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A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION
AND AN A POSTERIORI ERROR ESTIMATOR FOR AN INTERIOR PENALTY

DISCONTINUOUS GALERKIN APPROXIMATION ?

Dietrich Braess1, R.H.W. Hoppe2,∗∗ and Christopher Linsenmann3

Abstract. We consider an a posteriori error estimator for the Interior Penalty Discontinuous Galerkin
(IPDG) approximation of the biharmonic equation based on the Hellan-Herrmann-Johnson (HHJ)
mixed formulation. The error estimator is derived from a two-energies principle for the HHJ formulation
and amounts to the construction of an equilibrated moment tensor which is done by local interpolation.
The reliability estimate is a direct consequence of the two-energies principle and does not involve generic
constants. The efficiency of the estimator follows by showing that it can be bounded from above by
a residual-type estimator known to be efficient. A documentation of numerical results illustrates the
performance of the estimator.
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1. Introduction

The biharmonic equation is more often solved by nonconforming or mixed methods than by conforming
elements in order to avoid the computationally expensive implementation of H2 conforming elements such as
the Argyris plate elements of the TUBA family [4] or the generalizations of the Hsieh–Clough–Tocher elements
from [27]. As far as mixed methods are concerned, the fourth order equation is written as a system of two second
order equations, e.g.,

D2u = p,
∇ ·∇ · p = f,

(1.1)

where D2u is the matrix of second partial derivatives of u and p stands for the moment tensor. The formu-
lation (1.1) leads to the mixed method of Hellan–Herrmann–Johnson [38, 39, 42]. Another splitting is given
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by

∆u = w,
∆w = f,

(1.2)

and leads to the mixed method of Ciarlet–Raviart [23]. Among nonconforming approaches, Discontinuous
Galerkin (DG) methods have been studied recently in [20, 21, 25, 33–35, 37, 43, 44, 48]. The relationship be-
tween DG methods and mixed methods turns out to be useful for the biharmonic problem as it is for second
order elliptic boundary value problems due to the unified analysis in [6]. Fourth order problems have been
treated similarly in [34].

The biharmonic equation is often discussed in the framework of plate models. In particular, C0 finite element
approximations for Kirchhoff plates have been studied in [11] with regard to an a priori error analysis (for a
documentation of numerical results see [12]). An a posteriori error analysis for the Morley plate element has
been provided in [10, 13]. Local C0 Discontinuous Galerkin methods for Kirchhoff plates have been suggested
in [41]. For other fourth order problems such as the Cahn–Hilliard equation we refer to [28,53].

The Interior Penalty DG (IPDG) methods considered in [34, 35] are fully discontinuous in the sense that
globally discontinuous, piecewise polynomials of degree k ≥ 2 are used for the approximation of the primal
variable u. On the other hand, those in [20,21,33] are based on the Hellan–Herrmann–Johnson splitting as given
by (1.1). The IPDG schemes in [20, 21, 33] feature C0 elements of Lagrangian type. Residual-type a posteriori
error estimators have been considered and analyzed in [20,33,35].

We will consider a posteriori error bounds by the two-energies principle, also known as the hypercircle method.
It was originally developed by Prager and Synge [47,49,50] and more recently considered in connection with sec-
ond order elliptic problems in [1,7,14–18,52]. The considerations of DG methods in this direction [2, 3, 24,29–32]
were also done for equations of second order.

In this paper, we focus on the biharmonic equation in the formulation of Hellan–Herrmann–Johnson and the
application of the hypercircle method to its IPDG approximation. The advantage of a posteriori error bounds
based on the two-energies principle compared to standard residual-type error estimators is that the reliability
estimate does not contain generic constants (see the papers mentioned above and (5.9) below). As we shall
see, the implementation amounts to the construction of an equilibrated moment tensor which can be done by
means of a discrete three-field mixed formulation of the IPDG approximation. The construction only requires
local interpolations in a postprocessing and has not yet been considered for problems of fourth order in the
literature. In fact, the analysis is much more involved than the analogous one for equations of second order. We
note that a four-field mixed formulation of the biharmonic equation has been considered in [9]. We think that
the a posteriori error analysis presented in this paper can be extended to this four-field formulation. However,
it does not directly carry over to the C0IPDG method considered in [20, 21]. Instead, an approach similar to
that in [17] for second order elliptic boundary value problems should be followed. This will be worked out in
forthcoming research.

The paper is organized as follows: Section 2 lists some notation. In Section 3, we introduce the two-energies
principle for the variational formulation of the Hellan–Herrmann–Johnson mixed approach. Section 4 is devoted
to the IPDG approximation and associated discrete two-field and three-field formulations. Section 5 describes
how the error bounds obtained from the two-energies principle can be built into a reliable a posteriori error
estimator. The construction of the equilibrated moment tensor is dealt with in Section 6. In Section 7, we prove
the efficiency of the estimator by showing that it can be bounded from above by a residual-type estimator which
is known to be efficient. Finally, in Section 8 we provide a documentation of numerical results illustrating the
quasi-optimality of the IPDG approximation and the performance of the estimator.

2. Notation

We will use standard notation from Lebesgue and Sobolev space theory [14,19,51]. In particular, for a bounded
domain Ω ⊂ R2 and D ⊆ Ω̄ we denote the L2-inner product and the associated L2-norm by (·, ·)0,D and ‖ ·‖0,D,
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respectively. We further refer to Hk(Ω), k ∈ N, as the Sobolev spaces with inner product (·, ·)k,Ω , norm ‖ · ‖k,Ω ,
and seminorm | · |k,Ω , and to Hk−1/2(Γ ′), Γ ′ ⊆ Γ = ∂Ω, as the associated trace spaces. Hk

0 (Ω) stands for the
closure of C∞0 (Ω) in the Hk-norm. Further, H−k(Ω) refers to the dual space of Hk

0 (Ω) with 〈·, ·〉k,Ω denoting the
dual product. Sobolev spaces Hs(Ω) with broken index s ∈ R+ are defined by interpolation. Moreover, H(div, Ω)
is the Hilbert space of vector fields q ∈ L2(Ω)2 such that ∇ · q ∈ L2(Ω). Matrix-valued functions in L2(Ω)2×2

will be denoted by q = (qij)2
i,j=1 and the inner-product is (p,q)0,Ω :=

∫
Ω

p : q dx, where p : q :=
∑2
i,j=1 pijqij .

Further, we introduce the Hilbert space

H(div2, Ω) :=
{

q ∈ H(div, Ω)2 |∇ · q ∈ H(div, Ω)
}
.

Finally, given a function u ∈ H2(Ω), we refer to D2u := (∂2u/∂xi∂xj)2
i,j=1 as the matrix of second partial

derivatives.
Let Th(Ω) be a geometrically conforming, locally quasi-uniform simplicial triangulation of the computational

domain. For D ⊆ Ω, we denote by Eh(D) the set of edges of Th(Ω) in D. We further denote by hK ,K ∈ Th(Ω),
the diameter of K, by hE , E ∈ Eh(Ω), the length of E, and we set h := max{hK | K ∈ Th(Ω)}. Moreover, for
D ⊆ K we refer to Pm(D), m ∈ N, as the set of polynomials of degree ≤ m on D. For two quantities A and B
we will use the notation A . B, if there exists a constant C > 0, independent of h, such that A ≤ CB.

Due to the local quasi-uniformity of the triangulation, there exist constants 0 < c ≤ C such that

c hE ≤ hK ≤ C hE , E ∈ Eh(∂K). (2.1)

For a function w ∈ L2(Ω) with w|K ∈ C(K),K ∈ Th(Ω), and an interior edge E = K+ ∩K−, K± ∈ Th(Ω), we
set w± := w|E∩K± and define the average and jump across E as usual according to

{w}E :=

{ 1
2

(w+ + w−), E ∈ Eh(Ω)
w|E , E ∈ Eh(Γ ),

(2.2a)

[w]E :=

{
w+ − w−, E ∈ Eh(Ω)

w|E , E ∈ Eh(Γ ).
(2.2b)

The average and jump across E ∈ Eh(Ω̄) are defined analogously for vector fields w ∈ L2(Ω)2 with w|K ∈
C(K)2,K ∈ Th(Ω), and tensors p ∈ L2(Ω)2×2 with p|K ∈ C(K)2×2,K ∈ Th(Ω). Moreover, we refer to
nE , E ∈ Eh(Ω), E = K+ ∩K−, as the unit normal vector pointing from K+ to K− and to nE , E ∈ Eh(Γ ), as
the exterior unit normal vector nΓ on E ∩ Γ . Products like

[w]EnE = w+n∂K+ + w−n∂K−

and other products under consideration are independent of the choice ofK+ andK− and the resulting orientation
of the edge.

