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A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION
AND AN A POSTERIORI ERROR ESTIMATOR FOR AN INTERIOR PENALTY
DISCONTINUOUS GALERKIN APPROXIMATION *

DIETRICH BrRAESS!, R.H.W. HoPPE?>** AND CHRISTOPHER LINSENMANN?®

Abstract. We consider an a posteriori error estimator for the Interior Penalty Discontinuous Galerkin
(IPDG) approximation of the biharmonic equation based on the Hellan-Herrmann-Johnson (HHJ)
mixed formulation. The error estimator is derived from a two-energies principle for the HHJ formulation
and amounts to the construction of an equilibrated moment tensor which is done by local interpolation.
The reliability estimate is a direct consequence of the two-energies principle and does not involve generic
constants. The efficiency of the estimator follows by showing that it can be bounded from above by
a residual-type estimator known to be efficient. A documentation of numerical results illustrates the
performance of the estimator.
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1. INTRODUCTION

The biharmonic equation is more often solved by nonconforming or mixed methods than by conforming
elements in order to avoid the computationally expensive implementation of H? conforming elements such as
the Argyris plate elements of the TUBA family [4] or the generalizations of the Hsieh—Clough—Tocher elements
from [27]. As far as mixed methods are concerned, the fourth order equation is written as a system of two second
order equations, e.g.,

D2
vV-V.

P (1.1)

)

e =

where D?u is the matrix of second partial derivatives of u and p stands for the moment tensor. The formu-

lation (1.1) leads to the mixed method of Hellan—Herrmann-Johnson [38,39,42]. Another splitting is given
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by

Au = w,
Aw = §, (1.2)
and leads to the mixed method of Ciarlet—Raviart [23]. Among nonconforming approaches, Discontinuous
Galerkin (DG) methods have been studied recently in [20, 21, 25, 33-35, 37, 43, 44, 48]. The relationship be-
tween DG methods and mixed methods turns out to be useful for the biharmonic problem as it is for second
order elliptic boundary value problems due to the unified analysis in [6]. Fourth order problems have been
treated similarly in [34].

The biharmonic equation is often discussed in the framework of plate models. In particular, C° finite element
approximations for Kirchhoff plates have been studied in [11] with regard to an a priori error analysis (for a
documentation of numerical results see [12]). An a posteriori error analysis for the Morley plate element has
been provided in [10, 13]. Local C° Discontinuous Galerkin methods for Kirchhoff plates have been suggested
in [41]. For other fourth order problems such as the Cahn-Hilliard equation we refer to [28,53].

The Interior Penalty DG (IPDG) methods considered in [34, 35] are fully discontinuous in the sense that
globally discontinuous, piecewise polynomials of degree k > 2 are used for the approximation of the primal
variable u. On the other hand, those in [20,21,33] are based on the Hellan-Herrmann—Johnson splitting as given
by (1.1). The IPDG schemes in [20,21,33] feature C® elements of Lagrangian type. Residual-type a posteriori
error estimators have been considered and analyzed in [20, 33, 35].

We will consider a posteriori error bounds by the two-energies principle, also known as the hypercircle method.
It was originally developed by Prager and Synge [47,49,50] and more recently considered in connection with sec-
ond order elliptic problems in [1,7,14-18,52]. The considerations of DG methods in this direction [2,3,24,29-32]
were also done for equations of second order.

In this paper, we focus on the biharmonic equation in the formulation of Hellan—-Herrmann—Johnson and the
application of the hypercircle method to its IPDG approximation. The advantage of a posteriori error bounds
based on the two-energies principle compared to standard residual-type error estimators is that the reliability
estimate does not contain generic constants (see the papers mentioned above and (5.9) below). As we shall
see, the implementation amounts to the construction of an equilibrated moment tensor which can be done by
means of a discrete three-field mixed formulation of the IPDG approximation. The construction only requires
local interpolations in a postprocessing and has not yet been considered for problems of fourth order in the
literature. In fact, the analysis is much more involved than the analogous one for equations of second order. We
note that a four-field mixed formulation of the biharmonic equation has been considered in [9]. We think that
the a posteriori error analysis presented in this paper can be extended to this four-field formulation. However,
it does not directly carry over to the C°TPDG method considered in [20,21]. Instead, an approach similar to
that in [17] for second order elliptic boundary value problems should be followed. This will be worked out in
forthcoming research.

The paper is organized as follows: Section 2 lists some notation. In Section 3, we introduce the two-energies
principle for the variational formulation of the Hellan—-Herrmann—Johnson mixed approach. Section 4 is devoted
to the IPDG approximation and associated discrete two-field and three-field formulations. Section 5 describes
how the error bounds obtained from the two-energies principle can be built into a reliable a posteriori error
estimator. The construction of the equilibrated moment tensor is dealt with in Section 6. In Section 7, we prove
the efficiency of the estimator by showing that it can be bounded from above by a residual-type estimator which
is known to be efficient. Finally, in Section 8 we provide a documentation of numerical results illustrating the
quasi-optimality of the IPDG approximation and the performance of the estimator.

2. NOTATION

We will use standard notation from Lebesgue and Sobolev space theory [14,19,51]. In particular, for a bounded
domain 2 C R? and D C {2 we denote the L?-inner product and the associated L?-norm by (-,-)o.p and |- [|o.p,
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respectively. We further refer to H*(2), k € N, as the Sobolev spaces with inner product (-, -)x.e, norm || - ||z 0,
and seminorm | - 1., and to HF=V/2(I"), I C I' = 942, as the associated trace spaces. HE(§2) stands for the
closure of C§°(2) in the H*-norm. Further, H ~*(2) refers to the dual space of H}(£2) with (-, )5 «» denoting the
dual product. Sobolev spaces H*(§2) with broken index s € R are defined by interpolation. Moreover, H(div, {2)
is the Hilbert space of vector fields q € L*(£2)? such that V - q € L?(£2). Matrix-valued functions in L?(£2)**?
will be denoted by q = (qij)?’jzl and the inner-product is (p,q)o,2 := [, p : qdz, where p : q := Z?,j:l DijQij-
Further, we introduce the Hilbert space

H(div?, 2) := {g € H(div, 2) | V - q € H(div, ())} .

Finally, given a function u € H?(§2), we refer to D*u := (8°u/dz;0x;); ;_; as the matrix of second partial
derivatives.

Let 75 (£2) be a geometrically conforming, locally quasi-uniform simplicial triangulation of the computational
domain. For D C {2, we denote by &£,(D) the set of edges of 7;,(£2) in D. We further denote by hx, K € T, (£2),
the diameter of K, by hg, E € £,(£2), the length of E, and we set h := max{hx | K € 75(£2)}. Moreover, for
D C K we refer to P,,,(D), m € N, as the set of polynomials of degree < m on D. For two quantities A and B
we will use the notation A < B, if there exists a constant C' > 0, independent of h, such that A < CB.

