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A PIECEWISE LINEAR FEM FOR AN OPTIMAL CONTROL PROBLEM
OF FRACTIONAL OPERATORS: ERROR ANALYSIS ON CURVED DOMAINS ∗

Enrique Otárola
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Abstract. We propose and analyze a new discretization technique for a linear-quadratic optimal
control problem involving the fractional powers of a symmetric and uniformly elliptic second order
operator; control constraints are considered. Since these fractional operators can be realized as the
Dirichlet-to-Neumann map for a nonuniformly elliptic equation, we recast our problem as a nonuni-
formly elliptic optimal control problem. The rapid decay of the solution to this problem suggests a
truncation that is suitable for numerical approximation. We propose a fully discrete scheme that is
based on piecewise linear functions on quasi-uniform meshes to approximate the optimal control and
first-degree tensor product functions on anisotropic meshes for the optimal state variable. We provide
an a priori error analysis that relies on derived Hölder and Sobolev regularity estimates for the optimal
variables and error estimates for a scheme that approximates fractional diffusion on curved domains;
the latter being an extension of previous available results. The analysis is valid in any dimension. We
conclude by presenting some numerical experiments that validate the derived error estimates.
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1. Introduction

In this work we shall be interested in the analysis of a new solution technique for a linear-quadratic optimal
control problem involving the fractional powers of an uniformly elliptic second order operator; control constraints
are considered. Before describing such a discretization technique, we follow [5] and illustrate the PDE-constrained
optimization problem we are interested in. Let Ω be an open and bounded domain in Rn (n ≥ 1) with Lipschitz
boundary ∂Ω. Given s ∈ (0, 1) and a desired state ud : Ω → R, we define the cost functional

J(u, z) =
1
2
‖u − ud‖2

L2(Ω) +
ϑ

2
‖z‖2

L2(Ω), (1.1)

where ϑ > 0 denotes the so-called regularization parameter. We shall be concerned with the following PDE-
constrained optimization problem: find

min J(u, z), (1.2)
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subject to the fractional state equation

Lsu = z in Ω, u = 0 on ∂Ω, (1.3)

and the control constraints
a ≤ z(x′) ≤ b a.e. x′ in Ω. (1.4)

Throughout this work we assume that a, b ∈ R satisfy the property a < 0 < b. The operator Ls, with s ∈ (0, 1),
is a fractional power of the second order, symmetric and uniformly elliptic operator

Lw = −divx′(A(x′)∇x′w) (1.5)

supplemented with homogeneous Dirichlet boundary conditions. The matrix of coefficients A(x′) is bounded
and measurable in Ω and satisfies a uniform ellipticity condition. For convenience, we will refer to the optimal
control problem (1.2)–(1.4) as the fractional optimal control problem.

Recently, the analysis of regularity properties of the solution to fractional PDE has received a tremendous at-
tention: fractional diffusion has been one of the most studied topics in the past decade [12–14,45,51]. Concerning
applications, capturing the essential behavior of fractional diffusion is fundamental in science and engineering
since it allows for understanding of applications where anomalous diffusion is considered [1], complex phenomena
in mechanics [7], turbulence [17], nonlocal electrostatics [36], image processing [29] and finance [38]. In many of
these applications, control problems arise naturally [5, 6].

Regarding the numerical analysis literature, the approaches advocated for fractional diffusion are mainly
divided in two categories. The first one is based on an approximated spectral representation that requires the
solution of a large eigenvalue problem [34,35,55]. The second approach is based on the singular integral definition
of fractional diffusion: the obtained matrices are dense and the presence of a non-integrable kernel requires
special attention [3,33,47]. As opposed to these approaches and inspired in the breakthrough by Caffarelli and
Silvestre [12], the authors of [44] have designed and analyzed a new solution technique for fractional diffusion
via an extension problem. Although the analysis of the proposed method is intricate, its implementation is done
using standard components of finite element analysis [44, 48].

In contrast, the analysis of optimal control problems involving fractional diffusion and nonlocal operators
is still in its infancy; see [5, 6, 22, 23] for some preliminary results. In [22], a PDE-constrained optimization
problem involving a nonlocal diffusion equation is considered and analyzed. For such a problem, the authors
propose a numerical scheme to approximate its solution and derive convergence results. In [5], the authors
have used the Caffarelli–Silvestre extension [12], and its developments to both bounded domains [10, 15] and a
general class of elliptic operators [14, 52], to design and analyze solution techniques for the fractional optimal
control problem (1.2)–(1.4). The analysis hinges on the fact that the fractional powers of L can be realized as
an operator that maps a Dirichlet boundary condition to a Neumann condition via an extension problem on
C = Ω × (0,∞). This extension is the following local boundary value problem (see [10, 12, 15, 52] for details):

LU − α
y ∂yU − ∂yyU = 0 in C, U = 0 on ∂LC, ∂α

ν U = dsz on Ω × {0}, (1.6)

where ∂LC = ∂Ω × [0,∞) is the lateral boundary of C, α = 1 − 2s ∈ (−1, 1), ds = 2αΓ (1 − s)/Γ (s) and the
conormal exterior derivative of U at Ω × {0} is

∂α
ν U = − lim

y→0+
yαUy . (1.7)

The limit in (1.7) is understood in the distributional sense [12, 15, 52]. We will call y the extended variable
and call the dimension n+ 1 in Rn+1

+ the extended dimension of problem (1.6). As noted in [10, 12, 15, 52], the
fractional powers of the operator L and the Dirichlet-to-Neumann operator of problem (1.6) are related by

dsLsu = ∂α
ν U in Ω.
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Note that the differential operator in (1.6) is −div (yαA∇U ) , where A(x′, y) = diag{A(x′), 1} for all (x′, y)
in C. Thus, we rewrite (1.6) as

−div (yαA∇U ) = 0 in C, U = 0 on ∂LC, ∂α
ν U = dsz on Ω × {0}. (1.8)

Invoking such a localization result, the authors of [5] overcome the nonlocality of Ls by considering an equiv-
alent formulation for (1.2)–(1.4): min J(U |y=0, z) subject to the linear equation (1.8) and (1.4); the extended
optimal control problem. On the basis of this formulation, the following simple strategy to solve (1.2)–(1.4) is
proposed: given s ∈ (0, 1) and a desired state ud : Ω → R, solve the extended optimal control problem, thus ob-
taining z̄(x′) and Ū (x′, y). Setting ū : x′ ∈ Ω 	→ ū(x′) = Ū (x′, 0) ∈ R, the optimal pair (ū, z̄) solving (1.2)–(1.4)
is obtained. Two numerical techniques are analyzed in [5]: one that is semidiscrete where the optimal control is
not discretized, and the other one that is fully discrete and discretizes the optimal control using piecewise con-
stant functions. A priori error estimates are derived; the ones for the fully discrete scheme being quasi-optimal
in terms of approximation.

In this work, we continue with our recent research program by proposing and analyzing a new solution
technique for the optimal control problem (1.2)–(1.4). This technique corresponds to a fully discrete scheme,
which, in contrast to [5], discretizes the optimal control with piecewise linear functions on quasi-uniform meshes.
Following [44], the optimal state is discretized with first-degree tensor product finite elements on anisotropic
meshes. At this point, it is important to comment that although the essential localization results have been
already introduced and analyzed in [5], the error analysis of our proposed scheme comes with its own set of
difficulties. Overcoming them has required us to provide several new, nontrivial, results. Let us briefly detail
some of them:

1. We provide regularity results, in Hölder and Sobolev spaces, for the continuous optimal control variables that
require some suitable assumptions on the smoothness of the domain Ω and the matrix of coefficients A.

2. In order to invoke the regularity results detailed in the previous point, we have seen the need of developing,
inspired in [44], an a priori error analysis for fractional diffusion on curved domains Ω of class C2. The
analysis is able to deal with both the natural anisotropy of the mesh in the extended variable y and the
nonuniform coefficient yα with α ∈ (−1, 1).

3. We provide an a priori error analysis for our scheme that requires a subtle interplay between Sobolev and
Hölder regularity of the optimal control variables, as well as growth conditions, and relies on the assumption
that the boundary of the active sets consists of a finite number of rectifiable curves [40, 41].

It is thus instructive to compare the error estimate derived in ([5], Cor. 5.17) with the one obtained in this
work. The aforementioned error estimates read

‖z̄ − Z̄‖L2(Ω) � | logN |2sN− 1
n+1 , and ‖z̄ − Z̄‖L2(Ω) � | logN |2sN− 1

n+1( 1
2+σ),

respectively. Here n ≥ 1, z̄ denotes the optimal control, Z̄ denotes the corresponding control approximation,
and N corresponds to the number of degrees of freedom of the underlying mesh. For s ∈ (1/2, 1), the parameter σ
corresponds to 1. Meanwhile, for s ∈ (1/4, 1/2), we have that σ = 2s. Consequently, for s ∈ (1/4, 1), the scheme
proposed in this work over-perform the one developed in [5]; see Section 7 for an illustration. For s ∈ (0, 1/4],
we have that σ = 1/2 and thus, for these values of s, we derive a linear order of convergence for the proposed
scheme.

The outline of this paper is as follows. In Section 2 we recall the definition of the fractional powers of
elliptic operators via spectral theory and introduce some suitable functional framework. In Section 3 we define
the fractional and extended optimal control problems. Section 3.1 presents regularity results for the fractional
optimal control variables, in both Hölder and Sobolev spaces. Section 4 is dedicated to the truncated optimal
control problem. We also state the approximation and regularity properties of its solution. In Section 5 we review
the a priori error analysis of [44] for the state equation (1.8) and in Section 5.1 we extend these results to a
scenario where Ω is a C2 curved domain. In Section 6 we propose a fully discrete scheme for the fractional
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optimal control problem that discretizes the optimal control with piecewise linear functions. In addition, for
s ∈ (0, 1), we provide an a priori error analysis for the proposed scheme that is valid in any dimension. Finally,
in Section 7, we present numerical experiments that illustrate the a priori error analysis of Section 6.

2. Notation and preliminaries

2.1. Notation

Throughout this work Ω is an open, bounded and connected domain of Rn (n ≥ 1) with Lipschitz bound-
ary ∂Ω. We will follow the notation of [5, 45] and define the semi-infinite cylinder with base Ω and its lateral
boundary, by C = Ω × (0,∞) and ∂LC = ∂Ω × [0,∞), respectively. Given Y > 0, we define the truncated
cylinder CY = Ω × (0,Y ) and its lateral boundary ∂LCY accordingly.

Since we will be dealing with objects defined in Rn+1 and the extended n+ 1-dimension will play a special
role, we denote a vector x ∈ Rn+1 by

x = (x1, . . . , xn, xn+1) = (x′, xn+1) = (x′, y),

with xi ∈ R for i = 1, . . . , n+ 1, x′ ∈ Rn and y ∈ R.
The matrix of coefficients A(x′), that defines the operator L in (1.5), is measurable and bounded in Ω, and

uniformly elliptic. We denote by Ls, with s ∈ (0, 1), the fractional powers of the operator L. The parameter α
belongs to (−1, 1) and is related to the power s of the fractional operator Ls by the formula α = 1 − 2s.

Finally, the relation a � b indicates that a ≤ Cb, with a constant C that depends neither on a or b nor the
discretization parameters. The value of C might change at each occurrence.