3. A two-energies principle for the biharmonic equation

Given a bounded polygonal domain Ω ⊂ R2 with boundary Γ := ∂Ω and a function f ∈ H−2(Ω), we consider
the biharmonic equation with homogeneous Dirichlet boundary conditions

∆2u = f in Ω, (3.1a)
u = nΓ ·∇u = 0 on Γ. (3.1b)

We note that in the framework of IPDG approximations other boundary conditions such as Neumann or mixed
Dirichlet/Neumann boundary conditions can be dealt with as well (cf., e.g. [35]).
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A primal variational formulation of (3.1) amounts to the computation of u ∈ H2
0 (Ω) such that for all

v ∈ H2
0 (Ω) it holds

(D2u,D2v)0,Ω = 〈f, v〉2,Ω . (3.2)

It is well-known that (3.2) represents the optimality condition for the following unconstrained minimization
problem: find u ∈ H2

0 (Ω) such that
Jp(u) = inf

v∈H2
0 (Ω)

Jp(v),

where the primal energy functional Jp : H2
0 (Ω)→ R is given by

Jp(v) :=
1
2

(D2v,D2v)0,Ω − 〈f, v〉2,Ω . (3.3)

In order to specify the associated dual problem, the divergence of a matrix-valued function q = (qij)2
i,j=1 with

row vectors q(i) = (qi1, qi2)T , 1 ≤ i ≤ 2, is defined as usual

∇ · q := (∇ · q(1),∇ · q(2))T . (3.4)

The dual or complementary energy Jd : L2(Ω)2×2 → R , given by

Jd

(
q
)

:= −1
2

(q,q)0,Ω ,

will be maximized subject to the constraint(
q, D2v

)
0,Ω

= 〈f, v〉2,Ω for all v ∈ H2
0 (Ω). (3.5)

The relation (3.5) may be understood as

∇ ·∇ · q = f in H−2(Ω)

or in the distributional sense.

Theorem 3.1. Let Jp and Jd be defined as above. Then

min
v∈H2

0 (Ω)
Jp(v) = max

q∈L2(Ω)2×2

{
Jd

(
q
)
|∇ ·∇ · q = f

}
(3.6)

where the constraint on the right-hand side of (3.6) is understood as in (3.5).

Proof. By definition we have for v and q as in (3.6)

Jp(v)− Jd
(
q
)

=
1
2

(D2v,D2v)0,Ω − 〈f, v〉2,Ω +
1
2

(
q,q

)
0,Ω

=
1
2

(
D2v − q, D2v − q

)
0,Ω

+
(
q, D2v

)
0,Ω
− 〈f, v〉2,Ω

=
1
2
‖D2v − q‖0,Ω ≥ 0,

since the relation (3.5) holds by assumption. It follows that inf Jp(v) ≥ sup Jd(q) where the infimum and the
supremum are understood in the spirit of (3.6). Since we have equality for v := u and q := D2u, the proof is
complete. �



A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION 2483

We may split the solution p of the dual problem into its symmetric and antisymmetric part p = psym +panti.

Obviously we have ∇ ·∇ ·panti = 0, if panti is a smooth tensor-valued function. A density argument shows this

relation is true also here, and psym satisfies the constraint (3.5). Moreover ‖p‖20,Ω = ‖psym‖20,Ω + ‖panti‖20,Ω .
Therefore, the solution is a symmetrical tensor although the optimization problem was stated in the larger set
L2(Ω)2×2.

We are now in a position to state an abstract version of the two-energies principle for the biharmonic equation;
(cf. [45], Thm. 3.1).

Theorem 3.2 (Two-energies principle for the biharmonic equation).
Let u ∈ H2

0 (Ω) be the solution of (3.2), and let p ∈ L2(Ω)2×2 satisfy the equilibrium condition

∇ ·∇ · p = f in H−2(Ω). (3.7)

Then, for v ∈ H2
0 (Ω) it holds

‖D2v − p‖20,Ω = ‖D2(v − u)‖20,Ω + ‖D2u− p‖20,Ω . (3.8)

Proof. We provide a short proof for completeness. If u ∈ H2
0 (Ω) is the solution of (3.2), then (D2u,D2(v −

u))0,Ω = 〈f, v − u〉2,Ω for all v ∈ H2
0 (Ω). Next we conclude from (3.5) that the equilibrium assumption (3.7)

implies (p, D2(v − u))0,Ω = 〈f, v − u〉2,Ω . Hence,(
D2u− p, D2(u− v)

)
0,Ω

= 〈f − f, u− v〉2,Ω = 0.

An application of the binomial formula to ‖(D2v −D2u) + (D2u− p)‖20,Ω yields (3.8). �

The relationship (3.8) is called the two-energies principle, because it can be stated in terms of the primal
energy Jp(v) and the complementary energy Jd(p) as

‖D2(v − u)‖20,Ω + ‖D2u− p‖20,Ω = 2
(
Jp(v)− Jd(p)

)
.

We conclude this section with a formulation of the two-energies principle that is better manageable in finite
element computations. In particular, it translates the equilibrium condition (3.7) for f ∈ L2(Ω) from H−2(Ω)
to an element-wise property. We consider moment tensors p ∈ L2(Ω)2×2 that satisfy

p|K ∈ Pk(K)2×2, k ≥ 2, K ∈ Th(Ω), (3.9a)

[p]E nE = 0, E ∈ Eh(Ω), (3.9b)

nE ·
[
∇ · p

]
E

= 0, E ∈ Eh(Ω). (3.9c)

The properties (3.9) imply p ∈ H(div2, Ω) (but are not necessary for functions in this space). This is obvious
from (3.11) in the proof of the announced version of the two-energies principle.

Theorem 3.3 (Variant of the two-energies principle). Let u ∈ H2
0 (Ω) be the solution of (3.2) for f ∈ L2(Ω).

Moreover, for a geometrically conforming simplicial triangulation Th(Ω) of Ω let p ∈ H(div2, Ω) sat-
isfy (3.9a)–(3.9c) as well as the equilibrium condition

∇ ·∇ · p = f in each K ∈ Th(Ω). (3.10)

Then, for v ∈ H2
0 (Ω) it holds ∥∥∥D2v − p

∥∥∥2

0,Ω
= ‖D2(v − u)‖20,Ω +

∥∥∥D2u− p
∥∥∥2

0,Ω
.
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Proof. Using (3.2) and applying integration by parts, we obtain∫
Ω

(D2u− p) : D2(u− v) dx =
∫
Ω

f (u− v) dx−
∑

K∈Th(Ω)

∫
K

p : D2(u− v) dx (3.11)

=
∑

K∈Th(Ω)

∫
K

(f −∇ ·∇ · p) (u− v) dx−
∑

K∈Th(Ω)

∫
∂K

p n∂K ·∇(u− v) ds

+
∑

K∈Th(Ω)

∫
∂K

n∂K ·∇ · p (u− v) ds,

where n∂K is the outward unit normal on ∂K. The first term in the second line of (3.11) vanishes due to (3.10),
whereas the boundary integrals vanish due to (3.9b), (3.9c) and u− v = n∂K ·∇(u− v) = 0 on ∂K ∩Γ . Hence,
it follows that ∫

Ω

(
D2u− p

)
: D2(u− v) dx = 0.

The assertion is again an immediate consequence of this orthogonality relation. �

Remark 3.4. We note that for other type of boundary conditions the function space settings have to be
modified accordingly. For instance, Neumann boundary conditions have to be incorporated into the functions
spaces for the dual variable p. In particular, the boundary conditions u = 0 and D2u nΓ = 0 on Γ are associated

with the minimization of Jp over H2(Ω) ∩H1
0 (Ω) and the maximization of Jd over {q ∈ H(div2, Ω) | q nΓ =

0 on Γ}. This has to be observed as well for the IPDG approximation and in the construction of the equilibrated
moment tensor. The corresponding change of the a posteriori error estimator is obvious and is left to the reader.