Due to the local quasi-uniformity of the triangulation, there exist constants 0 < ¢ < C' such that

chg <hg <Chg, F €&, (0K). (2.1)

For a function w € L%(2) with w|x € C(K), K € T,(£2), and an interior edge E = K, N K_, Ky € T;,(£2), we
set wt = w|pnk , and define the average and jump across E as usual according to

{w}e = { % (W™ +w™), B & E(12) (2.22)
w\E, FE e Sh(F)7

wh —w™, B € &(N)
wlg, E € &,(I).

The average and jump across E € &,(§2) are defined analogously for vector fields w € L%(£2)? with w|x €
C(K)*,K € T,(12), and tensors p € L*(2)**? with p|x € C(K)**?, K € T,(2). Moreover, we refer to

np, E € £/(2),FE = K, N K_, as the unit normal vector pointing from K, to K_ and to ng, E € &(I), as
the exterior unit normal vector ny on £ N I'. Products like

[w]EnE = ’LU+113KJr +w nyg._

and other products under consideration are independent of the choice of K and K _ and the resulting orientation
of the edge.

3. A TWO-ENERGIES PRINCIPLE FOR THE BIHARMONIC EQUATION

Given a bounded polygonal domain 2 C R? with boundary I' := 9{2 and a function f € H~2(§2), we consider
the biharmonic equation with homogeneous Dirichlet boundary conditions

A*u=f in (3.1a)
u=np-Vu=0 on I. (3.1b)

We note that in the framework of IPDG approximations other boundary conditions such as Neumann or mixed
Dirichlet/Neumann boundary conditions can be dealt with as well (¢f., e.g. [35]).
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A primal variational formulation of (3.1) amounts to the computation of u € HZ({2) such that for all
v € H3(£2) it holds

(D*u, D*v)o,0 = (f,v)2.0. (3.2)

It is well-known that (3.2) represents the optimality condition for the following unconstrained minimization
problem: find v € HZ(§2) such that

Jo(u) = inf  J,(v),

) = _inf ()

where the primal energy functional J, : HZ(£2) — R is given by
1
Ip(v) == §(DQU’ D*v)o,0 — (f,v)2,0- (3.3)

In order to specify the associated dual problem, the divergence of a matrix-valued function q = (qw)? j=1 With

row vectors g(i) = (gi1,qi2)T,1 <i <2, is defined as usual

V.q:=(V- g(l), AV g(2))T. (3.4)

The dual or complementary energy Jg : L?(§2)2%? — R | given by

Ja (g) = —%(g»ghn,

will be maximized subject to the constraint

(g, D2v) 0= (fiv)g o forallve H3(92). (3.5)

s

The relation (3.5) may be understood as
V-V.-q=f in H?2)

or in the distributional sense.

Theorem 3.1. Let J, and Jq be defined as above. Then

min  Jp(v) = max {Jd (g) | V.-V q= f} (3.6)

vEH2(2) qEL?(2)2%2
=4

where the constraint on the right-hand side of (3.6) is understood as in (3.5).

Proof. By definition we have for v and q as in (3.6)

1 1
p(v) = Ja (g) - §(D2U’ D*v)o.0 — <fvv>27rz + 2 (g’g>0,n
— 1 2 2 9 )
=3 (D v—g D=v g)m + (g,D v 0.0 (f,v)2.0
1

= 5ID*0 = dllo.0 2 0,

since the relation (3.5) holds by assumption. It follows that inf J,(v) > sup Jy(q) where the infimum and the
supremum are understood in the spirit of (3.6). Since we have equality for v := u and q := D?u, the proof is
complete. N O
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We may split the solution p of the dual problem into its symmetric and antisymmetric part p = p»™ +Banti.
Obviously we have V -V - Eanti =0, if Ban“ is a smooth tensor-valued function. A density argument shows this

sym

relation is true also here, and p satisfies the constraint (3.5). Moreover P50 = IP¥™I5.0 + P[5 o

Therefore, the solution is a symmetrical tensor although the optimization problem was stated in the larger set
Lo (£2)%%2,

We are now in a position to state an abstract version of the two-energies principle for the biharmonic equation;
(cf. [45], Thm. 3.1).

Theorem 3.2 (Two-energies principle for the biharmonic equation).
Let u € HZ(12) be the solution of (3.2), and let p € L*(£2)**? satisfy the equilibrium condition

V-V.p=/f in H?*). (3.7)
Then, for v € HZ(£2) it holds
1D%0 = pli3 o = D20 — w) 3 + D% — I o (33)

Proof. We provide a short proof for completeness. If u € HZ(£2) is the solution of (3.2), then (D?u, D*(v —
u))o.2 = (f,v—u),  for all v € HF(82). Next we conclude from (3.5) that the equilibrium assumption (3.7)

implies (p, D*(v —u))o,2 = (f,v — u),, ;- Hence,

(DQu—g,DQ(u—v))OQ =(f—fiu—v)20=0.

)

An application of the binomial formula to ||(D?*v — D*u) + (D*u — p)|§ o, yields (3.8). O

The relationship (3.8) is called the two-energies principle, because it can be stated in terms of the primal
energy .J,(v) and the complementary energy Ji(p) as

102w =)l o + D% = Bl o = 2 (J(v) = Jul(®))

We conclude this section with a formulation of the two-energies principle that is better manageable in finite
element computations. In particular, it translates the equilibrium condition (3.7) for f € L?(£2) from H~2(2)
to an element-wise property. We consider moment tensors p € L?(£2)%*2 that satisfy

pli € P2, k>2, K € T,(Q), (3.92)
[ple np =0, E € &,(12), (3.9b)
ng - [V : E}E -0, Ee&(0). (3.9¢)

The properties (3.9) imply p € E(div2, £2) (but are not necessary for functions in this space). This is obvious

from (3.11) in the proof of the announced version of the two-energies principle.

Theorem 3.3 (Variant of the two-energies principle). Let u € H3(£2) be the solution of (3.2) for f € L?(2).
Moreover, for a geometrically conforming simplicial triangulation T,(§2) of £2 let p € E(din, Q) sat-
isfy (3.9a)—(3.9¢) as well as the equilibrium condition B

V.-V.p=f ineach K € Ty(12). (3.10)
Then, for v € HZ(£2) it holds

2 2
D?v — H = |D?*(v — u)||2 —|—HD2u— H .
[p?o—p||, , = 10—l B[, ,
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Proof. Using (3.2) and applying integration by parts, we obtain

/(Dzu—E):D2(u—v)dx:/f(u—v)da:— > /E:Dz(u—v)dx (3.11)

A 0 KeTn(2) i
= Z /(f—V~V~£)(u—v)dx— Z /gnaK-V(U—v)ds
KE,Z—}L('Q)K KE'T;,(Q)[—)K
+ Z npx -V -p (u—wv)ds,
KeTh(2)gx N

where ngg is the outward unit normal on K. The first term in the second line of (3.11) vanishes due to (3.10),
whereas the boundary integrals vanish due to (3.9b), (3.9¢) and u —v = ngg - V(u —v) = 0 on 0K N I". Hence,

it follows that
/ (D2u - ) D*(u —v)dz = 0.

