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A NUMERICAL SOLUTION TO MONGE’S PROBLEM WITH A FINSLER
DISTANCE AS COST

Jean-David Benamou1, Guillaume Carlier2,∗ and Roméo Hatchi3

Abstract. Monge’s problem with a Finsler cost is intimately related to an optimal flow problem.
Discretization of this problem and its dual leads to a well-posed finite-dimensional saddle-point prob-
lem which can be solved numerically relatively easily by an augmented Lagrangian approach in the
same spirit as the Benamou−Brenier method for the optimal transport problem with quadratic cost.
Numerical results validate the method. We also emphasize that the algorithm only requires elementary
operations and in particular never involves evaluation of the Finsler distance or of geodesics.
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1. Introduction

Given a convex bounded open subset Ω of Rd, and two probability measures f+ and f− on Ω, we are
interested in solving Monge’s problem

inf
π∈Π(f−,f+)

∫
Ω×Ω

dL(x, y)dπ(x, y) (1.1)

where Π(f−, f+) is the set of transport plans between f− and f+ i.e. the set of probability measures having
f− and f+ as marginals and dL is a Finsler distance. More precisely, dL is given by

dL(x, y) := inf
{∫ 1

0

L(γ(t), γ̇(t)) dt : γ ∈W 1,1([0, 1], Ω), γ(0) = x, γ(1) = y

}
(1.2)

where the Lagrangian L: Ω×Rd → R+ is a continuous function of Finsler type i.e. for every x ∈ Ω, v 7→ L(x, v)
is a norm3 and there is a constant C > 0 such that the following nondegeneracy condition holds:

|v|
C
≤ L(x, v) ≤ C|v|, ∀(x, v) ∈ Ω × Rd. (1.3)
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Of course, one difficulty is the evaluation of the cost, and we shall see how to avoid computing it. This will be
done by considering suitable dual, minimal flow and saddle-point formulations for which one can easily use an
augmented Lagrangian method. The use of augmented Lagrangian methods in optimal transport was pioneered
in the seminal work of Benamou and Brenier [4] on the dynamic formulation of the quadratic optimal transport
case. For a distance cost (Monge case), in fact there is no need to introduce an additional time-variable and the
analogue of the Benamou−Brenier dynamic problem is the minimal flow problem introduced by Beckmann [3].
We refer to the recent work [5] of the first two authors for applications of these augmented Lagrangian methods to
Mean-Field-Games and optimal transport and to the work of the third author [14] for applications to anisotropic
congested optimal transport. To the best of our knowledge, the relevance of augmented Lagrangian methods
for a general Finsler metric has remained unnoticed in the literature. It is worth mentioning here that for two
relevant particular classes of metrics namely Riemannian ones and crystalline norms (i.e. norms whose unit ball
is the intersection of finitely many half spaces), there are alternative methods. The Riemannian case leads to a
second-order cone program (SOCP) for which there are mature interior points solvers. The crystalline case can
in principle be solved by linear programming. The advantage of the augmented Lagrangian approach is that it
is flexible and can handle arbitrary Finsler metrics, only a pointwise projection step has to take into account the
particular geometry of the metric. For other methods to solve optimal problems with the euclidean distance as
transport cost, we refer for instance to [2] where a certain regularization is considered. Our goal is to show that
Monge’s problem with a Finsler metric is in fact quite easy to solve directly numerically by using an augmented
Lagrangian approach. Let us finally mention the work of Rubinstein and Wolansky [16] which leads to problems
similar to (1.1)-(1.2) having their roots in the study of semiclassical limits for some classes of dispersive wave
equations.

The paper is organized as follows. In Section 2, we recall several reformulations of the Monge problem with
Finsler cost (1.1): the Kantorovich dual, the minimal flow reformulation and finally a (formal) saddle-point
problem for finding at the same time the Kantorovich potential and the optimal flow field. Section 3 describes
the discretization of the saddle-point problem, discusses the convergence and details the steps of the augmented
algorithm ALG2 of Glowinski and Fortin in this context. Section 4 gives numerical results.

2. Reformulations

2.1. Dual and minimal flow formulations

The standard Kantorovich duality formula (see [18]) says that the infimum in Monge’s problem (1.1) coincides
with the value of the dual:

sup
{
〈u, f〉 :=

∫
Ω

u(x)d(f+ − f−)(x) : u is 1-Lipschitz for dL

}
. (2.1)

We first observe if u is 1-Lipschitz for dL on Ω then, thanks to (1.3), u is also Lipschitz for the geodesic distance
on Ω which is the euclidean distance since we have assumed Ω to be convex. Thus, u is differentiable a.e.,
moreover the constraint u(x)−u(y) ≤ dL(x, y) can be expessed in differential form as follows. Defining the dual
norm L∗(x, .) of L(x, .):

L∗(x, p) := sup{p · v : L(x, v) ≤ 1},
one can express the fact that u is 1-Lipschitz for dL by the following pointwise constraint on ∇u

L∗(x,∇u(x)) ≤ 1 for a.e. x (2.2)

i.e.
σ · ∇u(x) ≤ L(x, σ), ∀σ ∈ Rd.

