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AN ADJOINT-BASED METHOD FOR THE NUMERICAL APPROXIMATION
OF SHAPE OPTIMIZATION PROBLEMS IN PRESENCE

OF FLUID-STRUCTURE INTERACTION

Andrea Manzoni1,∗ and Luca Ponti2

Abstract. In this work, we propose both a theoretical framework and a numerical method to tackle
shape optimization problems related with fluid dynamics applications in presence of fluid-structure
interactions. We present a general framework relying on the solution to a suitable adjoint problem and
the characterization of the shape gradient of the cost functional to be minimized. We show how to
derive a system of (first-order) optimality conditions combining several tools from shape analysis and
how to exploit them in order to set a numerical iterative procedure to approximate the optimal solution.
We also show how to deal efficiently with shape deformations (resulting from both the fluid-structure
interaction and the optimization process). As benchmark case, we consider an unsteady Stokes flow in
an elastic channel with compliant walls, whose motion under the effect of the flow is described through
a linear Koiter shell model. Potential applications are related e.g. to design of cardiovascular prostheses
in physiological flows or design of components in aerodynamics.
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1. Introduction

The efficient numerical solution to PDE-constrained optimization problems is of key importance in many
contexts of applied sciences and engineering. Relevant instances within this broad class of problems are e.g.
heat/flow control, reduction of plant emissions, design of wing profiles for the sake of efficiency, flow laminariza-
tion, and many others [23,24,29,30]. In all these cases, a state system described in terms of partial differential
equations (PDEs) has to be controlled in order to reach a physically meaningful target, by acting e.g. on dis-
tributed/boundary controls, PDE coefficients, or the shape of the domain itself. The target is usually expressed
in terms of minimization of a suitable cost functional, depending on the solution to the state problem – in this
sense the state system plays the role of a constraint – in addition to control variables.

In this paper, we focus on shape optimization problems, where the shape of the domain Ω on which the
state system is defined plays the role of control variable. In abstract form, a shape optimization problem can be
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formulated as the minimization, over a set of admissible shapes Oad, of a cost functional J(Ω) = J̃(Ω, y(Ω));
in our case, this latter also depends on the state variable y(Ω) ∈ V , which solves a – possibly, nonlinear and
time-dependent – PDE, that is:

J(Ω̂) = min
Ω∈Oad

J(Ω) s.t. E(Ω, y(Ω; t)) = 0 in V ′.

For the case at hand, J : Oad → R is a cost functional evaluated over (0, T ), Oad is a set of domains which
fulfill some (problem-dependent, physically meaningful) constaints, V is a suitable functional space (defined
over Ω, and depending on time t ∈ (0, T )) and V ′ its dual; the equation E(Ω, y(Ω; t)) = 0 in V ′ represents the
(abstract) formulation of the time-dependent state problem.

In particular, we address the case of shape optimization problems arising in fluid mechanics, because of their
relevance in many applied contexts, such as aerospace, naval and biomedical engineering [8, 14]. In all these
cases, a very general problem is represented by the optimal design of aerodynamic/hydrodynamic structures in
order to minimize e.g. the energy dissipation of the fluid, or resistance forces, or fluid vorticity and stresses,
or again the compliance of the structure itself (and then maximize its deformation resistance). Nevertheless, in
many problems of real-life interest, the goal is to optimize the shape of a flexible structure within a fluid flow,
for which fluid-structure interaction (FSI) phenomena cannot be neglected. In fact, the interaction of such a
structure with the fluid – such as in the case e.g. of blood flows through arteries and compliant vessels [11,12],
aeroelastic instabilities in aircrafts [17], turbomachinery design [34] – yield several physical phenomena which
may have a strong impact on the solution to the optimal design problem, too.

FSI problems usually involve a physical system made by a fluid component (e.g. air, water or blood) close to a
solid structural component (such as a wing or a vessel). The interaction between the fluid and the structure leads
to a structural displacement, followed by a deformation of the domains in which both the fluid and the solid
components are defined, thus making the domain of the system an unknown itself. Solving an optimal design
problem in this context thus features additional difficulties, because of the need to consider shape deformations
due to either FSI effects and the optimization pipeline. A possible way to partially overcome this difficulty is to
rely on a fixed domain approach, in which the state FSI problem is rewritten on a fixed reference domain (see
e.g. [36,37,43]), whose shape is the object of the optimization. Tackling a shape optimization problem in presence
of FSI is thus a huge computational challenge, for which very few results are currently available in literature.
Moubachir and Zolésio present a theoretical analysis of optimal flow control problems (not a shape optimization
problem, though) involving FSI in [38], where the goal is to minimize the displacement of a compliant wall pipe
in which the fluid is flowing using the inlet velocity as control variable. From a computational point of view, some
ideas related with iterative algorithms for the solution to shape optimization problems in presence of FSI are
addressed in [26,48], but relying on a black-box approach and without deriving explicitly a system of optimality
conditions involving the shape gradient of the cost functional. A recent application of shape optimization tools
to the numerical solution to free-boundary problems has been proposed in [15].

The main goal of this paper is to present some analytical and numerical methods for the solution to shape op-
timization problems when dealing with applications involving FSI effects. We pursue an optimize-then-discretize
approach [7, 27, 40, 45]: first, we derive the optimality conditions related with the PDE-constrained optimiza-
tion problem, relying on the Lagrange multiplier approach, and showing how to handle shape variations and
derivatives. To simplify the system of (first order, necessary) optimality condition we introduce a suitable ad-
joint problem, whose derivation is not as straightforward as, e.g., in the case of fluid flows in presence of rigid
walls/bodies. Then we set up an efficient numerical algorithm to approximate the solution to the shape op-
timization problem, combining (i) a partitioned FSI solver; (ii) a descent method for numerical optimization;
(iii) a Free Form Deformation (FFD) map to efficiently describe shape deformations at each iteration of the
optimization problem. The application which inspires the analysis reported in this work is the optimal design of
a bypass graft to restore blood perfusion downfield an occluded coronary artery. A common goal may be, e.g.,
to minimize the flow vorticity in proximity of the junction between the graft and the host occluded artery. Many
works (see, e.g., [32, 33, 36] and references therein) have focused on such a problem, typically by acting on the
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wall shape near the anastomosis by local shape variations. Nevertheless, FSI effects have never been considered
when dealing with this application.

