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NUMERICAL APPROXIMATION OF VISCOELASTIC FLUIDS ∗

Louis Perrotti1, Noel J. Walkington1 and Daren Wang1

Abstract. Stable finite element schemes are developed for the solution of the equations modeling the
flow of viscoelastic fluids. In contrast with classical statements of these equations, which introduce the
stress as a primary variable, these schemes explicitly involve the deformation tensor and elastic energy.
Energy estimates and existence of solutions to the discrete problem are established for schemes of arbi-
trary order without any restrictions on the time step, mesh size, or Weissenberg number. Convergence
to smooth solutions is established for the classical Oldroyd–B fluid. Numerical experiments for two
classical benchmark problems verify the robustness of this approach.
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1. Introduction

Stable numerical numerical schemes are developed for systems of the form

ρv̇ − div
(
−pI + 2μsD(v) + (α+ β)DW(E)E�)

= ρf,

div(v) = 0, (1.1)

Ė − α(∇v)E − β(∇v)�E +
1

2μp
DW(E) = 0,

supplemented with appropriate initial and boundary conditions. These equations model the flow of a polymer
solution where v(t, x) ∈ R

d denotes the velocity and D(v) = (1/2)(∇v + (∇v)�) the symmetric part of its
gradient, p denotes the pressure, and E(t, x) ∈ R

d×d is a deformation tensor that gives rise to the elastic response.
The density ρ, solvent viscosity μs, and polymer viscosity μp, are positive constants, and the constants α and β
characterize the polymer–solvent interaction. The strain energy W : R

d×d → R is typically an isotropic frame
indifferent function; in particular, DW(E)E� is symmetric, and W(E) should diverge to infinity when |E| → ∞
and when det(E) → 0.

These equations specialize to classical models of viscoelasticity with Weissenberg number We > 0 when

W(E) = (μp/2We)
(
|E|2 − |I|2 − log(det(E)2)

)
, DW(E) = (μp/We)(E − E−�), (1.2)
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in which case the Cauchy stress, Te = (α+ β)DW(E)E� = (α+ β)(μp/We)(EE� − I), satisfies

Ṫe − α(∇v)Te − αTe(∇v)� − β(∇v)�Te − βTe(∇v) +
1

We
Te = (α+ β)2

2μp

We
D(v).

Traditionally this equation is used in place of the third equation of (1.1).
The development of stable numerical schemes using the classical statement of this problem with very modest

Weissenberg numbers is notoriously difficult, so much so that it has the appellation “high Weissenberg number
problem” (HWNP) [26]. The energy estimate for equations (1.1) is obtained by adding the dot product of the
momentum equation with v to the Frobenious product of the equation for the deformation with DW(E) and
integrating by parts to give

d
dt

∫
Ω

(
(ρ/2)|v|2 + W(E)

)
+

∫
Ω

(
2μs|D(v)|2 + (1/2μp)|DW(E)|2

)
=

∫
Ω

(ρf, v). (1.3)

In general DW(E) is very nonlinear and/or singular, so in a numerical context is not an admissible test function
for the discrete weak statement. Additional issues arise with formulations based upon classical statements of
the problem. The energy estimate is only meaningful if EE� = (We/((α+β)μp))Te + I is positive definite, and
this is unlikely when Te is approximated by polynomials.

Below we show that convexity properties of the strain energy, and monotonicity of its derivative, can be
exploited to obtain estimates on the solution of equations (1.1) that are inherited by Galerkin approximations.
Convex analysis also provides natural regularizations of singular functions such as the logarithm in equa-
tion (1.2). These ideas were used in [31] to develop stable and convergent numerical schemes for the Ericksen
Leslie equations, which model the flow of nematic liquid crystals and have a similar structure to (1.1).

Overview. The remainder of the section includes a discussion of related results and a summary of notation used.
Section 2 contains a terse derivation of (1.1) and verifies equivalence with the classical equations. In Section 3
stable numerical numerical schemes are constructed for the equations modeling the Oldroyd–B fluid. Existence
of solutions for the discrete problem is then direct, and in Section 4 we establish convergence to classical
solutions (when they exist). To eliminate an excess of technical detail the analysis is presented for the Oldroyd–
B fluid with homogeneous Dirichlet boundary data. Section 5 discusses extensions to more general fluids and
addresses the numerical implementation of non–homogeneous boundary data. Numerical examples are presented
in Section 6 for two benchmark problems. These examples illustrate that the finite element approximations of
the weak statement of equations (1.1) developed in Section 3 are insensitive to the magnitude of the Weissenberg
number.

1.1. Related results

While the computational literature on the high Weissenberg number problem is vast, the source of the
instability associated with the HWNP remains a point of debate since the mathematical theory for the underlying
equations is incomplete. Existence of (weak) solutions to the equations remains an open problem, but partial
results are available. Current results fall into the following categories; local-in-time solutions for initial value
problems, global-in-time solutions for small perturbations of the rest state, and results on steady flows of slightly
perturbed Newtonian flows. Reviews of classical existence results are available in [15,18,19,27]. More recently the
existence of classical solutions for the Oldroyd-B model at infinite Weissenberg number with small initial data
has been proven by Lin et al. [23], and global-in-time existence results for weak solutions to the corotational
Jeffrey’s model have been obtained by Lions and Masmoudi [24]. This latter model is obtained by selecting
β = −α in the third equation of (1.1) so that only the skew part of the velocity gradient appears. Barrett and
Boyaval proved global-in-time weak solutions for a regularized Oldroyd model by adding a dissipative term in
the constitutive equation and truncating the conformation tensor in the momentum equation. After constructing
finite element approximations to the regularized system, they prove convergence along sub–sequences to solutions
of the regularized problem as the discretization parameters tend to zero [4].
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A comprehensive review of the engineering approach, where various types of finite element and stabilization
terms are proposed to circumvent the HWNP, is available in Owens and Phillips [26]. An overview of the mathe-
matical motivation for the various schemes and formulations utilized may be found in the work of Renardy [27],
and a survey of more recent developments is presented in [22]. In a series of papers Ervin et al. [8–11] established
convergence of finite element schemes at optimal rates to classical (smooth) solutions of the equations for the
Oldroyd–B fluid. In this work the streamwise upwind Petrov Galerkin (SUPG) method was used to stabilize the
convective terms; however, the classical energy estimate was not established for their schemes. Instead, error
estimates were developed to prove that the numerical solution was close to a smooth classical solution, and
hence bounded provided the latter existed. A key step in their analysis combines error and inverse estimates to
develop uniform bounds on the solution. These are required to control the nonlinear terms and we use similar
arguments in Section 4 for the same purpose.

Fattal and Kupferman [13] conjectured the HWNP instability stems from using polynomials to approximate
the exponential growth of the stress tensor in regions with a high rate of deformation or stagnation points.
To circumvent this issue they used a change of variables that scale logarithmically; more importantly, the
conformation tensor remains positive definite with this formulation. Their “log conformation representation”
facilitated stable calculations with no apparent limit to the value of the Weissenberg number, but the accuracy
of their results in regions of large stress and strong rotations was not clear [12, 14].

Boyaval, Lelievre and Mangoubi constructed stable (free-energy-dissipative) schemes for schemes using the
classical differential model for the stress, and established stability of Fattal and Kupferman’s LCR formulation
for an Oldroyd-B fluid [6]. Implicit Euler time stepping and piecewise constant finite element approximations
for the stress were essential for their proofs, which use nonlinear functions of the solution as test functions. In [5]
the same authors report that instabilities associated with HWNP and loss of positivity may persist depending
upon how the the convective terms in the constitutive equation are approximated.

From a mathematical standpoint, one reason for the limited success to date is that traditional stability (en-
ergy) estimates require the conformation tensor to be positive definite. There is growing evidence to suggest the
loss of positivity is a precursor to HWNP instability. Fattal and Kupferman guarantee positivity by introducing
the logarithm of the conformation tensor as a primary variable and use the property that the exponential of any
matrix is positive. An alternative approach is to write the conformation matrix as B = EE� to determine an
evolution equation, such as the third equation in (1.1), satisfied by E. This is the approach taken by Lozinski
and Owens [25] and Balci et al. [3] who introduce a square root of the conformation tensor as a primary variable
and derive an equation for its evolution (see (2.3) in the next section). A variation of this idea exploited in [22]
is to construct a time stepping scheme for which the updates to the conformation tensor at each time step take
the form (δE)(δE)� so that it remains positive definite.

In [22] Lee, Xu and Zhang use semi-Lagrangian schemes so that structure preserving methods from ODE’s [17]
can be exploited to preserve the positive definite property of the conformation tensor. Using these ideas the
stability and existence of discrete solutions is established for a scheme with implicit Euler time stepping and
divergence free finite element spaces for the velocity. As in prior work, the semi-Lagrangian schemes in [22]
require piecewise constant approximations of the conformation tensor, or the construction of special projections
to effect similar properties for piecewise linear elements. Numerical experiments for the drag coefficient for flow
past a cylinder show convergence under mesh refinement for Weissenberg numbers 0.1 and 0.5. Their values
for the drag are consistent with literature for We ≤ 0.75, and they report difficulties obtaining convergence for
Weissenberg values larger than 1.0. One may conjecture that there may not be a stationary solution, or it may
be unstable, for this choice of parameters. This would be consistent with the numerical results in Section 6
below.