2.2. Fractional powers of a second order elliptic operator

We consider the definition based on spectral theory [14, 15, 44]. The operator L−1 : L2(Ω) → L2(Ω), that
solves Lw = f in Ω and w = 0 on ∂Ω, is compact, symmetric, and positive, so its spectrum {λ−1

k }k∈N is discrete,
real, positive and accumulates at zero. Moreover, the eigenfunctions

{ϕk}k∈N : Lϕk = λkϕk in Ω, ϕk = 0 on ∂Ω, k ∈ N, (2.1)

form an orthonormal basis of L2(Ω). With this spectral decomposition at hand, the fractional powers of L can
be defined, for w ∈ C∞

0 (Ω), by

Lsw =
∞∑

k=1

λs
kwkϕk, (2.2)

where wk =
�

Ω
wϕk and s ∈ (0, 1). By density Ls can be extended to the space

Hs(Ω) =

{
w =

∞∑
k=1

wkϕk :
∞∑

k=1

λs
kw

2
k <∞

}
, (2.3)

which, as a consequence of the theory of Hilbert scales [39], coincides with the space [H1
0 (Ω), L2(Ω)]1−s. If

s ∈ (1, 2], and Ω is, for instance, an open bounded and convex domain, we have that Hs(Ω) = Hs(Ω)∩H1
0 (Ω);

see [28]. For s ∈ (0, 1) we denote by H−s(Ω) the dual space of Hs(Ω).

2.3. The Caffarelli–Silvestre extension problem

The localization results of Caffarelli and Silvestre [10, 12, 15] require us to deal with the nonuniformly el-
liptic problem (1.8) and consequently with Lebesgue and Sobolev spaces with the weight yα for α ∈ (−1, 1).
Following [24, 54], we define, for an open set D ⊂ Rn+1, the weighted Lebesgue space

L2(|y|α, D) =
{
w ∈ L1

loc(D) : ‖w‖2
L2(|y|α,D) =

�
D

|y|αw2 <∞
}
,
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and the weighted Sobolev space

H1(|y|α, D) =
{
w ∈ L2(|y|α, D) : ‖w‖H1(|y|α,D) <∞}

,

where

‖w‖H1(|y|α,D) =
(
‖w‖2

L2(|y|α,D) + ‖∇w‖2
L2(|y|α,D)

) 1
2
. (2.4)

Since α = 1 − 2s ∈ (−1, 1), we have that |y|α belongs to the Muckenhoupt class A2(Rn+1) [24, 27, 30, 42, 54].
Consequently, H1(|y|α, D) endowed with the norm (2.4) is Hilbert and C∞(D) ∩ H1(|y|α, D) is dense in
H1(|y|α, D) (cf . [54], Prop. 2.1.2, Cor. 2.1.6, [37] and [30], Thm. 1). For convenience, we recall the defini-
tion of the Muckenhoupt class A2 [42, 54].

Definition 2.1 (Muckenhoupt class A2). Let ω be a weight, that is ω ∈ L1
loc(R

n) and ω > 0 a.e. in Rn with
n ≥ 1. We say that ω ∈ A2(Rn) if

C2,ω = sup
B

(�
B

ω

)(�
B

ω−1

)
<∞,

where the supremum is taken over all balls B in Rn.

We now define the suitable weighted Sobolev space to analyze problem (1.8):
◦
H1

L(yα, C) =
{
w ∈ H1(yα, C) : w = 0 on ∂LC

}
.

On this space, we have the following weighted Poincaré inequality

‖w‖L2(yα,C) � ‖∇w‖L2(yα,C) ∀w ∈ ◦
H1

L(yα, C) (2.5)

(see [44], inequality (2.21)). Consequently, the seminorm on
◦
H1

L(yα, C) is equivalent to the norm (2.4). For
w ∈ H1(yα, C), trΩ w denotes its trace onto Ω × {0}. We recall that, for α = 1 − 2s ([44], Prop. 2.5) yields

trΩ
◦
H1

L(yα, C) = Hs(Ω), ‖ trΩw‖Hs(Ω) ≤ CtrΩ‖w‖ ◦
H1

L(yα,C)
. (2.6)

The weak formulation of problem (1.8) thus reads as follows: find U ∈ ◦
H1

L(yα, C) such that

a(U , φ) = 〈z, trΩ φ〉H−s(Ω)×Hs(Ω) ∀φ ∈ ◦
H1

L(yα, C), (2.7)

where, for w, φ ∈ ◦
H1

L(yα, C), the bilinear form a is defined by

a(w, φ) =
1
ds

�
C
yαA(x)∇w · ∇φ, (2.8)

and 〈·, ·〉H−s(Ω)×Hs(Ω) denotes the duality pairing between Hs(Ω) and H−s(Ω) which, as a consequence of (2.6),
is well defined. We recall that the matrix of coefficients A(x′, y) = diag{A(x′), 1} for all (x′, y) ∈ C.

The conditions on A and (2.5) imply that a is bounded and coercive in
◦
H1

L(yα, C). Consequently, the well-
posedness of (2.7) follows from the Lax–Milgram Lemma. In the manuscript, we will use repeatedly that
a(w,w)1/2 is a norm equivalent to (2.4). We present the following estimate for problem (2.7) ([15], Prop. 2.1):

‖∇U ‖L2(yα,C) � ‖u‖Hs(Ω) � ‖z‖H−s(Ω). (2.9)

We define the Dirichlet-to-Neumann operator N : Hs(Ω) → H−s(Ω) by

Hs(Ω) � u 	−→ N(u) = ∂α
ν U ∈ H−s(Ω).

We thus present the Caffarelli–Silvestre extension result [12, 15, 52].

Theorem 2.2 (Caffarelli–Silvestre extension result). If U ∈ ◦
H1

L(yα, C) and u ∈ Hs(Ω) solve (2.7) and (1.3)
for z ∈ H−s(Ω), respectively, then u = trΩ U and

dsLsu = N(u) = ∂α
ν U in Ω.
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3. The fractional and extended optimal control problems

For J defined in (1.1), the fractional optimal control problem reads as follows: find min J(u, z) subject to the
fractional state equation (1.3) and the control constraints (1.4). The set of admissible controls Zad is defined by

Zad = {w ∈ L2(Ω) : a ≤ w(x′) ≤ b, a.e. x′ ∈ Ω},
where a, b ∈ R and satisfy a < 0 < b. The desired state ud ∈ L2(Ω) and ϑ > 0.

We define the fractional control-to-state map S : H−s(Ω) � z 	→ u ∈ Hs(Ω), where u = u(z) solves (1.3).
The operator S is linear and, as a consequence of (2.9), bounded from H−s(Ω) into Hs(Ω). Given a control
z ∈ H−s(Ω), we define the fractional adjoint state p = p(z) ∈ Hs(Ω) as p = S(u − ud). With these elements at
hand, we recall the following result ([5], Thm. 3.4).

Theorem 3.1 (Existence, uniqueness and optimality conditions). The optimal control problem (1.2)–(1.4) has a
unique optimal solution (ū, z̄) ∈ Hs(Ω)×Zad. The optimality conditions ū = Sz̄ ∈ Hs(Ω), p̄ = S(ū−ud) ∈ Hs(Ω),
and

z̄ ∈ Zad, (ϑz̄ + p̄, z − z̄)L2(Ω) ≥ 0 ∀z ∈ Zad (3.1)

hold. These conditions are necessary and sufficient.

Since the fractional powers of L are non-local operators, the design and analysis of solution techniques for
problem (1.2)–(1.4) is far from trivial. To circumvent such a difficulty, in reference [5] the authors invoke the
localization results stated in Theorem 2.2 and propose the following equivalent optimal control problem: find
min J(trΩ U , z) subject to the linear and extended state equation

a(U , φ) = 〈z, trΩ φ〉H−s(Ω)×Hs(Ω) ∀φ ∈ ◦
H1

L(yα, C) (3.2)

and the control constraints z ∈ Zad; the bilinear form a is defined as in (2.8). We will refer to this problem
as the extended optimal control problem. We recall that the trace operator trΩ is defined in Section 2.3. The
equivalence of the aforementioned optimal control problems follows from ([5], Thm. 3.12): ū(z̄) = trΩ Ū (z̄).

We define the extended control-to-state map G : H−s(Ω) � z 	→ trΩ U ∈ Hs(Ω), where U = U (z)
solves (3.2). Invoking Theorem 2.2, we conclude that the actions of G and S coincide and then that G is
a linear and continuous mapping from H−s(Ω) into Hs(Ω).

We also define the extended adjoint state P = P(z) ∈ ◦
H1

L(yα, C), associated to the extended state U = U (z),
as the unique solution to

a(φ,P) = (trΩ U − ud, trΩ φ)L2(Ω) ∀φ ∈ ◦
H1

L(yα, C). (3.3)

With this definition at hand, we present the following result ([5], Thm. 3.11).

Theorem 3.2 (Existence, uniqueness and optimality system). The extended optimal control problem has a
unique optimal solution (Ū , z̄). The optimality system⎧⎪⎪⎨

⎪⎪⎩
Ū = Ū (z̄) ∈ ◦

H1
L(yα, C) solution to (3.2),

P̄ = P̄(z̄) ∈ ◦
H1

L(yα, C) solution to (3.3),

z̄ ∈ Zad, (trΩ P̄ + ϑz̄, z − z̄)L2(Ω) ≥ 0 ∀z ∈ Zad,

holds. These conditions are necessary and sufficient.

We conclude this section with a representation formula for U that is based on the eigenpairs {λk, ϕk} defined
in (2.1). Let u(x′) =

∑
k ukϕk(x′) be the solution to (1.3), then the solution U to problem (3.2) can be written

as follows:

U (x′, y) =
∞∑

k=1

ukϕk(x′)ψk(y), (3.4)
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where, for k ∈ N, ψk solves

ψ′′
k + αy−1ψ′

k − λkψk = 0, ψk(0) = 1, ψk(y) → 0 as y → ∞. (3.5)

If s = 1/2, then ψk(y) = e−
√

λky. If s ∈ (0, 1) \ {1/2} and cs = 21−s/Γ (s), then

ψk(y) = cs

(√
λky

)s

Ks(
√
λky),

where Ks is the modified Bessel function of the second kind ([2], Chap. 9.6). We refer the reader to ([44],
Sect. 2.4 and [15], Prop. 2.1) for details.

3.1. Regularity of the fractional optimal control

Since we will be concerned with the approximation of the solution to the extended optimal control problem,
it is essential to study the regularity properties of (ū, p̄, z̄). To derive such results, we will assume different
conditions on the smoothness of the domain Ω and the matrix of coefficients A defining L in (1.5); we will be
precise regarding these assumptions when is needed. We start by recalling the results of Lemma 3.5 in [5].

Lemma 3.3 (Regularity of the optimal control). Let z̄ ∈ Zad be the fractional optimal control. If Ω is convex,
A ∈ C0,1(Ω̄), ud ∈ H1−s(Ω) and a < 0 < b, then z̄ ∈ H1

0 (Ω).

We recall the so-called projection formula for the optimal control z̄. If ϑ > 0 and p̄ denotes the fractional
optimal adjoint state, then the projection formula

z̄(x′) = proj[a,b]

(
− 1
ϑ

p̄(x′)
)

(3.6)

is equivalent to (3.1), where proj[a,b](v) = min{b,max{a, v}} (see [53], Sect. 2.8). We comment on the assumption
a < 0 < b of Lemma 3.3: the bootstrap argument developed in the proof of Lemma 3.5 in [5] relies on the
projection formula (3.6) and thus requires the assumption a < 0 < b in order to preserve the boundary values
of z̄ ∈ Hs(Ω). We refer the reader to the proof of ([5], Lem. 3.5) for details.

On the basis of the projection formula (3.6) we derive the following regularity properties, on Sobolev spaces,
for z̄ and p̄.

