4], it is possible to express

Wk = W̃k +Λk + 1Ξk,

where Λk ∈ RN s.t. 1TΛk = 0 and Ξk ∈ Sh are Lagrange multipliers, recall also Remark 3.6 and the proof of
Lemma 3.7. Since Λk ∈ R

N , we directly obtain a gradient bound for W̃k = W
k −Λk, i.e.

‖∇W̃k‖ ≤ C.

In addition, the estimate |Ω|−1(W
k

i , 1) = Λk
i ≤ C, i = 1, . . . , N , can be obtained similarly as in ([4], Thm. 3.1).

Hence, a H1(Ω) bound for W
k

follows by the Poincaré inequality, i.e.

‖Wk‖1 ≤ C.

Furthermore, we also note that for φ ∈ Kh it holds that (1Ξk,φ − Ck)h = 0. Hence for φ ∈ Kh it follows
from (3.10d) that

ε(∇Ck,∇(φ− Ck)) − (ε−1A−Ck + W
k
,φ− Ck)h ≥ ε−1(A+Ck−1,φ− Ck)h. (3.32)



NUMERICAL APPROXIMATION OF A NON-SMOOTH PHASE-FIELD MODEL FOR MULTICOMPONENT FLOW 1105

Lemma 3.9. The discrete time derivatives satisfy the following estimates

τ

K∑
j=1

‖dtUj‖
4
3
V′ ≤ C and τ

K∑
j=1

‖dtCj‖2
(H1(Ω))′ ≤ C.

Proof. Since (dtUk,Ph
0v) = (dtUk,v) we obtain (cf. (3.20))

(dtUk,v) = −([Uk−1 · ∇]Uk,Ph
0v) + ([Uk−1 · ∇]Ph

0v,U
k) −

(
2μ(Ck−1)D(Uk), D(Ph

0v)
)

− λ((∇W̃k)T Ck−1,Ph
0v)

≤ ‖Uk−1‖L3‖∇Uk‖‖Ph
0v‖L6 + ‖Uk−1‖L4‖Uk‖L4‖∇Ph

0v‖
+ Cμmax‖∇Uk‖‖∇Ph

0v‖ + λ‖Ck−1‖∞‖∇W̃k‖‖Ph
0v‖

≤ C‖∇Ph
0v‖

{
‖Uk−1‖ 1

2 ‖∇Uk−1‖ 1
2 ‖∇Uk‖

+ ‖Uk−1‖ 1
4 ‖∇Uk−1‖ 3

4 ‖Uk‖ 1
4 ‖∇Uk‖ 3

4 + ‖∇Uk‖ + ‖∇W̃k‖
}

≤ C‖∇v‖
{
‖Uk−1‖ 1

2 (‖∇Uk−1‖ 3
2 + ‖∇Uk‖ 3

2 )

+ ‖Uk−1‖ 1
4 ‖Uk‖ 1

4 (‖∇Uk−1‖ 3
2 + ‖∇Uk‖ 3

2 ) + ‖∇Uk‖ + ‖∇W̃k‖
}
.

To estimate the nonlinear terms we employed the embedding H1 ⊂ L6 and the interpolation inequality

‖v‖Lq ≤ ‖v‖1+d/q−d/p
Lp ‖∇v‖d/p−d/q

Lp ,

where q ∈ [p,∞) if p = d and q ∈ [p, dp
d−p ] if p < d. The first estimate then follows from Lemma 3.4, Remark 3.8

and the stability of the projection Ph
0 . To obtain the second estimate we write

(dtCk,ψ) = (dtCk,Qhψ)h = −
(
M∇W̃k,∇Qhψ

)
+ (Ck−1 ⊗ Uk,∇Qhψ)

≤ C‖∇W̃k‖‖∇Qhψ‖ + ‖Uk‖‖Ck−1‖∞‖∇Qhψ‖.