1.2. Notation

Below Ω ⊂ R
d will denote a bounded domain with Lipschitz boundary. Standard notation is adopted for

the Lebesgue spaces, Lp(Ω), and the Sobolev space H1(Ω). Solutions of evolution equations will be viewed
as functions from [0, T ] into these spaces, and we adopt the usual notion, L2[0, T ;H1(Ω)], C[0, T ;H1(Ω)],
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Figure 1. Transport of a fiber (left) and loop or disk (right).

etc. to indicate the temporal regularity. Divergences of vectors and matrices are denoted div(v) = vi,i and
div(T )j = Tij,j respectively. Here indices after the comma represent partial derivatives and the summation
convention is used. Gradients of vector valued quantities are interpreted as matrices, (∇v)ij = vi,j , and the
symmetric part of the velocity gradient is written as D(u). Inner products are typically denoted as pairings (., .)
or, for clarity, the dot product of two vectors v, w ∈ R

d may be written as v.w = viwi and the Frobenious inner
product of two matrices A, B ∈ R

d×d as A : B = AijBij .
Notation from continuum mechanics [16] is used in Section 2. In this section X ∈ Ωr ⊂ R

d denotes the
Lagrangian coordinate and x = χ(X, t) the Eulerian coordinate. The velocity is then v(t, x) = ẋ(t,X); more
generally, the convective time derivative is ġ = gt + v.∇g where ∇ denotes the gradient in the x variables. The
density in the reference configuration is denoted ρr(X) > 0 and its push forward under the flow map by ρ(t, x).
The incompressibility assumption on the fluid implies that ρr and ρ are constant.

2. Viscoelastic equations

This section motivates the non–standard statement of the equations of viscoelasticity presented in equa-
tions (1.1), and can be read independently of the remainder of the paper.

Letting E denote a measure of the strain (more precisely, the deformation) of a viscoelastic fluid, Hamilton’s
principle states that

δ

∫ t2

t1

∫
Ωr

(
(1/2)|ẋ|2 −W(E)

)
ρr dX dt =

∫ t2

t1

∫
Ω(t)

(
−(ρf, δx) + (Tv,∇δx)

)
dxdt,

under (smooth compactly supported) variations of the flow map, x �→ x + δx. Here Tv = 2μD(v) denotes
the viscous component of the Cauchy stress and W(E) denotes the strain energy associated with the micro-
structural configuration. In order to compute the variation δW(E) = DW(E) : δE it is necessary to specify
the change of the deformation under to the variation δx. Classical elasticity assumes that E responds like the
Jacobian, F ,

δF =
[
∂δxi

∂Xα

]
=

[
∂δxi

∂xj

∂xj

∂Xα

]
= (∇δx)F,

which models stretching of material fibers, Y �→ FY as illustrated in Figure 1. Different models of the micro-
structure give rise to different kinematics; for example, disk like particles in Stokes’ flow with (non–unit) normal
n = EN satisfy δn = −(∇δx)�EN [20]. The general expression

δE =
(
α(∇δx) + β(∇δx)�

)
E, (2.1)

assumed in equations (1.1) includes many of the classical viscoelastic models [21]. In this situation

δ

∫
Ωr

W (E)ρr dX =
∫

Ωr

(
DW(E), α(∇δx)E + β(∇δx)�E

)
ρr dX

=
∫

Ω(t)

(
(α+ β)DW(E)E�,∇δx

)
ρ dx,
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where the last equality follows from the property that DW(E)E� is symmetric. The density is constant when
the fluid is incompressible and is absorbed into the definition of W .

The third equation in (1.1) is a gradient flow of the strain energy. Specifically, when E is viewed as an element
of the Lie group GLd(R), the term α(∇δx) + β(∇δx)� in equation (2.1) can be identified with an element of
the Lie algebra, and the corresponding Lie derivative becomes

E̊ ≡ Ė − α(∇v)E − β(∇v)�E.

When the polymer is passively transported E̊ = 0, and non–zero values of E̊ model a mismatch between the
fluid and polymer strain rates which gives rise to dissipation. A gradient flow, E̊ = −(1/2μp)DW(E), results
when relaxation of the elastic stress is assumed to be the mechanism driving this mismatch back to equilibrium.

2.1. Equivalence with classical formulation

When the strain energy is given by equation (1.2), the conformation tensor B ≡ (α+ β)−1(We/μp)Te + I =
EE� satisfies

Ḃ − α(∇v)B − αB(∇v)� − β(∇v)�B − βB(∇v) +
1

We
B =

1
We

I· (2.2)

If B(0) is symmetric positive definite, then so too is B(t), and the following lemma shows that for any decom-
position of the form B = EE� the matrix E satisfies

Ė − EW − α(∇v)E − β(∇v)�E +
1

2We
(
E − E−�)

= 0 (2.3)

for some skew matrix W ; a similar result appears in [3].

Lemma 2.1. Let v ∈ C[0, T ;C1(Ω)d] and vanish on ∂Ω.

(1) Let E ∈ C1[0, T ; Rd×d] be invertible and satisfy equation (2.3) for some W ∈ C[0, T ; Rd×d
skw ], then B ≡ EE�

satisfies (2.2).
(2) Let B ∈ C1[0, T ; Rd×d

sym] be symmetric positive definite and satisfy equation (2.2). If B = EE� with E ∈
C1[0, T ; Rd×d], then there exists W ∈ C[0, T ; Rd×d

skw ] such that E satisfies (2.3). Moreover, there exists a
decomposition B = EE� with E ∈ C1[0, T ; Rd×d] such that equation (2.3) holds with W = 0.

Proof.

(1) Using equation (2.3) to eliminate Ė from the identity Ḃ = ĖE� + EĖ� shows EE� satisfies (2.2).
(2) Substituting B = EE� into equation (2.2) shows

(2.3)0E
� + E (2.3)�0 = 0,

where (2.3)0 denotes equation (2.3) with W = 0. It follows that (2.3)0E� is skew, and equation (2.3) follows
upon setting (2.3)0E� = EWE�.
To eliminate W , let B = ẼẼ� be any splitting of B (for example, the SPD square root), and let W be the
corresponding skew matrix. Then E = ẼQ satisfies (2.3)0 when Q is selected to be the orthogonal matrix
satisfying Q̇ = WQ with Q(0) = I. �

2.2. Example: Poiseuille flow

In two dimensions the triple (v, p, Te) with

v =
(

1
2 (h2 − y2)

0

)
, p = −x, Te =

[
2Weμpy

2 −μpy
−μpy 0

]
, (x, y) ∈ R

2,

is a solution of the equations governing the flow of an Oldroyd-B fluid with parameters α = 1 and β = 0 and
boundary conditions v(±h) = 0.
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• The pair

Ẽ =
[√

We2y2 + 1 −Wey
0 1

]
, and W =

⎡
⎣ 0 1

2
y√

We2y2+1

− 1
2

y√
We2y2+1

0

⎤
⎦ ,

is the steady solution of equation (2.3) with Ẽ upper triangular for which ẼẼ� = (We/μp)Te + I.
• The splitting EE� = (We/μp)Te + I satisfying equation (2.3) with W = 0 is E = ẼQ where Q = Q(t, x, y)

is the orthogonal matrix

Q =
[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
, with θ(t, x, y) = ω(y)t+ θ0

(
x− v(y)t, y

)
.

Here θ0(x, y) = θ(0, x, y) is the initial value and

v(y) =
h2 − y2

2
and ω(y) =

y

2
√

We2y2 + 1
·

This solution is independent of time if θ0(x, y) =
(
ω(y)/v(y)

)
x + C; however, v(±h) = 0 so this function

diverges at y = ±h.

3. Numerical approximation

We consider the classical viscoelastic fluids for which the strain energy takes the form shown in equation (1.2),
and without loss of generality set ρ = 1. In this situation a classical solution of equations (1.1) satisfies the weak
statement∫

Ω

{
(v̇, w) − (p, div(w)) + 2μs(D(v), D(w)) +

μp

We
(EET − I, α∇w + β(∇w)T )

}
=

∫
Ω

(f, w),∫
Ω

(div(v), q) = 0 (3.1)∫
Ω

(
Ė − α(∇v)E − β(∇v)�E +

1
2We

(E − E−�), G
)

= 0,

for all smooth test functions (w, q,G) with w vanishing on the boundary. Below the term

(I, α∇w + β(∇w)�) = (α+ β)div(w)

will be absorbed into the pressure. Setting (w, q,G) = (v, p, (μp/We)E) shows

d
dt

∫
Ω

1
2

(
|v|2 +

μp

We
|E|2

)
+

∫
Ω

(
2μs|D(v)|2 +

μp

2We2 |E|2
)

=
∫

Ω

(
(f, v) +

μp

2We2 |I|
2

)
·

The bounds from this expression are not as sharp as those available from the classical energy balance (1.3);
however, unlike the energy balance they are inherited by Galerkin approximations of (3.1).