Lemma 3.4 (Regularity of the optimal state and adjoint state). If ud ∈ H1−s(Ω), Ω is convex, a < 0 < b,
and A ∈ C0,1(Ω̄), then ū ∈ Hκ(Ω) for κ = min{1 + 2s, 2}. In addition, if ud ∈ H1

0 (Ω), then p̄ ∈ Hκ(Ω) for
κ = min{1 + 2s, 2}.

Proof. An application of Lemma 3.3 yields z̄ ∈ H1
0 (Ω). Then, since Ω is convex, we invoke the fact that Ls

is a pseudodifferential operator of order 2s and Theorem 3.2.1.2 in [31], to conclude that ū, the solution to
problem (1.3), belongs to Hκ(Ω), where κ = min{1 + 2s, 2}. If ud ∈ H1

0 (Ω), we have that ū − ud ∈ H1
0 (Ω) and

then a similar argument shows that the optimal adjoint state p̄ ∈ Hκ(Ω). �

In Section 6 we will propose a numerical scheme to approximate the solution to (1.2)–(1.4) and also provide
an priori error analysis for it. The latter is based on Hölder-regularity results for the optimal control z̄. In
order to obtain such results, we invoke the recent global regularity estimates for the solution u to problem (1.3)
derived by Caffarelli and Stinga in [14]. These estimates assume some suitable smoothness properties on z, the
domain Ω and the matrix A. Since, in our setting, we have that z ∈ Zad ⊂ L∞(Ω), such estimates can be
adapted to obtain the following results (see also [15], Lem. 2.10 and [8], Prop. 5.2).
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Lemma 3.5 (Global regularity for u). Let u be the solution to (1.3) with z ∈ L∞(Ω). If s ∈ (0, 1
2 ), Ω is a C1

domain and A ∈ C(Ω̄), then u ∈ C0,2s(Ω̄), and

[u]C0,2s(Ω̄) � ‖u‖Hs(Ω) + ‖z‖L∞(Ω). (3.7)

On the other hand, if s ∈ (1
2 , 1), Ω is a C1,2s−1 domain and A ∈ C0,2s−1(Ω̄), then u ∈ C1,2s−1(Ω̄) and

[u]C1,2s−1(Ω̄) � ‖u‖Hs(Ω) + ‖z‖L∞(Ω).

When s = 1
2 , it is not completely evident how to adapt the techniques developed in [14] to derive regularity

results for the solution u under the assumption that z ∈ L∞(Ω). For this reason, we conjecture the following
regularity property: if s = 1

2 , Ω is a C1 domain, A ∈ C(Ω̄) and z ∈ L∞(Ω), then

u ∈ C0,θ(Ω̄) (3.8)

for every θ < 1. We now derive the following regularity properties for the fractional optimal state ū and the
optimal adjoint state p̄. To accomplish this task, we define

Λ(ū, p̄, ud) = ‖ū‖Hs(Ω) + ‖p̄‖Hs(Ω) + ‖z̄‖L∞(Ω) + ‖ud‖L∞(Ω).

Theorem 3.6 (Global regularity of ū and p̄). Let ud ∈ L∞(Ω). If s ∈ (0, 1
2 ), Ω is a C1 domain and A ∈ C(Ω̄),

then both ū and p̄ belong to C0,2s(Ω̄). In addition,

[ū]C0,2s(Ω̄) + [p̄]C0,2s(Ω̄) � Λ(ū, p̄, ud). (3.9)

On the other hand, if s ∈ (1
2 , 1), Ω is a C1,2s−1 domain and A ∈ C0,2s−1(Ω̄), then both ū and p̄ belong to

C1,2s−1(Ω̄). In addition,
[ū]C1,2s−1(Ω̄) + [p̄]C1,2s−1(Ω̄) � Λ(ū, p̄, ud). (3.10)

In both inequalities the hidden constant is independent of the optimal variables.

Proof. Let s ∈ (0, 1
2 ). The results of Lemma 3.5 imply that ū ∈ C0,2s(Ω̄) and that (3.7) holds. In view of the

fact that ū − ud ∈ L∞(Ω), we apply, again, the results of Lemma 3.5 and conclude that p̄ ∈ C0,2s(Ω̄), and

[p]C0,2s(Ω̄) � ‖p̄‖Hs(Ω) + ‖ū‖L∞(Ω) + ‖ūd‖L∞(Ω).

This estimate, in view of (3.7), allows us to derive (3.9). Analogous arguments can be applied to obtain (3.10)
for s ∈ (1

2 , 1). �

We now present the following improved regularity result for the optimal control z̄, which shows that, for
s ∈ (1

2 , 1), and under some suitable assumptions, z̄ ∈ C0,1(Ω̄).

Theorem 3.7 (Global regularity of z̄). Let ud ∈ L∞(Ω). If s ∈ (0, 1
2 ), Ω is a C1 domain and A ∈ C(Ω̄), then

z̄ ∈ C0,2s(Ω̄) and
[z̄]C0,2s(Ω̄) � ‖p̄‖Hs(Ω) + ‖ū‖L∞(Ω) + ‖ud‖L∞(Ω).

On the other hand, if s ∈ (1
2 , 1), Ω is a C1,2s−1 domain and A ∈ C0,2s−1(Ω̄), then z̄ ∈ C0,1(Ω̄) and

[z̄]C0,1(Ω̄) � ‖p̄‖Hs(Ω) + ‖ū‖L∞(Ω) + ‖ud‖L∞(Ω).

Proof. The desired regularity results follow from Theorem 3.6 in conjunction with the fact that the projection
formula (3.6) maps continuously C0,δ(Ω̄) into C0,δ(Ω̄) for δ ∈ (0, 1]. �

We conclude this section with a conjecture regarding the regularity of the optimal control z̄ when s = 1
2 . If

ud ∈ L∞(Ω), Ω is a C1 domain and A ∈ C(Ω̄), then

z̄ ∈ C0,θ(Ω̄) (3.11)

for every θ < 1.
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4. The truncated optimal control problem

The state equation (3.2) of the extended optimal control problem is posed on the semi-infinite domain
C = Ω × (0,∞). Therefore, it cannot be directly approximated with finite-element-like techniques. However,
since the solution to (3.2) decays exponentially in y ([44], Prop. 3.1), by truncating C to CY = Ω × (0,Y ), for a
suitable truncation parameter Y ≥ 1, and setting a homogeneous Dirichlet condition on y = Y , we only incur
in an exponentially small error in terms of Y ([5], Lem. 4.6). We briefly review the results of ([5], Sect. 4). To
do this, we define

◦
H1

L(yα, CY ) :=
{
v ∈ H1(yα, CY ) : v = 0 on ∂LCY ∪Ω × {Y }} .

Then, the truncated optimal control problem reads as follows: find min J(trΩ v, r) subject to the truncated state
equation

aY (v, φ) = 〈r, trΩ φ〉H−s(Ω)×Hs(Ω) ∀φ ∈ ◦
H1

L(yα, CY ) (4.1)

and the control constraints r ∈ Zad. The bilinear form aY is defined by

aY (w, φ) =
1
ds

�
CY

yαA(x)∇w · ∇φ ∀w, φ ∈ ◦
H1

L(yα, CY ). (4.2)

We define the truncated control-to-state map H : H−s(Ω) � r 	→ trΩ v ∈ Hs(Ω), where v = v(r) denotes the
unique solution to (4.1). The map H is linear and continuous (see [15], Prop. 2.1). With this operator at hand,
we define the reduced cost functional j : Zad � r 	→ j(r) ∈ R by

j(r) = J(r,Hr), (4.3)

which is continuous and convex. In addition, the quadratic structure of j implies that j′′(q)(r, r) does not depend
on q and is positive definite, that is

j′′(q)(r, r) ≥ ϑ‖r‖2
L2(Ω) ∀r ∈ L2(Ω).

The truncated adjoint state p = p(r) ∈ ◦
H1

L(yα, CY ), associated with the extended state v = v(r), is defined as
the unique solution to

aY (φ, p) = (trΩ v − ud, trΩ φ)L2(Ω) ∀φ ∈ ◦
H1

L(yα, CY ). (4.4)

We then have the following result ([5], Thm. 4.5).

Theorem 4.1 (Existence, uniqueness and optimality system). The truncated optimal control problem has a
unique solution (v̄, r̄). The optimality system⎧⎪⎨

⎪⎩
v̄ = v̄(̄r) ∈ ◦

H1
L(yα, CY ) solution to (4.1),

p̄ = p̄(̄r) ∈ ◦
H1

L(yα, CY ) solution to (4.4),
r̄ ∈ Zad, (trΩ p̄+ ϑr̄, r − r̄)L2(Ω) ≥ 0 ∀r ∈ Zad,

(4.5)

holds. These conditions are necessary and sufficient.

The following exponential approximation properties follow from ([5], Lem. 4.6).

Lemma 4.2 (Exponential convergence). If (Ū , z̄) ∈ ◦
H1

L(yα, C)×Hs(Ω) and (v̄, r̄) ∈ ◦
H1

L(yα, CY )×Hs(Ω) solve
the extended and truncated optimal control problems, respectively, then

‖z̄ − r̄‖L2(Ω) � e−
√

λ1Y /4
(‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
,

‖∇ (
Ū − v̄

) ‖L2(yα,C) � e−
√

λ1Y /4
(‖r̄‖L2(Ω) + ‖ud‖L2(Ω)

)
,

where λ1 denotes the first eigenvalue of the operator L.
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We conclude this section with the following regularity result for the truncated optimal control r̄ and the
truncated optimal adjoint state trΩ p̄.

Proposition 4.3 (Sobolev-regularity of r̄ and trΩ p̄). Let r̄ ∈ Zad be the truncated optimal control, Ω be a
convex domain and A ∈ C0,1(Ω̄). If a < 0 < b and ud ∈ H1−s(Ω), then r̄ ∈ H1

0 (Ω) and trΩ v̄ ∈ Hκ(Ω), where
κ = min{1 + 2s, 2}. If, in addition, ud ∈ H1

0 (Ω), then trΩ p̄ ∈ Hκ(Ω).

Proof. The techniques of ([45], Rem. 25) allow us to transfer the regularity results of Lemmas 3.3 and 3.4 to r̄
and trΩ p̄, respectively. To elucidate these results, we write, in view of separation of variables, a representation
formula for the solution to (4.1): v(x′, y) =

∑
k vkϕk(x′)χk(y), where χk solves

χ′′
k + αy−1χ′

k − λkχk = 0, χk(0) = 1, χk(Y ) = 0, (4.6)

and {ϕk} denote the eigenfunctions of the operator L; compare with (3.5). If Is and Ks denote the modified
Bessel functions of first and second kind ([2], Sect. 9.6), then

χk(y) =
(√

λky
)s(

ak,sKs(
√
λky) + bk,sIs(

√
λky)

)
.