In this work we consider an idealized two-dimensional viscous Newtonian flow at low Reynolds numbers
(modelled by unsteady Stokes equations) in an elastic domain described by means of a mono-dimensional linear
Koiter shell model. This model [10, 19, 39, 41] is based on the assumption that the structure is thin (compared
to the fluid domain) and can be deformed, as a consequence of the interaction between fluid and solid, mainly
in the normal direction to the surface. To deal with the domain motion and formulate the fluid problem we
rely on the so-called arbitrary Lagrangian-Eulerian (ALE) formalism, following a common approach in the FSI
framework (see, e.g., [19]). Although we consider a prototypical example on a simple rectangular domain in
undeformed configuration, the derivation of the system of optimality conditions, are of general interest and can
be applied to any optimal design problem including the features above. The presented setting can be considered
as a first step towards performing shape optimization with a moving domain, considering for the time being the
case of a linear Stokes flow and a simple shell model for the structure, in order to highlight the difficulties related
with (i) FSI terms and (ii) shape derivatives, although the proposed framework could be also extended to the
case of Navier-Stokes equations; see, e.g., [35] for further details on the formulation of a FSI problem including
three-dimensional Navier-Stokes flows interacting with a structure represented by a two-dimensional quasilinear
elastic model of Koiter shell type. Indeed, the Navier-Stokes case would fit even better the ALE formulation,
with the ALE velocity incorporated in the convective term. In such a case, as well as when considering more
general structural models, the procedure to derive a set of optimality conditions presented in the paper could
be also exploited, however featuring more terms to deal with due to the nonlinearity of the flow model and
the possibly more complex structure equation. From the computational standpoint, to deform the domain, we
implement a Free-Form Deformation (FFD) map based on non rational uniform B-splines (NURBS) [31,46,47];
this option enables to exploit the low dimensionality of the classic FFD map combined with the flexibility on
the choice of the degrees of freedom, typical of NURBS representations.

The structure of the paper is as follows. We introduce a two dimensional FSI problem in Section 2 alongside
the abstract formulation of the shape optimization to analyze. In Section 3 we derive a system of first order op-
timality conditions exploiting the Lagrange multipliers method; in particular, classical differentiation and shape
differentiation results are employed in order to obtain the adjoint problem for the structural subproblem. In Sec-
tion 4 we describe a partitioned iterative scheme to solve the state FSI problem based on a Dirichlet−Neumann
approach [9, 41]; then, we show how to suitably modify this procedure in order to solve the (time backward)
adjoint FSI problem. Moreover, we introduce a steepest descent-like procedure based on the gradient method,
in order to solve the shape optimization problem numerically. Numerical results obtained through the proposed
framework are shown in Section 5, in order to assess both the theoretical results provided in the paper and the
computational performances of the proposed algorithm. We also report a comparison with the solution to the
same problem in a rigid geometry, for which existing results are available in literature.

2. Definition of the problem

We consider the flow of an unsteady incompressible viscous fluid in a domain Ω(t) ⊂ R2, t ∈ [0, T ). The
boundary portion Γ (t) ⊂ ∂Ω(t) is bounded by a thin deformable wall modeled by means of the Koiter model; for
this reason, the shape of the interface Γ (t) and of the domain Ω(t) are unknown and depend on the interaction
between the fluid and the structure itself. Moreover, we suppose that the portion ∂Ω(t) \ Γ (t) is rigid, thus
fixed in time. We also assume that structural displacements η are allowed only in vertical direction, that is,
η = (0, η)T . We also introduce a one-dimensional reference domain

Γ0 = {(x1, x2) : x1 ∈ (0, L), x2 = x2,0},

so that
Γ (t) = {(x1, x2) : x1 ∈ (0, L), x2 = x2,0 + η(x1, t)} = (I + η e2) ◦ Γ0, t > 0, (2.1)
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where {ei}i=1,2 denote the unit vectors of the canonical basis of R2 and x2,0 ∈ R a given constant. For the sake
of notation, we set Γ (0) ≡ Γ0; in the same way, we denote by Ω(0) ≡ Ω0 the fluid domain at t = 0.

Thus, given a forcing term f(t) ∈ L2(Γ0) for all t ∈ (0, T ), the structural displacement η = η(·, t) is given by
the solution to the following one-dimensional structural problem [19,39,41]:

ρShS
∂2η

∂t2
− µS

∂2η

∂x2
1

+ βη = f(t) in Γ0 × (0, T )

η(0, t) = η(L, t) = 0 t ∈ (0, T )

η(x1, 0) =
∂η

∂t
(x1, 0) = 0 x ∈ Γ0

(2.2)

being ρS > 0, µS > 0 and hS > 0 the density, the viscosity and the thickness of the solid structure, respectively;
the coefficient β > 0 depends on the physical and geometrical properties of the structure, too (see e.g. [41]).
Note that, for the sake of the structural problem definition, we identify Γ0 ⊂ R2 with interval Γ0 = (0, L) ⊂ R
since the second coordinate x2 is constant and equal to x2,0 and the structure displacements only occur in the
vertical direction. For this reason, hereon we treat the structural problem as a one-dimensional problem, by
considering Γ (t) as the set of points defining the nonrigid boundary of the fluid domain.

To describe the fluid flow, we consider the unsteady Stokes equations for an incompressible Newtonian fluid.
For the sake of simplicity, we focus on low Reynolds number flows (Re � 1), for which nonlinear advective
terms are neglected; nevertheless, extending the proposed framework for shape optimization the case of Navier-
Stokes equations (moderate Reynolds number flows) does not features extreme difficulties concerning both the
derivation of optimality conditions and the setting of a numerical approximation scheme.

To deal with the deformations of the fluid domain, we formulate Stokes equations following the so-called ALE
formalism; for this reason, we introduce a reference computational domain Ω̃ and the so-called ALE map

Ã : Ω̃ × R+ → R2, x = Ã(x̃, t), (2.3)

which maps each point x̃ ∈ Ω̃ into the corresponding point x of the current configuration Ω(t), for any t > 0.
Furthermore, we denote by Ãt(·) = Ã(·, t) and by QT = {(x, t) ∈ R2 × (0, T ) such that x ∈ Ω(t)} the space-
temporal cylinder where the fluid problem is defined. Then, for any function q taking values in QT , we define
its ALE time derivative [42] as

∂q

∂t

∣∣∣∣
Ã

:=
d
d t
q(Ãt(x̃), t) =

∂q

∂t
+ w · ∇q (2.4)

where w : Ω(t)× (0, T )→ R2 is the velocity of the domain deformed via the ALE map (or domain deformation
velocity),

w(·, t) =
∂Ãt
∂t
◦ Ã−1

t , t ≥ 0. (2.5)

and ∂q
∂t denotes the standard Eulerian time derivative.

For the case at hand, the deformation of the domain is caused by the vertical displacement of the solid
structure on the boundary Γ (t), as shown in (2.1). Hence, the ALE map has to fulfill

Ãt(x0) = x0 + η(x1, t)e2 ∀x0 ∈ Γ0.

To define the ALE map at time t, we do an harmonic extension of x0 + η(x1, t)e2 onto the whole domain Ω0,
that is,

Ãt(x0) = d where d solves

−∆d = 0 in Ω0

d = 0 on ∂Ω0 \ Γ0

d = x0 + η(x1, t)e2 on Γ0.
(2.6)



AN ADJOINT-BASED METHOD FOR FSI SHAPE OPTIMIZATION PROBLEMS 1505

Figure 1. Reference domain configuration (used as starting point for optimization in test
cases 1, 2 and 3).

We opt for this construction since we need to know the ALE mapping (and the corresponding domain deforma-
tion velocity) only at discrete time levels, where the approximation of the problem is sought (see Sect. 4); see,
e.g., [20] for further details and alternative approaches.