3.1. Numerical scheme

Let 0 = t0 < t1 < . . . < tN = T be a partition of [0, T ] and Th be a triangulation of the domain Ω. On each
interval of the partition approximate solutions (vh, ph, Eh) of equations (1.1) will take values in the spaces

P�[tn−1, tn; Vh] × P�[tn−1, tn; Ph] × P�[tn−1, tn; Eh], (3.2)
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where (Vh,Ph) ⊂ H1
0 (Ω)d × L2(Ω)/R is a div–stable finite element pair and Eh ⊂ L2(Ω)d×d. While it is not

necessary for the temporal dependence of Eh to have the same degree as (vh, ph), there is no reason for it not to.
Since E−�

h does not exist for every Eh ∈ Eh it is necessary to regularize this term. Solutions of (1.1)3
have non–negative determinant, thus if detε(E) denotes a non–negative approximation of det(E), a natural
approximation of the inverse transpose is

E−�
ε ≡ 1

detε(E)
Cof(E) so that (E−�

ε , E) = d
det(E)
detε(E)

,

where Cof(E) � det(E)E−� denotes the matrix of cofactors of E. Below we construct regularizations which
penalize negative determinants,

lim
ε→0

det(E)
detε(E)

= 1 when det(E) > 0 and lim
ε→0

det(E)
detε(E)

= −∞ when det(E) < 0. (3.3)

The discontinuous Galerkin methodology will be used to construct stable approximations of the transport terms
and time derivatives. We adopt the standard notation for the jump terms that arise.

• Superscripts will be used to denote function values at the partition points, vn
h± = vh(tn±) with jumps denoted

analogously,
[vh]n = vh(tn+) − vh(tn−) [Eh]n = Eh(tn+) − Eh(tn−).

• If K ∈ Th and x ∈ ∂K then Eh±(x) = lims→0+ Eh(x± sn), where n is the outward normal vector on ∂K.
If F = K+ ∩K− is a face in Th the jump of Eh across F is denoted [Eh]; terms involving the spatial jumps
will be paired so that their value is independent of the choice of face normal.

• If a ∈ R then a− = max{0,−a} denotes the negative part of a and a+ = max{0, a} the positive part.

On each temporal partition the numerical scheme to approximate solutions of equations (1.1) seeks

(vh, ph, Eh) ∈ P�[tn−1, tn; Vh] × P�[tn−1, tn; Ph] × P�[tn−1, tn; Eh].

satisfying

∫ tn

tn−1

∫
Ω

{
(vht, wh) +

1
2
((vh.∇)vh, wh) − 1

2
((vh.∇)wh, vh) − (ph, div(wh)) + (2μsD(vh), D(wh))

+
μp

We

(
EhE

T
h , α∇wh + β(∇wh)T

)}
+

∫
Ω

(
[vh]n−1, wh(tn−1

+ )
)

=
∫ T

0

∫
Ω

(f, wh),

∫ tn

tn−1

∫
Ω

(div(vh), qh) = 0, (3.4)

∫ tn

tn−1

{∫
Ω

(Ė − α(∇vh)Eh − β(∇vh)�Eh, Gh) +
1
2
div(vh)(Eh, Gh) +

1
2We

(Eh − E−T
hε ), Gh)

+
∑

K∈Th

∫
∂K

(vh · n)−([Eh], Gh−)

}
+

∫
Ω

([En−1
h ], Gh(tn−1

+ )) = 0,

for all
(wh, qh, Gh) ∈ P�[tn−1, tn; Vh] × P�[tn−1, tn; Ph] × P�[tn−1, tn; Eh].
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3.2. Existence and stability

The following notation is adopted for the terms appearing in the weak statement.

• The bilinear dissipative term is

a((vh, Eh), (wh, Gh)) =
∫

Ω

2μs(D(vh), D(wh)) +
μp

2We2 (Eh, Gh).

• The trilinear terms in the weak statement are

c((u,E), (v, F ), (w,G)) =
∑

K∈Th

∫
K

{
1
2
((u · ∇)v, w) − 1

2
((u · ∇)w, v)

+
μp

We

(
α(F,∇wE) − α(G,∇v E) + β(F, (∇w)TE) − β(G, (∇v)TE)

)

+
μp

We
((u · ∇)F,G) +

μp

2We
div(u)(F,G)

}
.

• The jump term is

Jh(u, F,G) =
μp

We

∑
K∈Th

∫
∂K

(u.n)−([F ], G).

This form of the trilinear term was chosen so that only the matrix F in the second argument of c(., ., .) is
differentiated. In place of the usual skew symmetry we have the identity

c((u,E), (v, F ), (v, F )) + Jh(u, F, F ) =
μp

2We

∑
e∈T d−1

h

∫
e

|u.n| |[F ]|2,

where T d−1
h denotes the interior edges/faces of Th. Using this notation the discrete weak statement (3.4) can

be written as∫ tn

tn−1

{
(vht, wh) +

μp

We
(Eht, Gh) + a((vh, Eh), (wh, Gh)) − (ph, div(wh)) + (qh, div(vh)

+ c((vh, Eh), (vh, Eh), (wh, Gh)) + Jh(vh, Eh, Gh)
}

+
(
[vh]n−1, wh(tn−1

+ )
)

(3.5)

+
μp

We

(
[Eh]n−1, Gh(tn−1

+ )
)

=
∫ tn

tn−1

{
(f, wh) +

μp

2We2 (E−T
hε , Gh)

}
,

where (., .) denotes an L2(Ω) pairing. Setting (wh, qh, Gh) = (vh, ph, Eh) and summing gives the stability
estimate

‖vn
h−‖2

L2(Ω) +
μp

We
‖En

h−‖2
L2(Ω) +

n−1∑
m=0

(
‖[vh]m‖2

L2(Ω) +
μp

We
‖[Eh]m‖L2(Ω)

)

+
∫ tn

0

{
2μs||D(vh)||2L2(Ω) +

μp

We2 ||Eh||2L2(Ω) + 2d‖det(Eh)−/detε(Eh)‖L1(Ω)

}
(3.6)

+
μp

We

∑
F∈T d−1

h

∫ tn

0

∫
F

|vh · n| [Eh]2 ≤ ‖v0
h−‖2

L2(Ω) +
μp

We
‖E0

h−‖2
L2(Ω) +

1
μs

∫ tn

0

||f ||2H−1(Ω) +
μp

2We2 d|Ω|tn.

where it was assumed that det(E)/ detε(Eh) ≤ 1.



NUMERICAL APPROXIMATION OF VISCOELASTIC FLUIDS 1127

Theorem 3.1. Let α, β ∈ R, μs, μp > 0, and f ∈ L2[tn−1, tn;H−1(Ω)]. Let Vh × Ph ⊂ H1
0 (Ω)d ×L2(Ω)/R be

a div–stable pair of finite dimensional subspaces and let Eh ⊂ L2(Ω)d×d be a finite dimensional subspace. Let
Eh �→ det(Eh)/detε(Eh) ∈ (−∞, 1] be continuous on Eh and set E−�

εh = (1/detε(Eh))Cof(Eh). Then for each
tn−1 < tn and (vn−1

h− , En−1
h− ) ∈ Vh × Eh there exists a triple

(vh, ph, Eh) ∈ P�[tn−1, tn; Vh] × P�[tn−1, tn; Ph] × P�[tn−1, tn; Eh],

satisfying (3.4).

Proof. Let Zh = {vh ∈ Vh | (div(vh), ph) = 0, ph ∈ Ph} denote the discretely divergence free subspace and
Φh : P�[tn−1, tn; Zh × Eh] → P�[tn−1, tn; Zh × Eh] be characterized by

Φh(vh, Eh) · (wh, Gh) =
∫ tn

tn−1

{
(vht, wh) +

μp

We
(Eht, Ght) + a((vh, Eh), (wh, Gh))

+ c((vh, Eh), (vh, Eh), (wh, Gh)) + Jh(vh, Eh, Gh) − (f, wh) − μp

2We2 (E−T
hε , Gh)

}
+ ([vh]n−1, wh(tn−1

+ )) +
μp

We
([Eh]n−1, Gh(tn−1

+ )),

where the dot on the left denotes an inner product on P�[tn−1, tn; Zh × Eh]. The stability estimate guarantees

Φh(vh, Eh) · (vh, Eh) =
1
2

(
‖vh(tn−)‖2

L2(Ω) +
μp

We
‖Eh(tn−)‖2

L2(Ω)

)
+

1
2

(
‖[vh]n−1‖2

L2(Ω) +
μp

We
‖[Eh]n−1‖2

L2(Ω)

)

+
∫ tn

tn−1

⎧⎨
⎩2μs‖D(vh)‖2

L2(Ω) +
μp

2We2 ‖Eh‖2
L2(Ω) +

μp

2We

∑
F∈T d−1

h

∫
F

|vh · n| [Eh]2

⎫⎬
⎭

−1
2

(
‖vh(tn−1

− )‖2
L2(Ω) +

μp

We
‖Eh(tn−1

− )‖2
L2(Ω)

)

−
∫ tn

tn−1

{
(f, vh) +

μp

2We2 (E−T
hε , Eh)

}
.

The Brouwer fixed point theorem guarantees that Φh has a zero if the right hand side is positive when (vh, Eh) is
sufficiently large ([28], Prop. II.2.1), which is the case since the last term is bounded below by −(μp/2We2)d|Ω|.
The existence of a pressure then follows from the assumption that the pair (Vh,Ph) is div–stable. �

3.3. Regularizations of the determinant

To complete the specification of a numerical schemes it is necessary to select a regularization of the (reciprocal
of the) determinant. Since the term E−� arises as the derivative of the logarithm of the determinant, and the
map x �→ − ln(x) is convex on (0,∞), it is natural to consider the Yosida approximation

1
detε(E)

=
2√

det(E)2 + 4ε2 + det(E)
· (3.7)

The convergence proof below requires E−�
ε to be bounded which can be achieved by the following modification

of the Yosida approximation;

1
detε(E)

=
2√

det(E)2 + 4ε2 + ε2|E|2(d−1) + det(E)
· (3.8)
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With this choice det(E)/detε(E) ≤ 1 and E−�
ε = (1/detε(E))Cof(E) is bounded by a constant of the form

C(d)/ε. Lipschitz continuity and approximation properties of this regularization are developed in Lemma 4.4
below.