4. An IPDG approximation of the biharmonic equation

We consider the interior penalty discontinuous Galerkin (IPDG) approximation of the biharmonic prob-
lem (3.2) with f ∈ L2(Ω) on a geometrically conforming, locally quasi-uniform simplicial triangulation Th(Ω)
of the computational domain. It involves element-wise polynomial approximations of u. For k ≥ 2 we introduce
the IPDG space

Vh :=
{
vh ∈ L2(Ω) | vh|K ∈ Pk(K), K ∈ Th(Ω)

}
(4.1)

as well as the space of element-wise polynomial moment tensors

M
h

:=
{

q
h
∈ L2(Ω)2×2 | q

h
|K ∈ Pk(K)2×2, K ∈ Th(Ω)

}
. (4.2)

We define a bilinear form aIPh (·, ·) : Vh × Vh → R for the variational IPDG approximation

aIPh (uh, vh) :=
∑

K∈Th(Ω)

∫
K

D2uh : D2vh dx

+
∑

E∈Eh(Ω̄)

∫
E

(
nE · {∇ ·D2uh}E [vh]E + [uh]E nE · {∇ ·D2vh}E

)
ds

−
∑

E∈Eh(Ω̄)

∫
E

(
[∇uh]E · {D2vh}E nE + [∇vh]E · {D2uh}E nE

)
ds

+
∑

E∈Eh(Ω̄)

∫
E

α1

hE
nE · [∇uh]E nE · [∇vh]E ds+

∑
E∈Eh(Ω̄)

∫
E

α2

h3
E

[uh]E [vh]E ds, (4.3)
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where αi > 0, i = 1, 2, are suitable penalty parameters. The IPDG approximation of (3.2) reads: Find uh ∈ Vh
such that

aIPh (uh, vh) = (f, vh)0,Ω , vh ∈ Vh. (4.4)

Remark 4.1. The Hellan–Herrmann–Johnson based symmetric IPDG approximation (4.4) is the counterpart
of the Ciarlet–Raviart based symmetric IPDG approximation in [34, 35]. If we choose the finite element space
Ṽh = Vh ∩ C0(Ω), then it reduces to the symmetric C0IPDG approximation considered in [20, 21], and [33]. In
the C0 case we have [uh]E = [vh]E = 0, E ∈ Eh(Ω̄), and hence, the corresponding terms in (4.3) vanish.

For completeness, we note that aIPh (·, ·) is not well defined for functions in H2
0 (Ω). This can be cured by

means of a lifting operator

L : Vh +H2
0 (Ω)→M

h∫
Ω

L(v) : q
h

dx =
∑

E∈Eh(Ω̄)

∫
E

(
[v]E nE · {∇ · q

h
}E − [∇v]E · {q

h
}EnE

)
ds. (4.5)

The lifting operator L is stable in the sense that it satisfies (cf. [34])

‖L(v)‖20,Ω .
∑

E∈Eh(Ω̄)

(
h−1
E ‖nE · [∇v]E‖20,E + h−3

E ‖[v]E‖20,E
)
, v ∈ Vh +H2

0 (Ω).

Now we define ãIPh : (Vh +H2
0 (Ω))× (Vh +H2

0 (Ω))→ R as follows:

ãIPh (u, v) :=
∑

K∈Th(Ω)

∫
K

(
D2u : D2v + (L(u) : D2v +D2u : L(v))

)
dx

+
∑

E∈Eh(Ω̄)

∫
E

α1

hE
nE · [∇u]E nE · [∇v]E ds+

∑
E∈Eh(Ω̄)

∫
E

α2

h3
E

[u]E [v]E ds. (4.6)

It is easy to verify that ãIPh (uh, vh) = aIPh (uh, vh) holds for uh, vh ∈ Vh.
We introduce the mesh-dependent IPDG norm on Vh +H2

0 (Ω)

‖v‖22,h,Ω :=
∑

K∈Th(Ω)

‖D2v‖20,K +
∑

E∈Eh(Ω̄)

α1

hE
‖nE · [∇v]E‖20,E +

∑
E∈Eh(Ω̄)

α2

h3
E

‖[v]E‖20,E . (4.7)

It is not difficult to show that for sufficiently large penalty parameters αi, i = 1, 2, i.e., α1 = O((k + 1)2), α2 =
O((k + 1)6), the bilinear form ãIPh (·, ·) is coercive, i.e., there exists a positive constant γ such that

ãIPh (v, v) ≥ γ ‖v‖22,h,Ω , v ∈ Vh +H2
0 (Ω). (4.8)

On the other hand, it is continuous on Vh + H2
0 (Ω), i.e., there exists a constant Γ > 1 such that for any

αi > 0, 1 ≤ i ≤ 2,

ãIPh (v, w) ≤ Γ ‖v‖2,h,Ω‖w‖2,h,Ω , v, w ∈ Vh +H2
0 (Ω). (4.9)
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In particular, it follows from (4.8) and (4.9) that the IPDG approximation (4.4) admits a unique solution
uh ∈ Vh for sufficiently large penalty parameters.

A mixed formulation in the spirit of [6] was given in [34] for the Ciarlet–Raviart method. We provide now two
mixed Hellan–Herrmann–Johnson type formulations of (4.4). The first one is motivated by the weak formulation
of the two field approach (1.1). Multiplying the first equation in (1.1) by q ∈ H(div2, Ω), the second one by
v ∈ H2

0 (Ω), and integrating over K ∈ Th(Ω) yields∫
K

p : q dx−
∫
K

u∇ ·∇ · q dx−
∫
∂K

∇u · qn∂K ds+
∫
∂K

un∂K ·∇ · q ds = 0, (4.10a)

∫
K

p : D2v dx−
∫
∂K

pn∂K ·∇v ds+
∫
∂K

n∂K ·∇ · pv ds =
∫
K

fv dx. (4.10b)

We specify appropriate numerical flux functions on the edges E ∈ Eh(Ω̄)

û(1) :=
{
{∇uh}E , E ∈ Eh(Ω)

0 , E ∈ Eh(Γ ) , (4.11a)

û(2) :=
{
{uh}E , E ∈ Eh(Ω)

0 , E ∈ Eh(Γ ) , (4.11b)

p̂ := {D2uh}E −
α1

hE
nE [∇uh]TE , (4.11c)

ψ̂ := {∇ ·D2uh}E +
α2

h3
E

[uh]E nE . (4.11d)

We keep the notion numerical fluxes from [6] although not all the variables in (4.11) are fluxes in the strict
sense.

The two-field-formulation of (4.4) reads as follows: Find (uh,p
h
) ∈ Vh ×M

h
and numerical fluxes such

that (4.11a)–(4.11d) holds and simultaneously for all (v,q) ∈ Vh ×M
h

and K ∈ Th(Ω)

∫
K

p
h

: q dx−
∫
K

uh ∇ ·∇ · q dx−
∫
∂K

û(1) · q n∂K ds+
∫
∂K

û(2)n∂K ·∇ · q ds = 0, (4.12a)∫
K

p
h

:D2v dx−
∫
∂K

p̂ n∂K ·∇v ds+
∫
∂K

n∂K · ψ̂ v ds =
∫
K

f v dx. (4.12b)

All the equations are coupled, since they contain equations on elements as well as on edges.
Often another implementation is considered as more convenient. First the solution uh of the primal method

is determined by solving linear equations with a positive definite matrix. The numerical fluxes are determined
immediately by their definition (4.11). The moment tensor p

h
can be evaluated by solving the small linear

system (4.12a) for each K ∈ Th.

Lemma 4.2. Let the numerical flux functions û(1), û(2), p̂ and ψ̂ , be given by (4.11) and suppose that the
penalty parameters αi, 1 ≤ i ≤ 2, are sufficiently large.

(i) If uh ∈ Vh is the unique solution of (4.4), then there exists p
h
∈ M

h
such that the pair (uh,p

h
) satis-

fies (4.12).
(ii) If (uh,p

h
) ∈ Vh ×M

h
is a solution of (4.12), then uh is the solution of the IPDG approximation (4.4).
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Proof. Let uh ∈ Vh be the unique solution of (4.4). The associated numerical fluxes are known from (4.11).
We define p

h
∈ M

h
by means of (4.12a). Next, let K ∈ Th(Ω) and v ∈ Vh. We apply (4.12a) with q(x) =

D2v(x), x ∈ K, and insert the expressions (4.11a), (4.11b) for the numerical fluxes to obtain∫
K

p
h

: D2v dx =
∫
K

uh ∇ ·∇ ·D2v dx

+
∫

∂K\(∂K∩Γ )

{∇uh}∂K ·D2v n∂K ds−
∫

∂K\(∂K∩Γ )

{uh}∂K n∂K ·∇ ·D2v ds, (4.13)

where {·}∂K |E = {·}E , E ∈ E(∂K). Note that boundary terms are present only on interior edges, since the
numerical fluxes û(1) and û(2) vanish on Γ . Using Green’s formula∫

K

uh ∇ ·∇ ·D2v dx =
∫
K

D2uh : D2v dx−
∫
∂K

∇uh ·D2v n∂K ds+
∫
∂K

uhn∂K ·∇ ·D2v ds (4.14)

for eliminating the first integral on the right-hand side of (4.13) we get∫
K

p
h

: D2v dx =
∫
K

D2uh : D2v dx−
∫
∂K

∇uh ·D2v n∂K ds+
∫
∂K

uhn∂K ·∇ ·D2v ds

+
∫

∂K\(∂K∩Γ )