Q
The assertion is again an immediate consequence of this orthogonality relation. O

Remark 3.4. We note that for other type of boundary conditions the function space settings have to be
modified accordingly. For instance, Neumann boundary conditions have to be incorporated into the functions
spaces for the dual variable p. In particular, the boundary conditions v = 0 and D?unp = 0on I are associated

with the minimization of .J, over H?(£2) N H}(£2) and the maximization of .J; over {q € H(dlv 2)|anr =

0 on I'}. This has to be observed as well for the IPDG approximation and in the construction of the equlhbrated
moment tensor. The corresponding change of the a posteriori error estimator is obvious and is left to the reader.

4. AN IPDG APPROXIMATION OF THE BIHARMONIC EQUATION

We consider the interior penalty discontinuous Galerkin (IPDG) approximation of the biharmonic prob-
lem (3.2) with f € L?(£2) on a geometrically conforming, locally quasi-uniform simplicial triangulation 77, (12)
of the computational domain. It involves element-wise polynomial approximations of u. For £ > 2 we introduce
the IPDG space

Vi, = {v, € L*(2) | vn|k € Pu(K), K € T, (2)} (4.1)
as well as the space of element-wise polynomial moment tensors
M, = {gh € L2 | a |k € Pu(K)™?, K € Th(rz)}. (4.2)

We define a bilinear form al”(-,-) : V;, x V}, — R for the variational IPDG approximation

IP o
ay,’ (up,vp) = / D?uy, : D?vp, dz
KeTy(

+ Y [ (np- {9 D2unke ol + [ulp np - {V - D2oa}r ) ds
EeSh .Q)E

- Z / ([Vuh]E AD?v} g ng + [Vuule - {D*un}e IIE) ds
Ee& () g

+ > / — ng - [Vup ng - [Voplpds+ > / g [vnleds,  (4.3)

EcEn () g Ee& () g
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where «; > 0, ¢ = 1,2, are suitable penalty parameters. The IPDG approximation of (3.2) reads: Find w, € V},
such that

at” (un,vn) = (f,vn)o.2,  vn € Vi (4.4)
Remark 4.1. The Hellan-Herrmann—Johnson based symmetric IPDG approximation (4.4) is the counterpart
of the Ciarlet—Raviart based symmetric IPDG approximation in [34,35]. If we choose the finite element space

Vi, = Vi, N Co(£2), then it reduces to the symmetric CPIPDG approximation considered in [20,21], and [33]. In
the C° case we have [uy|p = [vn]p = 0, E € £,(£2), and hence, the corresponding terms in (4.3) vanish.

For completeness, we note that a!f(-,-) is not well defined for functions in HZ(£2). This can be cured by
means of a lifting operator

/um:

0 EGgh

I;W+HUD -M,

/( nE-{V-gh}E— [V”]E'{gh}EnE) ds. (4.5)

|t

The lifting operator L is stable in the sense that it satisfies (cf. [34])

ILOBes Y (h5 Ine-[Volslie+ b5 lblelds). v e Vit BQ).
EEgh(Q)

Now we define alf : (Vi + H3(£2)) x (Vi + HZ(£2)) — R as follows:

atf (u,v) == Z (Dzu : D?v + (L(u) : D*v + D?u : L(v))) dz

KeTh(2) i
o
+ Z /— ng - [Vulg ng - [Vu]pds + Z /h—; [ulg [v]Eds. (4.6)
Ee&L (D) & B, (D) F

It is easy to verify that alf (up,vs) = al (up,vy) holds for up, vy € V.
We introduce the mesh-dependent IPDG norm on Vj, + HZ(£2)

Wl ne="> ID%lgx+ > AEHHE[VUE%E+_ >

KETn(2) EcER(2) E€En(2) hy

5 B (4.7)

It is not difficult to show that for sufficiently large penalty parameters o, i = 1,2, i.e., a3 = O((k +1)2), a0 =
O((k +1)8), the bilinear form a/f (-, ) is coercive, i.e., there exists a positive constant v such that

ay”(0,0) 2 oI5 po0 v € Vi + HF(2). (4.8)

On the other hand, it is continuous on Vj, + HZ(2), i.e., there exists a constant I" > 1 such that for any
a; >0,1<1<2,

v,w € Vi, + H(£2). (4.9)

ay” (v, w) <
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In particular, it follows from (4.8) and (4.9) that the IPDG approximation (4.4) admits a unique solution
up, € Vp, for sufficiently large penalty parameters.

A mixed formulation in the spirit of [6] was given in [34] for the Ciarlet-Raviart method. We provide now two
mixed Hellan—Herrmann—Johnson type formulations of (4.4). The first one is motivated by the weak formulation
of the two field approach (1.1). Multiplying the first equation in (1.1) by q € H(div?, £2), the second one by

v € HZ(£2), and integrating over K € 7;,(£2) yields

/B:gdm—/uV~V-gdx7/Vu-gnaK ds+/unaK~V-gds:O, (4.10a)
K K oK oK

/E D%y d:cf/pnaK Vo ds+/naK V. pu dsf/fv dz. (4.10b)
K oK oK

We specify appropriate numerical flux functions on the edges E € &,(12)

2= (Ve ZE0D (4.112)
= RS ()
B = {D%un}p — ﬁ ng[Vun]g, (4.11c)
Y :={V Dup}p+ hg [un] e np. (4.11d)

We keep the notion numerical fluzes from [6] although not all the variables in (4.11) are fluxes in the strict
sense.
The two-field-formulation of (4.4) reads as follows: Find (uh,p}) € Vi x M, and numerical fluxes such

that (4.11a)—(4.11d) holds and simultaneously for all (v, q) €VhxM, and K € ’Th(Q)

/p :qu—/ uhV-V-qu—/ ﬁ(l)-qnade+/ a(2)n3K~V-qu:0, (4.12a)

=h = K = oK = oK =

/p ZDQ’de—/ ﬁnaK-Vvds—F/ IlaK"lZ’UdSZ /fvda:. (4.12b)
=h oK = oK - K

All the equations are coupled, since they contain equations on elements as well as on edges.

Often another implementation is considered as more convenient. First the solution u; of the primal method
is determined by solving linear equations with a positive definite matrix. The numerical fluxes are determined
immediately by their definition (4.11). The moment tensor p , can be evaluated by solving the small linear

system (4.12a) for each K € 7j,.

Lemma 4.2. Let the numerical fluz functions ﬁ(l), w®, p and @, be given by (4.11) and suppose that the

penalty parameters oy, 1 < i < 2, are sufficiently large.