The Stokes equations in the ALE reference coordinates read as follows:

ρF
∂u
∂t

∣∣∣∣
Ã
− ρFw · ∇u +∇p− µF∆u = 0 in QT

∇ · u = 0 in QT

u = uin on Γin × (0, T )

−pn + ν
∂u
∂n

= 0 on Γout × (0, T )

u = 0 on Γb × (0, T )

u|t=0 = u0 in Ω0

(2.7)

being u = u(x, t) the fluid velocity and p = p(x, t) the fluid pressure, respectively. Moreover, Γin denotes the inlet
boundary, Γout the outlet boundary and Γb the boundary portion on which we impose homogeneous Dirichlet
conditions – expressing, e.g., a no-slip condition between the fluid and a rigid structure, see Figure 1. Note that
∂Ω(t) = Γin ∪ Γout ∪ Γb ∪ Γ (t). In order to couple the structure problem (2.2) and the fluid problem (2.7), we
prescribe some conditions at the interface Γ (t). In particular, we impose the continuity of the velocity and of
the normal stress at the interface, for any t ∈ [0, T ), as follows:

u|Γ (t) =
(
∂η

∂t
◦ Ã−1

t

)∣∣∣∣
Γ (t)

e2 ,

f = −J
(
σF (u, p) n

)∣∣
Γ (t)
· e2 ;

(2.8)

n is the unit outward normal on Γ (t), σF (u, p) = µF (∇u+∇Tu)−pI is the Cauchy stress tensor related to the
fluid and J =

√
1 + (∂η/∂x1)2 is the Jacobian of the transformation from Eulerian to Lagrangian coordinates.

Note that, by comparing (2.5) and (2.8)1, we obtain the following identity:

w = (u · e2)e2 on Γ (t). (2.9)

We are now ready to formulate our shape optimization problem. Our goal is to determine the best shape Ω̂
of the domain Ω0 over a set of admissible shapes Oad, such that the energy dissipated by the fluid is minimized.
To this aim, we assume that we can only optimize a portion ΓM ⊆ Γb of the portion Γb ⊂ ∂Ω0 of the boundary
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Figure 2. Graphical sketch of the interplay between shape optimization and the fluid-structure
interaction. Admissible shapes for Ω0 are obtained from the reference domain Ωref performing
deformations under the form I + θ; during the solution of the state FSI problem, the domain
Ω0 undergoes geometrical deformations yielding the evolution {Ω(t), t ∈ [0, T )}.

(related to the bottom part in Fig. 2); we point out that the shape of this boundary portion is rigid, therefore
it can only be deformed during the shape optimization process.

In abstract form, we can write the shape optimization problem as follows: find Ω̂ ∈ Oad so that

J(Ω̂) = min
Ω∈Oad

J(Ω), (2.10)

where the cost functional J(Ω) = J̃(Ω,u(Ω)) is given by

J̃(Ω,u(Ω)) =
α

2

∫ T

0

∫
Ω(t)

|∇u(Ω(t))|2 dx dt, (2.11)

(u, p, η) = (u(Ω), p(Ω), η(Ω)) solve the state FSI problem (2.2), (2.7), (2.8), and the set of admissible shapes
Oad is

Oad = {Ω ∈ O : Γin ∪ Γout ∪ Γ0 ∪ Γb \ ΓM ⊂ ∂Ω is fixed and |Ω| = V0} ⊂ O, (2.12)

where V0 > 0 is a prescribed volume. Following a common approach in shape optimization, we introduce a
(bounded, Lipschitz) reference domain Ωref , and we define the admissible shapes as the images of Ωref through
the application of a perturbation of identity map. Thus, each admissible shape Ω ∈ O can be written as

Ω = {x ∈ R2 : x = T(xref), xref ∈ Ωref} with T(xref) = xref + θ(xref), (2.13)

where θ ∈ W 1,∞(Ωref ; R2) is a vector field such that ‖θ‖W 1,∞ ≤ 1; here W k,p(Ωref ; Rd) = {v ∈ (Lp(Ωref))d :
Dαui ∈ Lp(Ωref) ∀i ∈ {1, . . . , d}, ∀|α| ≤ k}, with 1 ≤ p ≤ +∞, and the usual multi-index notation is used.
This property ensures that the map T = I+θ induces small deformations, and is a diffeomorphism (see e.g. [1],
Lem. 6.13). For the case at hand, this property also ensures that contact with the top part Γ0 of the boundary is
avoided. Figure 2 shows the relationship between the different kinds of domain introduced so far. In particular,
the map T = I + θ transforms the reference domain Ωref into the admissible shapes Ω0, among which Ω̂ is
the optimal one. Recall that the domains Ω(t) are defined as a deformation of the initial domain Ω0, as a
consequence of the interaction between the structure and the fluid flow. The optimal shape is thus obtained by
iteratively deforming the reference domain, until a suitable optimality criterion is fulfilled.
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Ensuring the well-posedness of the shape optimization problem, in and of itself a hard task from a theoretical
standpoint, is even more complicated in the case at hand, because there is no theoretical result which asserts
that the FSI state problem (2.2)–(2.8) admits a weak solution. Note that the situation would be different in
the Navier-Stokes case for which the presence of the advection term – although featuring further difficulties
because of its nonlinear nature – allows to state global-in-time existence of solutions by establishing suitable
energy inequalities.

3. Optimality conditions

In this section we show how to derive a system of (first-order, necessary) optimality conditions exploiting the
Lagrange multipliers method, in the case of a shape optimization problem where the state variables are solutions
of a FSI problem. For a general introduction to the Lagrange multipliers method in optimal control problems
see, e.g., [23, 28]; a detailed characterization to the case of optimal design problems can be found in [1, 13].
The general idea is to rewrite the problem under the form of a PDE-constrained optimization problem, and to
characterize its solution as the saddle points of a Lagrangian functional L. This latter is obtained by introducing
a set of Lagrange multipliers to take into account the cost functional with the constraints given by the state
equation under weak form, and related boundary and initial conditions. In order to define the Lagrangian
functional, let us introduce the following time-dependent functional spaces [38]:

Xt
F (Ω) = {v ∈ H1

Γb
(Ω(t); R2) : v|Γin = uin},

VF (Ω) = H1(0, T ; (H2(Ω(t)); R2) ∩Xt
F ), V0(Ω) = H1(0, T ; (H2(Ω(t)); R2) ∩H1

Γin∪Γb(Ω(t); R2)),

QF (Ω) = H1(0, T ;H1(Ω(t))), VS = H2(0, T ;H2(Γ0) ∩H1
{0}∪{L}(Γ0)).

To couple the weak formulation of the fluid problem and the structure model, we introduce the following
functional space which yields the continuity of the velocity through the interface Γ (t):

S(Ω) = {(v, ψ) ∈ V0(Ω)× VS s.t. v(t)|Γ (t) = (ψ ◦ Ã−1
t )e2 ∀t ∈ (0, T )}.