The arguments of ([45], Rem. 25) thus reveal that bk,s = −csKs(
√
λkY )Is(

√
λkY )−1 and that ak,s = cs =

21−s/Γ (s). Define ek,s = 21−sbk,s/Γ (s). Then, in view of the properties of the Bessel functions we conclude
that {ek,s} decays exponentially to 0 as k ↑ ∞, and in addition, that

− lim
y↓0

yαvy(x′, y) =
∞∑

k=1

λs
k(ds − ek,s)vkϕ(x′),

where ds = 2αΓ (s)/Γ (1− s). Since v̄ solves problem (4.1), these arguments show that trΩ v̄ solves the following
fractional PDE:

Ls trΩ v̄ = r̄, (4.7)

where, for w ∈ C∞
0 (Ω) and s ∈ (0, 1), the fractional operator Ls is defined by

Lsw =
∞∑

k=1

λs
kwk(1 − ek,sd

−1
s );

compare with (2.2). Since {ek,s} decays exponentially to 0 as k ↑ ∞, in particular is uniformly bounded, and
then, we can extend the operator Ls to the space Hs(Ω) defined by (2.3). We can thus proceed, on the basis
of (4.7), as in the proof of Lemma 3.5 in [5] to derive that r̄ ∈ H1

0 (Ω). In view of this result, the arguments
of Lemma 3.4 can be applied to derive that trΩ p̄ ∈ Hκ(Ω) for κ = min{1 + 2s, 2}. For brevity we skip the
details. �

The regularity properties derived by Caffarelli and Stinga in [14] for u, the solution to (1.3), are based on the
fact that u = trΩ U and that U solves (3.2); see the proof of ([14], Thm. 6.1). In fact, since these arguments
rely on the structure of the operator involved in the extension problem and are local in the extended dimension,
they can also be applied to derive regularity properties for trΩ v, where v solves (4.1). This, on the basis of
Theorem 3.7, provides the following Hölder regularity results for the truncated optimal control r̄.

Proposition 4.4 (Hölder-regularity of r̄). Let r̄ ∈ Zad be the truncated optimal control. Let ud ∈ L∞(Ω),
Ω be a C1 domain and A ∈ C(Ω̄). In addition, if for s ∈ (1

2 , 1), we have that Ω is a C1,2s−1 domain and
A ∈ C0,2s−1(Ω̄), then

r̄ ∈ C0.2s(Ω̄) for s ∈
(

0,
1
2

)
, and r̄ ∈ C0,1(Ω̄) for s ∈

(
1
2
, 1

)
. (4.8)
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For s = 1
2 , we conjecture the following regularity result. If ud ∈ L∞(Ω), Ω is a C1 domain and A ∈ C(Ω̄),

then
r̄ ∈ C0,θ(Ω̄) (4.9)

for every θ < 1.

5. A finite element method for the state equation

In the next section we will propose a fully discrete scheme to approximate the solution to (1.2)–(1.4). The
analysis relies, first, on the localization results of Section 3, and second, on finite element approximation tech-
niques for solving (4.1) on curved domains; the latter being an extension of the results of [44]. The analysis
on curved domains is motivated by the fact that the error analysis of Section 6 is based on the regularity
results of Section 4, that in turn rely on smoothness properties of Ω. We also comment that such analysis
is not trivial, since involves anisotropic meshes in the extended dimension and the nonuniform coefficient yα

(α = 1 − 2s ∈ (−1, 1)), which degenerates (s < 1/2) or blows up (s > 1/2).
It is thus instructive to review the results of [44], which assume that Ω is a convex polytopal subset of Rn

(n ≥ 1) with boundary ∂Ω. To do this, we start by recalling the regularity properties of U and v, solutions
to (3.2) and (4.1), respectively. The second order regularity of U is much worse in the extended direction. In
fact ([44], Thm. 2.7) (see [45], Rem. 25 for v) yields

‖Δx′U ‖L2(yα,C) + ‖∂y∇x′U ‖L2(yα,C) � ‖f‖H1−s(Ω), (5.1)
‖Uyy‖L2(yβ ,C) � ‖f‖L2(Ω), (5.2)

with β > 2α + 1. These regularity estimates have important consequences in the design of efficient numerical
techniques to solve (4.1); they suggest that graded meshes in the extended (n+ 1)-dimension must be used. We
recall the construction of the family of meshes {TY } over CY used in [5,45]. First, we consider a partition IY of
the interval [0,Y ] with mesh points

yk = kγM−γY , k = 0, . . . ,M, (5.3)

where γ > 3/(1−α) = 3/(2s) > 1. Second, we consider T = {K} to be a conforming mesh of Ω, where K ⊂ Rn

is an element that is isoparametrically equivalent either to the unit cube [0, 1]n or the unit simplex in Rn. We
denote by TΩ the collection of all conforming refinements of an original mesh T 0. We assume that TΩ is shape
regular [19]. We then construct a mesh TY over CY as the tensor product triangulation of T ∈ TΩ and IY . We
denote by T the set of all the meshes obtained with this procedure, and recall that T satisfies the following weak
shape regularity condition: If T1 = K1 × I1 and T2 = K2 × I2 ∈ TY have nonempty intersection, then there
exists a positive constant σY such that

hI1h
−1
I2

≤ σY , (5.4)

where hI = |I|. This weak shape regularity condition allows for anisotropy in the extended variable y [25,44,46].
Given T ∈ TΩ, we denote by N (T ) the set of its nodes and define hT = maxK∈T hK . For TY ∈ T, we

define the finite element space

V(TY ) =
{
W ∈ C0(C̄Y ) : W |T ∈ P1(K) ⊗ P1(I) ∀T ∈ TY , W |ΓD = 0

}
, (5.5)

where ΓD = ∂LCY ∪Ω × {Y } is the Dirichlet boundary. The set P1(K) is P1(K) – the space of polynomials of
total degree at most 1 – when the base K of an element T = K× I is a simplex. If K is a cube, P1(K) stand for
Q1(K) – the space of polynomials of degree not larger than 1 in each variable. We also define the finite element
space U(T ) = trΩ V(TY ). We assume that #T ≈ Mn. This, in view of the fact that #TY = M #T , implies
that #TY ≈Mn+1.

The Galerkin approximation of (4.1) is the function V ∈ V(TY ) that satisfies

aY (V,W ) = (r, trΩW )L2(Ω) ∀W ∈ V(TY ), (5.6)

where aY is defined in (4.2). We present the a priori error estimates derived in ([44], Thm. 5.4 and [44], Cor. 7.11).
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Theorem 5.1 (A priori error estimates). Let TY ∈ T and V(TY ) be defined by (5.5). If U (r) ∈ ◦
H1

L(yα, C)
solves (3.2) with z replaced by r, then

‖∇(U (r) − V )‖L2(yα,C) � | log(#TY )|s(#TY )−1/(n+1)‖r‖H1−s(Ω), (5.7)

provided Y ≈ | log(#TY )|. Alternatively, if u(r) denotes the solution to (1.3) with forcing term r, then

‖u(r) − trΩ V ‖Hs(Ω) � | log(#TY )|s(#TY )−1/(n+1)‖r‖H1−s(Ω).

Remark 5.2 (Domain and data regularity). The results of Theorem 5.1 hold only if r ∈ H1−s(Ω) and the
domain Ω is sufficiently regular, for instance, convex.

5.1. A priori error analysis for fractional diffusion on curved domains

In order to guarantee the regularity results of Propositions 4.3 and 4.4 we need the following smoothness
assumptions on the domain Ω and the matrix A that defines the operator L in (1.5):

(a) For s ∈ (0, 1
2 ), Ω is a convex C1 domain and A ∈ C(Ω̄).

(b) For s ∈ (1
2 , 1), Ω is a convex C1,2s−1 domain and A ∈ C0,2s−1(Ω̄).

For the critical case s = 1/2, we assume (4.9), which in turns requires that Ω is a convex C1 domain and
A ∈ C(Ω̄). Since we will be working on the basis of assumptions (a) and (b) we cannot consider the domain
Ω to be a convex polytopal domain in Rn (n ≥ 1). Instead, we consider a family of open, bounded and convex
polytopal domains {ΩT }, based on a family of shape regular triangulations {T }, made of simplices, that
approximate Ω in the following sense:

N (T ) ⊂ Ω̄T , N (T ) ∩ ∂ΩT ⊂ ∂Ω, |Ω \ΩT | � h2
T , (5.8)

where N (T ) denotes the set of all the nodes of the mesh T ; we refer the reader to [20] or ([49], Chap. 5.2)
for details; see also [32]. From now on, we assume Ω to be a convex C2 domain; the convexity property implies
that ΩT ⊂ Ω for all T .

Remark 5.3 (Previous results and regularity of Ω). We remark that, since the error estimates derived in [5]
are based on the H1-regularity of z̄, the previous construction of the sequence {ΩT } is not needed in [5]: Ω can
be taken as a convex polytopal domain in Rn (see Lemma 3.3). In contrast, we will operate under the regularity
results of Propositions 4.3 and 4.4 and therefore, in order to have the validity of such results and handle the
curved domain, we assume Ω to be a convex C2 domain.

On the basis of the previous construction, it is thus necessary to modify the definition of the finite element
space V(TY ). For the sake of simplicity, we keep the notation and define

V(TY ) =
{
W ∈ C0(C̄T ) : W |T ∈ P1(K) ⊗ P1(I)∀T, W |Ω̄\ΩT ×(0,Y ] = 0

}
, (5.9)

where CT = ΩT × (0,Y ), T ∈ TY and the mesh TY of CY is constructed as the tensor product of T and IY ;
the latter being defined in Section 5. The discrete state equation then reads: find V ∈ V(TY ) such that

aT (V,W ) = (r, trΩW )L2(Ω) ∀W ∈ V(TY ), (5.10)

where
aT (V,W ) =

1
ds

�
CT

yαA(x)∇V · ∇W. (5.11)

We now present an extension of the a priori error estimate (5.7) of ([44], Thm. 5.4). In contrast to (5.7) the
derived estimate allows us to consider curved domains.
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Lemma 5.4 (Energy-error estimate on curved domains). Let U (r) ∈ ◦
H1

L(yα, C) be the solution to (3.2) with
z replaced by r, and let V ∈ V(TY ) be the solution to (5.10). If Ω is a convex C2 domain, A ∈ C0,1(Ω̄),
r ∈ L∞(Ω) ∩ H1−s(Ω), and Y ≈ | log(#TY )|, then

‖∇(U (r) − V )‖L2(yα,C) � | log(#TY )|s(#TY )−1/(n+1), (5.12)

where the hidden constant is independent of U (r), V and TY .

Proof. We start with an application of the triangle inequality and the exponential estimate of ([44], Thm. 3.5)
to deduce that

‖∇(U (r) − V )‖L2(yα,C) ≤ ‖∇(U (r) − v)‖L2(yα,C)

+ ‖∇(v − V )‖L2(yα,CY ) � e−
√

λ1Y /4‖r‖H−s(Ω) + ‖∇(v − V )‖L2(yα,CY ), (5.13)

where v corresponds to the the solution to (4.1) and λ1 denotes the first eigenvalue of the operator L. It thus
suffices to control the second term on the right hand side of the previous expression. To accomplish this task,
we write

‖∇(v − V )‖L2(yα,CY ) = ‖∇(v − V )‖L2(yα,CT ) + ‖∇(v − V )‖L2(yα,CY \CT )

and estimate each term separately. We begin with ‖∇(v − V (r))‖L2(yα,CT ), where, we recall that CT = ΩT ×
(0,Y ). We denote by We the extension by zero of W ∈ V(TY ) to C. Then, given W ∈ V(TY ), we invoke
problem (5.10) and problem (4.1) with φ = We to arrive at the following Galerkin orthogonality property:

aT (v − V,W ) = 0 ∀W ∈ V(TY ).

This immediately yields

‖∇(v − V )‖L2(yα,CT ) = inf
W∈V(TY )

‖∇(v −W )‖L2(yα,CT ),

which, in view of the piecewise polynomial interpolation results of [44, 46], and the regularity results of ([44],
Thm. 2.7), implies the following quasi-optimal error estimate in terms of degrees of freedom:

‖∇(v − V )‖L2(yα,CT ) � | logN |sN−1/(n+1)‖r‖H1−s(Ω); (5.14)

we refer the reader to the proof of ([44], Thm. 5.4) for details and remark that, the results of ([44], Thm. 2.7)
are valid under the assumption r ∈ H1−s(Ω).