(i) If up € V3 is the unique solution of (4.4), then there exists p € M, such that the pair (uh,Bh) satis-
fies (4.12).
(ii) If (uh,Eh) € Vi, x M, is a solution of (4.12), then uy is the solution of the IPDG approzimation (4.4).
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Proof. Let up, € Vi, be the unique solution of (4.4). The associated numerical fluxes are known from (4.11).
We define p, € M, by means of (4.12a). Next, let K € 7,,(£2) and v € V,,. We apply (4.12a) with g(z) =

D?v(z), z € K, and insert the expressions (4.11a), (4.11b) for the numerical fluxes to obtain

/p ZDQ’UdJTZ/ up, V-V -D*vdz
= K
K
+ / {Vuh}aK . D211 115774 ds — / {uh}aK Nnyg - Vv - DQ’U dS, (4.13)
K\ (DKNT) K\ (OKNT)
where {-}ox|, = {‘}r, E € E(OK). Note that boundary terms are present only on interior edges, since the
numerical fluxes U D and 4® vanish on I Using Green’s formula

/ up, V-V-Dzvdxz/ D?uy, : D*vdz — Vuyp, - D?v ngg ds + / upnar - V - D*vds (4.14)
K K

OK OK

for eliminating the first integral on the right-hand side of (4.13) we get

/E Dzvdx—/DQuh DQde—/Vuh D vnade+/uhnaK V - D%vds

K oK
+ / {V’uh}aK - D%y ngg ds — / {uh}aK nyg - V- D?v ds. (4.15)
OK\(DKNT) DK\ (DKNT)

We evaluate the sums over the boundary terms in (4.15) and recall that on interior edges {w}ox — wloxng =
F1[w]ox holds true whence

Z — / Vuy, - D*v ngg ds + / {Vup}ox - D*v ngg ds
KeTw() \ oK K\ (OKNI)
= Z ({VurYorx — Vup) - D*v npg ds — / Vuy - D?v ngg ds
KeTn(®) \ox\(aKnr) dKNT
=— Z [Vung - {D*v}gng ds. (4.16)
EGS;,(Q) E
Similarly,
Z /uhnaK~V-D2vds— / {upyorxnor -V - D*vds | = Z [up]png - {V - D*v}pds
KeTn(2) \ok OK\(9KNI) Eetn(D)

Summation over all terms in (4.15) yields

Z /Eh : D%vdx = /D2uh thd:z:
V)=

KeTn(2) i KeTn(2) i

+ Z V'I.Lh E {D ’U}EIIE ds — Z [uh]E ng - {V . D2’U}E ds. (417)
Ee&n(2) Ee&n(2)
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Next, we use the variational equality (4.4) to eliminate the first integral on the right-hand side of (4.17),

Z /gh:D%dx:f Z /(nE~{V'D2uh}E | ds +

KeTh(2) i Ee&n(2) | E

tﬂ\

’LLhE ng - {V DQ’U}E>

-1

+ Z / ([Vuh]E {D*v}pnp d8+/{D2uh}EnE - [VU}E> ds

EES}L(Q) E

= I
[0 (0%

-3 /le ng - [Vuplg ng - [Volpds — ) /h—§ [unle [v]e ds

pee () F Ees (2)p P
+(fa U)O,Q
S / Vunlp - (D*}pnpds + S [[unlp np- (V- D2o}pds . (418)

Eeg(2) g E€En(D

= 12 = 11

Note that the sums of the integrals I; and I in (4.18) cancel. Observing (4.11c), (4.11d) we obtain (4.12b).

Conversely, if (up, p, ) € Vi x M, solves (4.12a), (4.12b), we choose q := D?v in (4.12a). Applying Green’s
formula (4.14) again, We can ehmmate P, from the system. It follows that up is a solution of the primal
problem (4.4) which proves (ii). O

As opposed to second order elliptic boundary value problems [15], an equilibrated a posteriori error estimator

for the IPDG approximation of the biharmonic equation cannot be based on the two-field formulation (4.12).
Instead, we have to resort to a three-field approach which can be motivated by introducing 1 = V - p in (1.1)

which implies V - ¢ = f. Multiplying the first equation by ¢ € H'(£2)2, the second one by v € HZ2(£2), and
integrating over K € 75,(£2), (4.10b) can be replaced by

/ Vo do— [ proc- ¢ds—/¢ & dr,

K oK
/Q~V’udx7/n31{~yvds:f/f’uda:.
K oK K

For the three-field formulation of (4.4) we introduce the finite element space
W, = {éh € L2027 | ¢, |x € P_1(K)% K € Th(rz)}. (4.19)

Then, the three-field formulation reads as follows: Find (uh,p ,'Lb ») € Vi x M, x W, together with the
numerical flux functions GV, 4@, E and 1# in (4.11) such that for all (v,g, @) € Vi x M, x W, and all
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K € T,,(£2) it holds

/p :qu—/uhV-V~qu (4.20a)
K=h = K =

_/ ﬁ(l)_gnade—I—/ ()HaK V- qu-O
oK =

[ o, Vodo- [ Buongds—— [ v, - sdn (4.20b)

i =
/th.Vvdx—/aKnaK.%vds:—/Kfvda:. (4.20¢)

Lemma 4.3. Under the assumptions of Lemma 4.2 it holds:

(1) If up €V}, is the unique solution of (4.4), then there exists a unique pair ( ,¢ ) eM, x W, such that
the triple (uh,ph,%h) satisfies (4.20).

(i) If (un,p ,w W) EVa x M, x W, is a solution of (4.20), then the pair (uh,gh) solves (4.12), and uy, is
the solutzon of the IPDG approxzmatwn (4.4).

Proof. If up, € Vj, is the unique solution of (4.4), we already know from Lemma 4.2(i) that there exists P, eM,

such that (4.12a) and (4.12b) are satisfied. Next, we define 3, € W, by means of (4.20b). Choosing ¢ Vv
we may replace the first two terms in (4.12b) by > [, 9, Vv dz. Tt follows that (4.20c) holds true which
proves (i).

Conversely, if (uh,Eh,yh) €V x M, x W, is a solution of (4.20a)-(4.20c), obviously (4.12a) and (4.20a)
coincide. Next, for ogtaining (4.12b), we set ¢ = Vwv in (4.20b) and evaluate the term in the second line
via (4.20¢),

Z /Bh vdz — Z /pnaK Vuds = — Z /$h~Vvdx,

KeTn(02) ¢ KeTn(2)px KeTn(02) i
E—— Z /naK 1,bvds+ Z /fvdz
KeTh()gk KeTnh(2) i
Hence, we obtain (4.12b). Now Lemma 4.2, part (ii) shows that uy, solves (4.4) which proves (ii). O

5. AN A POSTERIORI ERROR ESTIMATOR FOR THE IPDG APPROXIMATION
OF THE BIHARMONIC EQUATION

The construction of an equilibrated moment tensor in the finite element framework will be affected by data
oscillations, and the case k = 2 requires special care. This will be clear from Remark 6.5 below. Specifically, set

M= {a € A2 | q |k € P(K)*, K € T,(2)}, (5.1)
koifk >3,
where £ := {3 i h_ 9

Given K € T5,(02), let fx be the L2-projection of f onto Py_o(K), and let f, € L%(£2) be given by fu|x =
fr, K € Tp(£2). A moment tensor Ee: € M’ is called equilibrated in this framework, if it satisfies (3.9b), (3.9¢)

which implies Eehq € E(din, £2), and also the equilibrium equation

V-V -Be’j = f, in each K € 7,(92). (5.2)
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The two-energies principle (Thm. 3.3) can be applied to the IPDG approximation (4.4) involving an equilibrated
moment tensor p e}f It gives rise to an a posteriori error bound in terms of element-related terms 75, K s 1<i<2,

and edge-related terms 7%, 1 <i < 2, as given by

1= [D*uy — p K e Ty(92), (5.32)
Mo = | D*up — D*ui?™ ok, K € Tn(92), (5.3b)
Mgy = h‘W Ing - [Vunlslos, E € &), (5.3¢)
0y = hg? Nunlelor, B € En(R), (5.3d)

where u$°™ € H2(£2) in (5.3b) will be constructed by postprocessing from the finite element solution uy, € V.
The following auxiliary result deals with the data oscillations due to the approximation of f by fj. Its
application is not restricted to a posteriori error estimates.