Thus (2.1) can be rewritten in sup-inf form as

sup
u∈W 1,∞

inf
σ∈L1(Ω,Rd)

〈u, f〉+
∫
Ω

L(x, σ(x))dx−
∫
Ω

∇u(x) · σ(x)dx. (2.3)
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Switching the infimum and the supremum above, we obtain another dual formulation of (2.1):

inf
σ∈L1(Ω,Rd)

∫
Ω

L(x, σ(x))dx+ sup
u∈W 1,∞

〈u, f〉 −
∫
Ω

∇u(x) · σ(x)dx

observing that the supremum with respect to u is 0 if −div(σ) = f = f+− f− and σ · ν = 0 on ∂Ω in the weak
sense i.e. ∫

Ω

∇u(x) · σ(x)dx = 〈u, f〉, ∀u ∈ C1(Ω) (2.4)

and +∞ otherwise, we obtain the following minimal flow problem dual formulation of (2.1):

inf
σ∈L1(Ω,Rd)

{∫
Ω

L(x, σ(x))dx : −div(σ) = f, σ · ν = 0 on ∂Ω

}
. (2.5)

Minimal flow formulations for transport problems were first introduced in the 1950’s by Beckmann in an eco-
nomic context [3], the connection with Monge’s problem was realized much later (see in particular [10, 11]). It
is obvious that (2.1) possesses solutions. Standard convex duality also implies that there is no duality gap and
that

sup (2.1) = inf (1.1) = inf (2.5). (2.6)

It is however not clear in general that (2.5) possesses L1 solutions. In the spatially homogeneous case where
L(x, v) is the euclidean norm (or more generally some smooth and uniformly convex norm), |σ| is called the
transport density and there are important and involved L1 regularity results for the transport density under
suitable assumptions on f± due to Feldman and McCann [11], De Pascale, Evans and Pratelli [7], De Pascale
and Pratelli [8] and Santambrogio [17]. We are not aware of extensions to the Finsler case yet. Since the cost
in (2.5) is convex and homogeneous of degree one, (2.5) can be relaxed to vector-valued measures which amounts
to replace (2.5) by:

inf
σ∈M(Ω,Rd)

{∫
Ω

L

(
x,

dσ
d|σ| (x)

)
d|σ|(x) : −div(σ) = f

}
. (2.7)

where |σ| is the total variation measure of the vector-valued measure σ and dσ
d|σ| is the density of σ with respect

to |σ|. It is then obvious by (1.3) and Banach–Alaoglu Theorem that the relaxed problem (2.7) admits solutions
(note that the divergence condition −div(σ) = f is understood together with the boudary condition σ ·n = 0 on
∂Ω in the weak sense of (2.4) which is obviously a closed condition for the weak star convergence of measures).
To sum up, we have the following duality and attainment relations

MK(L, f) := min (1.1) = max (2.1) = inf (2.5) = min (2.7) (2.8)

where we have denoted MK(L, f) the common value of (1.1), (2.1) and (2.5).

2.2. Relations between the three problems

We now discuss in a slightly formal way the relationships between the three problems (1.1), (2.1) and (2.5).
For further use, let us denote by B(x) and B∗(x) respectively the unit ball for L(x, .) and L∗(x, .):

B(x) := {σ ∈ Rd, L(x, σ) ≤ 1}, B∗(x) := {q ∈ Rd, : L∗(x, q) ≤ 1}

and recall
L(x, σ)L∗(x, q) ≥ σ · q, L(x, σ) = sup

q∈B∗(x)
q · σ, L∗(x, q) = sup

σ∈B(x)

q · σ. (2.9)

Recalling that if C is a closed convex subset of Rd and z ∈ C the normal cone of C at z, NC(z) is by definition:

NC(z) := {ξ ∈ Rd : ξ · z ≥ ξ · y, ∀y ∈ C},
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it is easy to see that, if non zero vectors σ and q satisfy L(x, σ)L∗(x, q) = q · σ this means that

q ∈ NB(x)

(
σ

L(x, σ)

)
(2.10)

or equivalently

σ ∈ NB∗(x)
(

q

L∗(x, q)

)
· (2.11)

In the case where B(x) or B∗(x) is smooth the normal cones at a point of ∂B(x) or ∂B∗(x) are simply the
half line generated by the normal vectors (Gauss maps) and thus the previous relations give an unambiguous
information on the relation between the direction of q and σ.