{∇uh}∂K ·D2v n∂K ds−
∫

∂K\(∂K∩Γ )

{uh}∂K n∂K ·∇ ·D2v ds. (4.15)

We evaluate the sums over the boundary terms in (4.15) and recall that on interior edges {w}∂K − w|∂K∩E =
∓ 1

2 [w]∂K holds true whence

∑
K∈Th(Ω)

− ∫
∂K

∇uh ·D2v n∂K ds +
∫

∂K\(∂K∩Γ )

{∇uh}∂K ·D2v n∂K ds


=

∑
K∈Th(Ω)

 ∫
∂K\(∂K∩Γ )

({∇uh}∂K −∇uh) ·D2v n∂K ds−
∫

∂K∩Γ

∇uh ·D2v n∂K ds


=−

∑
E∈Eh(Ω)

∫
E

[∇uh]E · {D2v}EnE ds. (4.16)

Similarly,

∑
K∈Th(Ω)

∫
∂K

uhn∂K ·∇ ·D2v ds−
∫

∂K\(∂K∩Γ )

{uh}∂Kn∂K ·∇ ·D2v ds

 =
∑

E∈Eh(Ω)

∫
E

[uh]EnE · {∇ ·D2v}E ds

Summation over all terms in (4.15) yields∑
K∈Th(Ω)

∫
K

p
h

: D2v dx =
∑

K∈Th(Ω)

∫
K

D2uh : D2
hv dx

+
∑

E∈Eh(Ω)

∫
E

[∇uh]E · {D2v}EnE ds−
∑

E∈Eh(Ω)

∫
E

[uh]E nE · {∇ ·D2v}E ds. (4.17)
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Next, we use the variational equality (4.4) to eliminate the first integral on the right-hand side of (4.17),

∑
K∈Th(Ω)

∫
K

p
h

: D2v dx =−
∑

E∈Eh(Ω̄)


∫
E

(
nE · {∇ ·D2uh}E [v]E ds+

∫
E

[uh]E nE · {∇ ·D2v}E

)
ds

︸ ︷︷ ︸
= I1



+
∑

E∈Eh(Ω̄)


∫
E

(
[∇uh]E · {D2v}EnE ds

︸ ︷︷ ︸
= I2

+
∫
E

{D2uh}EnE · [∇v]E

)
ds


−

∑
E∈Eh(Ω̄)

∫
E

α1

hE
nE · [∇uh]E nE · [∇v]E ds−

∑
E∈Eh(Ω̄)

∫
E

α2

h3
E

[uh]E [v]E ds

+ (f, v)0,Ω

−
∑

E∈Eh(Ω̄)

∫
E

[∇uh]E · {D2v}EnE ds

︸ ︷︷ ︸
= I2

+
∑

E∈Eh(Ω̄)

∫
E

[uh]E nE · {∇ ·D2v}E ds

︸ ︷︷ ︸
= I1

. (4.18)

Note that the sums of the integrals I1 and I2 in (4.18) cancel. Observing (4.11c), (4.11d) we obtain (4.12b).

Conversely, if (uh,p
h
) ∈ Vh ×M

h
solves (4.12a), (4.12b), we choose q := D2v in (4.12a). Applying Green’s

formula (4.14) again, we can eliminate p
h

from the system. It follows that uh is a solution of the primal
problem (4.4) which proves (ii). �

As opposed to second order elliptic boundary value problems [15], an equilibrated a posteriori error estimator
for the IPDG approximation of the biharmonic equation cannot be based on the two-field formulation (4.12).
Instead, we have to resort to a three-field approach which can be motivated by introducing ψ = ∇ · p in (1.1)
which implies ∇ · ψ = f . Multiplying the first equation by φ ∈ H1(Ω)2, the second one by v ∈ H2

0 (Ω), and
integrating over K ∈ Th(Ω), (4.10b) can be replaced by

∫
K

p : ∇φ dx−
∫
∂K

pn∂K · φ ds =
∫
K

ψ · φ dx,

∫
K

ψ ·∇v dx−
∫
∂K

n∂K ·ψv ds = −
∫
K

fv dx.

For the three-field formulation of (4.4) we introduce the finite element space

W h :=
{
φ
h
∈ L2(Ω)2 | φ

h
|K ∈ Pk−1(K)2,K ∈ Th(Ω)

}
. (4.19)

Then, the three-field formulation reads as follows: Find (uh,p
h
,ψ

h
) ∈ Vh ×M

h
×W h together with the

numerical flux functions û(1), û(2), p̂ and ψ̂ in (4.11) such that for all (v,q,φ) ∈ Vh ×M
h
×W h and all
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K ∈ Th(Ω) it holds ∫
K

p
h

: q dx−
∫
K

uh ∇ ·∇ · q dx (4.20a)

−
∫
∂K

û(1) · q n∂K ds+
∫
∂K

û(2)n∂K ·∇ · q ds = 0,∫
K

p
h

: ∇φ dx−
∫
∂K

p̂ n∂K · φds = −
∫
K

ψ
h
· φ dx, (4.20b)∫

K

ψ
h
·∇v dx−

∫
∂K

n∂K · ψ̂ v ds = −
∫
K

fv dx. (4.20c)

Lemma 4.3. Under the assumptions of Lemma 4.2 it holds:

(i) If uh ∈ Vh is the unique solution of (4.4), then there exists a unique pair (p
h
,ψ

h
) ∈M

h
×W h such that

the triple (uh,p
h
,ψ

h
) satisfies (4.20).

(ii) If (uh,p
h
,ψ

h
) ∈ Vh ×M

h
×W h is a solution of (4.20), then the pair (uh,p

h
) solves (4.12), and uh is

the solution of the IPDG approximation (4.4).

Proof. If uh ∈ Vh is the unique solution of (4.4), we already know from Lemma 4.2(i) that there exists p
h
∈M

h

such that (4.12a) and (4.12b) are satisfied. Next, we define ψ
h
∈W h by means of (4.20b). Choosing φ = ∇v

we may replace the first two terms in (4.12b) by
∑
K

∫
K
ψ
h
·∇v dx. It follows that (4.20c) holds true which

proves (i).
Conversely, if (uh,p

h
,ψ

h
) ∈ Vh ×M

h
×W h is a solution of (4.20a)–(4.20c), obviously (4.12a) and (4.20a)

coincide. Next, for obtaining (4.12b), we set φ = ∇v in (4.20b) and evaluate the term in the second line
via (4.20c),∑

K∈Th(Ω)

∫
K

p
h

: D2v dx−
∑

K∈Th(Ω)

∫
∂K

p̂ n∂K ·∇v ds = −
∑

K∈Th(Ω)

∫
K

ψ
h
·∇v dx,

= −
∑

K∈Th(Ω)

∫
∂K

n∂K · ψ̂ v ds+
∑

K∈Th(Ω)

∫
K

fv dx.

Hence, we obtain (4.12b). Now Lemma 4.2, part (ii) shows that uh solves (4.4) which proves (ii). �

5. An A POSTERIORI error estimator for the IPDG approximation
of the biharmonic equation

The construction of an equilibrated moment tensor in the finite element framework will be affected by data
oscillations, and the case k = 2 requires special care. This will be clear from Remark 6.5 below. Specifically, set

Meq

h
:=
{

q
h
∈ L2(Ω)2×2 | q

h
|K ∈ P`(K)2×2, K ∈ Th(Ω)

}
, (5.1)

where ` :=

{
k if k ≥ 3,
3 if k = 2.

Given K ∈ Th(Ω), let fK be the L2-projection of f onto P`−2(K), and let fh ∈ L2(Ω) be given by fh|K =
fK ,K ∈ Th(Ω). A moment tensor peq

h
∈Meq

h
is called equilibrated in this framework, if it satisfies (3.9b), (3.9c)

which implies peq
h
∈ H(div2, Ω), and also the equilibrium equation

∇ ·∇ · peq
h

= fh in each K ∈ Th(Ω). (5.2)



2490 D. BRAESS ET AL.

The two-energies principle (Thm. 3.3) can be applied to the IPDG approximation (4.4) involving an equilibrated
moment tensor peq

h
. It gives rise to an a posteriori error bound in terms of element-related terms ηeqK,i, 1 ≤ i ≤ 2,

and edge-related terms ηeqE,i, 1 ≤ i ≤ 2, as given by

ηeqK,1 := ‖D2uh − peq
h
‖0,K , K ∈ Th(Ω), (5.3a)

ηeqK,2 := ‖D2uh −D2uconf
h ‖0,K , K ∈ Th(Ω), (5.3b)

ηeqE,1 := h
−1/2
E ‖nE · [∇uh]E‖0,E , E ∈ Eh(Ω̄), (5.3c)

ηeqE,2 := h
−3/2
E ‖[uh]E‖0,E , E ∈ Eh(Ω̄), (5.3d)

where uconf
h ∈ H2

0 (Ω) in (5.3b) will be constructed by postprocessing from the finite element solution uh ∈ Vh.
The following auxiliary result deals with the data oscillations due to the approximation of f by fh. Its

application is not restricted to a posteriori error estimates.