Hence, the second estimate follows from Lemma 3.4, Remark 3.8 and the stability of Qh implied by (3.7). �

3.1.1. Convergence

Given the discrete solutions Ck, k = 0, . . . ,K, we define the piecewise constant interpolants as

C+(t) = Ck+1 for t ∈ (tk, tk+1],
C−(t) = Ck for t ∈ (tk, tk+1],

and the piecewise linear interpolant

C(t) =
t− tk
τ

Ck +
tk+1 − t

τ
Ck+1 for t ∈ [tk, tk+1].

Using analogous notations for the variables Uk, P k and Wk, the fully discrete scheme (3.10a)–(3.10d) can be
restated as

(∂tU,v) +
1
2

{
([U− · ∇]U+,v) + ([U− · ∇]v,U+)

}
+2

(
μ(C−)D(U+), D(v)

)
+ (P+,∇ · v) = (g,v) − λ((∇W+)T C−,v), (3.33)

(∇ · U+, q) = 0, (3.34)
(∂tC,ψ)h − (C− ⊗ U+,∇ψ) +

(
M∇W+,∇ψ

)
= 0, (3.35)

ε(∇C+,∇(φ− C+)) − (ε−1A−C+ + W+,φ− C+)h ≥ ε−1(A+C−,φ− C+)h. (3.36)
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Remark 3.10.
By the estimates from Lemmas 3.2, 3.4 and 3.9 we obtain for all h, τ > 0 the

boundedness of C± in L∞(0, T ;H1(Ω)), ∂tC in L2(0, T ; (H(Ω))′), U± in L∞(0, T ;L2(Ω))∩
L2(0, T ;H1(Ω)), ∂tU in L

4
3 (0, T ;V′). Furthermore, the boundedness of W

+
= W+ − 1

∑
− W+ in L2(0, T ;

H1(Ω)) follows from Remark 3.8.
In addition, Lemma 3.4 implies that

‖C± − C‖L2(0,T ;L2(Ω)) → 0,

and
‖U± − U‖L2(0,T ;L2(Ω)) → 0,

for τ → 0.

The next theorem shows the convergence of the numerical solutions to a weak solution.

Theorem 3.11. Let (U0,C0) → (u0, c0) in L2(Ω) × L2(Ω) for h → 0. Then there exists a subsequence
{U,C,W}h,τ≥0 of solutions of (3.33) which converges towards a limit (u, c,w) ∈ L2(0, T ;V) × L∞(0, T ;K) ×
L2(0, T ;H1(Ω)) for h, τ → 0. In addition, (u, c,w) is a weak solution of (1.1) in the sense of Definition 3.1.

Proof. By Remark 3.10 from the sequence {U,C,W}h,τ≥0 we can choose a subsequence such that

C, C± → c weakly∗ in L∞(0, T ;H1(Ω)),
∂tC → ∂tc weakly in L2(0, T ; (H1(Ω))′),
W

+ → w weakly in L2(0, T ;H1(Ω)),
U, U± → u weakly∗ in L∞(0, T ;L2(Ω)),
U, U± → u weakly in L2(0, T ;H1(Ω)),
∂tU → ∂tu weakly in L

4
3 (0, T ;V′).

(3.37)

In addition, the estimates from Lemmas 3.4 and 3.9, together with an Aubin-Lions compactness argument, yield
strong convergence

C, C± → c strongly in L2(0, T ;L2(Ω)),
U, U± → u strongly in L2(0, T ;L2(Ω)). (3.38)

Furthermore, the strong convergence (3.38)1 implies that c ∈ K. To show that the limit (u, c,w) satisfies (3.2) we
take (vh, qh,ψh,φh) = (Ph

1v, I
hq, Ihψ, Ihφ) for (v, q,ψ,φ) ∈ H1(0, T ; V)×C(0, T ; H2(Ω))×C(0, T ; H2(Ω))×

C(0, T ; H1
+ ∩ H2(Ω)) in (3.10a)−(3.10d). By (3.4) and (3.3) we note that for h→ 0

(vh, qh,ψh,φh) → (v, q,ψ,φ), (3.39)

strongly in the corresponding H1 norms for all t ∈ (0, T ).
First, we note that (3.34), (3.37)5, (3.39) imply that

0 =
∫ T

0

(∇ · u, q) = lim
h,τ→0

∫ T

0

(∇ · U+, qh).