Lemma 5.1. Let z € H3(£2) be the weak solution of the biharmonic problem

Az = f—fn in £, (5.4a)
z=nr-Vz=0 on I' = 012. (5.4b)

If the L2-projection of f — f, to Pi(K) vanishes in each K € T;(§2), then

| = > i If = fullf e (5:5)

KETh(Q)

Proof. For v € H3(£2) and p; € P1(K), K € T;,(12), we have by assumption

> (D2 D)ok = Y. (f—fuv—pox
KeT,(2) KeTn(92)
Choosing v = z, it follows that

oD%k < D I = fallox 2= pillo.x- (5.6)

KET,(2) KETi(92)

We fix p; € Pi(K) by the interpolation conditions [, pidz = [, zdz and [, Vpidz = [, Vzdz. Since the
choice of p; implies [ (2 —p1)dx = 0, the Poincaré—Friedrichs inequality for convex domains with the optimal
factor by Payne and Weinberger [46], verified by Bebendorf [8], yields

1
llz = pillo,x < ;hKHV(Z = p1)llo.x-

The choice of p; also implies zero mean values for the derivatives [, d(z — p1)/dx;dz,1 < i < 2. Another
application of the Poincaré—Friedrichs inequality gives

oz —p1)
8.131'

1< <2

) = ¢ =

0,K

< T [V 52

ox;

0,K

We combine the estimates to obtain

llz = pillo,x < *h %1D%z|o,x -
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Inserting this estimate into (5.6) yields

1
> ID%206,x < — Y ID%2oxchicllf = fullox -

KeT,(2) KeTn(92)

By applying the Cauchy inequality to the right-hand side and dividing by the square root of the left-hand side
we obtain the assertion. O

The data oscillations will be denoted by

osch(f) =D osci(f), osci(f) = hi IIf = fulld x- (5.7)

KeT,(92)

The error bound in the following theorem refers to the norm (4.7).

Theorem 5.2. Let u € HZ(02) be the solution of the biharmonic problem (3.1a), (3.1b), let up, € Vj, be the
unique solution of the IPDG approzimation (4.4), and let Eehq € Mehq ﬂE(din, 2) be an equilibrated moment

tensor. Moreover, let u°™ € H2(02), let Nicis N 1 <1 <2, be given by (5.3a)(5.3d), and let oscp(f) be the
data oscillation (5.7). We set

1/2 1/2 1/2
nyt = > mgdy)? +2( > miy)? + DD () + e2(ngy)?) . (58)
KeT,(02) KET(2) Ec&L(9)
Then it holds
eq 1
v —unl2ne < '+ = oscp(f)- (5.9)

Proof. Let u € HZ(£2) be the weak solution of the biharmonic problem

A27=fh in £2,
u=nr-Vu=0 onlI =0

By recalling (4.7) and applying the triangle inequality twice we obtain

1/2 1/2
lu=wunllopne < | Y D= D*upf +1 D () + as(niy)?)
KeT,(2) E€&,(R2)
1/2 1/2
<| > IIP*u—D%ulfk + D ID*a— D2ui™|f «
KeT,(02) KeTh($2)
1/2 1/2
+ | Do ID*u = DPun)llf x + D () + as(ny)?) - (5.10)
KeT,(2) Ee€&n(92)

Since z := u — @ solves (5.4a), (5.4b), the first term in the third line of (5.10) can be estimated from above
by Lemma 5.1 and thus gives rise to the data oscillations in (5.9). The two-energies principle (Thm. 3.3) with



2492 D. BRAESS ET AL.

u=1u,0v= uff’“f and p = pehq yields

1/2
2(~ _ . conf 2 conf _ _eq|2
1D=(u = ui”™) 0,2 < Z 1D~y gh”o,K
KeT,(£2)
1/2 1/2

< 2 _ 12,,conf 2 eq N2 2

< 2 IPPw =DM |+ Y0 I - Dlulli | - (511)
KeT,(£2) KeTn(92)

Using these estimates in (5.10) allows to conclude. O

In practice, a modified equilibrated error estimator avoids the computationally expensive evaluation of u§ont.

It is of interest, although the reliability estimate (5.12) below contains a generic constant.

Corollary 5.3. Assume that the assumptions of Theorem 5.2 are satisfied. Specifically, let Vi be the gener-
alized version of the classical Hsieh—Clough—Tocher C* conforming finite element space as constructed in [27],
and let us°™ = E,(up,) be the extension of up, to V& as defined in [35]. Then there exists a constant Cy > 0,
dependmg only on the local geometry of the triangulation and on the penalty parameters a;, 1 <11 < 2, such that
it holds

€ € € ]'
le —unl3ne < Y @REDP+C D ((F) + (5le)?) + = osci,(f). (5.12)

KeT,(2) E€&,(R2)
Proof. In [35] it has been shown that
S oPs Y ()P 0i)?) (5.13)
KeTn($2) E€&n(2)

Using (5.13) in (5.9) yields (5.12). O

6. CONSTRUCTION OF AN EQUILIBRATED MOMENT TENSOR

We construct an equilibrated moment tensor Eehq € Me}? ﬂE(din, 2) which allows to apply the two-energies

principle and Theorem 5.2. The construction will be done by an interpolation on each element. Thus it is a local
procedure. In particular, denoting by BDM,,(K),m € N, the Brezzi-Douglas-Marini element of polynomial
degree m (cf., e.g., [22]), we first construct an auxiliary vector field ¢! € H(div, £2), %[k € BDM,_1(K), K €
Tr(92), satisfying

Vgt =f in L*(92), (6.1)
and then an equilibrated moment tensor ch eMN E(divg, 2) satisfying
 neq eq - 2 2
v E;—Qh in L=($2)=. (6.2)
For the construction of the auxiliary vector field we recall the following result:

Lemma 6.1. Let m > 1. Any vector field ¢ € Py, (K) is uniquely defined by the following degrees of freedom

/nE ¢ qds, qe€ P,(E), Ec &, (0K), (6.3a)