We now bound ‖∇(v−V (r))‖L2(yα,CY \CT ): Since V (r) = 0 on Ω̄\ΩT ×(0,Y ], an application of the exponential
estimate ([44], Thm. 3.5) implies that

‖∇(v − V )‖L2(yα,CY \CT ) = ‖∇v‖L2(yα,CY \CT ) � e−
√

λ1Y /4‖r‖H−s(Ω) + ‖∇U (r)‖L2(yα,CY \CT ). (5.15)

To control the remaining term, we use pointwise estimates for the harmonic extension U (r) that relies on the
fact that r ∈ L∞(Ω). These estimates are described, for instance, in [4]: |∇x′U (r)| � y−α for (x′, y) ∈ CY

(inequality (6.1) in [4]) and |∂yU (r)| � y−α for (x′, y) ∈ CY (inequality (6.2) in [4]). These estimates imply that

‖∇U (r)‖2
L2(yα,CY \CT ) =

� Y

0

�
Ω\ΩT

yα|∇x′U (r)|2 dx′ dy

+
� Y

0

�
Ω\ΩT

yα|∂yU (r)|2 dx′ dy � Y 1−α|Ω \ΩT |. (5.16)

Since |Ω \ΩT | � h2
T and hT ≈ N−1/(n+1), a collection of all the derived estimates allow us to conclude that

‖∇(U (r) − V )‖L2(yα,C) � e−
√

λ1Y /4‖r‖H−s(Ω) + | log(#TY )|s(#TY )−1/(n+1).

This, in light of the fact that Y ≈ | log(#TY )|, implies the desired estimate (5.12) and concludes the proof. �
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Figure 1. An element K, for n = 2, such that K ∩ ∂ΩT �= ∅ and the corresponding curved
region OK : SK denotes the side of K that lies on ∂ΩT , ΣK the corresponding arc formed by
the curved boundary ∂Ω and OK the region bounded by ΣK and SK .

Remark 5.5 (Regularity of r). Examining the proof of Lemma 5.4, we realize that the critical step where the
L∞(Ω)-regularity of r is needed is (5.16). This assumption guarantees the pointwise estimates for U (r) used to
control its energy on CY \CT .

We present an improvement on Lemma 5.4: an error estimate that is quasi-optimal in terms of approximation
and only requires the H1−s(Ω)-regularity of r. This improvement will allow us to derive an L2(Ω)-error estimate
via a duality argument.

Theorem 5.6 (Energy-error estimate on curved domains). If r ∈ H1−s(Ω), then, under the framework of
Lemma 5.4, we have that

‖∇(U (r) − V )‖L2(yα,C) � | log(#TY )|s(#TY )−1/(n+1)‖r‖H1−s(Ω), (5.17)

where the hidden constant is independent of U (r), V , r, and TY .

Proof. In view of the estimates (5.13)–(5.15), we conclude that it suffices to bound the L2-weighted norm of
∇U (r) on CY \CT . To accomplish this task, we proceed by a density argument that is inspired in the techniques
developed in the proof of Lemma 5.2.3 in [49]. We present a proof for n = 2. Let K ∈ ΩT be a cell such that
K ∩ ∂ΩT �= ∅. We denote by SK the side of K that lies on the boundary ∂ΩT and define OK as the domain
bounded by the side SK and the arc ΣK ; see Figure 1. We choose local coordinates (ζ, μ) such that ζ is defined
along the side SK and μ is orthogonal to SK . We denote by η = ϕ(ζ) the equation of the arc ΣK . With this
notation at hand, and for a smooth function φ, we thus write the following relation

φ(ζ, μ, y) = φ(ζ, ϕ(ζ), y) +
� μ

ϕ(ζ)

φη(ζ, t, y) dt,

where y ∈ I, with I denoting an interval of the partition IY defined in Section 5, and (ζ, μ) ∈ OK . Consequently,
integrating on I and applying the Cauchy–Schwarz inequality, we arrive at

�
I

yαφ2(ζ, μ, y) dy �
�

I

yαφ2(ζ, ϕ(ζ), y) dy + h2
T

�
I

� μ

ϕ(ζ)

yαφ2
η(ζ, t, y) dt dy.

To obtain the previous estimate we have used the C2-regularity of the domain Ω to conclude that dist(x, ∂Ω) �
h2

T for all x ∈ ∂ΩT and then that |ϕ(ζ) − μ| � h2
T . Integrating, now, on OK , we obtain that

‖φ‖2
L2(yα,OK×I) � h2

T ‖φ‖2
L2(yα,(∂OK∩∂Ω)×I) + h4

T ‖∇x′φ‖2
L2(yα,OK×I), (5.18)
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where we have used, again, that |ϕ(ζ) − μ| � h2
T . Then, on the basis of a density argument, we obtain, for

i = 1, . . . , n+ 1, that

‖∂xiU (r)‖2
L2(yα,OK×I) � h2

T ‖∂xiU (r)‖2
L2(yα,(∂OK∩∂Ω)×I) + h4

T ‖∇x′∂xiU (r)‖2
L2(yα,OK×I). (5.19)

We control ‖∂xiU (r)‖L2(yα,∂Ω×I) for i = 1, . . . , n. To accomplish this task, we use that H1(yα, CY ) can be
equivalently defined as the set of measurable functions w such that w ∈ H1(Ω × (s, t)) for all 0 < s < t < Y
and for which the seminorm ‖∇w‖L2(yα,CY ) is finite. Thus, if w ∈ H1(yα, CY ), an application of a standard trace
inequality over a dyadic partition that covers the interval I implies

�
∂Ω×I

yαw2 �
�

Ω×I

yα|∇w|2.

Summing up (5.19) over all the cells K such that K ∩ ∂ΩT �= ∅ and over all the cells I ∈ IY , using the
previous estimate and applying the regularity estimate (5.1) (see [44], Thm. 2.7) we obtain, for i = 1, . . . , n, the
estimate

‖∂xiU (r)‖2
L2(yα,CY \CT ) � h2

T ‖∂xi∇U (r)‖2
L2(yα,CY )

+ h4
T ‖∇x′∂xiU (r)‖2

L2(yα,CY \CT ) � h2
T ‖r‖2

H1−s(Ω) � (#TY )−
2

n+1 ‖r‖2
H1−s(Ω). (5.20)

In the previous inequality we have used that hT ≈ (#T )−1/n and that #TY ≈ #T ·M ≈ Mn+1, where M
denotes the degrees of freedom of the mesh IY .

The estimate of the term ‖∂xiU (r)‖L2(yα,(∂OK∩∂Ω)×I) for i = n+ 1 in (5.19), follows from the formula (3.4)
and the asymptotic estimates for the modified Bessel function of the second kind Ks. In fact ([44], Eqs. (2.28)–
(2.29)) imply that

d
dy
ψk(y) = −cs

√
λk

(√
λky

)s

Ks−1

(√
λky

)
,

d
dy
ψk(y) ≈ y−αλs

k as y ↓ 0+.

For brevity we leave the details to the reader. In view of this obtained estimate and (5.20), we conclude, for
i = 1, . . . , n+ 1, that

‖∂xiU (r)‖2
L2(yα,C\CT ) � h2

T ‖r‖2
H1−s(Ω) � (#TY )−

2
n+1 ‖r‖2

H1−s(Ω),

which, in view of the estimates (5.13)–(5.15), yields the desired result (5.17). �

We now provide an L2(Ω)-error estimate for trΩ(U (r) − V ).

Theorem 5.7 (L2(Ω)-error estimate on curved domains). Let U (r) ∈ ◦
H1

L(yα, C) be the solution to (3.2) with
z replaced by r and let V be the solution to (5.10). If Ω is a convex C2 domain, A ∈ C0,1(Ω̄), r ∈ H1−s(Ω), and
Y ≈ | log(#TY )|, then

‖ trΩ(U (r) − V )‖L2(Ω) � | log(#TY )|2s(#TY )−(1+s)/(n+1)‖r‖H1−s(Ω), (5.21)

where the hidden constant is independent of U (r), V , r and TY .

Proof. We start with an application of the triangle inequality and the trace estimate (2.6) combined with the
exponential estimate ([44], Thm. 3.5) to derive that

‖ trΩ(U (r) − V )‖L2(Ω) ≤ ‖ trΩ(U (r) − v)‖L2(Ω) + ‖ trΩ(v − V )‖L2(Ω)

� e−
√

λ1Y /4‖r‖H−s(Ω) + ‖ trΩ(v − V )‖L2(Ω).
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To control the remaining term, we define e = trΩ(v−V ) and E = v−V , and denote by PT : L2(Ω) → U(T )
the standard L2-projection. With this notation at hand, we write ‖e‖L2(Ω) ≤ ‖e−PT e‖L2(Ω) + ‖PT e‖L2(ΩT ).
The control of the first term follows from standard interpolation results, interpolation on Sobolev spaces ([32],
Lem. 2.4), the trace estimate (2.6) and (5.17). In fact,

‖e− PT e‖L2(Ω) � hs
T ‖e‖Hs(Ω) � hs

T ‖∇E‖L2(yα,CY ) � | logN |sN− 1+s
n+1 ‖r‖H1−s(Ω).

It thus suffices to control the term ‖PT e‖L2(ΩT ). We argue by duality and define

θ ∈ ◦
H1

L(yα, CY ) : aY (φ, θ) = (PT e, trΩ φ)L2(Ω) ∀φ ∈ ◦
H1

L(yα, CY ).

Then, by setting φ = E and using that trΩ E = e together with the definition of PT , we obtain that

‖PT e‖2
L2(Ω) = aY (E , θ) � ‖∇E‖L2(yα,CY )‖∇(θ −Θ)‖L2(yα,CY ), (5.22)

where Θ denotes the finite element approximation of θ on the space V(TY ). Applying Theorem 5.6, together
with the regularity estimates (5.1)–(5.2) we obtain

‖∇(θ −Θ)‖L2(yα,CY ) � | log(#TY )|s(#TY )−1/(n+1)‖PT e‖H1−s(Ω).

Since the family {T } is quasi-uniform, an inverse inequality implies the estimate ‖PT e‖H1−s(Ω) �
hs−1

T ‖PT e‖L2(Ω). This, combined with (5.22) and (5.17), yields

‖PT e‖2
L2(Ω) � | log(#TY )|2s(#TY )−(1+s)/(n+1)‖PT e‖L2(Ω)‖r‖H1−s(Ω),

which implies (5.21) and concludes the proof. �

We conclude with the following error estimates for the approximation of problem (1.3) that follow from an
application of Theorems 5.6 and 5.7. To state these results, we define the following approximation of the solution
to (1.3) with z replaced by r:

U = trΩ V, (5.23)

where V denotes the solution to the discrete problem (5.10). The discrete space for U is defined as U(T ) :=
trΩ V(TY ).

Theorem 5.8 (Error estimates for fractional diffusion). Let u(r) ∈ Hs(Ω) be the solution to problem (3.2) with
z replaced by r, and let U ∈ U(T ) be its numerical approximation defined by (5.23). If Ω is a convex C2 domain,
A ∈ C0,1(Ω̄) and Y ≈ | log(#TY )|, then we have the following error estimates:

‖u(r) − U‖Hs(Ω) � | log(#TY )|s(#TY )−1/(n+1)‖r‖H1−s(Ω), (5.24)

and
‖u(r) − U‖L2(Ω) � | log(#TY )|2s(#TY )−(1+s)/(n+1)‖r‖H1−s(Ω), (5.25)

where the hidden constants are independent of U (r), V , r and TY .