Furthermore, let us denote by (v, ψ, q) ∈ S(Ω) × QF (Ω) the Lagrangian multipliers (or adjoint variables)
corresponding to the state variables. Hence, we can define the following Lagrangian functional:

L(u, p, η ; v, q, ψ ;λF ,λS , λ0
S , λ

1
S ; Ω) =

α

2

∫ T

0

∫
Ω(t)

|∇u|2dx dt

−
∫ T

0

∫ L

0

(
ρShS

∂2η

∂t2
ψ + µS

∂η

∂x1

∂ψ

∂x1
+ βηψ

)
dx1 dt

−
∫ T

0

∫
Ω(t)

(
ρF
∂u
∂t
· v − p∇ · v + µF∇u : ∇v− q∇ · u

)
dx dt

+
∫ T

0

∫
ΓD

λF · (u− uD) dσ dt+
∫ T

0

[λSη]L0 dt+
∫ L

0

(
λ0
S η(0) + λ1

S

∂η

∂t
(0)
)

dx1, (3.1)

where the Dirichlet boundary conditions and the initial conditions, defined in the state problem, are introduced
by means of the Lagrangian multipliers λF∈ L2(0, T ;H1(R2)), λS∈ L2(0, T ), λ0

S∈ L2(ΓD) e λ1
S∈ L2(ΓD) (for

further details on this latter point, see e.g. [1, 3]). Here we have set

ΓD = Γb ∪ Γin and uD =
{

0 on Γb
uin on Γin.

In order to simplify the derivation of the optimality condition, it is convenient to integrate by parts the term∫ T
0

∫
Ω(t)

(ρF ∂u∂t ·v) dx dt appearing in (3.1). By using the Reynolds transport theorem to deal with the derivation
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of the integral defined over the time-dependent domain Ω(t) (see e.g. [16]), we obtain the following identity:

∫ T

0

∫
Ω(t)

∂u
∂t
· v dx dt = −

∫ T

0

∫
Ω(t)

u · ∂v
∂t

dx dt

−
∫ T

0

∫
Γ (t)

(u · v)(uS · n)dσdt+
∫
Ω(T )

u(T ) · v(T ) dx dt−
∫
Ω0

u0 · v(0) dx dt , (3.2)

where uS = (∂η∂t ◦ η
−1) e2 is the velocity of the interface Γ (t). Thus, the Lagrangian functional L can be

equivalently rewritten as follows:

L(u, p, η ; v, q, ψ ;λF , λS , λ0
S , λ

1
S ; Ω) =

α

2

∫ T

0

∫
Ω(t)

|∇u|2 dx dt

−
∫ T

0

∫ L

0

(
ρShS

∂2η

∂t2
ψ + µS

∂η

∂x1

∂ψ

∂x1
+ βηψ

)
dx1 dt

−
∫ T

0

∫
Ω(t)

(
−ρFu · ∂v

∂t
− p∇ · v + µF∇u : ∇v− q∇ · u

)
dx dt

+
∫ T

0

∫
ΓD

λF · (u− uD) dσ dt+ ρF

∫ T

0

∫
Γ (t)

(u · v)(uS · n) dσ dt− ρF
∫
Ω(T )

u(T ) · v(T ) dx

+ ρF

∫
Ω0

u0 · v(0) dx +
∫ T

0

[λSη]L0 dt

+
∫ L

0

(
λ0
S η(0) + λ1

S

∂η

∂t
(0)
)

dx1. (3.3)

By deriving the Lagrangian functional (3.3) with respect to the adjoint variables (v, ψ, q) and imposing that
these derivatives vanish, we obtain the weak formulation of the state problem (2.2)–(2.8). By deriving L with
respect to the state variables, we recover the expression of the adjoint problem. Far from being a trivial task
for the case at hand, we show how to obtain the expression of the adjoint problem in the following subsections.

3.1. Fluid adjoint problem

We now characterize the fluid adjoint problem. By deriving the Lagrangian with respect to the fluid variables
(u, p) and requiring that the resulting derivatives vanish for every variation (δu, δp) ∈ VF (Ω) × QF (Ω), we
obtain 〈

∂L
∂p

, δp

〉
=
∫ T

0

∫
Ω(t)

δp ∇ · v dx dt = 0 ∀δp ∈ QF (Ω),

〈
∂L
∂u

, δu
〉

= − α
∫ T

0

∫
Ω(t)

∆u · δu dx dt+ α

∫ T

0

∫
∂Ω(t)

∂u
∂n
· δu dσ dt

−
∫ T

0

∫
Ω(t)

(
−ρF δu ·

∂v
∂t
− µF δu ·∆v +∇q · δu

)
dx dt−

∫ T

0

∫
∂Ω(t)

(
µF

∂v
∂n
− qn

)
δu dσ dt

+ ρF

∫ T

0

∫
Γ (t)

(δu · v)(uS · n) dσ dt+
∫ T

0

∫
ΓD

λF · δu dσ dt = 0 ∀δu ∈ VF (Ω), (3.4)
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from which we obtain the following strong form of the fluid adjoint problem:

ρF
∂v
∂t

∣∣∣∣
Ã
− ρFw · ∇u + µF∆v −∇q = α∆u in QT

∇ · v = 0 in QT

v(T ) = 0 in Ω(T )

v = 0 on ΓD × (0, T )

σF (v, q) n = α
∂u
∂n

on Γout × (0, T );

(3.5)

here (v, q) denote the fluid adjoint variables; note that (3.5) is an unsteady Stokes problem, backward in time,
written in the ALE reference coordinates after having introduced the ALE time derivative as in (2.7), according
to Definition (2.4). To close the previous problem, we need to consider the following coupling conditions:

v = (ψ ◦ Ã−1
t )e2 on Γ (t)× (0, T )

ρF (uS · n)v − σF (v, q)n = −α∂u
∂n

on Γ (t)× (0, T )

λF = σF (v, q) n− α∂u
∂n

on ΓD × (0, T ),

(3.6)

yielding the continuity of the velocity, the expression of the normal stress at the interface and the expression of
the Lagrange multiplier λF used to impose the boundary conditions on the velocity, respectively.

3.2. Solid adjoint problem

The procedure presented in the previous section in order to write the fluid adjoint problem cannot be straight-
forwardly applied to derive the solid adjoint problem as well. As a matter of fact, unlike the fluid variables (u, p),
the structure displacement η directly affects the shape of the domain Ω(t), which is defined by

Ω(t) = {x ∈ R2 : x = Ãt(x0) where x0 ∈ Ω0}, ∀t ∈ (0, T ); (3.7)

where the ALE map for the case at hand is given by (2.6). Hence, we need to take into account the effect on
the shape of the domain Ω(t) caused by a perturbation η + ρδη of the displacement, where ρ > 0 is a positive
real parameter. Correspondingly, we denote the deformed domain by

Ωρ(t) = {Sρ,t(x),x ∈ Ω(t)} ρ > 0,

where Sρ,t : Ω(t)→ Ωρ(t) is the harmonic extension of the field x + ρ δη e2 defined on Γ (t), that is,

Sρ,t = dρ where d solves


−∆dρ = 0 in Ω(t)

dρ = 0 on ∂Ω(t) \ Γ (t)

dρ = x + ρ δη e2 on Γ (t).