Any optimal plan π for (1.1) is related to any optimal potential u for (2.1) by the complementary slackness
condition:

u(y)− u(x) = dL(x, y), ∀(x, y) ∈ spt(π). (2.12)

Let then (x, y) ∈ spt(π) and let t ∈ [0, 1] 7→ γx,y(t) be a constant speed geodesic between x and y, it is easy to
deduce from (2.12) and the fact that u is 1-dL Lipschitz that one also has for every (s, t) such that 0 ≤ s ≤ t ≤ 1:

u(γx,y(t))− u(γx,y(s)) = dL(γx,y(t), γx,y(s)) = (t− s)dL(x, y). (2.13)

In other words, u grows at the maximal rate allowed by the Lipschitz constraint on the geodesic γx,y. If u was
smooth, we could further write:

u(y)− u(x) =
∫ 1

0

∇u(γx,y(s)) · γ̇x,y(s)ds

and then ∫ 1

0

∇u(γx,y(s)) · γ̇x,y(s)ds = dL(x, y) =
∫ 1

0

L(γx,y(s), γ̇x,y(s))ds.

but since L∗(γx,y(s),∇u(γx,y(s))) ≤ 1, we pointwise have ∇u(γx,y(s)) · γ̇x,y(s) ≤ L(γx,y(s), γ̇x,y(s)) so that

∇u(γx,y(s)) · γ̇x,y(s) = L(γx,y(s), γ̇x,y(s)), ∀s ∈ [0, 1], (2.14)

which also gives
L∗(γx,y(s),∇u(γx,y(s))) = 1, ∀s ∈ [0, 1]. (2.15)

This expresses in a local way the fact that the Lipschitz constraint on u is binding on geodesics (this is again
formal). Note that (2.15) gives a precise relation between ∇u(x) and the direction of geodesics passing through
x: they are tangent to a vector in the normal cone NB∗(x)(∇u(x)).

Now if σ solves (2.5) and u is a solution of (2.1), then complementary slackness takes the form

L(x, σ(x)) = σ(x) · ∇u(x) a.e. (2.16)

hence
σ(x) 6= 0⇒ L∗(x,∇u(x)) = 1, (2.17)

which again expresses that the Lipschitz constraint is binding on the support of the transport density. The
direction of optimal flows and gradients of Kantorovich potentials are therefore related by the duality relations

σ(x) 6= 0⇒ σ(x) ∈ NB∗(x)(∇u(x)), ∇u(x) ∈ NB(x)

(
σ(x)

L(x, σ(x))

)
· (2.18)

It remains to investigate the relations between optimal plans and optimal flow fields. The following (heuristic)
construction is well-known (see for instance [1]) in the euclidean setting: let π be an optimal plan i.e. a solution
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for (1.1). For every (x, y) ∈ spt(π) let t ∈ [0, 1] 7→ γx,y(t) be a geodesic between x and y and define the
vector-valued measure σπ by∫

Ω

Fdσπ :=
∫
Ω×Ω

(∫ 1

0

F (γx,y(s)) · γ̇x,y(s)ds
)

dπ(x, y) (2.19)

for every F ∈ C(Ω,Rd). Let φ ∈ C1(Ω), using the fact that π ∈ Π(f−, f+) then gives∫
Ω

∇φ · dσπ =
∫
Ω×Ω

(φ(y)− φ(x))dπ(x, y) = 〈φ, f〉

i.e. −div(σπ) = f so that σπ is admissible for the minimal flow problem (2.5). To see that σπ is actually optimal,
we consider a Kantorovich potential i.e. a solution u of (2.1). Thanks to (2.8), it is enough to show that∫

Ω

L(x, σπ(x))dx ≤ 〈u, f〉.

On the one hand, observing that:∫
Ω

L(x, σπ(x))dx = sup
{∫

Ω

F (x) · σπ(x)dx : L∗(x, F (x)) ≤ 1
}

and that if L∗(x, F (x)) ≤ 1 then∫
Ω

F (x) · σπ(x)dx =
∫
Ω×Ω

(∫ 1

0

F (γx,y(s)) · γ̇x,y(s)ds
)

dπ(x, y)

≤
∫
Ω×Ω

(∫ 1

0

L(γx,y(s), γ̇x,y(s))ds
)

dπ(x, y)

we get ∫
Ω

L(x, σπ(x))dx ≤
∫
Ω×Ω

(∫ 1

0

L(γx,y(s), γ̇x,y(s))ds
)

dπ(x, y).