6. A fully discrete scheme for the optimal control problem

The results of previous sections are important in two aspects. First, we were able to replace the original
fractional optimal control problem by an equivalent one that involves a local operator and is posed on the semi-
infinite cylinder C. Then, we considered the truncated optimal control problem, that is posed on the bounded
domain CY , while just incurring in an exponentially small error in the process; see Lemma 4.2. Since in Section 5
we have proposed and analyzed a finite element discretization to approximate the solution to the truncated state
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equation (4.1) on curved domains, it remains to propose an efficient solution technique to solve the truncated
optimal control problem. This is the content of this section.

We assume that Ω is a convex C2 domain, and introduce a new fully discrete scheme that is based on the
approximation of the optimal control by piecewise linear functions on quasi-uniform meshes. This is in contrast
to [5], where the optimal control is discretized with piecewise constants functions. To approximate the optimal
state, we use the first-degree tensor product finite elements on anisotropic meshes described in Section 5.1. To
be precise, the scheme reads as follows: min J(trΩ V, Z), subject to the discrete state equation

aT (V,W ) = (Z, trΩW )L2(Ω) ∀W ∈ V(TY ), (6.1)

and the discrete control constraints Z ∈ Zad(T ), where

Zad(T ) = Zad ∩ {
Z ∈ L∞(ΩT ) : Z ∈ C(Ω̄T ), Z|K ∈ P1(K)∀K, Z|Ω̄\ΩT

= 0
}
,

aT is defined as in (5.11), K ∈ T , the discrete space V(TY ) is defined in (5.9), and P1(K) corresponds to the
space of polynomials of total degree at most 1. For convenience, we will refer to the problem previously defined
as the fully discrete optimal control problem.

We denote by (V̄ , Z̄) ∈ V(TY )×Zad(T ) the optimal pair solving the fully discrete optimal control problem.
If we define

Ū := trΩ V̄ , (6.2)

we obtain a fully discrete approximation (Ū , Z̄) ∈ U(T ) × Zad(T ) of the optimal pair (ū, z̄) ∈ Hs(Ω) × Zad

solving the fractional optimal control problem (1.2)–(1.4). We recall that the finite element space U(T ) is
defined as U(T ) = trΩ V(TY ).

Remark 6.1 (Locality). The main advantage of the fully discrete optimal control problem is that involves the
local problem (6.1) as state equation. In addition, it can handle multi-dimensions easily and efficiently – a highly
desirable feature.

We define the discrete operator HTY : Zad(T ) → U(T ) such that, for Z ∈ Zad(T ), it associates trΩ V ∈
U(T ), where V = V (Z) ∈ V(TY ) solves (6.1). With this operator at hand, we define the discrete and reduced
cost functional

jTY : Zad → R, jTY (r) = J(r,HTY r), (6.3)

which is continuous and convex. In addition, the second derivative j′′TY
(q)(r, r) does not depend on q and is

positive definite, i.e.,
j′′TY

(q)(r, r) ≥ ϑ‖r‖2
L2(Ω) ∀r ∈ L2(Ω). (6.4)

This property will be important in the error analysis provided in Section 6.1.
We also define the discrete adjoint state P = P (Z) ∈ V(TY ) as the solution to

aT (W,P ) = (trΩ V − ud, trΩW )L2(Ω) ∀W ∈ V(TY ). (6.5)

We present the following result concerning the existence and uniqueness of the optimal control together with
the first order necessary and sufficient optimality conditions for the fully discrete optimal control problem.

Theorem 6.2 (Existence, uniqueness and optimality system). The fully discrete optimal control problem has
a unique solution (V̄ , Z̄). The optimality system⎧⎪⎨

⎪⎩
V̄ = V̄ (Z̄) ∈ V(TY ) solution of (6.1),
P̄ = P̄ (Z̄) ∈ V(TY ) solution of (6.5),
Z̄ ∈ Zad(T ), (trΩ P̄ + ϑZ̄, Z − Z̄)L2(Ω) ≥ 0 ∀Z ∈ Zad(T ),

(6.6)

holds. These conditions are necessary and sufficient.

In the next subsection, we will provide an a priori error analysis for the fully discrete optimal control problem.
The analysis relies on the regularity properties of the optimal control r̄ derived in Propositions 4.3 and 4.4.
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6.1. A priori error analysis for the fully discrete scheme

In view of the results of Lemma 4.2 we conclude that to control the error z̄− Z̄, in the L2(Ω)-norm, it suffices
to bound ‖r̄ − Z̄‖L2(Ω). To accomplish this task, and in light of the limited regularity properties of both r̄
and trΩ p̄, we will consider the quasi-interpolation operator IT due to Scott and Zhang [11, 50]; we also refer
the reader to the one introduced by Clément in [21] and those in [18,25]. With this operator at hand, a simple
application of the triangle inequality yields

‖r̄ − Z̄‖L2(Ω) ≤ ‖r̄ − IT r̄‖L2(Ω) + ‖IT r̄ − Z̄‖L2(Ω). (6.7)

6.1.1. A quasi-interpolation operator

Before proceeding to estimate the terms on the right hand side of (6.7), we briefly describe the quasi-
interpolation operator IT : it is built on local averages and thus well-defined for functions in L1(ΩT ) and
exhibits optimal approximation properties in both Sobolev and Hölder spaces. In view of the fact that the
aforementioned averaging process extends beyond nodes, as it is the case of Lagrange interpolation, it is thus
necessary to define, for K ∈ T , the star or discrete neighborhood

SK = {K ′ ∈ T : K ′ ∩K �= ∅}. (6.8)

Since T ∈ TΩ, and the family TΩ is shape regular, we thus have that

max
K∈T

#SK ≤ C(T0), max
K′∈SK

|K|
|K ′| ≤ C(T0), (6.9)

where C(T0) only depends on the shape regularity constant of T0. Denote by {φz}z∈N (T ) the global Lagrange
basis of the space

W(T ) = {W ∈ C0(Ω̄T ) : W |K ∈ P1(K)∀K ∈ T },

and by {φ∗z}z∈N (T ) the global dual basis; see [26, 43]. With these ingredients at hand, we thus define the
quasi-interpolation operator IT : L1(ΩT ) → W(T ) by

IT v =
∑

z∈N (T )

(v, φ∗z)L2(SK)φz ,

where SK is defined as in (6.8) and N (T ) denotes the set of nodes of T . We observe that, by construction, IT is
invariant over W(T ), i.e. IT W = W for all W ∈ W(T ). We shall make use of the following local interpolation
results (see [11, 50] and also Prop. 3 of [43], Chap. 5). If, for δ ∈ (0, 2), v ∈ Hδ(Ω), then

‖v − IT v‖L2(K) � hδ
T ‖v‖Hδ(SK); (6.10)

where K ∈ T and the space Hδ(Ω) is defined as in Section 2.2. On the other hand, if, for ε ∈ (0, 1), v ∈ C0,ε(Ω̄),
then we have, for K ∈ T , the local error estimate

‖v − IT v‖L∞(K) � hε
T |v|C0,ε(SK). (6.11)

We comment that by modifying the averaging process for boundary nodes and defining a set of dual basis with
respect to an L2-scalar product over (n− 1)-subsimplices contained on ∂ΩT we obtain that IT v has zero trace
if v ∈W 1,1(ΩT ) does; we, again, refer the reader to [11, 50] for details.
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6.1.2. A priori error estimates

To estimate the terms that appear on the right hand side of (6.7), we consider a suitable partition of the
mesh T that is based on an assumption about the structure of the active sets [9, 40]. We divide T in three
subsets, that contain the active cells, inactive cells and cells with kinks, and are defined, respectively, as follows:

T 1 = {K ∈ T : r̄|K = a or r̄|K = b}, (6.12)
T 2 = {K ∈ T : a < r̄|K < b}, (6.13)
T 3 = T \ (T 1 ∪ T 2). (6.14)

Notice that T 3 is the set of cells of T that contain the free boundary between the active and the inactive
set. We assume the following condition on the mesh T and the optimal control r̄: there exists C > 0, which is
independent of hT , such that ∑

K∈T 3

|K| ≤ ChT . (6.15)

This assumption is valid, for instance, if the boundary of the sets {x′ ∈ Ω : r̄(x′) = a} and {x′ ∈ Ω : r̄(x′) = b}
contain a finite number of rectifiable curves [40, 41].

We now bound the first term on the right hand side of (6.7). In an effort to simplify the exposition of the
material, we define

σ :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 , s ∈ (0, 1

4 ],
2s, s ∈ (1

4 ,
1
2 ),

θ, s = 1
2 ,

1, s ∈ (1
2 , 1),

(6.16)

where θ < 1.

Lemma 6.3 (Interpolation estimate). Let Ω be a convex C2 domain and A ∈ C0,1(Ω̄). If ud ∈ L∞(Ω)∩H1
0 (Ω)

and a < 0 < b, then we have

‖r̄ − IT r̄‖L2(Ω) � h
1
2+σ

T , (6.17)

where σ is defined as in (6.16), IT denotes the quasi-interpolation of Section 6.1.1, and the hidden constant is
independent of the continuous and discrete optimal variables and the mesh TY .

Proof. We begin by splitting the square of the error ‖r̄ − IT r̄‖L2(Ω) into two contributions:

‖r̄ − IT r̄‖2
L2(Ω) = ‖r̄ − IT r̄‖2

L2(Ω\ΩT ) + ‖r̄ − IT r̄‖2
L2(ΩT );

we have extended IT r̄ by zero to Ω. The latter and the fact that r̄ ∈ H1
0 (Ω) (see Prop. 4.3) allow us to control,

in view of ([49], Lem. 5.2.3), the first term on the right hand side of the previous expression:

‖r̄ − IT r̄‖2
L2(Ω\ΩT ) = ‖r̄‖2

L2(Ω\ΩT ) � h4
T |̄r|2H1(Ω\ΩT ). (6.18)

We now control the remaining term ‖r̄ − IT r̄‖L2(ΩT ). Since r̄ ∈ H1
0 (Ω), an application of (6.10) yields

‖r̄ − IT r̄‖2
L2(ΩT ) � h2

T ‖r̄‖2
H1(Ω). (6.19)

However, such an estimate can be improved, for s ∈ (1
4 , 1), by invoking the regularity results, on Sobolev and

Hölder spaces, of Propositions 4.3 and 4.4, respectively. To accomplish this task, we follow [9, 40] and invoke
the partition (6.12)–(6.14) of the mesh T to write

‖r̄ − IT r̄‖2
L2(ΩT ) =

3∑
j=1

∑
K∈T j

‖r̄ − IT r̄‖2
L2(K) = I + II + III.

We proceed to examine each term separately.
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Step 1. We start with the term I and distinguish the following cases.

(1.1) K ∈ T 1: r̄|SK = a or r̄|SK = b. In this case, the local invariance of IT guarantees that (̄r − IT r̄)|SK = 0.
Consequently eK := ‖r̄ − IT r̄‖L2(K) = 0.

(1.2) K ∈ T 1: SK ∩T 3 �= ∅. We thus have the existence of K̃ ∈ T 3 such that SK ∩ K̃ �= ∅. Consequently, we
can bound eK as follows:

eK ≤ ‖r̄ − IT r̄‖L2(SK̃) ≤ |SK̃ |12 ‖r̄ − IT r̄‖L∞(SK̃).