Let us define a vector field γ ∈ W 1,∞(R2,R2) such that Sρ,t(x) = I + ργ(x), where I denotes the identity
map. Note that Sρ,t does not depend on the map chosen to describe shape deformations during the optimization
process. To characterize the expression of the solid adjoint problem, we can now require that(

d
dρ
L(u, η + ρδη, p; v, ψ, q;λF , λS , λ0

S , λ
1
S ; Ω)

)∣∣∣∣
ρ=0

= 0. (3.8)
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By introducing the displacement perturbation I + ρδη, the integration domain appearing in the Lagrangian
functional (3.8) is the perturbed domainΩρ(t); since the fluid variables (u, p) are still defined on the domainΩ(t),
we need to introduce a second map Rρ,t = S−1

ρ,t = (I+ργ)−1 and define a perturbed Lagrangian Lρ to take into
account the displacement perturbation and deal with properly defined variables, under the form gρ = g ◦Rρ,t.
The perturbed Lagrangian functional Lρ is thus given by

Lρ(u, η + ρδη, p; v, ψ, q;λF , λS , λ0
S , λ

1
S ; Ω) = Jρ(u)−

∫ T

0

∫
Ωρ(t)

G(ρ) dx dt−
∫ T

0

∫ L

0

m(ρ) dz dt

−
∫ T

0

∫
Γρ(t)

φ(ρ) dσ dt−
∫ T

0

bF (ρ) dt

−
∫ T

0

bS(ρ) dt− fF (ρ)−
∫
Γ0

fS(ρ)dσ, (3.9)

where:

Jρ(u) =
α

2

∫ T

0

∫
Ωρ(t)

|∇(uρ)|2 dx dt

represents the function cost J defined on the domain Ωρ(t), being uρ = u ◦Rρ,t;

G(ρ) = −ρFuρ ·
∂vρ
∂t
− pρ∇ · vρ + µF∇uρ : ∇vρ − qρ∇ · uρ

includes the weak formulation of the fluid state equation in the Lagrangian functional, defined on the domain
Ωρ(t);

m(ρ) = ρShS
∂2(η + ρδη)

∂t2
ψ + µS

∂(η + ρδη)
∂x1

∂ψ

∂x1
+ β(η + ρδη)ψ

is the term involving the solid state equations defined on the reference domain Γ0 = (0, L), where we consider
the displacement perturbation η;

φ(ρ) = −ρF (uρ · vρ)
(
∂(η + ρδη)

∂t
◦ (η + ρδη)−1e2

)
· nρ (3.10)

includes the terms defined on the interface Γρ(t), where nρ denotes the unit outward normal on Γρ(t);

bF (ρ) = −
∫
ΓD

λF,ρ(uρ − uD) dσ

represents the Dirichlet boundary condition of the fluid state problem, defined on ΓD;

bS(ρ) = − [λS(η + ρδη)]L0

results from the imposition of the Dirichlet boundary conditions of the solid state problem;

fF (ρ) =
∫
Ωρ(T )

ρF (uρ(T ) · vρ(T )) dx− ρF
∫
Ωρ(0)

u0 · vρ(0) dx

represents the initial and final contributions of the fluid state problem;

fS(ρ) = −λ0
S(η + ρδη)(0)− λ1

S

∂(η + ρδη)
∂t

(0)
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includes the initial and the final terms of the solid state problem.
In order to derive the Lagrangian functional Lρ with respect to the parameter ρ, we first recall two results
providing the derivative of the map Rρ,t and of a vector valued function of the form uρ = u ◦Rρ,t; see e.g. [38]
for their proof:

Lemma 3.1. Let Rρ,t : Ω(t)→ Ωρ(t) be given by Rρ,t = (I + ργ)−1; then

dRρ,t

dρ

∣∣∣∣
ρ=0

= −γ.

Lemma 3.2. Let Rρ,t : Ω(t)→ Ωρ(t) be given by Rρ,t = (I + ργ)−1; then

duρ
dρ

∣∣∣∣
ρ=0

=
d(u ◦Rρ,t)

dρ

∣∣∣∣
ρ=0

= −∇uγ. (3.11)

Since Lρ depends on the parameter ρ through the domain of integration as well, we take advantage of the
following general result of shape analysis to easily express the shape derivative of functionals defined over
parameter-dependent domains/boundaries; see, e.g., [38, 50] for the proof:

Theorem 3.3. Let Ω0 ⊂ Rd be a bounded domain locally of class C2, Γ0 a portion of its boundary ∂Ω0, ρ > 0
and define Ωρ = {x ∈ Rd : x = (I + ργ)x0, x0 ∈ Ω0}, Γρ = {x ∈ Rd : x = (I + ργ)x0, x0 ∈ Γ0}.
Then

d
dρ

(∫
Ωρ

y(ρ) dx

)∣∣∣∣∣
ρ=0

=
∫
Ω0

∂y(ρ)
∂ρ

∣∣∣∣
ρ=0

dx +
∫
∂Ω0

y(0)(γ · n)dσ,

d
dρ

(∫
Γρ

y(ρ)dσ

)∣∣∣∣∣
ρ=0

=
∫
Γ0

(
y′(0) +

(
H y(0) +

∂y(0)
∂n

)
(γ · n)

)
dσ, (3.12)

where H = ∇ · n is the mean curvature of Γ0.

A further result we have proved (see Appendix 6) is required to derive the term involving the function φ(ρ)
defined in (3.10):

Lemma 3.4. Let φ(ρ) be the function defined in (3.10), then the following identity holds:

d
dρ

(∫ T

0

∫
Γρ(t)

φ(ρ)dσ

)∣∣∣∣∣
ρ=0

= ρF

∫ T

0

∫
Γ (t)

(
∂u
∂t
· v +

∂v
∂t
· u
)

(γ · n)dσ dt

+ρF
∫ T

0

∫
Γ (t)

[(u · v)((∇Γ (t)n + N) uS) · γ]dσ dt− ρF
∫
Γ (T )

(u · v)(T )(γ · n)dσ

+ρF
∫
Γ0

(u0 · v(0))(γ · n)dσ + ρF

∫ T

0

∫
Γ (t)

[(∇uγ) · v + (∇v γ) · u] (uS · n)dσ dt

where ∇Γ (t)n denotes the tangential gradient of n = (n1, n2)T in Γ (t) and N the diagonal matrix defined as
follows: Nij = niδij, where δij denotes the Kronecker delta.

By using Theorem 3.3, Lemmas 3.2 and 3.4, we can now calculate the derivative (3.8) of the Lagrangian
functional with respect to the parameter ρ:
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d Lρ
dρ

∣∣∣∣
ρ=0

=AΩ +
α

2

∫ T

0

∫
Γ (t)

|∇u|2(γ · n)dσ dt+ ρF

∫ T

0

∫
Γ (t)

(u · v)(W0 · n)dσ dt

−
∫ T

0

∫
Γ (t)

[
−ρF

∂v
∂t
· u− p∇ · v + µF∇u : ∇v − q∇ · u

]
(γ · n)dσdt

+
∫ T

0

∫
Γ (t)

∇ · (ρF (u · v)uS)(γ · n)dσ dt

− ρF
∫ T

0

∫
Γ (t)

[(∇uγ) · v + (∇v γ) · u] (uS · n)dσ dt

−
∫
Γ (T )

ρF (u(T ) · v(T ))(γ · n)dσ + ρF

∫
Γ0

(u0 · v(0))(γ · n)dσ +
∫ T

0

[λSδη]L0 dt

−
∫ T

0

∫ L

0

(
ρShS

∂2δη

∂t2
ψ + µS

∂ψ

∂x1

∂δη

∂x1
+ βψ

)
dx1 dt+

∫ L

0

(
λ0
Sδη(0) + λ1

S

∂δη

∂t
(0)
)

dx1. (3.13)

where

AΩ = − α
∫ T

0

∫
Ω(t)