Lemma 5.1. Let z ∈ H2
0 (Ω) be the weak solution of the biharmonic problem

∆2z = f − fh in Ω, (5.4a)
z = nΓ ·∇z = 0 on Γ = ∂Ω. (5.4b)

If the L2-projection of f − fh to P1(K) vanishes in each K ∈ Th(Ω), then

‖D2z‖20,Ω ≤
1
π4

∑
K∈Th(Ω)

h4
K ‖f − fh‖20,K . (5.5)

Proof. For v ∈ H2
0 (Ω) and p1 ∈ P1(K),K ∈ Th(Ω), we have by assumption∑

K∈Th(Ω)

(D2z,D2v)0,K =
∑

K∈Th(Ω)

(f − fh, v − p1)0,K .

Choosing v = z, it follows that∑
K∈Th(Ω)

‖D2z‖20,K ≤
∑

K∈Th(Ω)

‖f − fh‖0,K ‖z − p1‖0,K . (5.6)

We fix p1 ∈ P1(K) by the interpolation conditions
∫
K
p1dx =

∫
K
zdx and

∫
K

∇p1dx =
∫
K

∇zdx. Since the
choice of p1 implies

∫
K

(z− p1)dx = 0, the Poincaré−Friedrichs inequality for convex domains with the optimal
factor by Payne and Weinberger [46], verified by Bebendorf [8], yields

‖z − p1‖0,K ≤
1
π
hK‖∇(z − p1)‖0,K .

The choice of p1 also implies zero mean values for the derivatives
∫
K
∂(z − p1)/∂xidx, 1 ≤ i ≤ 2. Another

application of the Poincaré−Friedrichs inequality gives∥∥∥∥∂(z − p1)
∂xi

∥∥∥∥
0,K

≤ 1
π
hK

∥∥∥∥∇ ∂z

∂xi

∥∥∥∥
0,K

, 1 ≤ i ≤ 2.

We combine the estimates to obtain

‖z − p1‖0,K ≤
1
π2
h2
K‖D2z‖0,K .
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Inserting this estimate into (5.6) yields

∑
K∈Th(Ω)

‖D2z‖20,K ≤
1
π2

∑
K∈Th(Ω)

‖D2z‖0,Kh2
K‖f − fh‖0,K .

By applying the Cauchy inequality to the right-hand side and dividing by the square root of the left-hand side
we obtain the assertion. �

The data oscillations will be denoted by

osc2h(f) :=
∑

K∈Th(Ω)

osc2K(f), osc2K(f) := h4
K ‖f − fh‖20,K . (5.7)

The error bound in the following theorem refers to the norm (4.7).

Theorem 5.2. Let u ∈ H2
0 (Ω) be the solution of the biharmonic problem (3.1a), (3.1b), let uh ∈ Vh be the

unique solution of the IPDG approximation (4.4), and let peq
h
∈ Meq

h
∩H(div2, Ω) be an equilibrated moment

tensor. Moreover, let uconf
h ∈ H2

0 (Ω), let ηeqK,i, η
eq
E,i, 1 ≤ i ≤ 2, be given by (5.3a)–(5.3d), and let osch(f) be the

data oscillation (5.7). We set

ηeqh :=

 ∑
K∈Th(Ω)

(ηeqK,1)2

1/2

+ 2

 ∑
K∈Th(Ω)

(ηeqK,2)2

1/2

+

 ∑
E∈Eh(Ω̄)

(α1(ηeqE,1)2 + α2(ηeqE,2)2)

1/2

. (5.8)

Then it holds

‖u− uh‖2,h,Ω ≤ ηeqh +
1
π2

osch(f). (5.9)

Proof. Let ū ∈ H2
0 (Ω) be the weak solution of the biharmonic problem

∆2ū = fh in Ω,

ū = nΓ ·∇ū = 0 on Γ = ∂Ω.

By recalling (4.7) and applying the triangle inequality twice we obtain

‖u− uh‖2,h,Ω ≤

 ∑
K∈Th(Ω)

‖D2u−D2uh‖20,K

1/2

+

 ∑
E∈Eh(Ω̄)

(α1(ηeqE,1)2 + α2(ηeqE,2)2)

1/2

≤

 ∑
K∈Th(Ω)

‖D2u−D2ū‖20,K

1/2

+

 ∑
K∈Th(Ω)

‖D2ū−D2uconf
h ‖20,K

1/2

+

 ∑
K∈Th(Ω)

‖D2uconf
h −D2uh)‖20,K

1/2

+

 ∑
E∈Eh(Ω̄)

(α1(ηeqE,1)2 + α2(ηeqE,2)2)

1/2

. (5.10)

Since z := u − ū solves (5.4a), (5.4b), the first term in the third line of (5.10) can be estimated from above
by Lemma 5.1 and thus gives rise to the data oscillations in (5.9). The two-energies principle (Thm. 3.3) with
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u = ū, v = uconf
h and p = peq

h
yields

‖D2(ū− uconf
h )‖0,Ω ≤

 ∑
K∈Th(Ω)

‖D2uconf
h − peq

h
‖20,K

1/2

≤

 ∑
K∈Th(Ω)

‖D2uh −D2uconf
h ‖20,K

1/2

+

 ∑
K∈Th(Ω)

‖peq
h
−D2uh‖20,K

1/2

. (5.11)

Using these estimates in (5.10) allows to conclude. �

In practice, a modified equilibrated error estimator avoids the computationally expensive evaluation of uconf
h .

It is of interest, although the reliability estimate (5.12) below contains a generic constant.

Corollary 5.3. Assume that the assumptions of Theorem 5.2 are satisfied. Specifically, let V conf
h be the gener-

alized version of the classical Hsieh–Clough–Tocher C 1 conforming finite element space as constructed in [27],
and let uconf

h = Eh(uh) be the extension of uh to V conf
h as defined in [35]. Then there exists a constant C1 > 0,

depending only on the local geometry of the triangulation and on the penalty parameters αi, 1 ≤ i ≤ 2, such that
it holds

‖u− uh‖22,h,Ω ≤
∑

K∈Th(Ω)

(ηeqK,1)2 + C1

∑
E∈Eh(Ω̄)

((ηeqE,1)2 + (ηeqE,2)2) +
1
π2

osc2h(f). (5.12)

Proof. In [35] it has been shown that∑
K∈Th(Ω)

(ηeqK,2)2 .
∑

E∈Eh(Ω̄)

(
(ηeqE,1)2 + (ηeqE,2)2

)
. (5.13)

Using (5.13) in (5.9) yields (5.12). �

6. Construction of an equilibrated moment tensor

We construct an equilibrated moment tensor peq
h
∈Meq

h
∩H(div2, Ω) which allows to apply the two-energies

principle and Theorem 5.2. The construction will be done by an interpolation on each element. Thus it is a local
procedure. In particular, denoting by BDMm(K),m ∈ N, the Brezzi-Douglas-Marini element of polynomial
degree m (cf., e.g., [22]), we first construct an auxiliary vector field ψeq

h
∈ H(div, Ω),ψeq

h
|K ∈ BDM`−1(K),K ∈

Th(Ω), satisfying

∇ ·ψeq
h

= fh in L2(Ω), (6.1)

and then an equilibrated moment tensor peq
h
∈Meq

h
∩H(div2, Ω) satisfying

∇ · peq
h

= ψeq
h

in L2(Ω)2. (6.2)

For the construction of the auxiliary vector field we recall the following result:

Lemma 6.1. Let m ≥ 1. Any vector field φ ∈ Pm(K) is uniquely defined by the following degrees of freedom∫
E

nE · φ q ds, q ∈ Pm(E), E ∈ Eh(∂K), (6.3a)∫
K

φ ·∇q dx, q ∈ Pm−1(K), (6.3b)∫
K

φ · curl(bKq) dx, q ∈ Pm−2(K). (6.3c)
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where bK in (6.3c) is the element bubble function on K given by bK =
3∏
i=1

λKi and λKi , 1 ≤ i ≤ 3, are the

barycentric coordinates of K. Moreover, there exists a positive constant C1(m) depending only on the polynomial
degree m and the local geometry of the triangulation Th(Ω) such that