Hence, it follows that ∇ · u = 0, a.e. in (0, T )×Ω.
Since, vh ∈ Vh we note that for any h ∫ T

0

(P+,∇ · vh) = 0, (3.40)
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and hence the pressure term in (3.33) vanishes. Integration by parts in the time variable implies∫ T

0

(∂tU,vh) = −
∫ T

0

(U, ∂tvh) + (U(T ),vh(T )) − (U(0),vh(0)),

and by (3.37)3, (3.39) we get with v(T ) = 0 that∫ T

0

(∂tU,vh) → −
∫ T

0

(u, ∂tv) − (u(0),v(0)). (3.41)

Next, we show that ∫ T

0

1
2

{
([U− · ∇]U+,vh) − ([U− · ∇]vh,U

+)
}
→

∫ T

0

([u · ∇]u,v) . (3.42)

We obtain after integration by parts in the second term that

1
2

{
([U− · ∇]U+,vh) − ([U− · ∇]vh,U

+)
}

=
1
2
([U− · ∇]U+,vh) +

1
2
([U− · ∇]U+,vh) +

1
2
([∇ ·U−]U+,vh).

(3.43)
Hence, we observe ∫ T

0

[([U− · ∇]U+,vh) − ([u · ∇]u,v)]

≤
∣∣∣∣∣
∫ T

0

([(U− − u) · ∇]U+,vh)| + |
∫ T

0

([u · ∇](U+ − u),vh)

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

([u · ∇]u,vh − v)

∣∣∣∣∣
≤

∫ T

0

‖(U− − u)‖‖∇U+‖‖vh‖∞ +

∣∣∣∣∣
∫ T

0

([u · ∇](U+ − u),vh)

∣∣∣∣∣
+

∫ T

0

‖u‖L4‖∇u‖‖vh − v‖L4

≤
∫ T

0

‖(U− − u)‖‖∇U+‖‖vh‖∞ +

∣∣∣∣∣
∫ T

0

([u · ∇](U+ − u),vh)

∣∣∣∣∣
+ max

[0,T ]
‖vh − v‖1

∫ T

0

‖u‖2
1

→ 0 for h, τ → 0,

since the first two term disappear by (3.38)2, (3.37)4, respectively, and for the last term we use the continuous
embedding H1 ⊂ L4 and (3.39).

We obtain in a similar way that

1
2

∫ T

0

([U− · ∇]U+,vh) → 1
2

∫ T

0

([u · ∇]u,v), and
1
2

∫ T

0

([∇ ·U−]U+,vh) → 0,

since ∇ · u = 0, a.e. in (0, T ) × Ω. Hence, from the above results and (3.43) we conclude (3.42). Further, we
obtain that ∫ T

0

((∇W+)T C−,vh) →
∫ T

0

((∇w)T c,v) for τ, h→ 0, (3.44)
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since by (3.37)1,3, (3.38)1 and vh → v∣∣∣∣∣
∫ T

0

[
((∇W+)TC−,vh) − ((∇w)T c,vh)

]∣∣∣∣∣ ≤ ‖∇W+‖L2(L2)‖C− − c‖L2(L2)‖vh‖L∞(ΩT )

+

∣∣∣∣∣
∫ T

0

(∇W+ −∇w, c ⊗ vh)

∣∣∣∣∣ → 0.

We observe that (3.37)5 and (3.38)1 imply∫ T

0

(
μ(C−)D(U+), D(vh)

)
→

∫ T

0

(μ(c)D(u), D(v)) for h, τ → 0. (3.45)

Collecting (3.40), (3.41), (3.42), (3.45), (3.44) together with the strong convergence U0 → u0 we verify that

−
∫ T

0

(u, ∂tv) +
∫ T

0

(u · ∇u,v) +
∫ T

0

(2μ(c)D(u), D(v)) = (u0,v(0)) +
∫ T

0

(g,v) − λ

∫ T

0

((∇w)T c,v), (3.46)

for all v ∈ H1(0, T ; V) with v(T ) = 0.
Similarly as in (3.44), we deduce the convergence∫ T

0

(C− ⊗ U+,∇ψh) →
∫ T

0

(c ⊗ u,∇ψ).