On the other hand, thanks to the complementary slackness condition (2.14) and −div(σπ) = f , we have

〈u, f〉 =
∫
Ω

∇u · σπ =
∫
Ω×Ω

(∫ 1

0

∇u(γx,y(s)) · γ̇x,y(s)ds
)

dπ(x, y)

=
∫
Ω×Ω

(∫ 1

0

L(γx,y(s), γ̇x,y(s))ds
)

dπ(x, y).

This shows, at least formally, the optimality of σπ.

2.3. Lagrangian and saddle-point

Rewrite (2.1) as
inf
u,q
{−〈u, f〉+G(q) : q = ∇u a.e.}

where
G(q) :=

∫
Ω

G(x, q(x))dx

and

G(x, q) :=

{
0, if L∗(x, q) ≤ 1
+∞, otherwise
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and then rewrite (2.1)−(2.5) as the saddle point problem

inf
u,q

sup
σ
L(u, q, σ)

where the Lagrangian L is defined by

L(u, q, σ) := −〈u, f〉+
∫
Ω

G(x, q(x))dx+
∫
Ω

σ(x) · (∇u(x)− q(x))dx.

For r > 0, let us also introduce the augmented Lagrangian

Lr(u, q, σ) := −〈u, f〉+
∫
Ω

G(x, q(x))dx+
∫
Ω

σ(x) · (∇u(x)− q(x))dx+
r

2

∫
Ω

|∇u− q|2.

Recall that L and Lr have the same saddle-points ([12, 13]). Note that in both L and Lr we multiply the L∞

vector field ∇u by σ, which a priori only makes sense only if σ is L1. Existence of saddle-points is therefore not
guaranteed unless there is an L1 solution to (2.5). However at the level of the discretized problems (see next
section), there is no such regularity issue, there exists saddle-points for the discretized Lagrangian and finding
such saddle-points is equivalent to solving (2.1) and (2.5) simultaneously.

3. Discretization and algorithm

3.1. Discretization

We now consider suitable approximations of our problems by finite-dimensional (convex) ones using finite
elements. In these finite-dimensional approximations, existence of saddle-points is not an issue anymore. More
precisely, consider a family of regular triangulations Th of the domain Ω (which we will be a two-dimensional
polyehdron in our simulations) indexed by the typical meshsize h (i.e. the diameter of each T ∈ Th is less
than Ch for some positive constant C), let Eh ⊂ W 1,∞(Ω) be the corresponding finite-dimensional space of
Lagrange P1 (piecewise linear) finite elements of order 1 (a similar analysis can be done for higher order finite-
elements) whose generic elements are denoted uh. Slightly abusing notations, we shall consider uh both as a
finite-dimensional vector and a Lipschitz, piecewise linear function defined on the whole domain, the gradient
of uh has piecewise constant components, it is still denoted ∇uh. We further assume that the mesh is regular
in the sense that the Lagrange interpolate map Ih : W 1,∞(Ω)→ Eh satisfies4

lim
h→0
‖∇v −∇(Ih(v))‖L∞ → 0, ∀v ∈ C∞(Ω). (3.1)

We also approximate the linear form f by fh ∈ (Eh)∗ ' Eh (again with 〈fh, 1〉 = 0) in such a way that fh
weakly converges to f in the sense of measures as h→ 0.

We then consider the approximation of (2.1):

sup
uh∈Kh

〈fh, uh〉 (3.2)

where Kh is the convex subset of Eh consisting of all uh’s in Eh such that for every T ∈ Th one has

L∗(xT ,∇uh|T ) ≤ 1, (3.3)

where xT is a given point in T (for instance its center of mass or one of its vertices). To prove that this is a
consistent approximation of Kantorovich problem (2.1), it is useful to observe first that smooth functions are

4By well-know results (see [6], Chapt. 4), assumption (3.1) holds as soon as Th is nondegenerate in the sense that there is some
ρ > 0 such that for every h and every T ∈ Th, there is a ball BT included in T such that diam(BT ) ≥ ρ diam(T ). More precisely,
in this case, ‖∇v −∇(Ih(v))‖L∞ ≤ C|h|‖v‖W2,∞ for every v ∈W 2,∞(Ω).
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dense in the admissible set for (2.1):

Lemma 3.1. Let u be a 1-Lipschitz for dL function on Ω, then there exists a sequence un of C∞(Ω), 1-Lipschitz
for dL functions converging uniformly on Ω to u. In particular this implies that

max (2.1) = sup
{
〈u, f〉 : u is 1-Lipschitz for dL and C∞(Ω)

}
. (3.4)

Proof. Recall that u is Lipschitz on Ω with Lipschitz constant ‖∇u‖L∞ , for θ > 0 define:

ω(θ) := sup |{L∗(x, q)− L∗(y, q)|, x, y ∈ Ω, |x− y| ≤ θ, |q| ≤ ‖∇u‖L∞}

and observe that ω(θ) tends to 0 as θ → 0+. Without loss of generality we may assume that 0 ∈ Ω, then for
λ > 0 define uλ on (1 + λ)Ω by

uλ(x) := u((1 + λ)−1x), ∀x ∈ (1 + λ)Ω.