Thus, if s ∈ (1
4 , 1), we apply (6.11) and arrive at∑

K∈T 1

SK∩T 3 
=∅

e2K ≤
∑

K̃∈T 3

|SK̃ |‖r̄ − IT r̄‖2
L∞(SK̃) � h2σ

T ‖r̄‖2
C0,σ(Ω̄)

∑
K̃∈T 3

|SK̃ |; (6.20)

where we have used (4.8)–(4.9). Now, in view of the quasi-uniformity properties (6.9) and the assumption (6.15)
we conclude that the left hand side of (6.20) is bounded by Ch1+2σ

T ‖r̄‖2
C0,σ(Ω̄)

, which in turns imply that

I ≤ Ch1+2σ
T ‖r̄‖2

C0,σ(Ω̄)
.

We comment that, since the simplices K are chosen to be closed and r̄ ∈ C(Ω̄), the case K ∈ T 1 such that
SK ∩ T 2 �= ∅ and SK ∩ T 3 = ∅ can not occur.

Step 2. We estimate the term II. We consider the following cases.

(2.1) K ∈ T 2: a < r̄|SK < b. We thus have that r̄|SK = −(1/ϑ) trΩ p̄|SK . Then, r̄ and trΩ p̄ possess the same
regularity over SK , which is dictated by Proposition 4.3: trΩ p̄ ∈ Hκ(Ω), where κ = min{1 + 2s, 2}.
Consequently, an application of (6.10) yields

e2K = ‖r − IT r‖2
L2(K) � h2κ

K ‖ trΩ p̄‖2
Hκ(SK).

(2.2) K ∈ T 2: SK ∩ T 3 �= ∅. We observe that the same arguments used in (6.20) allow us to conclude that∑
K∈T 2

SK∩T 3 
=∅

e2K ≤
∑

K̃∈T 3

|SK̃ |‖r̄ − IT r̄‖2
L∞(SK̃) � h1+2σ

T ‖r̄‖2
C0,σ(Ω̄).

We thus collect the derived estimates and conclude, for s ∈ (1
4 , 1), that

II � h1+2σ
T

(
‖r̄‖2

C0,σ(Ω̄) + ‖ trΩ p̄‖2
Hκ(Ω)

)
,

upon realizing that κ > 1
2 +σ. We comment that the scenario K ∈ T 2 such that SK ∩T 3 = ∅ and SK ∩T 1 �= ∅

can not occur.
We finally bound the term III. The estimate follows, again, the arguments used to obtain (6.20): for s ∈ (1

4 , 1)
we have that

III ≤
∑

K∈T 3

|K|‖r̄ − IT r̄‖2
L∞(K) � h2σ

T ‖r̄‖2
C0,σ(Ω̄)

∑
K∈T 3

|K| � h1+2σ
T ‖r̄‖2

C0,σ(Ω̄),

where we have used the regularity results of Proposition 4.4.
We then collect the derived estimates for the terms I, II and III to obtain that

‖r̄ − IT r̄‖2
L2(ΩT ) � h1+2σ

T .

This, in view of the estimate (6.18), implies the desired estimate. �
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We now derive an instrumental result that will be important to estimate the second term on the right hand
side of (6.7). To accomplish this task, we introduce the following auxiliary problem:

Q ∈ V(TY ) : aT (W,Q) = (trΩ v̄ − ud, trΩW )L2(Ω) ∀W ∈ V(TY ), (6.21)

where v̄ denotes the solution to problem (4.1) and V(TY ) is defined as in (5.9).

Lemma 6.4 (Auxiliary estimate I). Let Ω be a convex C2 domain and A ∈ C0,1(Ω̄). If ud ∈ H1−s(Ω) and
a < 0 < b, then we have the estimate

‖ trΩ (p̄− P (̄r)) ‖L2(Ω) � | log(#TY )|2s(#TY )−(1+s)/(n+1), (6.22)

where p̄ = p̄(̄r) denotes the solution to (4.4) and the hidden constant is independent of the continuous and
discrete optimal variables and the mesh TY .

Proof. We begin with a simple application of the triangle inequality to deduce that

‖ trΩ(p̄− P (̄r))‖L2(Ω) ≤ ‖ trΩ(p̄−Q)‖L2(Ω) + ‖ trΩ(Q− P (̄r))‖L2(Ω). (6.23)

To bound the first term on the right hand side of the previous expression, we use the results of Theorem 5.7.
We thus arrive at

‖ trΩ(p̄−Q)‖L2(Ω) � | log(#TY )|2s(#TY )−
1+s
n+1 ‖ trΩ v̄ − ud‖H1−s(Ω).

We remark that, in view of the results of Proposition 4.3, the term ‖ trΩ v̄‖H1−s(Ω) is uniformly bounded.
We now proceed to bound the second term on the right hand side of (6.23). To accomplish this task, we

invoke the trace estimate (2.6) and the stability of the problem that Q− P (̄r) solve to arrive at

‖ trΩ(Q− P (̄r))‖L2(Ω) � ‖∇(Q− P (̄r))‖L2(yα,CY ) � ‖ trΩ(v̄ − V (̄r))‖L2(Ω).

The remaining term is bounded by an application of Theorem 5.7. This yields

‖ trΩ(Q− P (̄r))‖L2(Ω) � | log(#TY )|2s(#TY )−
1+s
n+1 ‖r̄‖H1−s(Ω);

the H1−s(Ω)-norm of r̄ being uniformly bounded is a consequence of the fact that r̄ ∈ H1
0 (Ω); see Proposition 4.3.

Collecting the derived estimates, we arrive at (6.22) and conclude the proof. �

With the Lemma 6.4 at hand, we proceed to estimate the second term on the right hand side of (6.7).

Lemma 6.5 (Auxiliary estimate II). Let Ω be a convex C2 domain and A ∈ C0,1(Ω̄). If ud ∈ H1
0 (Ω) ∩L∞(Ω)

and a < 0 < b, then we have

‖IT r̄ − Z̄‖L2(Ω) � | log(#TY )|2sh
1
2+σ

T , (6.24)

where σ is defined as in (6.16), IT denotes the quasi-interpolation of Section 6.1.1, and the hidden constant is
independent of the continuous and discrete optimal variables and the mesh TY .

Proof. We begin with an application of the coercivity property (6.4) of jTY . For an arbitrary q ∈ L2(Ω), we
have that

ϑ‖IT r̄ − Z̄‖2
L2(Ω) ≤ j′′TY

(q)(IT r̄ − Z̄, IT r̄ − Z̄) = j′TY
(IT r̄)(IT r̄ − Z̄) − j′TY

(Z̄)(IT r̄ − Z̄). (6.25)

We now invoke the variational inequality of the optimality system (4.5) with r = Z̄ ∈ Zad to derive that

0 ≤ −j′(̄r)(̄r − Z̄) = −j′(̄r)(IT r̄ − Z̄) − j′ (̄r)(̄r − IT r̄).
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On the other hand, by setting Z = IT r̄ ∈ Zad(T ) in the variational inequality of the discrete optimality
system (6.6), we arrive at

−j′TY
(Z̄)(IT r̄ − Z̄) ≤ 0.

In light of the previous two estimates, we proceed to control the right hand side of (6.25). In fact, we have
that

ϑ‖IT r̄ − Z‖2
L2(Ω) ≤ j′TY

(IT r̄)(IT r̄ − Z̄) − j′(̄r)(IT r̄ − Z̄) − j′(̄r)(̄r − IT r̄)

≤
[
j′TY

(IT r̄)(IT r̄ − Z̄) − j′TY
(̄r)(IT r̄ − Z̄)

]
+

[
j′TY

(̄r)(IT r̄ − Z̄)

− j′(̄r)(IT r̄ − Z̄)
]
− j′(̄r)(̄r − IT r̄) =: I + II − III. (6.26)

Then, it suffices to bound the terms I, II and III. We proceed to examine each term separately.
First, the quadratic structure of jTY implies the Lipschitz continuity of j′TY

. This combined with the L2(Ω)-
continuity of HTY and the estimate (6.17) imply that

|I| = |j′′TY
(η)(IT r̄ − r̄, IT r̄ − Z̄)|

=
∣∣(HTY (IT r̄ − r̄),HTY (IT r̄ − Z̄))L2(Ω) + ϑ(IT r̄ − r̄, IT r̄ − Z̄)L2(Ω)

∣∣
� ‖IT r̄ − r̄‖L2(Ω)‖IT r̄ − Z̄‖L2(Ω) � h

σ+1/2
T ‖IT r̄ − Z̄‖L2(Ω).

(6.27)

We now control the term II. Invoking the definitions (4.3) and (6.3) of j and jTY , respectively, we write

|II| = |(trΩ(P (̄r) − p̄), IT r̄ − Z̄)L2(Ω)| ≤ ‖ trΩ(P (̄r) − p̄)‖L2(Ω)‖IT r̄ − Z̄‖L2(Ω),

and then, by applying the result of Lemma 6.4, we obtain that

|II| � | log(#TY )|2sh1+s
T ‖IT r̄ − Z̄‖L2(Ω). (6.28)

We finally bound the term III. To accomplish this task, we write

III = j′(̄r)(̄r − IT r̄)w = (trΩ p̄+ ϑr̄, r̄ − IT r̄)L2(Ω) = (trΩ p̄+ ϑr̄, r̄ − IT r̄)L2(Ω\ΩT ) +
∑

K∈T

III(K).

We now notice that, since IT is extended by zero to Ω and r̄, trΩ p̄ ∈ H1
0 (Ω) (see Prop. 4.3), an application of

the results of ([49], Lem. 5.2.3) yields

|(trΩ p̄+ ϑr̄, r̄ − IT r̄)L2(Ω\ΩT )| = |(trΩ p̄+ ϑr̄, r̄)L2(Ω\ΩT )|
� h4

T (|̄r|H1(Ω\ΩT ) + | trΩ p̄|H1(Ω\ΩT ))|̄r|H1(Ω\ΩT ). (6.29)

We now estimate each term III(K) depending on the location of the cell K ∈ T with respect to the partition
of T defined by (6.12)–(6.14).

(1) K ∈ T 1 : In this situation, the cell K is active and thus, following the arguments developed in the proof of
Lemma 6.3, we distinguish two cases.
(1.1) K ∈ T 1: r̄|SK = a or r̄|SK = b. In this case, (̄r − IT r̄)|SK = 0 and thus III(K) = (trΩ p̄ + ϑr̄, r̄ −

IT r̄)L2(Ω) = 0.
(1.2) K ∈ T 1: SK ∩T 3 �= ∅, i.e. there exists K̃ ∈ T 3 such that SK ∩ K̃ �= ∅. Since K ⊂ SK̃ and K̃ ⊂ SK ,

we derive the estimate

|III(K)| ≤ |K|‖ trΩ p̄+ ϑr̄‖L∞(K)‖r̄ − IT r̄‖L∞(K)

≤ |SK̃ |‖ trΩ p̄+ ϑr̄‖L∞(SK)‖r̄ − IT r̄‖L∞(K).
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Now, since K̃ ∈ T 3, then there exists x′0 ∈ K̃ such that (trΩ p̄ + ϑr̄)(x′0) = 0. This, in view of
Proposition 4.4, the assumption (4.9), the quasi-uniform properties (6.9), and the definition of the
Hölder-norm, implies

‖ trΩ p̄+ ϑr̄‖L∞(SK) = ‖ trΩ p̄+ ϑr̄ − (trΩ p̄+ ϑr̄)(x′0)‖L∞(SK)

� hσ
T ‖ trΩ p̄+ ϑr̄‖C0,σ(S̄K).