By the same arguments as, for instance, in [7] we get by (3.37)2, (3.5), (3.39) that∫ T

0

(∂tC,ψh)h →
∫ T

0

〈∂tc,ψ〉.

The previous two identities and (3.37)3, (3.39) yield in the limit∫ T

0

〈∂tc,ψ〉 −
∫ T

0

(c ⊗ u,∇ψ) +
∫ T

0

(M∇w,∇ψ) = 0. (3.47)

Using (3.37)1,2, (3.37)3, (3.39) and (3.5) we easily verify that∫ T

0

(∇C+,∇φh) →
∫ T

0

(∇c,∇φ),∫ T

0

[
(A−C+,φh)h + (A+C−,φh)h

]
→

∫ T

0

(Ac,φ),∫ T

0

(W
+
,φh)h →

∫ T

0

(w,φ).

(3.48)

Furthermore, we deduce from (3.10d), (3.36), (3.48) by the lower semi-continuity of norms that for all φ ∈
C(0, T ; K ∩ H2(Ω))

ε

∫ T

0

(∇c,∇φ) − ε−1

∫ T

0

(Ac,φ− c) −
∫ T

0

(w,φ− c)

= lim
h,τ→0

ε

∫ T

0

(∇C+,∇φh) − ε−1

∫ T

0

[
(A−C+,φh − C+)h + (A+C−,φh − C+)h

]
−

∫ T

0

(W+,φh − C+)h

≥ lim inf
h,τ→0

ε

∫ T

0

‖∇C+‖2 ≥ ε

∫ T

0

‖∇c‖2 ≥ 0,

(3.49)
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where we use (3.32), i.e. the fact that the corresponding limits for W
+

and W+ coincide for φ ∈ C(0, T ; K ∩
H2(Ω)).

Finally, we collect (3.46), (3.47), (3.49) and conclude by a density argument that (u, c, w) satisfies (3.2). �

4. Numerical approximation of the density dependent model

As discussed in Section 2, in order to derive an energy preserving numerical approximation of the density
dependent model (1.1), it is convenient to consider the reformulation (2.7), (1.1b)−(1.1d). Hence, we propose
the following fully discrete finite element approximation of the density dependent model (2.7), (1.1b)−(1.1d):
for k ≥ 1 find (Uk, P k,Wk,Ck) ∈ Wh × Sh × Sh × S+

h such that for all (v, q,ψ,φ) ∈ Wh × Sh × Sh × S+
h the

following holds

1
2

{
(ρ(Ck−1)dtUk,v) + (dt[ρ(Ck)Uk],v) + ([ρ(Ck−1)Uk−1 · ∇]Uk,v)

− ([ρ(Ck−1)Uk−1 · ∇]v,Uk) + ([Jk · ∇]Uk,v) − ([Jk · ∇]v,Uk)
}

+
(
2μ(Ck−1)D(Uk), D(v)

)
+ (P k,∇ · v) = (ρ(Ck−1)g,v) − λ((∇Wk)T Ck−1,v), (4.1a)

(∇ · Uk, q) = 0, (4.1b)

(dtCk,ψ)h +
(
M∇Wk,∇ψ

)
= (Ck−1 ⊗ Uk,∇ψ), (4.1c)

ε(∇Ck,∇(φ− Ck)) − (ε−1A−Ck + Wk,φ− Ck)h ≥ ε−1(A+Ck−1,φ− Ck)h, (4.1d)

where Jk = −(M∇Wk)Tρ and C0 = Qhc0 ∈ K0
h, U0 = Ph

0u
0 ∈ Vh.