/ ¢ - Vqdz, q € Ppn_1(K), (6.3b)
/ ~curl(bgq)dz, q€ Pp_2(K). (6.3c)
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3

where br in (6.3c) is the element bubble function on K given by bx = [[ AX and MX,1 < i < 3, are the
i=1

barycentric coordinates of K. Moreover, there exists a positive constant Cy(m) depending only on the polynomial

degree m and the local geometry of the triangulation Ty (§2) such that

/@degcl(m) Z he /|nE-@2ds+h§< /|V~Q|de

e Ee€&r(0K) E K
+ h2 max /\d) curl(bgq)|* dz; g € P, _2(K), max|q ) <1 (6.4)
Proof. For the uniqueness result we refer to (3.41) in ([22], p. 125) since BDM,, = P,(K). The esti-
mate (6.4) can be derived by standard scaling arguments (cf. Lem. 3.1 and Rem. 3. 3 in [ 5]). O

The auxiliary vector field ye}f is constructed in each element K € 7}, such that geﬂ k € BDM,_1(K) satisfies
the interpolation conditions

/nE P qds = /nE -@qu, q€ P_1(F), E € &,(0K), (6.5a)
E B
/ gehqqux:/ thqua quZ—Q(K)7 (65b)
K K
/ ) - eurl(big) do = / V- Dup - curl(bieq) dz, g € Pry(K). (6.5¢)
K K

Lemma 6.2. The vector field 4" that is defined by (6.5) is contained in H(div, £2) and satisfies (6.1).

Proof. The solvability of (6.5a)—(6.5¢) is guaranteed by Lemma 6.1 with m = ¢— 1. The continuity of the normal
components follows from (6.5a) on adjacent triangles and yields %! € H(div, £2).

Let K € T,(£2). Given a polynomial ¢ € Py_o C Pk, we can use (4.20c) with v|g = ¢ and v, |gr = 0, K #
K' € T;,(£2). Moreover we make use of Green’s formula, as well as of (6.5a) and (6.5b) to obtain

/V-i/)e:qu: —/ 1/Jehq-qux+/ nok - Plgds
K K~ oK -
= /'L/J qux—i—/ naK-@qu

- / fqu—/ frgd.

Since both V - weq and fp, live in Py_o(K), (6.1) follows from the preceding equation. Now, the assertion follows
from ¥ € H(dlv 0). O

The construction (6.5) by local interpolation and Lemma 6.2 take into account that there is a compatibility
condition due to Gauss’ theorem. The divergence of ge}? in K cannot be fixed independently of the normal
components of w 5 on OK , but the latter are required in order to achieve the continuity of the normal components
and Y% € H(div, 2).

The compatlblhty conditions are satisfied here due to the finite element equation (4.20c) for the discontinuous
Galerkin (IPDG) method. They enable us to proceed on elements like e.g., in [15,24,29], and we need not operate
on patches like in the applications of the two-energies principle and H!-conforming elements as, e.g., in [16,18]
or ([14], Sect. IIL.9).
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For the construction of the equilibrated moment tensor Be; we begin with the specification of the degrees of

freedom for tensors p € Pp(K)**2.

Lemma 6.3. We have dim Py(K)*** = 2(0 +1)(£ +2). Any p € Pi(K)**?, p = (pij)} =1, with pl) =
(i1, pi2)T,1 < i < 2, is uniquely determined by the following degrees of freedom (DOF)

/ (p ng) - qds, q € P(E)*, E € &,(9K), (6.6a)

/ p: Vqdz, q € P (K)*\Py(K)?, (6.6b)

/ p . curl(bgq)dz, qe Pro(K), 1<i<2. (6.6¢)
P

The numbers of degrees of freedom (DOF) associated with (6.6a)—(6.6¢c) are as follows

DOF (6.6a) = 6(£ + 1),
DOF (6.6b) = £(¢ + 1) — 2,
DOF (6.6¢) = £(£ — 1)

and sum up to 2(£ + 1)(¢ + 2).

Proof. The interpolation conditions for E(l) and 2(2) are separated. The vector field E(i) (for 1 <4< 2)is
determined by the degrees of freedom

/HE'E(i)qu7 q € Pu(E), E € &(9K),
E

/ E(i) - Vqdz, q € Pr1(K)\Py(K),

K

/ p - curl(bgq)dz, q€ Piy(K).
K

By applying Lemma 6.1 with m = £ we conclude that there is a unique solution. O

Lemma 6.4. Let q = (qM,q®) € Py(K)?*2. Then there exists a positive constant Co({) depending only on
the polynomial degree ¢ and the local geometry of the triangulation T1(82) such that

/\g|2dx < Cs(0) Z hg /(|nE ~gnE|2 + |te -gnE|2)ds + h2 /|V ~g|2 dz
' E€&n(0K) = B B % B

2

+ h3% E max /|q(i) -curl(brqr—2)|* dz; gr—o € Pr_g, max|gp_2(z)] < 1 . (6.7)
: - reK
i=1 K
Proof. As in the proof of Lemma 6.1, the estimate (6.7) follows by standard scaling arguments. O

Now, for the construction of the equilibrated moment tensor we set z L = D?uy, with

o (P Pu N\ o (P )
heoo 0x2  0x 0z ) T 01022 023
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We construct p¢? = (p?j’eq)?j=17 with ps)@q = (p?{eq7p?2’eq)T7 1 < <2, in each element K by fixing the degrees
=h 2 =%
of freedom (6.6a)—(6.6¢) according to
/Eehq ng-qds = /ﬁ np-qds, g€ P(E)? E€&,(0K), (6.8a)
B B
/Ee: :Vqgdz = —/fe: -qdz + /EnaK -qds, q¢€ Pg,l(K)Z, (6.8b)
K K oK
/Bg)eq ~curl(bgq)dz = /gﬁf) ~curl(bgq)dz, qe€ Pro(K), 1<i<2. (6.8¢)

K K
Remark 6.5. Obviously, the equations (6.8b) require the compatibility conditions
—/ yehq-gdx—i-/ Pnpx -pds =0, EGPO(K)2 (6.9)
K oK =

with constant polynomials p € Py(K)?. Indeed, we had to care for £ > 3 in (5.1) in order to verify (6.9) now.
From the finite element equation (4.20b) we conclude that

K oK =

Given p = (p1,p2) € Po(K)?, there exists ¢ € Py (K) with p = Vg, specifically (p1,p2) = V(p121 + pax2). Since
¢ > 3, we conclude from (6.5b) that

/Q?ogdx:/ge}?~qux:/$h~qux:/gh~de.
K K K K

Combining the last two equations we obtain (6.9).

The following theorem is the main result and shows that Eehq is an equilibrated moment tensor and thus

fulfills all requirements of the two-energies principle.
Theorem 6.6. Let k > 2. If the moment tensor E‘;‘I and the auziliary vector field gi? are constructed by (6.8)
and (6.5), respectively, then EG: € E(div2,ﬂ) is equilibrated, i.e.,

V.-V 'Ee}? = fn in L*(92).