For fixed (small) λ > 0, chose ε = ελ > 0 small enough so that (1 + λ)Ω contains the set of points whose
distance to Ω is less than ε. Since ∇uλ(x) = (1 + λ)−1∇u((1 + λ)−1x), L∗(y,∇u(y)) ≤ 1 a.e. and using the
homogeneity of L∗(x, .), we have

L∗(x,∇uλ(x)) =
1

1 + λ
L∗(x,∇u((1 + λ)−1)x) ≤ 1 + ω(λ diam(Ω))

1 + λ
· (3.5)

Consider a standard mollifying kernel ρε(x) := ε−dρ(ε−1x) with ρ ∈ C∞c (Ω), ρ ≥ 0, ρ(x) = 0 for |x| ≥ 1
and

∫
Rd ρ = 1. For λ > 0, define the smooth function vλ := ρελ ? uλ. We then have for every x ∈ Ω, using the

convexity of L∗(x, .), Jensen’s inequality, and again the fact that L∗(y,∇u(y)) ≤ 1 a.e.

L∗(x,∇vλ(x)) ≤
∫

Rd
ρελ(x− y)L∗(x,∇uλ(y))dy

=
∫

Rd
ρελ(x− y)L∗(y,∇uλ(y))dy

+
∫

Rd
ρελ(x− y)(L∗(x,∇uλ(y))− L∗(y,∇uλ(y)))dy

≤ 1 + δλ :=
1

1 + λ
(1 + ω(λ diam(Ω))) + ω(ελ).

This concludes the proof, observing that δλ → 0 as λ → 0 and that wλ := (1 + δλ)−1vλ is a C∞(Ω) and 1-dL
Lipschitz, and wλ converges uniformly to u as λ→ 0. �

One easily deduces the following convergence result:

Proposition 3.2. Let uh be a solution of (3.2) normalized so as to have zero mean (which costs no generality
since 〈fh, 1〉 = 0), then for some vanishing sequence of meshsizes hn → 0 as n → ∞, uhn converges uniformly
to some Kantorovich potential u i.e. some solution of (2.1).

Proof. Thanks to (1.3), uh is uniformly Lipschitz. Since it has zero mean, thanks to Ascoli’s theorem, it converges
in C(Ω) (up to a subsequence) to some Lipschitz function u. Thanks to Banach−Alaoglu’s Theorem, we may
also assume that ∇uh converges weakly ∗ in L∞ to ∇u. To check that u is 1-dL Lipschitz, it is enough to show
that for every σ ∈ C(Ω,R2) one has ∫

Ω

σ · ∇u ≤
∫
Ω

L(x, σ(x))dx. (3.6)
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Since uh ∈ Kh we have for every T ∈ Th, ∇uh|T · σ(xT ) ≤ L(xT , σ(xT )), multiplying by the measure of T ,
summing over all triangles of Th and letting h → 0 gives (3.6). It remains to prove that u solves (2.1), which
thanks to Lemma 3.1 amounts to show that 〈f, u〉 ≥ 〈f, v〉 for every smooth and 1-dL-Lipschitz function v. Let
then v be such a smooth and 1-dL-Lipschitz function, for every T ∈ Th, we have

L∗(xT ,∇Ih(v)(xT )) = L∗(xT ,∇v(xT )) + L∗(xT ,∇Ih(v)(xT ))− L∗(xT ,∇v(xT ))
≤ 1 + ωh

where
ωh := sup

T∈Th
|L∗(xT ,∇Ih(v)(xT ))− L∗(xT ,∇v(xT ))| ≤ C‖∇v −∇(Ih(v))‖L∞

tends to 0 as h → 0 thanks to (3.1). Then defining vh := (1 + ωh)−1Ih(v), we have vh ∈ Kh and vh converges
uniformly to v as h → 0, passing to the limit in 〈fh, uh〉 ≥ 〈fh, vh〉, we can conclude that u is a Kantorovich
potential. �

3.2. Augmented Lagrangian algorithm

From now on, we drop the dependence in h in the approximation parameter and slightly abusing notations,
we use the same notations as in the continuous framework, eventhough in what follows we actually consider
the discretization of the augmented Lagrangian Lr. Existence of a saddle-point is not an issue at the level of
the finite-dimensional approximation and convergence of the augmented Lagrangian algorithm recalled below
is well-known (see Eckstein and Bertsekas [9]). The augmented Lagrangian algorithm ALG2 splitting scheme,
consists, starting from (u0, q0, σ0) ∈ Rn × Rm × Rm to generate inductively a sequence (uk, qk, σk) as follows
(abusing notations we still denote by ∇ the discretization of the gradient):

• Step 1. minimization with respect to u:

uk+1 := argminu∈Rn
{
−〈u, f〉+ σk · ∇u+

r

2
|∇u− qk|2

}
, (3.7)

• Step 2. minimization with respect to q:

qk+1 := argminq∈Rm
{
G(q)− σk · q +

r

2
|∇uk+1 − q|2

}
, (3.8)

• Step 3. update the multiplier by the gradient ascent formula

σk+1 = σk + r
(
∇uk+1 − qk+1

)
. (3.9)

Using finite elements, for instance P1 for u and P0 for σ, ∇u and σ are not exactly in the same finite
dimensional space. In this formula, the gradient has in fact to be replaced its P0 projection.
Step 1 consists in solving a Laplace equation :

−r(∆uk+1 − div(qk)) = f + div(σk) in Ω, (3.10)

together with the Neumann boundary condition

r
∂uk+1

∂ν
= rqk · ν − σk · ν on ∂Ω. (3.11)

Step 2 is a pointwise projection problem

qk+1(x) = pB∗(x)

(
∇uk+1 +

σk

r

)
,

where pB∗(x) is the projection onto B∗(x) := {q ∈ Rd : L∗(x, q) ≤ 1} the unit ball for L∗(x, .).
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3.3. Examples

We now give some details on how to perform the projection Step 2 in practice. For the sake of simplicity we
drop the dependence of L and L∗ in x.

The Riemannian case

In the Riemannian case L(v) = (Av · v)
1
2 for some symmetric positive definite matrix A. Up to diagonalizing

A, there is no loss of generality in assuming that L(v) = (
∑d
i=1 λiv

2
i )

1
2 with λi > 0 the eigenvalues of A. The

dual norm L∗ is then given by L∗(q) = (
∑d
i=1 λ

−1
i q2i )

1
2 . The projection pB∗ onto B∗ := {q ∈ Rd : L∗(q) ≤ 1}

is almost explicit:

p∗B(q) =


q, if q ∈ B∗,(

λ1q1
λ1 + α

, . . .
λdqd
λd + α

)
with α the positive root of (3.12) otherwise

where the nonlinear equation5 to be solved by α reads

1 =
d∑
i=1

λiq
2
i

(λi + α)2
· (3.12)

This single equation is monotone in α and can be efficiently solved by Newton’s method.

The case where L(x, .) is defined by finitely many directions

The second case we have in mind is the polyhedral case where L is defined by finitely many directions. More
precisely (and again this is for a fixed x), we are given a collection of unit vectors v1, . . . , vk which we complete
by vk+1 = −v1, . . . , v2k = −vk and such that 0 belongs to the interior of the (symmetric) convex polytope
co({vj , j = 1, . . . , 2k}). We are also given positive reals (ξj)j=1,...,2k with ξj+k = ξj for j ∈ {1, . . . , k} and then
consider the crystalline norm

L(v) := inf


2k∑
j=1

ξjαj : αj ≥ 0,
2k∑
j=1

αjvj = v

 .

It is immediate to see that L is the gauge of the symmetric convex polytope B := co({ξ−1
j vj , j = 1, . . . , 2k})

which is then its unit ball. The dual norm L∗ is then explicitly given by

L∗(q) := max
j=1,...,k

ξ−1
j |q · vj |, (3.13)

its dual unit ball B∗ is then defined by the inequalities |q · vj | ≤ ξj for j = 1, . . . , k. In dimension two, the
projection onto B∗ can be easily performed as follows. First, compute the vertices and sides of B∗ (note that
the latter have one of the vectors vj as normal, so these computations can be done in an automatic way) so as to
be able to represent B∗ = co({Si, i = 1, . . . , 2l}) where S1, . . . , Sl are the successive vertices of B∗ and denote
by νi the unit exterior normal to the side [Si, Si+1]. Now if q is a generic vector of the plane belonging to the
complement of B∗ (otherwise its projection is q), then q belongs either to one half strip [Si, Si+1] + R+νi and in
this case its projection on B∗ coincides with its projection on the line Si+ ν⊥i or it belongs to one of the sectors
Si + R+νi−1 + R+νi and in this case the projection of q is the vertex Si. We illustrate these considerations in
Figure 1, by the following example with k = 4,

vj =
(

cos
(

(j − 1)π
k

)
, sin

(
(j − 1)π

k

))
, ξ1 = 2.5, ξ2 = 2, ξ3 = 1.5, ξ4 = 3.
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0•
S1

S2S3

S4

S5 S6 = q2

q1×q1

q2×

v1

v2

v3

Figure 1. Projecting on the polyhedron B∗.