∇u : ∇(∇uγ) dx dt−
∫ T

0

∫
Ω(t)

ρF

[
∂v
∂t
· (∇uγ) + u · ∂(∇vγ)

∂t

]
dx dt

−
∫ T

0

∫
Ω(t)

[p∇ · (∇v γ) + (∇p · γ)∇ · v] dx dt+ µF

∫ T

0

∫
Ω(t)

[∇(∇v γ) : ∇u +∇v : ∇(∇uγ)] dx dt

+ ρF

∫
Ω(T )

[(∇uγ) · v + (∇v γ) · u](T ) dx− ρF
∫
Ω0

u0 · (∇v γ)(0) dx

−
∫ T

0

∫
ΓD

(λF · (∇uγ) + (∇λF γ) · (u− uD) ) dσdt. (3.14)

A further simplification of the term AΩ is possible thanks to the following result, whose proof is reported in
Appendix 6:

Lemma 3.5. Let AΩ be the functional defined in (3.14), then the following identity holds:

AΩ =
∫ T

0

∫
Γ (t)

(ρF (uS · n)(u · (∇v γ) + (∇uγ) · v) dσ dt+
∫ T

0

∫
Γ (t)

(σF (u, p) n) · (∇v γ) dσ dt.

Thanks to this lemma, the expression of the derivative (3.13) of the Lagrangian functional is given by:

dL
dρ

∣∣∣∣
ρ=0

=
α

2

∫ T

0

∫
Γ (t)

|∇u|2(γ · n) dσ dt− ρF
∫ T

0

∫
Γ (t)

(u · v)((∇Γ (t)n + N) uS) · γ dσ dt

−ρF
∫ T

0

∫
Γ (t)

(
∂u
∂t
· v
)

(γ · n) dσ dt+
∫ L

0

(
λ0
Sδη(0) + λ1

S

∂δη

∂t
(0)
)

dx1

−
∫ T

0

∫ L

0

(
ρShS

∂2δη

∂t2
ψ + µS

∂ψ

∂x1

∂δη

∂x1
+ βψ

)
dx1 dt+

∫ T

0

[λSδη]L0 dt.

(3.15)

Finally, by requiring that at the optimum this derivative is vanishing – so that condition (3.8) holds – yields
the following solid adjoint problem under strong form:

ρShS
∂2ψ

∂t2
− µS

∂2ψ

∂x2
1

+ βψ = g(t) on Γ0 × (0, T )

ψ(0, t) = ψ(L, t) = 0 t ∈ (0, T )

ψ(x1, T ) =
∂ψ

∂t
(x1, T ) = 0 x ∈ Γ0,

(3.16)
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where g is defined as follows, for any t ∈ (0, T ):

g(t) =
(
α

2
|∇u|2 n2 − ρF

(
∂u
∂t
· v
)
n2 − ρF (u · v)((∇Γn + N) uS) · e2

)∣∣∣∣
Γ (t)

◦ η−1. (3.17)

Problem (3.16) yields nothing but the expression of a linear Koiter model backward in time, for the adjoint
displacement ψ. This problem depends on the solution (u, p, η) of the state FSI problem and on the fluid
adjoint variables (v, q). We also point out that the fluid and the solid adjoint problems are coupled, thanks
to conditions (3.6) and (3.17) which, similarly to the case of the state FSI problem, impose the continuity of
both velocity and stress, respectively, on the interface Γ (t). Moreover, by requiring that at the optimum the
derivative in (3.15) vanishes, we get the following expressions for the Lagrangian multipliers λS ∈ L2(0, T ),
λ0
S ∈ L2(ΓD) and λ1

S ∈ L2(ΓD):

λS = −µS
∂ψ

∂z
on ({0} ∪ {L})× (0, t) λ0

S = −∂ψ
∂t

(0) and λ1
S = ψ(0) on Γ0 × {0}.

3.3. Shape derivative of the cost functional

The last quantity to derive in order to set a system of first-order necessary optimality condition is the shape
derivative of the cost functional J (or, equivalently, of its shape gradient). Together with the state and the adjoint
problems, the shape gradient of J is indeed required to characterize the solution to the shape optimization
problem and, from a practical standpoint, to set up a descent method for its numerical approximation.

According to the Lagrangian multipliers method, we can treat the state and the adjoint variables as inde-
pendent from the domain Ω(t) and, therefore, we can derive the Lagrangian functional L with respect to the
shape in order to evaluate the shape derivative of the cost functional J . This is achieved by applying, to the
case at hand, two classical results of shape analysis, which we report for the sake of completeness (see, e.g. ([1]
for the proof), Props. 6.22, 6.24):

Theorem 3.6. Let Ω0 ⊂ Rn be a bounded domain locally of class C2, f ∈W 1,1(Rn) and g ∈W 2,1(Rn). Denote
by n the unit outward normal on ∂Ω0 and by H = ∇ · n the mean curvature of ∂Ω0. Then:

(1) the functional J(Ω) =
∫
Ω

f(x)dx is differentiable in Ω0 and

J ′(Ω0)(θ) =
∫
∂Ω0

(θ · n)f dσ ∀θ ∈W 1,∞(Rn; Rn);

(2) the functional J(Ω) =
∫
∂Ω

g(x)dσ is differentiable in Ω0 and

J ′(Ω0)(θ) =
∫
∂Ω0

(θ · n)
(
∂g

∂n
+Hg

)
dσ ∀θ ∈W 1,∞(Rn; Rn).

Applying the results above, it is possible to calculate the derivative of the Lagrangian functional L defined
by (3.1) with respect to the domain, evaluated at Ω̂ in the direction of θ ∈ W 1,∞(R2,R2). Let us assume that
ΓM ⊆ Γb is the only boundary portion on which we can act during the optimization process; then, the admissible
displacement fields are such that

θ ∈ Θ = {θ ∈W 1,∞(R2,R2) : θ = 0 on ∂Ω0 \ ΓM} (3.18)



1514 A. MANZONI AND L. PONTI

Thus, for any θ ∈ Θ, the shape derivative of the cost functional J defined by (2.11) reads as follows:

J ′(Ω0)(θ) =
〈
∂L
∂Ω0

,θ

〉
=
∫ T

0

∫
ΓM

(
H λF · (u− uD) +

∂(λF · (u− uD))
∂n

)
(θ · n)dσ dt

+
∫ T

0

∫
ΓM

(
α

2
|∇u|2 + ρFu · ∂v

∂t
− v · ∇p+ µF∆u · v + q∇ · u

)
(θ · n)dσ dt

(3.19)

By exploiting the boundary conditions u = v = 0 on Γb of the state and adjoint problems and recalling the
expression (3.6) of the Lagrange multiplier λF , the shape derivative J ′(Ω0)(θ) takes the following form:

J ′(Ω0)(θ) =
∫ T

0

∫
ΓM

(
α

2
|∇u|2 +

∂((σF (v, q) n− α∇u n) · u)
∂n

)
(θ · n) dσ dt

=µF

∫ T

0

∫
ΓM

(∇u : ∇v)(θ · n)dσ dt− α

2

∫ T

0

∫
ΓM

|∇u|2(θ · n) dσ dt. (3.20)

See, e.g., [6] for further details on how to recover (3.20) from (3.19).
Hence, we require that the optimal shape fulfills the following optimality condition (which is nothing but the

expression of a minimum principle for the shape optimization problem at hand):

J ′(Ω̂)(θ) ≥ 0 ∀θ ∈ Θ.