To verify that this approximation penalizes negative values of the determinant, suppose det(E) < 0 and write
δ = −det(E) and e = |E|. Then

−det(E)
detε(E)

=
2δ√

δ2 + (4 + e2(d−1))ε2 − δ
=

2δ(
√
δ2 + (4 + e2(d−1))ε2 + δ)

(4 + e2(d−1))ε2
≥ 2δ2

(4 + e2(d−1))ε2
,

and
2δ
ε

=
2δ

(2 + ed−1)ε
(2 + ed−1) ≤ δ2

(2 + ed−1)2ε2
+ (2 + ed−1)2·

It follows that there exists a constant C = C(d) such that

det(E)− ≤ C
(
1 + |det(E)−/detε(E)| + |E|2

)
ε, d = 2,√

det(E)− ≤ C
(
1 + |det(E)−/detε(E)| + |E|2

)√
ε, d = 3.

Equation (3.6) bounds right hand side of these expressions for the deformation of the discrete solution so

‖(det(Eh)−)1/(d−1)‖L1[0,T ;L1(Ω)] ≤ Cε1/(d−1).

4. Convergence

In this section convergence is established for solutions of the numerical scheme (3.5) to a classical solutions of
equations (1.1) with the classical elastic energy (1.2). To reduce the technical detail we focus on the practically
important case of a second order scheme in space and time with maximal time step τ and mesh parameter h of
similar size, c ≤ h/τ ≤ C. Equation (3.8) will be used to regularize the (reciprocal of the) determinant of E with
regularization parameter ε comparable to the mesh size, c ≤ ε/(τ ln(1/τ)) ≤ C. With this choice of parameters
we establish the essentially optimal second order rate of convergence.

The Galerkin orthogonality condition for the error follows upon restricting the test functions in equation (3.1)
to the finite element spaces and subtracting equation (3.5);

∫ tn

tn−1

{
(vt − vht, wh) +

μp

We
(Et − Eht, Gh) − (p− ph, div(wh)) + a((v − vh, E − Eh), (wh, Gh))

+ c((v,E), (v,E), (wh , Gh)) − c((vh, Eh)(vh, Eh), (wh, Gh)) − Jh(vh, Eh, Gh)
}

−
(
[vh], wh+

)n−1 − μp

We
(
[Eh], Gh+

)n−1
=

∫ tn

tn−1

μp

2We2 (E−T − E−T
hε , Gh), (4.1)

for all (wh, Gh) ∈ P�[tn−1, tn; Vh × Eh]. The error (v − vh, E − Eh) will be decomposed into the sum of a
projection error and consistency error,

(v − vh, E − Eh) = (v − vp, E − Ep) + (vp − vh, Ep − Eh) ≡ (ep, Ep) + (eh, Eh),

where (vp, Ep) ∈ P�[tn−1, tn; Vh ×Eh] is a projection or interpolant of (v,E) into the finite element spaces. The
orthogonality condition is then used to bound the consistency error by the projection error thereby establishing
convergence at the optimal rates when the solution is smooth. While any reasonable projection can be utilized,
the following choice simplifies the analysis DG approximations of the temporal terms.
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Definition 4.1. The projection

P
n
h : C

[
tn−1, tn;L2(Ω)

d × L2(Ω)
d×d

]
→ P�

[
tn−1, tn; Vh × Eh

]
is characterized as

P
n
h(v,E) =

(
P

n ◦ PZh
(v),Pn ◦ PEh

(E)
)
,

with spatial projections

• PZh
: L2(Ω)d → Zh ⊂ Vh the L2-orthogonal projection onto the discretely divergence free subspace of Vh,

Zh = {vh ∈ Vh | (div(vh, qh) = 0, qh ∈ Ph} ,

• PEh
: L2(Ω)d×d → Eh the orthogonal projection,

and for any Banach space W the temporal projection P
n : C[tn−1, tn;W ] → P�[tn−1, tn;W ] is characterized by

P
n(w)(tn−) = w(tn) and ∫ tn

tn−1
(Pn(w) − w)φ = 0, φ ∈ P�−1(tn−1, tn).

For the classical finite element spaces, this projection exhibits optimal rates of convergence in H1
0 (Ω)d ×

L2(Ω)d×d and the spatial and temporal projections commute, so P
n
h(v,E) = (PZh

◦ P
n(v), PEh

◦ P
n(E)).

Theorem 4.2. Ω ⊂ R
d bounded Lipschitz domain, T > 0, and let {Th}h>0 be a quasi–uniform family of

triangulations of Ω and {tnh}
Nh
n=0 a family of quasi–uniform partitions of [0, T ]. Assume that there exist constants

0 < c < C such that the spatial and temporal mesh parameters h and τ satisfy cτ ≤ h ≤ Cτ . Let (Vh,Ph) ⊂
H1

0 (Ω)d ×L2(Ω)/R be a div–stable pair of finite element spaces and Eh ⊂ L2(Ω)d×d be a classical finite element
space. Assume that Vh and Eh contain the continuous piecewise quadratic functions and Ph the piecewise linear
functions.

Let α, β ∈ R and We, μs, μp > 0, and assume that (v, p, E) is a smooth solution of equations (1.1) with
strain energy given in equation (1.2). Let {(vh, ph, Eh)}h>0 be solutions of the numerical scheme (3.4) with spaces
(Vh,Ph,Eh), piecewise linear DG time stepping (� = 1), regularization of the determinant given in equation (3.8)
with regularization parameter cτ ln(1/τ) ≤ ε ≤ Cτ ln(1/τ), and initial data (v0

h, E
0
h) to be the spatial projections

of (v(0), E(0)) characterized in Definition 4.1 for the space–time projection operator P
n
h.

Then there exists constants C > 0 and τ0 independent of h, τ and ε such that the consistency error (eh, Eh) =
P

n
h(v,E) − (vh, Eh) satisfies

‖eh(tnh−)‖2
L2(Ω) +

μp

We
‖Eh(tnh−)‖2

L2(Ω) +
n−1∑
m=0

{
||[em

h ]||2L2(Ω) +
μp

We
||[Em

h ]||2L2(Ω)

}
μp

We

∫ tn
h

0

∫
F0

h

|vh · n| · [Eh]2 +
∫ tn

h

0

{
μs||∇eh||2L2(Ω) +

μp

2We2 ||Eh||2L2(Ω)

}

≤
(1 + Cτ

1 − Cτ

)n
{
||eh(0−)||2L2(Ω) + ||Eh(0−)||2L2(Ω) + C

n∑
m=1

(
dm

h + τε4
)}

, (4.2)
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for all τ < τ0, where

dn
h =

∫ tn
h

tn−1
h

{
||p− pph||2L2(Ω) + ||E||2L∞[tn−1,tn;L∞(Ω)]||∇ep||2L2(Ω)

+
(
||v||2L∞[tn−1,tn;L∞(Ω)] + ||∇v||2L∞[tn−1,tn;L∞(Ω)] + ||∇E||2L∞[tn−1,tn;L∞(Ω)]

)
||ep||2L2(Ω)

+
(
||∇v||2L∞[tn−1,tn;L∞(Ω)] + ||E||2L∞[tn−1,tn;L∞(Ω)]

)
||Ep||2L2(Ω)

+||vh||2L2(Ω)

(
||∇ep||2L∞[tn−1,tn;L2(Ω)] + ||ep||2L∞[tn−1,tn;L2(Ω)] + ||∇Ep||2L∞[tn−1,tn;L2(Ω)]

)
+||Eh||2L2(Ω)

(
||Ep||2L∞[tn−1,tn;L2(Ω)] + ||∇ep||2L∞[tn−1,tn;L2(Ω)]

)

+||∇vh||2L2(Ω)||Ep||2L∞[tn−1,tn;L2(Ω)] +
||(I − PEh

)E||2L∞[tn−1,tn;L∞(Ω)]

h2
||vh||2L2(Ω)

}
,

and (ep, Ep) = (I − P
n
h)(v,E) is the projection error of the solution onto the discrete finite element spaces, and

pph is the projection of the pressure in L2[0, T ;L2(Ω)] onto the finite element spaces.

• For the meshes and spaces considered in this theorem

Nh∑
n=1

dn
h ≤ C

(
‖v‖2

W 2,∞[0,T ;W 2,∞
0 (Ω)]d

+ ‖p‖2
H1[0,T ;H1(Ω)] + ‖E‖2

W 2,∞[0,T ;W 2,∞(Ω)]d×d

)
(τ4 + h4),

where C only depends on Ω.
• The hypotheses on the regularization parameter can be relaxed to: τ/ĉ ≤ ε ≤ o(τd/4) for a sufficiently small

constant ĉ which depends upon the solution.

4.1. Overview of proof

This section presents the major steps required to prove Theorem 4.2 and the next two sections verify the
estimates utilized. The latter are mostly routine application of Holder’s inequality and estimates commonly
used for the analysis of DG schemes. To improve the readability we write tn instead of tnh below.