In fact, the vector v4 is useless since ξ4 is very large with respect to the other ones. So the ball B∗ is only
defined by the inequalities |q · vj | ≤ ξj for j = 1, . . . , 3. The point q1 is in the half strip [S6, S1] + R+v1 so
that its projection is on the segment [S6, S1]. The point q2 belongs to the sector S6 + R+v6 + R+v1 so that its
projection is S6.

4. Results

We use the software FreeFem++ (see [15]) to implement the ALG2 scheme described above, our domain Ω
is a square (x = (x1, x2) ∈ (0, 1)2) with a mesh of 8572 triangles. The Lagrangian finite elements and notations
used in Section 3.2 are taken here. We use P2 FE for uh and P1 for (qh, σh). As emphasized in the previous
subsection, the first step and the third one are always the same. Only the projection Step 2 changes according
to the geometry of the Finsler metric. For our numerical simulations, we test different cases for f :

f−1 := e−40∗((x1−0.75)2+(x2−0.25)2 and f+
1 := e−40∗((x1−0.25)2+(x2−0.65)2),

f−2 := e−40∗((x1−0.5)2+(x2−0.15)2) and f+
2 := e−40∗((x1−0.5)2+(x2−0.75)2).

In the third case, we take f−3 a constant density and f+
3 is the sum of three concentrated Gaussians

f+
3 (x1, x2) = e−400∗((x1−0.25)2+(x2−0.75)2) + e−400∗((x1−0.35)2+(x2−0.15)2) + e−400∗((x1−0.85)2+(x2−0.7)2).

In the following two subsections, in each figure, there are two images. The top one represents σ and the
bottom one corresponds to the level lines of u.

4.1. Riemannian case

Here L(x, v) = (λ1(x)v2
1 + λ2(x)v2

2)
1
2 , we take one λi constant and the other one non constant, that is equal

to the inverse of
g(x1, x2) = 1.5− exp

(
−100 ∗ ((x1 − 0.5)2 + (x2 − 0.5)2)

)
.

5α is a Lagrange multiplier associated to the (binding) constraint
∑d
i=1

q2i
λi

= 1 , it is obtained by plugging the optimality

condition qi − qi + α
λ i
qi = 0 in the constraint.
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Figure 2. Test case 1: Riemannian metric with λ1 = 0.1, λ2 = 1/g and f = f3. Top: vector
fied σ, bottom: level sets of the Kantorovich potential u.

Figure 3. Test case 2: Riemannian metric with λ1 = 1/g, λ2 = 0.1 and f = f3. Top: vector
fied σ, bottom: level sets of the Kantorovich potential u.

4.2. Polyhedral case

We tested the following polyhedral examples. In Figure 6 we take k = 2 and v1 perpendicular to v2, the dual
unit ball B∗ then is a rectangle. In all other examples, k = 15 and the angle between two consecutive directions
is π/k. The form of B∗ then depends on the chosen ξj ’s. If the ξj ’s are (almost) equal, B∗ is a polyhedron with
thirty edges. It is in particular the case for Figure 5, Figure 8, Figures 9 and 10. In the last examples, we have
ξj = cos( 2(j−1)π

k ) + 1.5 and the ball B∗ then only has 12 edges.

4.3. Error criteria

To analyze the convergence of our simulations, we have considered three criteria corresponding to the opti-
mality conditions:

−div(σ) = f, in Ω σ · ν = 0 on ∂Ω, (4.1)

as well as the duality relation
L(x, σ) = σ · ∇u (4.2)

which can be equivalently rewritten in a dual way as

σ(x) 6= 0⇒ L∗(x,∇u(x)) = 1. (4.3)
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Figure 4. Test case 3: polyhedral metric, k = 15, vj = (cos( (j−1)π
k ), sin( (j−1)π

k )) and ξj =
cos( 2(j−1)π

k ) + 1.5 for j = 1, . . . , k with f = f1. Top: vector fied σ, bottom: level sets of the
Kantorovich potential u.

Figure 5. Test case 4: polyhedral metric, k = 15, vj = (cos( (j−1)π
k ), sin( (j−1)π

k )) and ξj = 1.5
for j = 1, . . . , k with f = f1. Top: vector fied σ, bottom: level sets of the Kantorovich potential u.