Lemma 4.1. The discrete solutions Ck, k = 1, . . . ,K satisfy Ck ∈ K0
h, i.e. in particular∫

Ω

Ck =
∫

Ω

C0 and 1TCk = 1. (4.2)

Furthermore, for k = 1, . . . ,K the solution (Uk,Ck,Wk) of (4.1a)−(4.1d) satisfies the energy estimate

ελ

2
‖∇Ck‖2 +

1
2
‖ρ 1

2 (Ck)Uk‖2 +
λ

ε
(Ψ(Ck), 1)h

+τ
k∑

j=1

[
λ

2τ
‖∇(Cj − Cj−1)‖2

+
1
2τ

‖ρ 1
2 (Cj−1)(Uj − Uj−1)‖2 + λ‖M 1

2∇Wj‖2 + 2‖μ 1
2 (Cj−1)D(Uj)‖2

]

≤ τ
k∑

j=1

(ρ(Cj−1)g,Uj) +
ελ

2
‖∇C0‖2 +

1
2
‖U0‖2 +

λ

ε
(Ψ(C0), 1)h.

Proof. The conservation properties (4.2) of Ck can be obtained in the same way as in Lemma 3.2.
We set v = Uk, q = P k, ψ = Wk, φ = Ck−1 in (4.1a)−(4.1d) and observe

1
2

{
(ρ(Ck−1)dtUk,Uk) + (dt[ρ(Ck)Uk],Uk)

}
+2

∥∥∥μ 1
2 (Ck−1)D(Uk)

∥∥∥2

= (ρ(Ck−1)g,v) − λ((∇Wk)T Ck−1,Uk),

(dtCk,Wk)h +
∥∥∥M 1

2∇Wk
∥∥∥2

= (Ck−1 ⊗ Uk,∇Wk), (4.3)

−ε(∇Ck,∇dtCk) + (ε−1A−Ck + Wk, dtCk)h ≥ −ε−1(A+Ck−1, dtCk)h.
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We note the identity

(ρ(Ck−1)dtUk,Uk) + (dt[ρ(Ck)Uk],Uk) = ‖ρ 1
2 (Ck)Uk‖2 + ‖ρ 1

2 (Ck−1)(Uk − Uk−1)‖2

− ‖ρ 1
2 (Ck−1)Uk−1‖2,

multiply the last two equations in (4.3) by λ, sum up the resulting identities and obtain, similarly to (3.14),
that

1
2

{
‖ρ 1

2 (Ck)Uk‖2 + ‖ρ 1
2 (Ck−1)(Uk − Uk−1)‖2 − ‖ρ 1

2 (Ck−1)Uk−1‖2
}

+ 2‖μ 1
2 (Ck−1)D(Uk)‖2 + λ‖M 1

2∇Wk‖2

+ λε(∇Ck,∇dtCk) − λε−1
[
(A−Ck, dtCk)h + (A+Ck−1, dtCk)h

]
≤ (ρ(Ck−1)g,Uk).

The energy estimated then follows as in Lemma 3.4 after summing the above for k replaced by j = 1, . . . , k. �

5. Numerical experiments

Algorithm 1 can be generalized to the variable density nonlinear system (4.1a)−(4.1d) by linearizing the
additional nonlinear terms as

1
2

{
(ρ(Ck−1)

Uk,l − Uk−1

τ
,v) +

(
ρ(Ck,l)Uk,l − ρ(Ck−1)Uk−1

τ
,v

)
+ ([ρ(Ck−1)Uk−1 · ∇]Uk,l,v) − ([ρ(Ck−1)Uk−1 · ∇]v,Uk,l) + ([Jk,l · ∇]Uk,l,v)

− ([Jk,l · ∇]v,Uk,l)

}
+

(
2μ(Ck−1)D(Uk,l), D(v)

)
+ (P k,l,∇ · v)

= (ρ(Ck−1)g,v) − λ((∇Wk,l)T Ck−1,v),

(∇ ·Uk,l, q) = 0,(
Ck,l − Ck−1

τ
,ψ

)
h

+
(
M∇Wk,l,∇ψ

)
= (Ck−1 ⊗ Uk,l−1,∇ψ),

ε(∇Ck,l,∇(φ− Ck,l)) − (ε−1A−Ck,l + Wk,l,φ− Ck,l)h ≥ ε−1(A+Ck−1,φ− Ck,l)h.