The theorem will be established by inducting on the time step n; the case n = 0 following directly from
the assumptions on the initial data. The inductive step will follow upon selecting the test function in the
orthogonality condition (4.1) to be the consistency error, (wh, Gh) = (eh, Eh). With this choice of test function
coercivity of the bilinear form a(., .) and skew symmetry properties of c(., ., .) can be used to obtain

‖eh(tn−)‖2
L2(Ω) +

μp

We
‖Eh(tn−)‖2

L2(Ω) + ‖[en−1
h ]‖L2(Ω) +

μp

We
‖[En−1

h ]‖L2(Ω)

+
μp

We

∫ tn

tn−1

⎧⎨
⎩

∑
F∈T d−1

∫
F

|vh · n| · [Eh]2 + μs||∇eh||2L2(Ω) +
μp

2We2 ||Eh||2L2(Ω)

⎫⎬
⎭

≤ ‖eh(tn−1
− )‖2

L2(Ω) +
μp

We
‖Eh(tn−1

− )‖2
L2(Ω) + Cdn

+
∫ tn

tn−1

{
C

(
‖eh‖2

L2(Ω) + ‖Eh‖2
L2(Ω)

)
+ 2(E−� − E−�

hε , Eh)
}
. (4.3)

If the last term was not present the result would follow from the discrete Gronwall inequality since the time
dependence is piecewise linear;∫ tn

tn−1
‖eh‖2

L2(Ω) ≤
(
(1/2)‖eh(tn−)‖2

L2(Ω) + ‖eh(tn−1
− )‖2

L2(Ω) + ‖[en−1
h ‖2

L2(Ω)

)
Δtn, (4.4)
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and similarly for Eh. In the first step of the proof we show that the determinant det(Eh) is bounded away from
zero as h → 0. We show that last term in equation (4.3) can be absorbed into the other terms to complete the
inductive step.

(1) The regularization of the inverse determinant was chosen so that the map E �→ E−�
ε was a good approxi-

mation of E−� when det(E) is positive and satisfied a global Lipschitz condition with constant C/ε in general.
In this situation if |E − Ep| is sufficiently small,

|E−� − E−�
hε | ≤ |E−� − E−�

p | + |E−�
p − E−�

pε | + |E−�
pε − E−�

hε |
≤ C(Ep + ε2) + (C/ε)Eh, (4.5)

where C = C(d, δ,Δ) with Δ = ‖E‖L∞[0,T ;L∞(Ω)], and δ > 0 a lower bound on det(E). Substituting this bound
into equation (4.3) gives an estimate for ‖Eh‖L2(Ω) of the form

‖Eh(tn−)‖2
L2(Ω) + ‖[En−1

h ]‖2
L2(Ω) ≤ C

(
1 + (C/ε)Δtn

1 − (C/ε)Δtn

)(
‖eh(tn−1

− )‖2
L2(Ω) + ‖Eh(tn−1

− )‖2
L2(Ω) + dn + ε2

)
.

By hypothesis2 Δtn/ε ≤ C/ ln(1/τ) → 0 in which case the inductive assumption shows

‖Eh(tn−)‖2
L2(Ω) + ‖[En−1

h ]‖2
L2(Ω) ≤ C(h2 + τ2 + ε2)2,

with constant independent of (h, τ, ε) for τ sufficiently small. The inverse inequality for functions in Eh, and the
assumption c ≤ h/τ ≤ C, then provides an L∞(Ω) bound,

‖Eh(tn−)‖L∞(Ω) + ‖[En−1
h ]‖L∞(Ω) ≤ C

(
h2 + τ2(1 + ln2(1/τ))

)
/hd/2 ≤ C ln2(1/τ)τ2−d/2.

Since d ≤ 3 the L∞(Ω) norm of the consistency error becomes arbitrarily small as τ → 0 and the triangle
inequality then guarantees Eh becomes uniformly close to E;

‖E − Eh‖L∞[tn−1,tn;L∞(Ω)] ≤ ‖Ep‖L∞[tn−1,tn;L∞(Ω)] + ‖Eh‖L∞[tn−1,tn;L∞(Ω)] ≤ C ln2(1/τ)τ2−d/2.

In particular, since E �→ det(E) is continuous and det(E(t, x)) ≥ δ > 0 it follows that

det(Eh(t, x)) ≥ δ/2 (t, x) ∈ (tn−1, tn) ×Ω,

when τ is sufficiently small.

(2) The regularization of the inverse determinant was chosen so that the map E �→ E−�
ε is Lipschitz with

constant independent of ε on bounded sets with det(E) bounded away from zero. In this situation equation (4.5)
becomes

|E−� − E−�
hε | ≤ C(Ep + ε2 + Eh). (4.6)

Substituting this bound into equation (4.3) shows

‖eh(tn−)‖2
L2(Ω) +

μp

We
‖Eh(tn−)‖2

L2(Ω) + ‖[en−1
h ]‖L2(Ω) +

μp

We
‖[En−1

h ]‖L2(Ω)

+
μp

We

∫ tn

tn−1

{ ∑
F∈T d−1

∫
F

|vh · n| · [Eh]2 + μs||∇eh||2L2(Ω) +
μp

2We2 ||Eh||2L2(Ω)

}

≤ ‖eh(tn−1
− )‖2

L2(Ω) +
μp

We
‖Eh(tn−1

− )‖2
L2(Ω) + Cdn

+ C

∫ tn

tn−1

{
‖eh‖2

L2(Ω) + ‖Eh‖2
L2(Ω) + ε2

}
.

2The hypothesis c ≤ ε/(τ ln(1/τ)) is used to guarantee 1 − Cε/τ is eventually bounded away from zero; clearly “ε/τ sufficiently
small” suffices.



1132 L. PERROTTI ET AL.

Using equation (4.4) to bound the integrals on the last line and the inductive hypothesis to bound the first two
terms on the right completes the induction step.
In the next section the estimates needed to verify equation (4.3) are developed, and the following section
shows that the regularization of the inverse transpose given in (3.8) satisfies the Lipschitz conditions stated in
equations (4.5) and (4.6).

4.2. Coercivity of the weak statement

In this section the estimates which establish the coercivity properties stated in equation (4.3) are developed.

Bilinear terms. Bounds on the bilinear terms in the weak statement are standard.

(1) Temporal terms: The projection in Definition 4.1 is frequently used to analyze DG time stepping meth-
ods [30]. When the exact solution is continuous in time the temporal terms in the orthogonality condition
become ∫ tn

tn−1
(vt − vht, eh) + ([vn−1], en−1

h+ ) =
1
2

(
‖en

h−‖2
L2(Ω) + ‖[en−1

h ]‖2
L2(Ω) − ‖en−1

h− ‖2
L2(Ω)

)
,

and similarly for the deformation E − Eh.
(2) Spatial terms: The coercivity of the bilinear terms is standard;

a((v − vh, E − Eh), (eh, Eh)) = a((eh, Eh), (eh, Eh)) + a((ep, Ep), (eh, Eh))

≥
(
μs‖D(eh)‖2

L2(Ω) +
μp

4We2 ‖Eh‖2
L2(Ω)

)
−

(
μs‖D(ep)‖2

L2(Ω) +
μp

4We2 ‖Ep‖2
L2(Ω)

)
,

and since eh takes values in Zh

(p− ph, div(eh)) = (p, div(eh)) = (p− qh, div(eh)), qh ∈ Ph.

Trilinear and jump terms. The skew symmetry properties of the trilinear term are used to eliminate the
term cubic in (eh, Eh). The first step is to write

c((v,E), (v,E), (eh, Eh)) − c((vh, Eh), (vh, Eh), (eh, Eh))
= c((ep, Ep), (v,E), (eh, Eh)) + c((vh, Eh), (ep, Ep), (eh, Eh))

+ c((eh, Eh), (v,E), (eh, Eh)) + c((vh, Eh), (eh, Eh), (eh, Eh)). (4.7)

The trilinear term was constructed so that the only deformation to be differentiated is the one in the second
argument, c((., .), (., F ), (., .)). In this situation Holder’s inequality can be used to bound the first three terms
in the above as

c((ep, Ep), (v,E), (eh, Eh)) + c((vh, Eh), (ep, Ep), (eh, Eh)) + c((eh, Eh), (v,E), (eh, Eh))

≤ Cdn
h +

∫ tn

tn−1

{
(μs/2)‖D(eh)‖2

L2(Ω) + C
(
‖eh‖2

L2(Ω) + ‖Eh‖2
L2(Ω)

)}
.

When developing this expression Korn’s inequality is used to bound ∇eh by its symmetric part and the constants
are managed so that the term involving D(eh) can be absorbed by a((eh, .), (eh, .)).

To bound the final term in equation (4.7) note that c(., ., .) is almost skew symmetric in the last argument,

c((vh, Eh), (eh, Eh), (eh, Eh)) =
∑
K

∫ tn

tn−1

∫
K

((vh.∇)Eh, Eh) + (1/2)div(vh)‖Eh‖2
L2(Ω)

=
1
2

∑
K⊂T

∫ tn

tn−1

∫
K

(vh.n) |Eh−|2,



NUMERICAL APPROXIMATION OF VISCOELASTIC FLUIDS 1133

and the DG scheme is engineered to stabilize the jump terms. Specifically,

c((vh, Eh),(eh, Eh), (eh, Eh)) + Jh(vh, Eh, Eh)

= c((vh, Eh), (eh, Eh), (eh, Eh)) − Jh(vh, Eh, Eh) + Jh(vh, Ep, Eh)

=
1
2

∑
F⊂T d−1

∫ tn

tn−1

∫
F

|vh.n| |[Eh]|2 + Jh(vh, Ep, Eh).