Proof. Let K € T,(§2). From Remark 6.5 we know that the compatibility condition (6.9) is satisfied. We apply
partial integration and insert the rules (6.8a), (6.8b) for the construction of Ee}q to obtain

K K 9K -
:—(—/’I/J?-quﬁ-/ﬁna]('qu +/§naK-gds
K 0K oK
= [v-qdz, qeP (K> (6.10)
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Since both V - eq and %7 live in P 1(K)?, it follows from (6.10) that

V'ge: =99 ineach K € 7,(£2). (6.11)

The left-hand side is contained in H(div, {2), since it holds for the right-hand side due to Lemma 6.2. Together
with (6.8a) it follows that Ee: € E(divg, 2). In view of (6.1), (6.11) implies

VVop =V =,

and the proof is complete. ([l

Usually mixed methods for the treatment of the Hellan-Herrmann—Johnson formulation use finite elements
for the moment tensors that are H(div?, £2) nonconforming. This is due to the fact that no simple conforming
elements are known. The reader will have observed that the equilibrated moment tensors are constructed in
M N H(dlv ,§2). Thus we have implicitly an H(div {2)-conforming finite element space. We conclude from
the efficiency considerations in the next section that this finite element (sub)space is sufficiently large.

Remark 6.7. We note that the divergence of a tensor was defined row-wise in (3.4). If we had chosen a column-
wise definition, then we would have obtained the transposed tensor EZ‘J’T of the result (6.8). It follows that also

peq* € H(le 2)and V-V . peq7 = fp. Therefore, we may use also the symmetrical part

1
eq,sym _ — eq eq,T
gh 2 (Eh +£h )

for computing the term (5.3a) of the error bound, i.e.,

eas . || p2y, — WWH K € Th(Q). 12
Do || D pr | K e @) (6.12)

Since the symmetrical part and the antisymmetrical part of a tensor are L2-orthogonal, it follows that
MKt <1 K€ Th(R). (6.13)

Indeed, numerical results below show that the error bound can be reduced by about 20% in this way.

7. EFFICIENCY OF THE EQUILIBRATED ERROR ESTIMATOR

A residual-type a posteriori error estimator has been derived and analyzed in [35] for the IPDG approximation
of the biharmonic problem. It is based on the Ciarlet-Raviart mixed formulation, and its adaptation to the
Hellan—Hermann—Johnson based IPDG approximation (4.4) reads as follows:

(= 3 R > (EDPHERD - Y (05 ED?), (7.1)
KeT,(02) Ec&n(92) Ee&n(2)
where the element residual 77f* and the edge residuals nj73, 1 <14 < 4, are given by
(n5*)* = hic |If — A%unlf§ i, K € Tn(2),
(E3)? = b |Ing - [VAu)pll§ 5 E € En(02),
(nE3)* = he (HnE [D*un]p nEl§ g + It - [D*unlp nE”%,E)a E € &n(12),
(E5)* = hg' Ing - [Vunlel§ g, E € E(2),
g2 = hg” lunlplld . E € En(9). (7.2)
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A slight generalization of the efficiency estimate from [35] shows

(15°)* S = unll3 p 0 + 0sch(f)- (7.3)

The efficiency of the equilibrated a posteriori error estimator 7;? follows from (7.3) and the following result.

Lemma 7.1. Let g |, K € T,(£2), and oscy(f) be given by (5.3a) and (5.7), and let n; be the residual-type
a posteriori error estimator (7.1). Then there holds

S 05 S ()2 + 0scE (). (7.4)
KGTh(fZ)

Proof. Let K € T,(2) and E € &,(0K). Due to (6.8a) and (4.11c) we have gehqh; = E|E = {D?up}p —

it ng [Vup]L. Hence,

a
ng - (ge: — D*up)ng =ng - ({D*up}e — D*up)ng — ﬁ ng - [Vung,
te - (Ee: — D*up)ng = tgp - ({D2uh}E — DQuh)nE.

It follows that

1 o
5 e [D?uilp ng| + é Ing - [Vuple|, E € En(R)

mp - (77— DPup)mp]| < (7.5a)

(0%
ﬁ Ing - [Vuplg|, E€&(l),
1
) 5 |tE . [Dguh]E 1’1E|7 FE e gh(Q)
0, Fe gh([').

Moreover, in view of (6.11) and (6.8¢c) we have

V- (p" - D?up) = 54 — V - D?up, (7.6a)
/(Eg)ﬂ] - gg)) ceurl(bgq)de =0, g€ Pro(K), 1<i<2. (7.6b)
K

Observing (7.5) and (7.6) we apply Lemma 6.4 to Ee: — D?uy, € P2*?, recall (7.2) and obtain

2
(%
I = D*unll§ i < Wi 193! = V- D*unl§ e+ D - Ing - [Vunls[§ e

Ecé&), (0K)
+ Z hg (HDE . [D2uh]E nEH(Q)E +||tE - [D2uh]E nEllﬁE)
Ec&, (0K\(dKNT))
Shic 9 =V -D*unlfc + Y. (3 + > (n53)*. (7.7)
E€&, (0K) E€&L(OK\(OKNI))

Now we turn to the estimation of ¢}? — 'V - D?uy,. In view of (6.5a) and (4.11d), for E € &£,(0K) we have
¥l = QY = {D*un}e + 77 Q7 ([un]p) and

ng - (%Zq -V Dzuh) = ng - ({V . Dzuh}E -V D2uh) + Qf,l([uh]]g),

(€5)
3
h;
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where QF | stands for the L2-projection onto P,_1(E). Noting that V - D?uj, = V Auy, we obtain

% Ing - [V Aup)g| + %\Qf_l([uh]E”, E € &(Q)
e 7=V Dl < o (7.8)
3 1@ ()l B € En(T).

Moreover, taking (6.1) and (6.5¢) into account, it holds

V(457 =V - D*up) = fr — A%y in K, (7.92)
/(QZ‘J — V- D?u,) -curl(bgq)dz =0, q¢€ Pp_3(K). (7.9b)
K

Due to (7.8) and (7.9a), (7.9b), an application of Lemma 6.1 to g;q — V- D%uy, € Py_1(K)? yields

2
1457 =V - D?up[§ i < P 1 fn— A%unlf i + > he Ing- [VAurlg|§ g+ Y %H[uhh’?”g,]ﬂ'
Ec&,(9K\(8KNI)) Ec&n(0K) F
(7.10)
Using the local quasi-uniformity once more, we have hg ~ hx for E € £,(0K) and estimate the bounds above
in terms of the residual estimators (7.2)

Wil = V- D2unllg i S () + il f = fallde + Y (5D + > (nE3)*.
Ee&y (0K) Be€,(0K\(OKNT))
We insert this bound into (7.7), sum over all K € 7,(f2), and the proof is complete. O

Theorem 7.2. Let u € H3(2) be the solution of the biharmonic problem (3.1), and let uj, € V}, be the IPDG
approzimation. Moreover, let ng ;,n%';,1 <i <2, and oscy(f) be given by (5.3a)~(5.3c) and (5.7). Then there
exists a constant C' > 0 depending on the polynomial degree k, the local geometry of the triangulation, and on
the penalty parameters a;, 1 < i < 2, such that

S (0P 0?) + Y (0F)*+ 0)?) <€ (lu=wldpg+osd(D).  (711)

KeTn(92) E€En(R)
Proof. The assertion follows directly from (5.13), (7.3), and (7.4). O

Since the residual a posteriori error estimator is known to be efficient [35], the error bounds from the two-
energies principle are also efficient.