The tolerance for the termination of the fixed-point algorithm is chosen δfix = 10−8 and the algorithm typically
terminated within 3-6 iterations for sufficiently small time step sizes.

In practice we see very little difference between the numerical results obtained by the fixed-point algorithm
and by the semi-implicit linear scheme

1
2

{
(ρ(Ck−1)dtUk,v) + (dt[ρ(Ck)Uk],v)

+ ([ρ(Ck−1)Uk−1 · ∇]Uk,v) − ([ρ(Ck−1)Uk−1 · ∇]v,Uk) + ([Jk · ∇]Uk,v)

− ([Jk · ∇]v,Uk)
}

+
(
2μ(Ck−1)D(Uk), D(v)

)
+ (P k,∇ · v)

= (ρ(Ck−1)g,v) − λ((∇Wk)T Ck−1,v), (5.2a)

(∇ ·Uk, q) = 0, (5.2b)

(dtCk,ψ)h +
(
M∇Wk,∇ψ

)
= (Ck−1 ⊗ Uk−1,∇ψ), (5.2c)

ε(∇Ck,∇(φ− Ck)) − (ε−1A−Ck + Wk,φ− Ck)h ≥ ε−1(A+Ck−1,φ− Ck)h, (5.2d)
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Figure 1. Contact angles predicted by Young’s law.

which is the same as (4.1a)−(4.1d), but with Uk in (4.1c) replaced by Uk−1, i.e., the scheme above is equivalent
to performing only one iteration of the adapted Algorithm 1. For the linear scheme (5.2a)−(5.2d) the energy
decrease is not guaranteed, however, in the computations below, the energy graphs for both schemes were
graphically indistinguishable. Hence, the computationally more demanding simulations for N = 5 components
were performed using the decoupled linear scheme (5.2a)−(5.2d).

The advantage of the fixed-point Algorithm 1, as well as of the semi-implicit scheme (5.2a)−(5.2d), is
that in each iteration we first solve the Cahn−Hilliard variational inequality (3.15c)−(3.15d) and then the
Navier−Stokes part (3.15a)−(3.15b) in a decoupled manner. The Navier−Stokes part corresponds to a linear
system of equations and is solved using the direct solver UMFPACK, see [12]. The Cahn−Hilliard part is a
linear variational inequality and is solved using a projected block Gauss−Seidel algorithm from [29], with a
tolerance taken between 10−6 in experiments with N = 5, and 10−8 otherwise.

In the case of equal surface tension coefficients (1.8), we set A− = −N−1
N 11T , while in the case of variable

surface tension we choose A+ = diagi{
∑N

j=1,j 	=i |Aij |}.
To increase computational efficiency we employ an adaptive algorithm, which enforces a finer mesh size

h ≡ hf = 1/Nf within the diffuse interfacial region and a coarser mesh size h ≡ hc = 1/Nc otherwise. The
diffuse interfacial region is defined as {x ∈ Ω; dist{c(x), ∂G

N} > δtol}, typically δtol ≈ 10−8, see [29] for a more
detailed description. Of course, we note that the mesh still has to be sufficiently fine outside of the interfacial
region in order to obtain sufficiently accurate approximations of the Navier−Stokes part of the system. Typically
we chose Nf = 128, Nc = Nf/4 and ε = (16π)−1.

5.1. Static contact angles

We examine the stationary contact angles for 3-component flow with constant density ρi = 1 and viscosity
μi = 0.1, i = 1, . . . , N . An in-depth study without the coupling to the Navier−Stokes equations has been per-
formed in [29]. The considered fluid configuration is displayed in Figure 1. According to Young’s law, stationary
contact angles satisfy

sin θ1
σ23

=
sin θ2
σ13

=
sin θ3
σ12

, (5.3)

where σij is the surface tension coefficient between the ith and jth fluid phases, and θk is the angle at the triple
junction inside the kth phase. We consider four different choice of the surface tension matrix:

a) A =

⎛⎝ 0 −1 −1
−1 0 −1
−1 −1 0

⎞⎠ b) A =

⎛⎝ 0 −2 −1
−2 0 −1
−1 −1 0

⎞⎠,
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Figure 2. Solution cint for cases (a)−(d) (from left to right).