We point out that, for a generic domain Ω0, the shape derivative can be equivalently expressed as follows:

J ′(Ω0)(θ) = 〈∇J(Ω0),θ〉 where ∇J(Ω0) =
[
µF∇u(Ω0) : ∇v(Ω0)− α

2
|∇u(Ω0)|2

]
n

where ∇J = ∇J(Ω0) is the shape gradient of J evaluated at Ω0. As we will see in the following section,
evaluating this quantity (once the state and the adjoint problems have been solved) is a cornerstone in order to
setup a suitable descent method for the solution solution to the shape optimization problem.

We can summarize all the results presented in this section in the following

Theorem 3.7. Let us consider the shape optimization problem (2.10)–(2.12). Then, the shape derivative of the
cost functional J(Ω) defined in (2.11), for any Ω ∈ Oad, is given by

J ′(Ω)(θ) = µF

∫ T

0

∫
ΓM

(∇u : ∇v)(θ · n)dσ dt− α

2

∫ T

0

∫
ΓM

|∇u|2(θ · n) dσ dt. (3.21)

where (u, p, η) fulfill the fluid state problem (2.7), the solid state problem (2.2) and the coupling conditions (2.8);
(v, q, ψ) fulfill the fluid adjoint problem (3.5), the solid adjoint problem (3.16) and the coupling conditions (3.6).

4. Numerical approximation

In this section we describe a numerical procedure to approximate the shape optimization problem we have
analyzed so far, based on the system of optimality conditions we have derived. First, we recall how to solve the
state FSI problem relying on a Dirichlet−Neumann approach; then, we suitably modify this method to tackle the
solution to the adjoint problem backward in time; at last, we describe a steepest descent-like method to address
the optimization problem. We recall that we rely on an optimize-then-discretize approach, thus discretizing (both
in space and time) the system of optimality conditions derived so far. We first focus on the time discretization
with finite differences, then we provide some details about the spatial discretization operated through a finite
element method.
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4.1. Numerical approximation of the FSI state problem

By exploiting the low dimension of the structural problem, it is possible to describe an efficient iterative
procedure (see Algorithm 1) to solve the FSI problem, where the coupling conditions are imposed at the
interface Γ (t) through a Dirichlet−Neumann approach. In particular, at each time step, we solve iteratively,
until a suitable stopping criterion is satisfied,

− a fluid sub-problem where the velocity continuity on Γ (t) is imposed as a Dirichlet condition;
− a solid sub-problem where the stress continuity on Γ (t) is imposed as a Neumann condition.

Let us consider a partition of the time interval [0, T ] in N subintervals, where tn = n∆t, n = 0, . . . , N , ∆t is a
fixed time step and tN = T . Then, let us denote by gn the value of the function g(·, t) at t = tn and by gj the value
of the function g(·, t) at the j-th iteration of the FSI iterative scheme. Furthermore, let us consider a suitable
approximation of the reference solid domain Γ0. For the time discretization, we employ a first-order backward
difference scheme for the structure and an implicit Euler scheme for the fluid. The numerical approximation of
the state FSI problem is as follows. Given a fixed tolerance τ , an initial displacement η0, let us initialize the
value of the displacement in the FSI iterative process as follows: η0 = η0. Thus, for each time step n = 1, . . . , N
we need to (see Algorithm 1):

− given (un, pn, ηn), the configuration Ωn = Ω(tn) whose boundary is Γn = Γ (tn), solve the fluid sub-problem:
find (uj , pj) such that:

ρF
uj − un

∆t
− ρFwn · ∇uj +∇pj − µF∆uj = 0 in Ωn

∇ · uj = 0 in Ωn

uj =
((

ηj−1 − ηn

∆t

)
◦ Ã−1

t

)∣∣∣∣
Γn
· e2 on Γn

uj = unin on Γin

uj = 0 on Γb

−pjnn + ν
∂uj
∂nn

= 0 on Γout ;

(4.1)

− solve the solid sub-problem: find η̃j such that:
ρShS

η̃j − 2ηn + ηn−1

∆t2
− µS

∂2η̃j
∂x2

1

+ βη̃j = fj on (0, L)

fj = −J n
(
σF (uj , pj) nn

)∣∣
Γn
· e2 on (0, L)

η̃j(0) = η̃j(L) = 0 ;

(4.2)

− update the structure according to a relaxation parameter γ ∈ (0, 1), as follows:

ηj = γη̃j + (1− γ)ηj−1; (4.3)

− perform a convergence test: if ‖ηj − ηj−1‖L2(0,L) < τ , then set ηn+1 = ηj and un+1 = uj ; otherwise, set
j = j + 1 and go back to step 1.

At the end of each time step, the domain Ωn is deformed into the domain Ωn+1, by exploiting the weak solution
ηn+1 of the solid sub-problem. Note that the velocity wn of the domain Ωn can be numerically approximated by
doing an harmonic extension onto the whole Ωn of the vector (un · e2)e2 defined in Γn, similarly to what done
in (2.6) – recall the identity (2.9). A schematic description of the whole procedure is provided in Algorithm 1,
Appendix 6.

We point out that the fluid sub-problem (4.1) at t = tn+1 is solved in the fixed domain Ωn. Moreover,
unlike the continuous formulation of the FSI problem, which is nonlinear because of the coupling conditions
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and the definition of the domain Ω(t), the fluid sub-problem (4.1) and the solid sub-problem (4.2) are linear in
their arguments. Furthermore, a really important step in the procedure above is represented by the relaxation
step (4.3) for the structure updating. As a matter of fact, it can be proved [9,18] that there exists γ̄ < 1, such as,
for γ < γ̄, the Dirichlet−Neumann procedure above converges to the solution of the time-discrete FSI problem.

The procedure above can be easily modified in order to solve the adjoint FSI problem as well, by recalling
that (i) both the fluid and the solid adjoint problems are backward in time, with initial conditions at t = T ,
and (ii) the domains Ωn now are known by the solution to the state FSI problem. Hence, given a fixed tolerance
τ > 0, the solution to the state FSI problem at tn (un, pn, ηn;Ωn) and the solution to the adjoint problem
at tn+1 (vn+1, qn+1, ψn+1), to solve the FSI adjoint problem at tn, we need, for each j = 1, . . . , N , to (see
Algorithm 2, Appendix 6):

− solve the fluid adjoint sub-problem: find (vj , qj) such that:

ρF
vn+1 − vj

∆t
−ρFwn · ∇vj −∇qj + µF∆vj = α∆un in Ωn

∇ · vj = 0 in Ωn

vj =
(
ψj−1 ◦ Ã−1

t

)∣∣∣
Γn
· e2 on Γn

vj = 0 on Γin ∪ Γb
−qjnn + ν

∂vj
∂nn

= 0 on Γout ;

(4.4)

− solve the solid adjoint sub-problem: find ψ̃j such that:ρShS
ψ̃j − 2ηn+1 + ηn+2

∆t2
− µS

∂2ψ̃j
∂x2

1

+ βψ̃j = gj on (0, L)

ψ̃j(0) = ψ̃(L) = 0
(4.5)

where gj is the L2-projection of the forcing term g of the solid adjoint problem, defined in (3.17);
− update the structure according to a relaxation parameter ω ∈ (0, 1) as follows:

ψj = ω ψ̃j + (1− ω)ψj+1 ; (4.6)

− perform a convergence test: if ‖ψj−ψj−1‖L2(0,L) < τ , then set ψn = ψj and vn = vj ; otherwise, set j = j+1
and go back to step 1.