To bound the final term, recall that the dependence of Jh(., ., .) upon its second argument is through its jump,
and since P

n(E) is (spatially) continuous

Jh(vh, Ep, Eh) = Jh(vh, Ep − P
n(E), Eh) = Jh(vh,P

n(PEh
(E) − E), Eh).

Using the finite dimensionality of Vh and Eh a parent element argument shows

∫ tn

tn−1
Jh(vh, Ep, Eh) ≤ C

∫ tn

tn−1
‖vh‖L2(Ω) ‖Eh‖L2(Ω) max

K

‖(I − PEh
)E‖L∞(K)

hK
≤ C

∫ tn

tn−1
‖Eh‖2

L2(Ω) + Cdn
h .

4.3. Lipschitz continuity of the regularization

This section is devoted to the proof of the estimates (4.5) and (4.6). The following lemma is a convenient
statement of the property that matrix inversion is locally Lipschitz on the set of non–singular matrices.

Lemma 4.3. Let E, Ep ∈ R
d×d and suppose that det(E) > δ. Then there exist c = c(d, δ, |E|) > 0 and

C = C(d, δ, |E|) > 0 such that

|E − Ep| ≤ c ⇒ |E−T − E−T
p | ≤ C|E − Ep|.

The next lemma establishes the continuity properties of the regularized inverse transpose; the estimates
asserted in equations (4.5) and (4.6) follow directly from these.

Lemma 4.4. Let E−�
ε = (1/ detε(E))Cof(E) where detε(E) is the regularization of the determinant given in

equation (3.8), and write
M(δ,Δ) = {E ∈ R

d×d | δ ≤ det(E) and |E| ≤ Δ}.

Then for each δ, Δ > 0 there exists a constant C = C(d, δ,Δ) > 0 independent of 0 < ε ≤ 1 such that the
following holds.

(1) |E−� − E−�
ε | = O(ε2) on M(δ,Δ); that is,

E ∈M(δ,Δ) ⇒ |E−� − E−�
ε | ≤ Cε2.

(2) The mapping E �→ E−�
ε is locally Lipschitz on the set of matrices with positive determinant; in particular,

E,F ∈M(δ,Δ) ⇒ |E−�
ε − F−�

ε | ≤ C|E − F |.

(3) The mapping E �→ E−�
ε satisfies the global Lipschitz property

E ∈M(δ,Δ) ⇒ |E−�
ε − F−�

ε | ≤ (C/ε)|E − F |, F ∈ R
d×d.
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Proof.

(1) Fix E ∈M(δ,Δ) and compute

E−� − E−�
ε =

(
1

detE
− 1

detε(E)

)
Cof(E)

=

√
det(E)2 + 4ε2 + ε2|E|2(d−1) − det(E)√
det(E)2 + 4ε2 + ε2|E|2(d−1) + det(E)

Cof(E)

=

(
4 + |E|2(d−1)

)
ε2(√

det(E)2 + 4ε2 + ε2|E|2(d−1) + det(E)
)2 Cof(E)

The right hand side is of order O(ε2) uniformly for matrices E ∈M(δ,Δ).
(2) The mappings E �→ Cof(E) and E �→ detε(E) are smooth so their derivatives are locally bounded. Since

M(δ,Δ) is compact and detε(E) ≥ δ on this set, Lipschitz continuity of (1/detε(E))Cof(E) follows.
(3) Let E ∈M(δ,Δ) and F ∈ R

d×d. If F ∈M(δ/2, 2Δ) then so too is E and this reduces to the case considered
in (2) above, so it suffices to consider F �∈M(δ/2, 2Δ). Below we show

E ∈M(δ,Δ) and F �∈M(δ/2, 2Δ) ⇒ |E − F | ≥ 1/C.

Granted this the Lipschitz estimate follows;

|E−�
ε − F−�

ε | ≤ |E−�
ε | + |F−�

ε | ≤ (C/ε) ≤ (C/ε)C|E − F |.

To show |E − F | ≥ 1/C we consider the two possibilities which preclude F from M(δ/2, 2Δ).
(1) If |F | > 2Δ it is immediate that |E − F | ≥ Δ when |E| ≤ Δ.
(2) If |F | ≤ 2Δ it must be that det(F ) < δ/2. Since det(E) ≥ δ,

δ/2 ≤ |det(E) − det(F )| ≤ C|E − F |,

where C is the Lipschitz constant for the mapping E �→ det(E) on the (compact) set of matrices with
norm bounded by 2Δ. �

5. Extensions

The assumption that v satisfied homogeneous boundary data circumvents a multitude of technical and mod-
eling issues. Since most flow problems involve inflow and outflow boundaries where velocity or stress components
are specified this is a significant practical limitation. Note too that boundary data for the deformation needs
to be specified on the portion of the boundary where v.n < 0 and the latter may depend implicitly upon time.
One way to accommodate these issues is to include a penalty term with parameter η > 0 to enforce non–zero
boundary data. Specifically, if ∂Ω = Γ̄0 ∪ Γ̄1 and Dirichlet data for the velocity, v|Γ0 = v0, is specified on Γ0,
and traction boundary data, g, is specified on Γ1, a practical modification of (3.5) is∫ tn

tn−1

{
(vht, wh) +

μp

We
(Eht, Gh) + a((vh, Eh), (wh, Gh)) − (ph, div(wh)) + (qh, div(vh)

+ c((vh, Eh), (vh, Eh), (wh, Gh)) + Jh(vh, Eh, Gh) − μp

2We2 (E−T
hε , Gh)

}

+
∫ tn

tn−1

{∫
Γ0

1
η
(vh − v0, wh) +

∫
∂Ω

(v.n)−(Eh − E0, Gh)
}

+
(
[vh]n−1, wh(tn−1

+ )
)

+
μp

We
(
[Eh]n−1, Gh(tn−1

+ )
)

=
∫ tn

tn−1

{
(f, wh) +

∫
Γ1

(g, wh)
}
, (5.1)
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where E0 is boundary data for the deformation. Solutions of this weak statement satisfy

‖vn
h−‖2

L2(Ω) +
μp

We
‖En

h−‖2
L2(Ω) +

n−1∑
m=0

(
‖[vm

h ]‖2
L2(Ω) +

μp

We
‖[Em

h ]‖L2(Ω)

)

+
∫ tn

0

{
2μs||D(vh)||2L2(Ω) +

μp

We2 ||Eh||2L2(Ω) + 2d‖det(Eh)−/detε(Eh)‖L1(Ω)

}

+
∫ tn

0

{
1
η

(
‖vh‖2

L2(Γ0) + ‖v̄h − v0‖2
L2(Γ0)

)
+

∫
∂Ω

(vh.n)−
(
|Eh|2 + |Eh − E0|2

)}

+
μp

We

∑
F∈T d−1

h

∫ tn

0

∫
F

|vh · n| [Eh]2 ≤ ‖v0
h−‖2

L2(Ω) +
μp

We
‖E0

h−‖2
L2(Ω) +

μp

We2 d|Ω|tn

+
∫ tn

0

{
1
μs

‖f‖2
H−1(Ω) + C‖g‖2

H−1/2(Γ1)
+

1
η
‖v0‖2

L2(Γ0) +
∫

∂Ω

(vh.n)−|E0|2
}
.

The boundary terms in (5.1) were constructed so that the stability estimate and existence would follow. With
this choice the natural boundary condition for the momentum equation becomes(

(ρ/2)v ⊗ v − pI + 2μsD(v) +
μp

We
(a+ b)(EE� − I)

)
n = g.

If a vortex exits the domain the sign of v.n may change on Γ1. This gives rise to a modeling problem: what is
the value of E on the reentrant boundary?

5.1. Higher order approximation

It was shown in Section 3 that numerical solutions (vh, Eh) are bounded in L2[0, T ;H1(Ω)]×L2[0, T ;L2(Ω)]
and that (vh(tnh±), Eh(tnh±)) is bounded in L2(Ω) × L2(Ω) at the partition points. When low order (� ≤ 1)
polynomial approximation is used for the time variable a bound at the partition points bounds the solution
in L∞[0, T ;L2(Ω)]; this was required for the convergence proof in Section 4. If a higher order polynomial
approximation is used for the time variable, then bounds in L∞[0, T ;L2(Ω)] are no longer immediate. However,
uniform bounds on the solutions are available if Radau quadrature is used to approximate the temporal integrals
of the nonlinear terms, c(., ., .), Jh(., ., .) and E−�

hε , in the discrete weak statement (3.5).
If tn−1 = s0 < s1 < . . . < s� < tn are the (left handed) Radau points in [tn−1, tn) and {ωi}�

i=0 ⊂ (0, 1) the
corresponding weights, then the quadrature rule

Q(f) = (tn − tn−1)
�∑

i=0

ωif(si),

is exact on P2�(tn−1, tn), so all of the bilinear terms in (3.5) are integrated exactly by this quadrature rule. To
obtain uniform bounds upon the solution let {φi}�

i=0 ⊂ P�(tn−1, tn) denote the Lagrange basis corresponding
to the quadrature points (φi(sj) = δij) and write

vh(t) =
�∑

i=0

viφi(t), vi ∈ Vh,

and similarly for Eh. Set θ(t) = 1 − (t− tn−1)/(tn − tn−1) ∈ [0, 1] and select the test function wh to be

wh(t) =
�∑

i=0

θ(si)viφi(t),

and similarly for Gh. Uniform bounds then follow from the following properties.
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• (vht(si), wh(si)) = θ(si)(vht(si), vh(si)) is the interpolant of θ(vht, vh) ∈ P2�(tn−1, tn) so∫ tn

tn−1
(vht, wh) + ([vh], wh+)n−1 =

∫ tn

tn−1
θ(vht, vh) + ([vh], wh+)n−1

=
1/2

tn − tn−1

∫ tn

tn−1
‖vh‖2

L2(Ω) + (1/2)‖[vn−1
h ]‖2

L2(Ω) − (1/2)‖vn−1
h− ‖2

L2(Ω),

and similarly for Eh. Left handed Radau quadrature was chosen so that the jump terms take the form shown.
The key step is to use the inverse estimate for the polynomial ‖vh(t)‖2

L2(Ω) ∈ P2�(tn−1, tn) to conclude

‖vh‖2
L∞[tn−1,tn;L2(Ω)] ≤

C

tn − tn−1

∫ tn

tn−1
‖vh‖2

L2(Ω).