and

c) A =
1
2

⎛⎝ 0 −1 −2
−1 0 −2
−2 −2 0

⎞⎠ d) A =
1
2

⎛⎝ 0 −2 −1
−2 0 −2
−1 −2 0

⎞⎠.
As discussed in Section 2.4 we have |Aij | ≈ σ2

ij and Young’s law (5.3) implies the following contact angles: a)

θ1 = θ2 = θ3 ≈ 2
3π = 120◦; b) θ3 ≈ 2 arccos(1

2

√
A12
A13

) ≈ 90◦ and θ1 = θ2; c) θ3 ≈ 2 arccos(1
2

√
A12
A13

) ≈ 138.6◦

and θ1 = θ2; d) θ2 ≈ 2 arccos(1
2

√
A13
A12

) ≈ 138.6◦ and θ1 = θ3. We employ zero initial condition for the velocity,

constant mobility (1.11), set λ = 10−3, ε = (16π)−1, m0 = 10−5, τ = 2 × 10−3, g = 0 and compute until a
steady state is reached. We display the results in Figure 2, where we visualize the interface by displaying the
function cint = (1 − c1)(1 − c2)(1 − c3) which is nonzero only within the diffuse interface. We observe that at
least qualitatively the results agree with Young’s law.

5.2. Surface tension effects

We present a computational study to demonstrate the effect of different surface tension parameters. We
consider a mixture of five fluids, i.e. N = 5, with equal densities and viscosities ρi = 1, i = 1, . . . , 5, μi = 1 and
set g = 0. We consider the domain Ω = (0, 1)× (0, 5) and prescribe homogeneous Dirichlet boundary conditions
for the velocity field and homogeneous Neumann boundary conditions for c, w. The initial condition for the
velocity is u0 = 0. The initial condition for c0 is close to the stationary profile displayed in Figure 3(left);
the four circular bubbles with radius 0.25 from bottom to top contain fluids two to five, respectively, and the
remaining part of the domain is occupied by fluid one.

In the computations we use the concentration dependent mobility (1.12) with m0 = 10−5 and ν = 10−8 and
the matrix A is taken as

A =
1
16

⎛⎜⎜⎜⎝
0 −32 −8 −2 −1

−32 0 −16 −16 −16
−8 −16 0 −16 −16
−2 −16 −16 0 −16
−1 −16 −16 −16 0

⎞⎟⎟⎟⎠ .

As discussed in Section 2.4, the choice of coefficients of A implies that the surface tension coefficients σij between
the jth and ith fluid satisfy: σ12/σ13 ≈

√
A12/A13 = 2, σ13/σ14 ≈

√
A13/A14 = 2, σ14/σ15 ≈

√
A14/A15 =

√
2

and σij/σkl = 1, otherwise.
The remaining parameters were chosen λ = 0.1, ε = (16π)−1, τ = 2 × 10−3, hmin = 1/128, hmax = 1

4 .
The pressure distribution is displayed in Figure 3. In order to eliminate the effect of the pressure differences

within the interfaces and highlight the distribution of the pressure within the pure phases we also display in
Figure 3 a normalized pressure where we set the pressure within interfaces equal to the pressure at the reference
point x0 = (0.25, 0.25).
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Figure 3. Solution at final time, computed pressure, normalized pressure and the finite element
mesh (from left to right).

Figure 4. Evolution of the density of a three component mixture at t = 0, 4, 5.4, 5.8, 9, 11.6
(from left to right).