∫
K

|φ|2 dx ≤ C1(m)

 ∑
E∈Eh(∂K)

hE

∫
E

|nE · φ|2 ds+ h2
K

∫
K

|∇ · φ|2 dx

+ h2
K max


∫
K

|φ · curl(bKq)|2 dx; q ∈ Pm−2(K), max
x∈K
|q(x)| ≤ 1


 . (6.4)

Proof. For the uniqueness result we refer to (3.41) in ([22], p. 125) since BDMm(K) = Pm(K). The esti-
mate (6.4) can be derived by standard scaling arguments (cf. Lem. 3.1 and Rem. 3.3 in [15]). �

The auxiliary vector field ψeq
h

is constructed in each element K ∈ Th such that ψeq
h
|K ∈ BDM`−1(K) satisfies

the interpolation conditions∫
E

nE ·ψeqh q ds =
∫
E

nE · ψ̂ q ds, q ∈ P`−1(E), E ∈ Eh(∂K), (6.5a)

∫
K

ψeq
h
·∇q dx =

∫
K

ψ
h
·∇q dx, q ∈ P`−2(K), (6.5b)∫

K

ψeq
h
· curl(bKq) dx =

∫
K

∇ ·D2uh · curl(bKq) dx, q ∈ P`−3(K). (6.5c)

Lemma 6.2. The vector field ψeq
h

that is defined by (6.5) is contained in H(div, Ω) and satisfies (6.1).

Proof. The solvability of (6.5a)–(6.5c) is guaranteed by Lemma 6.1 with m = `−1. The continuity of the normal
components follows from (6.5a) on adjacent triangles and yields ψeq

h
∈ H(div, Ω).

Let K ∈ Th(Ω). Given a polynomial q ∈ P`−2 ⊂ Pk, we can use (4.20c) with v|K = q and vh|K′ = 0, K 6=
K ′ ∈ Th(Ω). Moreover we make use of Green’s formula, as well as of (6.5a) and (6.5b) to obtain∫

K

∇ ·ψeq
h
q dx = −

∫
K

ψeq
h
·∇q dx+

∫
∂K

n∂K ·ψeqh q ds

= −
∫
K

ψ
h
·∇q dx+

∫
∂K

n∂K · ψ̂ q ds

=
∫
K

fq dx =
∫
K

fhq dx.

Since both ∇ ·ψeq
h

and fh live in P`−2(K), (6.1) follows from the preceding equation. Now, the assertion follows
from ψeq

h
∈ H(div, Ω). �

The construction (6.5) by local interpolation and Lemma 6.2 take into account that there is a compatibility
condition due to Gauss’ theorem. The divergence of ψeq

h
in K cannot be fixed independently of the normal

components of ψeq
h

on ∂K, but the latter are required in order to achieve the continuity of the normal components
and ψeq

h
∈ H(div, Ω).

The compatibility conditions are satisfied here due to the finite element equation (4.20c) for the discontinuous
Galerkin (IPDG) method. They enable us to proceed on elements like e.g., in [15,24,29], and we need not operate
on patches like in the applications of the two-energies principle and H1-conforming elements as, e.g., in [16,18]
or ([14], Sect. III.9).
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For the construction of the equilibrated moment tensor peq
h

we begin with the specification of the degrees of

freedom for tensors p ∈ P`(K)2×2.

Lemma 6.3. We have dim P`(K)2×2 = 2(` + 1)(` + 2). Any p ∈ P`(K)2×2, p = (pij)2
i,j=1, with p(i) :=

(pi1, pi2)T , 1 ≤ i ≤ 2, is uniquely determined by the following degrees of freedom (DOF)∫
E

(p nE) · q ds, q ∈ P`(E)2, E ∈ Eh(∂K), (6.6a)∫
K

p : ∇q dx, q ∈ P`−1(K)2\P0(K)2, (6.6b)∫
K

p(i) · curl(bKq) dx, q ∈ P`−2(K), 1 ≤ i ≤ 2. (6.6c)

The numbers of degrees of freedom (DOF) associated with (6.6a)–(6.6c) are as follows

DOF (6.6a) = 6(`+ 1),
DOF (6.6b) = `(`+ 1)− 2,
DOF (6.6c) = `(`− 1)

and sum up to 2(`+ 1)(`+ 2).

Proof. The interpolation conditions for p(1) and p(2) are separated. The vector field p(i) (for 1 ≤ i ≤ 2) is
determined by the degrees of freedom∫

E

nE · p(i)q ds, q ∈ P`(E), E ∈ Eh(∂K),∫
K

p(i) · ∇q dx, q ∈ P`−1(K)\P0(K),∫
K

p(i) · curl(bKq) dx, q ∈ P`−2(K) .

By applying Lemma 6.1 with m = ` we conclude that there is a unique solution. �

Lemma 6.4. Let q = (q(1),q(2)) ∈ P`(K)2×2. Then there exists a positive constant C2(`) depending only on
the polynomial degree ` and the local geometry of the triangulation Th(Ω) such that

∫
K

|q|2 dx ≤C2(`)

 ∑
E∈Eh(∂K)

hE

∫
E

(|nE · qnE |2 + |tE · qnE |2) ds+ h2
K

∫
K

|∇ · q|2 dx

+ h2
K

2∑
i=1

max


∫
K

|q(i) · curl(bKq`−2)|2 dx; q`−2 ∈ P`−2,max
x∈K
|qk−2(x)| ≤ 1


 . (6.7)

Proof. As in the proof of Lemma 6.1, the estimate (6.7) follows by standard scaling arguments. �

Now, for the construction of the equilibrated moment tensor we set z
h

:= D2uh with

z(1)
h :=

(
∂2uh
∂x2

1

,
∂2uh
∂x1∂x2

)T
, z(2)

h :=
(

∂2uh
∂x1∂x2

,
∂2uh
∂x2

2

)T
·
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We construct peq
h

= (ph,eqij )2
i,j=1, with p(i)

h,eq = (ph,eqi1 , ph,eqi2 )T , 1 ≤ i ≤ 2, in each element K by fixing the degrees
of freedom (6.6a)–(6.6c) according to∫

E

peq
h

nE · q ds =
∫
E

p̂ nE · q ds, q ∈ P`(E)2, E ∈ Eh(∂K), (6.8a)

∫
K

peq
h

: ∇q dx = −
∫
K

ψeq
h
· q dx+

∫
∂K

p̂ n∂K · q ds, q ∈ P`−1(K)2, (6.8b)

∫
K

p(i)
h,eq
· curl(bKq) dx =

∫
K

z(i)
h · curl(bKq) dx, q ∈ P`−2(K), 1 ≤ i ≤ 2. (6.8c)

Remark 6.5. Obviously, the equations (6.8b) require the compatibility conditions

−
∫
K

ψeq
h
· p dx+

∫
∂K

p̂ n∂K · p ds = 0, p ∈ P0(K)2 (6.9)

with constant polynomials p ∈ P0(K)2. Indeed, we had to care for ` ≥ 3 in (5.1) in order to verify (6.9) now.
From the finite element equation (4.20b) we conclude that

−
∫
K

ψ
h
· p dx+

∫
∂K

p̂ n∂K · p ds = 0, p ∈ P0(K)2.

Given p = (p1, p2) ∈ P0(K)2, there exists q ∈ P1(K) with p = ∇q, specifically (p1, p2) = ∇(p1x1 + p2x2). Since
` ≥ 3, we conclude from (6.5b) that∫

K

ψeq
h
· p dx =

∫
K

ψeq
h
· ∇q dx =

∫
K

ψ
h
· ∇q dx =

∫
K

ψ
h
· p dx.

Combining the last two equations we obtain (6.9).

The following theorem is the main result and shows that peq
h

is an equilibrated moment tensor and thus
fulfills all requirements of the two-energies principle.

Theorem 6.6. Let k ≥ 2. If the moment tensor peq
h

and the auxiliary vector field ψeq
h

are constructed by (6.8)

and (6.5), respectively, then peq
h
∈ H(div2, Ω) is equilibrated, i.e.,

∇ ·∇ · peq
h

= fh in L2(Ω).