• Since the weak statement is linear in the test functions the constants θ(si) can be factored out of the spatial
operators so that the skew symmetry and monotonicity are preserved; for example,

c((u,E), (v, F ), (v, θF )) + Jh(u, F, θF ) =
μp

2We

∑
F∈T d−1

h

θ

∫
F

|u.n| |[F ]|2.

The convergence proof in Section 4 then extends to schemes of arbitrary order in space and time. However,
due the the assumption ε = O(τ ln(1/τ)), more accurate regularizations of the determinant will be required to
achieve higher rates.

5.2. Other fluids

The analysis in Sections 3 and 4 focused on the Oldroyd–B fluids; however, the extension to many of the
classical viscoelastic fluids is direct provided the solvent viscosity μs is non–zero. The deformation of the
Oldroyd–B fluid evolves according to the “maximum dissipation principle” which postulates a gradient flow of
the elastic energy. Different models of viscoelastic relaxation give rise to equations of the form

Ė − α(∇v)E − β(∇v)�E + D(E) = 0,

where D(E) : DW(E) ≥ 0 characterizes the dissipation as the stress relaxes.

• Phan–Thien–Tanner (PPT) Fluid: D(E) = (μp/We)(|E|2E − E−�) = DR(E) where the “Raleighian” is

R(E) =
μp

We
(
(1/4)(|E|4 − |I|4) − (1/2) ln(det(E)2)

)
.

• Giesekus Fluid: D(E) = (μp/We)(EE�E − E−�) = DR(E) with Raleighian

R(E) =
μp

We
(
(1/4)(|EE�|2 − |I|2) − (1/2) ln(det(E)2)

)
.

The extension of the analysis presented for the Oldroyd–B to these fluids is direct.
Other fluid models retain the maximal dissipation principle but modify the elastic energy W . Typically

W(E) =
μp

2We

(
ψ

(
|E|2

)
− ψ′ (|I|2) log

(
det(E)2

) )
,

where ψ : (0,∞) → R is a monotone increasing convex function. Then

DW(E) =
μp

We

(
ψ′ (|E|2

)
E − ψ′ (|I|2)E−�

)
,

is frame indifferent and vanishes at the identity.
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• Finitely Extensible Nonlinear Elastic (FENE–P) Fluid: W(E) ∼ ln(1 − |E|2/|E0|2) where |E0| > |I| is an
upper bound on the deformation the polymer can sustain.

W(E) = − μp

2We

(
ln

(
|E0|2 − |E|2
|E0|2 − |I|2

)
+

ln(det(E)2)
|E0|2 − |I|2

)

with Piola stress

DW(E) =
μp

We

(
E

|E0|2 − |E|2 − E−�

|E0|2 − |I|2

)
·

The Yosida approximation [32] provides a regularization of the first term with globally Lipschitz derivative.
This can be calculated using the Yosida approximation of φ(u) = − ln(1 − u2);

φε(u) =
1
2ε

(uε − u)2 + φ(uε),

where uε is the root of x3 − ux2 − (1 + ε)x+ u in (−1, 1),

uε =
2
3

√
3 + 3 ε+ u2 cos

(
π

3
+

1
3

arccos

(
u
(
−2 u2 + 18 − 9 ε

)
2 (3 + 3 ε+ u2)3/2

))
+
u

3
·

Stable numerical schemes for these fluids can be developed from the weighted weak statement∫
Ω

(
Ė − α(∇v)E − β(∇v)�E +DW(E), ψ′(|E|2)G

)
= 0,

provided the jump terms for the DG scheme also include the weight;

∫ tn

tn−1

{∫
Ω

(Ė − α(∇vh)Eh − β(∇vh)�Eh, Gh) +
1
2
div(vh)(Eh, Gh) +DW(Eh), ψ′(|Eh|2)Gh)

+
∑

K∈Th

∫
∂K

(vh · n)−([Eh], ψ′(|Eh−|2)Gh−)

}
+

∫
Ω

([En−1
h ], ψ′(|En−1

h+ |2)Gh(tn−1
+ )) = 0.

The jump terms in the energy estimate take the form(
ψ′(|E+|2)E+ − ψ′(|E−|2)E−, E+ − E−

)
≥ 0.

Weighted DG schemes to simulate gradient flows with (non-quadratic) convex energies have not be implemented
to date.

6. Numerical examples

To illustrate the results developed in Sections 3 and 4 numerical approximation of a channel flow for which
an exact solution is available is presented. We then present some preliminary computations for two benchmark
problems in two dimensions; a 4:1 contraction and flow past a disk. While quantitative data for the later two
problems computed using alternative schemes is available, a precise comparison is complicated since it is not
clear that solution of problems driven by non–homogeneous boundary data are stationary; or alternatively,
stationary solutions may not be stable [1].

In all of the examples the nonlinear algebraic equations were solved using Newton’s method with a direct linear
solver and halting tolerance (change in any variable) 10−8. If the Newton scheme for a particular time step failed
it was subdivided into two steps recursively until convergence was attained. The Yosida approximation (3.7)
was used to regularize the inverse of the determinant of the deformation.
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Vh × Ph × Eh = Q′
2 × Q1 × Q1, h = 2τ and � = 1

τ |v − vh|L2[0,T ;H1(Ω)] ‖p − ph‖L2[0,T ;L2(Ω)] ‖E − Eh‖L2[0,T ;L2(Ω)]

1/8 1.663865e-02 5.652340e-02 4.465875e-02
1/16 4.647908e-03 2.668692e-02 1.144977e-02
1/32 1.255666e-03 1.306950e-02 2.883085e-03
1/64 3.325136e-04 6.471380e-03 7.225167e-04

Norms 2.110391 2.063824 3.125278

Figure 2. Channel flow: Linear elements for deformation, ε = τ/10, We = 1.25.

Results for the two benchmark problems are typically presented for inertialess (creeping or Stokes) flows, so
for these problems we set ρ = 0. For these problems the regularization parameter was fixed at ε = 10−6. In
order to minimize transient elastic waves the initial data was taken to be (v0, E0) = (0, I) and non–homogeneous
boundary data for the velocity was ramped up to the desired magnitude with a trigonometric profile, (1/2)(1−
cos(πt))v0(x) for 0 ≤ t ≤ 1. The deformation on the inflow (left hand) boundary was specified to be the identity
matrix.

6.1. Channel flow

An exact solution for parallel flow of an Oldroyd–B fluid in a channel, Ω = (−1, 1)2, with ρ = 1, p =
(p0 + p1x)et/λ, and f = 0, is

v(t, y) = p1λe
t/λ

(
cosh(ay)−cosh(a)

cosh(a)

0

)
where a =

√
We + λ

λ(Weμ+ λμ+ λμp)

and Te = (μp/We)(V V � − I) where

V =
[√

1 + b v12
0 1

]
with v12 =

We
We + λ

a sinh(ay)
cosh(a)

p1λ
2et/λ and b =

λ

2We + λ
v2
12.

The general solution of the corresponding deformation equation is E = V R with

R =
[

cos(θ) sin(θ)
− sin(θ) cos(θ)

]
with θ =

λ

2We
log(

√
1 + b+

√
b)√

b
v12 +Θ(x − λv1),

where Θ : R → R is arbitrary. In the following computations p0 = 0, the pressure gradient is p1 = −1, the time
constant is λ = 1, and the non–zero choice Θ(ξ) = sin(ξ) is made to give a deformation E(t, x, y) depending
upon all of the variables. In the numerical experiments the velocity is specified at the inlet x = −1 and the
channel walls y = ±1; the traction is specified at the outlet x = 1; and the deformation is specified on the inflow
boundary x = −1.

No evidence of a HWNP was encountered computing numerical approximations of this problem. The following
three tests illustrate the properties of the algorithm and numerical solutions. In each of the tests the viscosities
were μs = 0.25, μp = 0.75, and a finial time of T = 1 and uniform square grids were utilized.