According to the Young−Laplace law the pressure difference across the fluid interface Δijp = σijκij where
κij is the curvature of the interface between fluids i and j. Since the interfaces in the computed solution are
circular we have that κij ≈ −4 for i = 1, j = 2, . . . , 5. To estimate Δijp we measure the difference between
the pressure in the center of each bubble and the pressure at the reference point x0. We obtain the pressure
differences are Δ12p = −0.461954, Δ13p− 0.221757, Δ14p = −0.11103, Δ14p = −0.0788834. The results are in
good agreement with the theoretical predictions. The larger difference for the value of Δ12p can be explained
by the fact that the mesh size has not been sufficiently fine to properly approximate the interface, cf. Figure 3
(right).
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Figure 5. Evolution of the density of a three component mixture at t = 0, 4, 5.4, 5.8, 9, 11.6
(from left to right), CHNS model with j = 0.

Figure 6. Evolution of the density of a five component mixture at t = 0, 3, 6, 10, 20, 40 (from
left to right).

5.3. 3-component flow with variable density

We consider a mixture of three fluids with densities ρi = 4 − i, i = 1, . . . , 3, in a gravitational field. The
initial condition for the density is displayed in Figure 4. The heavier fluids are positioned above the lighter
ones, the initial interfaces have a sinusoidal shape and all three fluid components have equal mass. The initial
condition for the velocity is u0 = 0. We consider homogeneous Dirichlet boundary conditions for the velocity
field and homogeneous Neumann boundary conditions for c, w. We choose g = (0,−1)T , μi = 10−2, i = 1, . . . , 3,
λ = 10−3, τ = 2 × 10−3, hmin = 1/128, hmax = 1/16 and employ the constant mobility (1.11) with m0 = 10−5.

The evolution of the density is displayed in Figure 4. Due to the perturbation of the interface the fluids form
the so-called Rayleigh−Taylor instability. In Figure 5 we display results for the same problem computed with
the density dependent model with j = 0, which is a formulation that is most frequently used in the literature.
The numerical approximation of this model corresponds to (3.10a)−(3.10d) with Jk = 0 for k = 0, . . . ,K. There
are obvious differences between the solutions for the two models but qualitatively, the results are comparable.
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Figure 7. Evolution of the density of a five component mixture at t = 3, 6, 10, 20 computed
with j = 0 (from left to right).

5.4. 5-component flow

We consider a mixture of five fluids with densities ρi = 6− i, i = 1, . . . , 5, in a gravitational field. The initial
condition for the density is displayed in Figure 6. The heavier fluids are positioned above the lighter ones, the
initial interfaces have a sinusoidal shape and all five fluid components have equal mass. The initial condition
for the velocity is u0 = 0. We consider homogeneous Dirichlet boundary conditions for the velocity field and
homogeneous Neumann boundary conditions for c, w. We choose g = (0,−1)T , μi = 3.3 × 10−4, i = 1, . . . , 5,
λ = 0, τ = 2 × 10−3, hmin = 1/128, hmax = 1/16 and employ the constant mobility (1.11) with m0 = 10−5.

The evolution of the density is displayed in Figure 6. Due to the perturbation of the interface the fluids form
the so-called Rayleigh Taylor instability. We obtain similar results as [26], however they appear to use periodic
boundary conditions on the left and right hand side boundaries, so the results are not directly comparable.

For comparison, in Figure 7 we also display results computed with j = 0. The differences between the
solutions for the two different models become increasingly significant as the geometry of the interfaces becomes
more complex (note that the term j acts only within the interfacial regions).

We repeat the calculation for the model with concentration dependent mobility (1.12) with δ = 10−18,
m0 = 3.2×10−4 and λ = 10−3; the remaining parameters remain the same as above. The evolution of the density
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Figure 8. Evolution of the density of a five component mixture with concentration dependent
mobility at t = 0, 3, 6, 10, 20, 40, 200 (from left to right).
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 0

 1

 0  50  100  150  200

energy

Figure 9. Evolution of the total energy of a five component mixture with concentration de-
pendent mobility.

is displayed in Figure 8. The evolution of the total energy (cf. (2.4))

Etot = λEch(c) + Ens(c,u) +
∫ t

0

∫
Ω

2μ(c)|D(u)|2 −
∫ t

0

∫
Ω

ρ(c)g · u,

in Figure 9 demonstrates that the physically relevant energy of the computed numerical approximation is
decreasing in time.
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