Proof. Let K ∈ Th(Ω). From Remark 6.5 we know that the compatibility condition (6.9) is satisfied. We apply
partial integration and insert the rules (6.8a), (6.8b) for the construction of peq

h
to obtain∫

K

∇ · peq
h
· q dx = −

∫
K

peq
h

: ∇q dx+
∫
∂K

peq
h

n∂K · q ds

= −

−∫
K

ψeq
h
· q dx+

∫
∂K

p̂ n∂K · q ds

+
∫
∂K

p̂ n∂K · q ds

=
∫
K

ψeq
h
· q dx , q ∈ P`−1(K)2. (6.10)
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Since both ∇ · peq
h

and ψeq
h

live in P`−1(K)2, it follows from (6.10) that

∇ · peq
h

= ψeq
h

in each K ∈ Th(Ω). (6.11)

The left-hand side is contained in H(div, Ω), since it holds for the right-hand side due to Lemma 6.2. Together
with (6.8a) it follows that peq

h
∈ H(div2, Ω). In view of (6.1), (6.11) implies

∇ ·∇ · peq
h

= ∇ ·ψeq
h

= fh

and the proof is complete. �

Usually mixed methods for the treatment of the Hellan–Herrmann–Johnson formulation use finite elements
for the moment tensors that are H(div2, Ω) nonconforming. This is due to the fact that no simple conforming
elements are known. The reader will have observed that the equilibrated moment tensors are constructed in
M

h
∩H(div2, Ω). Thus we have implicitly an H(div2, Ω)-conforming finite element space. We conclude from

the efficiency considerations in the next section that this finite element (sub)space is sufficiently large.

Remark 6.7. We note that the divergence of a tensor was defined row-wise in (3.4). If we had chosen a column-
wise definition, then we would have obtained the transposed tensor peq,T

h
of the result (6.8). It follows that also

peq,T
h
∈ H(div2, Ω) and ∇ ·∇ · peq,T

h
= fh. Therefore, we may use also the symmetrical part

peq,sym
h

=
1
2

(
peq
h

+ peq,T
h

)
for computing the term (5.3a) of the error bound, i.e.,

ηeq,sK,1 :=
∥∥∥D2uh − peq,sym

h

∥∥∥
0,K

, K ∈ Th(Ω). (6.12)

Since the symmetrical part and the antisymmetrical part of a tensor are L2-orthogonal, it follows that

ηeq,sK,1 ≤ η
eq
K,1, K ∈ Th(Ω). (6.13)

Indeed, numerical results below show that the error bound can be reduced by about 20% in this way.

7. Efficiency of the equilibrated error estimator

A residual-type a posteriori error estimator has been derived and analyzed in [35] for the IPDG approximation
of the biharmonic problem. It is based on the Ciarlet–Raviart mixed formulation, and its adaptation to the
Hellan–Hermann–Johnson based IPDG approximation (4.4) reads as follows:

(ηresh )2 =
∑

K∈Th(Ω)

(ηresK )2 +
∑

E∈Eh(Ω)

(
(ηresE,1)2 + (ηresE,2)2

)
+

∑
E∈Eh(Ω̄)

(
(ηresE,3)2 + (ηresE,4)2

)
, (7.1)

where the element residual ηresK and the edge residuals ηresE,i , 1 ≤ i ≤ 4, are given by

(ηresK )2 := h4
K ‖f −∆2uh‖20,K , K ∈ Th(Ω),

(ηresE,1)2 := h3
E ‖nE · [∇∆uh]E‖20,E , E ∈ Eh(Ω),

(ηresE,2)2 := hE

(
‖nE · [D2uh]E nE‖20,E + ‖tE · [D2uh]E nE‖20,E

)
, E ∈ Eh(Ω),

(ηresE,3)2 := h−1
E ‖nE · [∇uh]E‖20,E , E ∈ Eh(Ω̄),

(ηresE,4)2 := h−3
E ‖[uh]E‖20,E , E ∈ Eh(Ω̄). (7.2)
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A slight generalization of the efficiency estimate from [35] shows

(ηresh )2 . ‖u− uh‖22,h,Ω + osc2h(f). (7.3)

The efficiency of the equilibrated a posteriori error estimator ηeqh follows from (7.3) and the following result.

Lemma 7.1. Let ηeqK,1,K ∈ Th(Ω), and osch(f) be given by (5.3a) and (5.7), and let ηresh be the residual-type
a posteriori error estimator (7.1). Then there holds∑

K∈Th(Ω)

(ηeqK,1)2 . (ηresh )2 + osc2h(f). (7.4)

Proof. Let K ∈ Th(Ω) and E ∈ Eh(∂K). Due to (6.8a) and (4.11c) we have peq
h
|E = p̂ |E = {D2uh}E −

α1
hE

nE [∇uh]TE . Hence,

nE · (peq
h
−D2uh)nE = nE ·

(
{D2uh}E −D2uh

)
nE −

α1

hE
nE · [∇uh]E ,

tE · (peq
h
−D2uh)nE = tE ·

(
{D2uh}E −D2uh

)
nE .

It follows that

|nE · (peq
h
−D2uh)nE | ≤


1
2
|nE · [D2uh]E nE |+

α1

hE
|nE · [∇uh]E |, E ∈ Eh(Ω)

α1

hE
|nE · [∇uh]E |, E ∈ Eh(Γ ),

(7.5a)

|tE · (peq
h
−D2uh)nE | ≤


1
2
|tE · [D2uh]E nE |, E ∈ Eh(Ω)

0, E ∈ Eh(Γ ).

(7.5b)

Moreover, in view of (6.11) and (6.8c) we have

∇ · (peq
h
−D2uh) = ψeq

h
−∇ ·D2uh, (7.6a)∫

K

(p(i)
h,eq
− z(i)

h ) · curl(bKq) dx = 0, q ∈ P`−2(K), 1 ≤ i ≤ 2. (7.6b)

Observing (7.5) and (7.6) we apply Lemma 6.4 to peq
h
−D2uh ∈ P 2×2

k , recall (7.2) and obtain

‖peq
h
−D2uh‖20,K . h2

K ‖ψ
eq

h
−∇ ·D2uh‖20,K +

∑
E∈Eh(∂K)

α2
1

hE
‖nE · [∇uh]E‖20,E

+
∑

E∈Eh(∂K\(∂K∩Γ ))

hE

(
‖nE · [D2uh]E nE‖20,E + ‖tE · [D2uh]E nE‖20,E

)
. h2

K ‖ψ
eq

h
−∇ ·D2uh‖20,K +

∑
E∈Eh(∂K)

(ηresE,3)2 +
∑

E∈Eh(∂K\(∂K∩Γ ))

(ηresE,2)2. (7.7)

Now we turn to the estimation of ψeq
h
−∇ · D2uh. In view of (6.5a) and (4.11d), for E ∈ Eh(∂K) we have

ψeq
h

= QE`−1ψ̂ = {D2uh}E + α2
h3

E
QE`−1([uh]E) and

nE · (ψeqh −∇ ·D2uh) = nE ·
(
{∇ ·D2uh}E −∇ ·D2uh

)
+
α2

h3
E

QE`−1([uh]E),
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where QE`−1 stands for the L2-projection onto P`−1(E). Noting that ∇ ·D2uh = ∇∆uh we obtain

|nE · (ψeqh −∇ ·D2uh)| ≤


1
2
|nE · [∇∆uh]E |+

α2

h3
E

|QE`−1([uh]E)|, E ∈ Eh(Ω)

α2

h3
E

|QE`−1([uh]E)|, E ∈ Eh(Γ ).

(7.8)

Moreover, taking (6.1) and (6.5c) into account, it holds

∇ · (ψeq
h
−∇ ·D2uh) = fh −∆2uh in K, (7.9a)∫

K

(ψeq
h
−∇ ·D2uh) · curl(bKq) dx = 0, q ∈ P`−3(K). (7.9b)

Due to (7.8) and (7.9a), (7.9b), an application of Lemma 6.1 to ψeq
h
−∇ ·D2uh ∈ P`−1(K)2 yields

‖ψeq
h
−∇ ·D2uh‖20,K . h2

K ‖fh−∆2uh‖20,K +
∑

E∈Eh(∂K\(∂K∩Γ ))

hE ‖nE · [∇∆uh]E‖20,E+
∑

E∈Eh(∂K)

α2
2

h3
E

‖[uh]E‖20,E .

(7.10)
Using the local quasi-uniformity once more, we have hE ∼ hK for E ∈ Eh(∂K) and estimate the bounds above
in terms of the residual estimators (7.2)

h2
K‖ψ

eq

h
−∇ ·D2uh‖20,K . (ηresK )2 + h4

K‖f − fh‖20,K +
∑

E∈Eh(∂K)

(ηresE,4)2 +
∑

E∈Eh(∂K\(∂K∩Γ ))

(ηresE,1)2.