• Rate of Convergence: The proof of Theorem 4.2 required the deformation to be approximated by quadratic
elements in order to attain a second order rate; however, formally the scheme is second order when linear
elements are used for this variable. Errors in the solutions computed using bilinear (Q1) and serendipity
biquadratic (Q′

2) elements for the deformation and the classical Taylor Hood pair Q′
2 ×Q1 for the velocity

and pressure are presented in Figures 2 and 3. The quadratic rate of convergence for the velocity and
deformation is readily observable in each case. Unlike solutions of the Navier Stokes equations, the pressure
only converges at a first order rate; the reason for this requires further investigation. In all instances the
Newton scheme converged in three or four iterates.
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Vh × Ph × Eh = Q′
2 × Q1 × Q′

2, h = 2τ and � = 1

τ |v − vh|L2[0,T ;H1(Ω)] ‖p − ph‖L2[0,T ;L2(Ω)] ‖E − Eh‖L2[0,T ;L2(Ω)]

1/8 9.158628e-03 5.298274e-02 5.630538e-03
1/16 2.333355e-03 2.623177e-02 1.240301e-03
1/32 5.936999e-04 1.301273e-02 2.968640e-04
1/64 1.518414e-04 6.464310e-03 7.329059e-05

Figure 3. Channel flow: Quadratic elements for deformation, ε = 0.1τ , We = 1.25.

• Weissenberg number: For this example, the Weissenberg number had minimal influence on the numerical
performance of the algorithm. For example, with the parameters as in Figure 3 and h = 1/16 the code
required an identical number of Newton iterations for We ∈ {0.125, 1.25, 12.5, 125}. Norms of the deformation
for these Weissenberg numbers are:

We 0.125 1.25 12.5 125
‖E‖L2[0,T ;L2(Ω)] 2.838111 3.125278 3.982163 4.264458

‖E − Eh‖L2[0,T ;L2(Ω)] 6.417720e-04 1.240301e-03 3.414909e-03 4.513999e-03

• Numerical parameters: For this example the Newton scheme always converged when the initial guess was
taken to be the solution from the previous time step. Moreover, the CFL number τ/h does not significantly
influence the number of iterations required. For example, with the parameters as in Figure 2, setting τ = 1
(one time step) the Newton scheme converged in 6 iterations for h ∈ {1/4, 1/8, 1/16}.
The regularization of the logarithm of det(E) gives rise to a consistency error of order O(ε). While the
theory utilized a specific choice for this parameter, within the code it is only significant on the small regions
where the determinant takes on the unphysical values det(Eh) ≤ 0, and does not significantly influence the
solution or the solver. To illustrate this, with the parameters as in Figure 3 and h = 1/16 the errors in the
deformation for different values of ε are:

ε 1/8 1/16 1/32 1/64 1/1000

‖E − Eh‖L2[0,T ;L2(Ω)] 6.652309e-03 2.023945e-03 1.285418e-03 1.239083e-03 1.241222e-03

Each of these runs required 64 Newton iterations (four per time step). In practice τ, h �→ 0 so ε is fixed to
be sufficiently small so that the discretization errors dominate.

6.2. 4:1 Contraction flow

We consider the planar flow of an Oldroyd-B fluid through the 4:1 contraction illustrated in Figure 4. The large
stresses at the re-entrant corner adjacent to the very weak lip vortices challenge the fidelity of numerical schemes.
In all of the examples a parabolic flow profile was specified on the inlet and outlet, the normal component of the
velocity was specified on the lower boundary (center line), and homogeneous velocity boundary data specified
on the rest of the boundary.

The numerical stability and convergence of the Newton scheme were very robust with respect to the
Weissenberg number. The solutions shown in Figure 5 for We = 1, 10, and 100 (and all other parameters
fixed) each took a similar number (384, 385 and 408) of Newton iterations and CPU time, and the Newton
scheme converged without any subdivision of the time steps. The mesh and parameters for this example are
given in Figure 6. While solutions with such a coarse mesh and large time steps at a short time do not represent
a steady converged solution, 4–7 Newton iterations per time step is typical when τ � h. For highly refined
meshes having elements much smaller than the time step, subdivision was required for certain time steps in
order for the solution from the previous time step to be an adequate starting value for the Newton scheme.

To exhibit the formation of lip vortices studied in [2,7] it is necessary to significantly refine the mesh near the
reentrant corner as illustrated in Figure 7. Figures 9–10 show the lip vortex that forms for different Weissenberg
numbers. These figures show the streamlines in the refined area near the reentrant corner shown in Figure 7.
Figure 8 shows the macroscopic streamline plot for We = 5, which is prototypical, and lists the rheological
properties, taken from [2], and numerical parameters used for these calculations.



1140 L. PERROTTI ET AL.

B

B

B

B

B

B

2

1

3

6

5

4

(−4,4)

(−4,0)

(0,4)

(0,1)
(4,1)

(4,0)

Figure 4. Geometry of 4:1 contraction.

Figure 5. Contraction flow for We = 1, 10, and 100 (streamlines over velocity magnitude).

μs = 0.1, μp = 0.9, ρ = 0, ε2 = 10−6

T = 2, 128 time steps,
Implicit Euler time stepping, (� = 0),
Vh × Ph × Eh = Q′

2 × Q1 × Q1,
(1000 elements),
Parabolic inlet and outlet profiles with unit center line
velocity at the outlet.

Figure 6. Mesh and data for solutions in Figure 5.

Figures 9–10 clearly exhibit the dependence of the lip vortex with Weissenberg number. These flows appear
to exhibit significant fine scale structure and it is not clear that steady state solutions, if they exist, are stable.
The flows illustrated here were still exhibiting small fluctuations in their elastic stress consistent with elastic
oscillation.

6.3. Flow past a disk

The drag on the flow past a cylinder is a standard benchmark problem. If Γo ⊂ ∂Ω is the boundary of an
obstacle, the drag in a direction e ∈ R

d is given by

Drag ≡
∫

Γo

Tn.e =
∫

Γo

(
−pI + 2μsD(v) +

μp

We
(α + β)(EE� − I)

)
n.e.
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Figure 7. Mesh and refinement near the reentrant corner, 4200 elements.

μs = 1/9, μp = 8/9, ρ = 0, ε2 = 10−6

T = 8, 128 time steps, τ = T/N = 0.0625,
Implicit Euler stepping, (� = 0),
Vh × Ph × Eh = Q′

2 × Q1 × Q1,
(2688 elements, 56,835 degrees of freedom), Parabolic
inlet and outlet profiles with center line velocity at the
outlet 3/2.

Figure 8. Typical streamlines and numerical and rheological data for lip vortex calculations.

Figure 9. 4:1 contraction with We = 0.1 and We = 1.

The numerical scheme approximates weak solutions of

ρvt + (ρ/2)(v.∇)v − div
(
−(ρ/2)(v ⊗ v) + T

)
= ρf,
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Figure 10. 4:1 contraction with We = 5 and We = 10.

Figure 11. Mesh for the drag calculations.
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90

80

0 20 40 60

μs = 0.51, μp = 0.49, ρ = 0, ε2 = 10−6,
Vh × Ph × Eh = Q′

2 × Q1 × Q′
2, T = 64 Parabolic

inlet and outlet profiles with
center line velocity at the outlet 3/2.
Dirichlet boundary data.

10 688 quadrilateral elements (top),
2624 quadrilateral elements (middle),
672 quadrilateral elements (bottom).

Figure 12. Drag on cylinder verses time for We = 1/2.

so if φ : Ω → R
d satisfies φ|Γo = e and φ|∂Ω\Γo

= 0, integration by parts shows

Drag =
∫

Ω

ρ
(
vt + (1/2)(v.∇)v − f)

)
.φ+

(
−(ρ/2)(v ⊗ v) + T

)
: ∇φ,

when v|Γo = 0. A refinement of the mesh shown in Figure 11 was used to compute the drag as a function of
time on the cylinder. The rectangular region is [−30, 30]× [−2, 2] and the cylinder has unit radius. Numerical
values for the drag at various Weissenberg numbers may be found in [1, 22, 26, 29].
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μs = 0.51, μp = 0.49, ρ = 0, ε2 = 10−6,
Vh × Ph × Eh = Q′

2 × Q1 × Q′
2, T = 64,

10 688 quadrilateral elements,
405 952 degrees of freedom,
2048 implicit Euler time steps (� = 0),
Parabolic inlet and outlet profiles with
center line velocity at the outlet 3/2.
Dirichlet boundary data.

Figure 13. Drag on cylinder verses time, average drag over 48 ≤ t ≤ 64, and number of
subdivided time steps.

Figure 12 illustrates the convergence under mesh and time step refinement for this problem with the
Weissenberg number fixed at We = 1/2. The bottom two curves in the figure are for the coarsest mesh;
one computed with first order time stepping � = 0, and the other with second order time stepping � = 1, each
with 512 time steps. The middle three curves were computed with the mesh size halved; one with 512 and one
with 2048 implicit Euler time steps, and the other with 1024 second order time steps. The upper curve was
computed using the finest mesh with 2048 implicit Euler time steps. It is clear from the figure that, for this
set of experiments, errors associated with (spatial) mesh resolution dominated the time stepping errors. These
experiments also suggest that insufficient mesh resolution gives rise to lower values of the drag, and may give
rise to excessive transient behavior; the solution with the finest mesh almost achieves a steady state.

A quantitative comparison of the drag computed with We ∈ {1/2, 1, 3/2, 2, 5/2} and the results in [1] is given
in Figure 13. The data in this figure is computed using the finest of the three meshes considered previously with
2048 implicit Euler time steps. In all instances the computed drag is 2–3% lower than the reported value. While
this may be due to differences in the specification of the boundary data at the inlet and outlet, the results of
the previous paragraph suggest that it may also be due to insufficient resolution. The final column in the table
shows the number of time steps that needed to be sub–divided (at least once) in order for the Newton scheme
to converge, and it is clear that, in general, the Newton scheme with maximal time step τ = 64/2048 failed
more as the Weisenberg number increased.
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