8. NUMERICAL RESULTS

We provide a detailed documentation of the performance of the adaptive IPDG method for an illustrative
example taken from [36] which has also been used in [20].

Example 8.1. We choose {2 as the L-shaped domain 2 := (—1,+1)2\ ([0,1) x (=1,0]) and choose f in (3.1a)
such that

2 2
u(r, @) = (r2 cos? ¢ — 1) (7“2 sin? ¢ — 1) ritz g(p) (8.1)
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is the exact solution of the biharmonic boundary-value problem (3.1), where

9(9) :=( RPN (o L 3(Z+1)7T>(COS((Z—1)@)—008((Z+1)90))

sin - sin

z—1 2 z+1 2
1. 1. 3(z— )7 3(z— )7

- (z — sin((z — 1)p) — P sin((z + 1)<p)> (cos —y T s ———— |,

and z ~ 0.54448 is a non-characteristic root of sin*(32%) = z%sin®(2[).

The penalty parameters have been chosen as a; := 12.5 (k + 1)? and ay := 2.5 (k + 1)°.
We make use of the notation

1/2
Ner o= Z (ar(nFly)? + aa(nly)?) ) (8.2a)
Ec&n(9)
1/2
=1 > )P e, (8:2b)
KeT,(2)
1/2
= > D) 40, (8.2¢)
KeT,(22)

where 77" has been defined in (6.12). Note that the re-definition of 7, in (8.2b) differs from (5.8) in so far as
we have omitted the second term of the right-hand side in (5.8) because according to (5.13) it can be estimated
from above by the third term.

The realization of the adaptive refinement is taken care of by the well-known Doérfler marking [26]: a bulk
parameter 6 € (0, 1] is fixed and we choose a set M; C 75,(£2) of elements and a set My C &,(£2) such that it
holds

1/2

1/2 1/2
6 Yo D] .| < ( > (n?é’,l)Q) +< > (a1(77%q,1)2+a2(77?;q,2)2)> . (83)

KeT,(02) KeM;y KeM;
If we use (8.2c) instead of (8.2b), ni, in (8.3) is replaced by nily.
vertex bisection.
For polynomial degree 2 < k < 5 and bulk parameters § = 1.0 (uniform refinement), # = 0.7, and 6§ = 0.3
Figures 1-4 display

The actual refinement is done by newest

e the global discretization error u — uy, in the mesh-dependent IPDG-norm || - ||2,5.2 (top left) and the error
estimator n;? (top right) as a function of the total number of degrees of freedom (dofs) on a logarithmic
scale,

e the associated effectivity index 7;?/||u — up||2,n,0 (bottom left),
e the adaptively generated mesh (6 = 0.7) at refinement level 7 for k = 2, level 9 for k = 3, level 11 for k = 4,
and level 13 for k = 5 (bottom right).

The exact solution u has a singularity at the origin and satisfies u € HZ(2) N H®/3¢(2) for any £ > 0 (cf. [36]).
Hence, in case of uniform refinement (# = 1.0) the optimal convergence rate is ||u — up|l2.n.0 = O(h?/37°) =
O(N—1/3+2/2) N = card(N},(£2)), which is what we basically observe for 2 < k < 5. If the exact solution were
smooth, e.g., u € HZ(2)N H*(2),s > k + 1, we would have ||u — up|l2.n.0 = OR*™1) = O(N~==1/2) .
O(N=Y2) for k = 2, O(N~1) for k = 3, O(N~3/?) for k = 4, and O(N~2) for k = 5. In case of adaptive
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FIGURE 1. Error, estimator, effectivity index, and adaptively generated mesh (k = 2).
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FIGURE 2. Error, estimator, effectivity index, and adaptively generated mesh (k = 3).
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TABLE 1. Results for £k =3 and 6 = 0.3.

level # dofs ||lu — un||2,h,0 0. N

0 240 6.78 x 10° 2.50 x 101 2.04 x 10 3.06 x 10° 3.69
2 640 4.23 x 10° 1.16 x 100 9.85 x 10°  1.77 x 10° 2.74
4 940 2.13 x 10° 775 x 10°  6.41 x 10°  1.19 x 10° 3.64
6 1520 1.60 x 10° 5.56 x 10°  4.61 x 10°  7.93 x 10~* 3.48
8 2380 1.06 x 10° 3.71 x 10°  3.06 x 10°  4.77 x 1071 3.51
10 4360 6.39 x 1071 2.27x10° 1.86x 10° 2.84 x 107! 3.55
12 7340 3.49 x 107! 1.17x 10°  9.67 x 107! 1.47x 107! 3.35
14 12210 | 2.14x 107 7.16x 107! 5.89x 107! 8.83 x 1072 3.35
16 19380 | 1.35x 107! 4.34x 107! 357 x 107! 543 x 1072 3.20
18 31190 | 837x1072 2.64x107' 218x 107! 3.23x 1072 3.16
20 54040 | 5.31x1072 1.62x107' 1.33x107' 1.96 x 1072 3.04

Ner effectivity

refinement, we see such rates asymptotically for £ = 2 and k& = 5, but slightly lower rates for kK = 3. For k =4
the numerically observed rates are lower due to the occurrence of roundoff errors for # DOFs > 10%.

As far as the adaptive refinement is concerned, we observe a significant refinement in a vicinity of the reentrant
corner where the solution has a singularity and some refinement in regions near the upper and left boundary
segments of the computational domain where second derivatives of the solution have local peaks. As expected,
the refinement is less pronounced for higher polynomial degree k. Moreover, for k = 2 the beneficial effect of
adaptive refinement sets in for a total number of DOFs (# DOFs) exceeding 10%, whereas for 3 < k < 5 it
occurs for # DOFs ~ 102 and is much more pronounced than for k = 2. The effectivity index is between 2.0
and 4.5 for all polynomial degrees 2 < k < 5.

We note that the computation of the equilibrated moment tensor is ill-conditioned. The condition number
deteriorates significantly with decreasing mesh size and increasing polynomial degree k. For k = 4 and k = 5,
Figures 3 and 4 only display the results up to refinement levels before roundoff errors have an influence on the
numerical results.

Table 1 lists results of the computation for k£ = 3 and § = 0.3 and addresses certain components of the error
estimator 7);?. By using the symmetrical part ;%" (¢f. (8.2c)) as suggested in Remark 6.7, the error bounds and
therefore also the associated effectivity indices 7,9 /||u — up||2,n,0 can be reduced by 15 to 20 %. The weighted
edge-related terms as given by 77?3“& contribute only about 12 — 15 % to the overall error estimator.
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