We insert this bound into (7.7), sum over all K ∈ Th(Ω), and the proof is complete. �

Theorem 7.2. Let u ∈ H2
0 (Ω) be the solution of the biharmonic problem (3.1), and let uh ∈ Vh be the IPDG

approximation. Moreover, let ηeqK,i, η
eq
E,i, 1 ≤ i ≤ 2, and osch(f) be given by (5.3a)–(5.3c) and (5.7). Then there

exists a constant C > 0 depending on the polynomial degree k, the local geometry of the triangulation, and on
the penalty parameters αi, 1 ≤ i ≤ 2, such that∑

K∈Th(Ω)

(
(ηeqK,1)2 + (ηeqK,2)2

)
+

∑
E∈Eh(Ω̄)

(
(ηeqE,1)2 + (ηeqE,2)2

)
≤ C

(
‖u− uh‖22,h,Ω + osc2h(f)

)
. (7.11)

Proof. The assertion follows directly from (5.13), (7.3), and (7.4). �

Since the residual a posteriori error estimator is known to be efficient [35], the error bounds from the two-
energies principle are also efficient.

8. Numerical results

We provide a detailed documentation of the performance of the adaptive IPDG method for an illustrative
example taken from [36] which has also been used in [20].

Example 8.1. We choose Ω as the L-shaped domain Ω := (−1,+1)2 \ ([0, 1)× (−1, 0]) and choose f in (3.1a)
such that

u(r, ϕ) =
(
r2 cos2 ϕ− 1

)2(
r2 sin2 ϕ− 1

)2

r1+z g(ϕ) (8.1)
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is the exact solution of the biharmonic boundary-value problem (3.1), where

g(ϕ) :=
(

1
z − 1

sin
3(z − 1)π

2
− 1
z + 1

sin
3(z + 1)π

2

)
(cos((z − 1)ϕ)− cos((z + 1)ϕ))

−
(

1
z − 1

sin((z − 1)ϕ)− 1
z + 1

sin((z + 1)ϕ)
)(

cos
3(z − 1)π

2
− cos

3(z − 1)π
2

)
,

and z ≈ 0.54448 is a non-characteristic root of sin2( 3zπ
2 ) = z2 sin2( 3π

2 ).

The penalty parameters have been chosen as α1 := 12.5 (k + 1)2 and α2 := 2.5 (k + 1)6.
We make use of the notation

ηeqEh,α
:=

 ∑
E∈Eh(Ω̄)

(α1(ηeqE,1)2 + α2(ηeqE,2)2)

1/2

, (8.2a)

ηeqh :=

 ∑
K∈Th(Ω)

(ηeqK,1)2

1/2

+ ηeqEh,α
, (8.2b)

ηeq,sh :=

 ∑
K∈Th(Ω)

(ηeq,sK,1 )2

1/2

+ ηeqEh,α
, (8.2c)

where ηeq,sK,1 has been defined in (6.12). Note that the re-definition of ηeqh in (8.2b) differs from (5.8) in so far as
we have omitted the second term of the right-hand side in (5.8) because according to (5.13) it can be estimated
from above by the third term.

The realization of the adaptive refinement is taken care of by the well-known Dörfler marking [26]: a bulk
parameter θ ∈ (0, 1] is fixed and we choose a set M1 ⊂ Th(Ω) of elements and a set M2 ⊂ Eh(Ω̄) such that it
holds

θ


 ∑
K∈Th(Ω)

(ηeqK,1)2

1/2

+ ηeqEh,α

 ≤

( ∑
K∈M1

(ηeqK,1)2

)1/2

+

( ∑
K∈M1

(
α1(ηeqE,1)2 + α2(ηeqE,2)2

))1/2

. (8.3)

If we use (8.2c) instead of (8.2b), ηeqK,1 in (8.3) is replaced by ηeq,sK,1 . The actual refinement is done by newest
vertex bisection.

For polynomial degree 2 ≤ k ≤ 5 and bulk parameters θ = 1.0 (uniform refinement), θ = 0.7, and θ = 0.3
Figures 1–4 display

• the global discretization error u − uh in the mesh-dependent IPDG-norm ‖ · ‖2,h,Ω (top left) and the error
estimator ηeqh (top right) as a function of the total number of degrees of freedom (dofs) on a logarithmic
scale,

• the associated effectivity index ηeqh /‖u− uh‖2,h,Ω (bottom left),
• the adaptively generated mesh (θ = 0.7) at refinement level 7 for k = 2, level 9 for k = 3, level 11 for k = 4,

and level 13 for k = 5 (bottom right).

The exact solution u has a singularity at the origin and satisfies u ∈ H2
0 (Ω)∩H8/3−ε(Ω) for any ε > 0 (cf. [36]).

Hence, in case of uniform refinement (θ = 1.0) the optimal convergence rate is ‖u − uh‖2,h,Ω = O(h2/3−ε) =
O(N−1/3+ε/2), N = card(Nh(Ω̄)), which is what we basically observe for 2 ≤ k ≤ 5. If the exact solution were
smooth, e.g., u ∈ H2

0 (Ω) ∩ Hs(Ω), s ≥ k + 1, we would have ‖u − uh‖2,h,Ω = O(hk−1) = O(N−(k−1)/2), i.e.
O(N−1/2) for k = 2, O(N−1) for k = 3, O(N−3/2) for k = 4, and O(N−2) for k = 5. In case of adaptive
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Figure 1. Error, estimator, effectivity index, and adaptively generated mesh (k = 2).

Figure 2. Error, estimator, effectivity index, and adaptively generated mesh (k = 3).
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Figure 3. Error, estimator, effectivity index, and adaptively generated mesh (k = 4).

Figure 4. Error, estimator, effectivity index, and adaptively generated mesh (k = 5).
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Table 1. Results for k = 3 and θ = 0.3.

level # dofs ‖u− uh‖2,h,Ω ηeqh ηeq,sh ηeqEh,α
effectivity

0 240 6.78× 10◦ 2.50× 101 2.04× 101 3.06× 10◦ 3.69

2 640 4.23× 10◦ 1.16× 101 9.85× 10◦ 1.77× 10◦ 2.74

4 940 2.13× 10◦ 7.75× 10◦ 6.41× 10◦ 1.19× 10◦ 3.64

6 1520 1.60× 10◦ 5.56× 10◦ 4.61× 10◦ 7.93× 10−1 3.48

8 2380 1.06× 10◦ 3.71× 10◦ 3.06× 10◦ 4.77× 10−1 3.51

10 4360 6.39× 10−1 2.27× 10◦ 1.86× 10◦ 2.84× 10−1 3.55

12 7340 3.49× 10−1 1.17× 10◦ 9.67× 10−1 1.47× 10−1 3.35

14 12 210 2.14× 10−1 7.16× 10−1 5.89× 10−1 8.83× 10−2 3.35

16 19 380 1.35× 10−1 4.34× 10−1 3.57× 10−1 5.43× 10−2 3.20

18 31 190 8.37× 10−2 2.64× 10−1 2.18× 10−1 3.23× 10−2 3.16

20 54 040 5.31× 10−2 1.62× 10−1 1.33× 10−1 1.96× 10−2 3.04

refinement, we see such rates asymptotically for k = 2 and k = 5, but slightly lower rates for k = 3. For k = 4
the numerically observed rates are lower due to the occurrence of roundoff errors for # DOFs > 104.

As far as the adaptive refinement is concerned, we observe a significant refinement in a vicinity of the reentrant
corner where the solution has a singularity and some refinement in regions near the upper and left boundary
segments of the computational domain where second derivatives of the solution have local peaks. As expected,
the refinement is less pronounced for higher polynomial degree k. Moreover, for k = 2 the beneficial effect of
adaptive refinement sets in for a total number of DOFs (# DOFs) exceeding 104, whereas for 3 ≤ k ≤ 5 it
occurs for # DOFs ≈ 103 and is much more pronounced than for k = 2. The effectivity index is between 2.0
and 4.5 for all polynomial degrees 2 ≤ k ≤ 5.

We note that the computation of the equilibrated moment tensor is ill-conditioned. The condition number
deteriorates significantly with decreasing mesh size and increasing polynomial degree k. For k = 4 and k = 5,
Figures 3 and 4 only display the results up to refinement levels before roundoff errors have an influence on the
numerical results.

Table 1 lists results of the computation for k = 3 and θ = 0.3 and addresses certain components of the error
estimator ηeqh . By using the symmetrical part ηeq,sh (cf. (8.2c)) as suggested in Remark 6.7, the error bounds and
therefore also the associated effectivity indices ηeq,sh /‖u− uh‖2,h,Ω can be reduced by 15 to 20 %. The weighted
edge-related terms as given by ηeqEh,α

contribute only about 12− 15 % to the overall error estimator.
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[45] P. Neittaanmäki and S. Repin, A posteriori error estimates for boundary-value problems related to the biharmonic equation.
East-West J. Numer. Math. 9 (2001) 157–178.
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