On the other hand, in view of the results of Proposition 4.4, we apply (6.11) and obtain that ‖r̄ −
IT r̄‖L∞(K) � hσ

T ‖r̄‖C0,σ(SK). Then,

∑
K∈T 1

SK∩T 3 
=∅

III(K) � hσ
T ‖ trΩ p̄+ ϑr̄‖C0,σ(Ω̄) · hσ

T ‖r̄‖C0,σ(Ω̄)

∑
K̃∈T 3

|SK̃ |,

which, in light of (6.15), implies that
∑

K∈T 1 III(K) � h1+2σ
T .

(2) K ∈ T 2: Since the cell K is inactive, the optimality condition of the system (4.5) immediately yields
(trΩ p̄+ ϑr̄)|K = 0. Consequently, III(K) = 0.

(3) K ∈ T 3: The arguments are similar to the ones elaborated in the first step. We start with the estimate
|III(K)| ≤ |K|‖ trΩ p̄ + ϑr̄‖L∞(K)‖r̄ − IT r̄‖L∞(K). Since K ∈ T 3, there exists x′0 ∈ K such that (trΩ p̄ +
ϑr̄)(x′0) = 0. This yields

‖ trΩ p̄+ ϑr̄‖L∞(K) � hσ
T ‖ trΩ p̄+ ϑr̄‖C0,σ(K̄).

On the other hand, we have that ‖r̄ − IT r̄‖L∞(K) � hσ
T ‖r̄‖C0,σ(SK). Consequently, III(K) �

h2σ
T

∑
K∈T 3 |K| � h1+2σ

T .

Finally, we collect all the derived estimates for III(K) and invoke (6.29) to derive that

|III| � h4
T +

∑
K∈T 1∪T 3

|III(K)| � h1+2σ
T . (6.30)

Inserting the estimates (6.27), (6.28) and (6.30) in (6.26), we derive the desired inequality (6.24) upon realizing
that 1 + s > 1

2 + σ for all s ∈ (0, 1). This concludes the proof. �

Theorem 6.6 (Fractional control problem: error estimate). Let z̄ and Z̄ be the optimal controls for the fractional
optimal control problem (1.2)–(1.4) and the fully discrete optimal control problem, respectively. If Ω is a convex
C2 domain, A ∈ C0,1(Ω̄), and ud ∈ L∞(Ω) ∩ H1−s(Ω), then

‖z̄ − Z̄‖L2(Ω) � | log(#TY )|2s(#TY )
−1

n+1( 1
2+σ),

where the hidden constant is independent of the continuous and discrete optimal variables and the mesh TY .
The parameter σ is defined as in (6.16).

Proof. We combine the exponential convergence result of Lemma 4.2 with, in view of (6.7), the estimates (6.17)
and (6.24) to arrive at

‖z̄ − Z̄‖L2(Ω) ≤ ‖z̄ − r̄‖L2(Ω) + ‖r̄ − Z̄‖L2(Ω) � e−
√

λ1Y /4 + | log(#TY )|2sh
1
2+σ

T .

A natural choice of Y comes from equilibrating the two terms on the right hand side of the previous expression:
Y ≈ | log(#TY )|. This gives the desired estimate and concludes the proof. �
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Remark 6.7 (Error estimate for s ∈ (0, 1)). For s ∈ (1
2 , 1), the estimate of Theorem 6.6 reads

‖z̄ − Z̄‖L2(Ω) � | log(#TY )|2s(#TY )−
3

2(n+1) .

Since the family {T } is quasi-uniform, #T ≈ Mn and #TY ≈ #T ·M , we have that hT ≈ (#T )−1/n ≈
(#TY )−1/(n+1). This implies that the previous estimate can be rewritten as

‖z̄ − Z̄‖L2(Ω) � | log(#TY )|2sh
3
2
T ,

which, up to the logarithmic term, corresponds to the well-known error estimate for first-degree approximation
of the optimal control [9, 40]. In the particular case that s = 1/2, Theorem 6.6 provides a slightly deteriorated
error estimate:

‖z̄ − Z̄‖L2(Ω) � | log(#TY )|2s(#TY )
−1

(n+1)

(
1
2+θ

)
,

for any θ < 1. For s ∈ (1
4 ,

1
2 ), the result of Theorem 6.6 reads

‖z̄ − Z̄‖L2(Ω) � | log(#TY )|2s(#TY )
−1

(n+1)

(
1
2+2s

)
,

while, for s ∈ (0, 1
4 ], we have derived ‖z̄ − Z̄‖L2(Ω) � | log(#TY )|2s(#TY )

−1
(n+1) .

7. Numerical experiments

In this section, we conduct a series of numerical experiments that illustrate the performance of the fully
discrete scheme proposed in Section 6 and support our theoretical findings.

The implementation has been carried out within the MATLAB software library iFEM [16]. The stiffness
matrices of the discrete systems (6.1) and (6.5) are assembled exactly, and the respective forcing boundary
terms are computed by a quadrature formula which is exact for polynomials of degree 4. The resulting linear
system is solved by using the built-in direct solver of MATLAB. To solve the minimization problem, we use
the projected Broyden–Fletcher–Goldfrab–Shanno (BFGS) method. The optimization algorithm is terminated
when the �2-norm of the projected gradient is less than or equal to 10−8.

To illustrate the error estimates of Theorem 6.6 we consider the following exact solution to the fractional
optimal control problem (1.2)–(1.4). Let n = 2, ϑ = 1, Ω = (0, 1)2, and A(x′) ≡ 1 in (1.5). The eigenvalues and
eigenfunctions of the operator L are given by:

λk,l = π2(k2 + l2), ϕk,l(x1, x2) = sin(kπx1) sin(lπx2), k, l ∈ N.

To construct an exact solution, we consider the following modification of problem (1.3). Given s ∈ (0, 1), the
forcing term f and the control z, the aforementioned modified problem reads: find u such that Lsu = f + z in
Ω and u = 0 on ∂Ω. If a = −0.5 and b = 0.5, and ud = (1 + ϑλs

2,2) sin(2πx1) sin(2πx2), then we have that
ū = sin(2πx1) sin(2πx2), p̄ = −ϑ sin(2πx1) sin(2πx2), and

z̄ = min {0.5,max {−0.5,−p̄/ϑ}} ,

where f = λs
2,2 sin(2πx1) sin(2πx2) − z̄. We notice that z̄ ∈ H1

0 (Ω) ∩ C0,1(Ω̄) and p̄ ∈ H2(Ω) ∩ H1
0 (Ω) for all

the values of s ∈ (0, 1). We remark that under this regularity property of the optimal control, the arguments
developed in the proof of the estimates (6.17) and (6.24) guarantee the error estimate

‖z̄ − Z̄‖L2(Ω) � | log(#TY )|2s(#TY )−
3

2(n+1) .
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Table 1. Experimental errors for both, the fully discrete scheme studied in Section 6 (P1-
scheme) and the P0-scheme proposed in [5]. Two different values of the parameter s are con-
sidered: 0.2 and 0.8.

# DOFs Ez(P0; 0.2) Ez(P1; 0.2) Ez(P0; 0.8) Ez(P1; 0.8)
432 0.147712126 0.131130828 0.1482301425 0.1470944750
3146 0.083305924 0.036668665 0.0840901319 0.0443202090
10 496 0.058953277 0.020712242 0.0588454408 0.0241526956
25 137 0.044253527 0.012937511 0.0441539905 0.0148381456
49 348 0.035650434 0.008967500 0.0356800357 0.0101409325
85 529 0.029769320 0.007334747 0.0297507072 0.0080907623
137 376 0.025419044 0.005094037 0.0254259814 0.0056585074

7.1. Piecewise linear versus piecewise constant approximation

In this section we explore the advantages of the fully discrete scheme of Section 6 when solving the fractional
optimal control problem; we compare the performance of this scheme (P1-scheme) with that of the numer-
ical technique investigated in [5] that is based on piecewise constant approximation of the optimal control
(P0-scheme). Table 1 show, for different meshes TY , the error Ez in the control approximation due to the
P1-scheme and the P0-scheme. Two values of the parameter s are considered: s = 0.2 and s = 0.8. #DOFs
denotes the number of degrees of freedom of TY . It can be observed that, for a mesh TY with # DOFs =
137376, the error obtained with the P1-scheme is almost an order in magnitude smaller than the corresponding
error due to the P0-scheme of [5].

7.2. Computational convergence rates for s ∈ (0, 1)

In Figure 2, we show the the asymptotic relation

‖z̄ − Z̄‖L2(Ω) ≈ (#TY )−
1
2

103 104 105

10-3

10-2

10-1

Figure 2. Computational rates of convergence for the fully discrete scheme proposed in
Section 6 on anisotropic meshes for n = 2 and s = 0.2, s = 0.4, s = 0.6 and s = 0.8. The
figure shows the decrease of the L2-norm of the error for the optimal control with respect to
#TY . In all the cases we recover the rate (#TY )−1/2.
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Figure 3. Computational rates of convergence for the fully discrete scheme proposed in
Section 6 on anisotropic meshes for n = 2 and s = 0.1, s = 0.3, s = 0.5, s = 0.7 and
s = 0.9. The figure shows the decrease of the L2-norm of the error for the optimal control with
respect to #TY . In all the cases we recover the rate (#TY )−1/2.

which illustrate the decay rate of our fully discrete scheme of Section 6 for n = 2 and all the choices of the
parameter s considered: s = 0.2, s = 0.4, s = 0.6, and s = 0.8. For s = 0.6 and s = 0.8, the presented results are
in agreement with the error estimate of Theorem 6.6. For s = 0.4 the results of Figure 2 present an experimental
convergence rate that is better than the one derived in Theorem 6.6. This is due to the fact, in this case, the
optimal variables z̄ ∈ H1

0 (Ω)∩C0,1(Ω̄) and p̄ ∈ H2(Ω)∩H1
0 (Ω); regularity properties that are not provided by

Lemma 3.4 and Theorem 3.7 for s ∈ (0, 1
2 ). Similar results are shown in Figure 3 for the following values of the

parameter s: s = 0.1, s = 0.3, s = 0.5, s = 0.7 and s = 0.9.
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[5] H. Antil and E. Otárola, A FEM for an optimal control problem of fractional powers of elliptic operators. SIAM J. Control
Optim. 53 (2015) 3432–3456.
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[32] E. Hernández and R. Rodŕıguez, Finite element approximation of spectral problems with Neumann boundary conditions on
curved domains. Math. Comp. 72 (2003) 1099–1115.

[33] Y. Huang and A. Oberman, Numerical methods for the fractional laplacian: A finite difference-quadrature approach. SIAM J.
Numer. Anal. 52 (2014) 3056–3084.

[34] M. Ilic, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation. I. Fract. Calc. Appl.
Anal. 8 (2005) 323–341.

[35] M. Ilic, F. Liu, I. Turner and V. Anh, Numerical approximation of a fractional-in-space diffusion equation. II. With nonhomo-
geneous boundary conditions. Fract. Calc. Appl. Anal. 9 (2006) 333–349.

[36] R. Ishizuka, S.-H. Chong, and F. Hirata, An integral equation theory for inhomogeneous molecular fluids: the reference
interaction site model approach. J. Chem. Phys. 128 (2008) 034504.

[37] A. Kufner and B. Opic, How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin. 25 (1984) 537–554.

[38] S.Z. Levendorskĭı, Pricing of the American put under Lévy processes. Int. J. Theor. Appl. Finance 7 (2004) 303–335.

[39] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. In Vol. I. Springer-Verlag, New
York (1972).

[40] D. Meidner and B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control
problems part ii: Problems with control constraints. SIAM J. Control Optim. 47 (2008) 1301–1329.
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