We use a triangulation of the unit square with n = 1/h element on each side and the following convergence
criteria:

(1) DIV.Error = (
∫
Ωh

(divσkh + f)2)1/2 is the L2 error on the divergence constraint.
(2) BND.Error = (

∫
∂Ωh

(σkh · ν)2)1/2 is the L2(∂Ωh) error on the Neumann boundary condition.
(3) DUAL.Error = (

∫
Ωh
|L(·, σkh(·))−∇ukh · σkh|) for the Riemannian case. DUAL.Error = (

∫
Ωh
|L∗(·,∇ukh(·))−

1|χ{|σkh|>ε}) for the polyhedral case with ε = 10−2.

The first two criteria represent the optimality conditions for the minimization of the Lagrangian with respect
to u and the third one is for the maximization with respect to σ. We do not take exactly the same criteria for
both examples. Indeed, in the Riemannian case, L(·, σ) is simple to compute whereas in the polyhedral case, it
is tedious in general. On the other hand, L∗(·,∇u(·)) has an explicit form given by (3.13). We show below the
results of our numerical simulations after 400 iterations for each case. These results suggest that smoothness of
the metric affects the convergence speed.
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Figure 6. Test case 5: polyhedral metric, k = 2, vj = (cos( (j−1)π
k + π

3 ), sin( (j−1)π
k + π

3 )) and
ξj = cos( 2(j−1)π

k ) + 1.5 for j = 1, . . . , k with f = f2. Top: vector fied σ, bottom: level sets of the
Kantorovich potential u.

Figure 7. Test case 6: polyhedral metric, k = 15, vj = (cos( (j−1)π
k ), sin( (j−1)π

k )) and ξj =
cos( 2(j−1)π

k ) + 1.5 for j = 1, . . . , k with f = f3. Top: vector fied σ, bottom: level sets of the
Kantorovich potential u.

Table 1. Convergence of the finite element discretization for all test cases.

Test case DIV.Error BND.Error DUAL.Error Time execution (s)
1 3.0940e-05 4.9502e-04 1.6274e-06 287
2 3.2576e-05 4.0942e-04 2.1978e-06 285
3 9.3806e-05 7.9803e-04 8.1512e-04 435
4 6.1646e-06 2.5572e-04 2.7813e-03 658
5 1.9829e-05 2.2784e-03 4.8522e-04 310
6 1.1407e-04 8.5331e-04 1.8588e-03 446
7 1.0402e-04 8.5816e-04 1.2846e-03 660
8 9.9358e-05 4.9236e-04 1.2181e-03 654
9 8.3469e-05 5.0099e-04 1.1265e-03 656
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Figure 8. Test case 7: polyhedral metric, k = 15, vj = (cos( (j−1)π
k ), sin( (j−1)π

k )) and ξj =
1
2 cos( 2(j−1)π

k ) + 1.5 for j = 1, . . . , k with f = f3. Top: vector fied σ, bottom: level sets of the
Kantorovich potential u.

Figure 9. Test case 8: polyhedral metric, k = 15, vj =
(

cos
(

(j−1)π
k

)
, sin

(
(j−1)π
k

))
and

ξj = 1
10 cos

(
2(j−1)π

k

)
+ 1.5 for j = 1, . . . , k with f = f3. Top: vector fied σ, bottom: level sets

of the Kantorovich potential u.

Figure 10. Test case 9: polyhedral metric, k = 15, vj = (cos( (j−1)π
k ), sin( (j−1)π

k )) and ξj = 1
for j = 1, . . . , k with f = f3. Top: vector fied σ, bottom: level sets of the Kantorovich potential u.
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Figure 11. Gaussian to gaussian transport, euclidean distance cost. Top: vector fied σ, bottom:
level sets of the Kantorovich potential u.

Figure 12. Gaussian to gaussian transport, a non symmetric case where the unit ball of L∗ is
not centered at 0. Top: vector fied σ, bottom: level sets of the Kantorovich potential u.

4.4. A non symmetric case

So far, we have only considered symmetric cases corresponding to distances (L(x, v) = L(x,−v)) but this
symmetry assumption is not essential for our approach. In fact, non symmetric situations might even be relevant
in some models of road or pedestrian traffic. Only Step 2 of the ALG2 algorithm (projection on the convex set
B∗(x) := {q : L∗(x, q) ≤ 1}) is affected by this modification. We present here two simulations corresponding to
gaussian densities (f = f1) and B∗(x) is the euclidean unit ball centered at 0 (symmetric case, as represented
in Fig. 11) and centered at 0.95(cos(πx1), sin(πx1)) (non symmetric case, represented in Fig. 12).
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