Remark 4.1. A generalization of the Dirichlet−Neumann scheme exploited for the case at hand is provided by
the Robin−Robin partitioned procedure, introduced in [4, 5] and analyzed in [22]; such a technique avoids the
relaxation and shows better convergence properties in the presence of a high added-mass; another option would
be the Robin-Neumann scheme, which in [4,5] has been shown to converge without relaxation. The choice of the
parameters in the Robin transmission conditions is a key factor in order to enhance the convergence properties
of the Robin−Robin scheme, and can be made by either heuristic considerations [4, 5] of through a suitable
optimization procedure [22]. Although relying on such a scheme in view of more complex applications (such as
those, e.g., related to shape optimization problems involving Navier-Stokes flows and FSI effects) is somehow
required, for the case at hand we opted for a Dirichlet−Neumann scheme, easier to implement and yet capable
to provide satisfying results entailing reasonable computational costs.

Algorithms 1 and 2 in Appendix 6 provide the time approximation of the state and the adjoint equation,
respectively. In order to obtain the fully discrete solution, we consider a space approximation of these problems
by means of the Galerkin−Finite Element (FE) method; for the sake of simplicity, we limit ourselves to the
state problem, the treatment of the adjoint problem being indeed very similar. In particular, denoting by h the
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mesh size, let us introduce two meshes T F,nh , T Sh , approximating respectively the fluid domain Ωn and the solid
domain Γ0 = (0, L) by nonoverlapping triangles or segment. Moreover, let us introduce the FE spaces

Xn
h =

{
vh ∈ C0(Ωn; R2) : vh|KF ∈ Pr, ∀KF ∈ T F,nh

}
,

Y nh =
{
qh ∈ C0(Ωn) : qh|KF ∈ Pl, ∀KF ∈ T F,nh

}
, Zh =

{
ξh ∈ C0(0, L) : ξh|KS ∈ Pk, ∀KS ∈ T Sh

}
,

where r, l, k denote the degrees of the polynomials approximating the variables u, p, η, and Pr the space of the
polynomials with global degrees equal or lower than r. Finally, let us denote by V F,nh ⊂ XF,n

h ∩ VF (Ωn), Qnh ⊂
Y nh ∩ QF (Ωn), V Sh ⊂ Zkh ∩ VS and V F,nh,0 = XF,n

h ∩ V0(Ωn), in which homogeneous Dirichlet conditions are
imposed. By introducing the variables uh ∈ V F,nh , ph ∈ Qnh and ηh ∈ V Sh approximating uj , pj , η̃j , respectively,
the Galerkin−FE approximation of problems (4.1), (4.2) read as follows:

• given the velocity wn
h of the computational domain and the solution unh evaluated in tn, find uh ∈ V F,nh and

ph ∈ Qnh such that unh|Γn fulfills the Dirichlet boundary conditions in (4.1) and

ρF

∫
Ωn

uh − unh
∆t

·ϕh dx− ρF
∫
Ωn

[(wn
h · ∇)uh] ·ϕh dx

−
∫
Ωn

ph∇ ·ϕhdx + µF

∫
Ωn
∇uh : ∇ϕh dx = 0 ∀ϕh ∈ V

F,n
h,0 ,∫

Ωn
φh∇ · uh dx ∀φh ∈ Qnh;

(4.7)

• given the approximation fn+1
h of the forcing term f defined in the coupling condition (2.8), and the numerical

solutions ηnh and ηn−1
h , find ηh ∈ V Sh such that ηh(0) = ηh(L) = 0 and

ρShs

∫
Γ0

ηh − 2ηnh + ηn−1
h

∆t2
ξh dx1 + µS

∫
Γ0

∂ηh
∂x1

∂ξh
∂x1

dx1 + β

∫
Γ0

ηhξh dx1 =
∫
Γ0

fn+1
h ξhdx1 ∀ξh ∈ V Sh .

(4.8)

Further details about the algebraic formulation of these problems are provided in Appendix 6.

4.2. Numerical approximation of the optimization problem

We are now ready to combine all the methods described so far in order to set up a numerical procedure for
the solution to our shape optimization problem. To compute the optimal shape, we rely on a descent method
based on the shape gradient of the cost functional; see, e.g., [1,25] for further details. In particular, let us denote
by g(k) the value of the generic function g(·) evaluated at the k-th iteration of the optimization scheme. Thus,
starting from an initial configuration Ω(0) of the domain, at each step k = 0, 1, . . . of the descent algorithm we
need to:

(a) solve the state problem, by setting Ω(0) = Ω(k), to compute y(k)
h = (u(k)

h , p
(k)
h , η

(k)
h );

(b) evaluate the cost functional Jh(Ω(k)) = J(Ω(k),y(k)
h );

(c) solve the adjoint problem to compute z(k)
h = (v(k)

h , q
(k)
h , ψ

(k)
h );

(d) evaluate the shape gradient ∇Jh(Ω(k)) = ∇J(Ω(k),y(k)
h , z(k)

h ) of the cost functional;
(e) update the shape of the domain and obtain Ω(k+1),

until a suitable stopping criterion is satisfied; a possible choice is to require the difference between two subsequent
values of the cost functional to be under a small, fixed tolerance τ > 0. Concerning the shape update, let us recall
that, thanks to the Hadamard’s Structure Theorem (see, e.g., [13]), the shape gradient ∇J can be expressed as

∇J = H(Ω)|ΓM n
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where ΓM ⊆ Γb is the only boundary portion on which we can act during the optimization process. Thus,
similarly to the steepest descent method for finite-dimensional optimization, we can in principle deform the
boundary of Ω(k) to obtain Ω(k+1) as

Ω(k+1) = Tk(Ω(k)) = (I + αkθk)(Ω(k)), where θk = −H(Ω(k))n(k), (4.9)

where n(k) denotes the unit outward normal on ∂Ω(k) and αk a suitable (small) step size; this techniques usually
goes under the name of local boundary variation (LBV). The definition of the displacement θk can be easily
extended to the whole domain Ω(k), through an harmonic extension (or Dirichlet-to-Neumann map) [1, 2] in
order to prevent lack of regularity of the deformation map. To deal with the volume constraint in (2.12) we
introduce a suitable Lagrange multiplier l(k) ∈ R, following the approach introduced in [2]. Hence, at the kth
iteration, the descent direction in the gradient method is given by

J ′(Ω(k))(θk) + l(k) V ′(Ω(k))(θk),

where V ′(Ω)(θ) is the shape derivative of the volume |Ω| of the generic domain Ω, evaluated in the direction
of θ. The Lagrange multiplier l(k) is selected by imposing the volume constraint (at least in the average sense)
on the optimal domain, and it is updated according to the following rule:

l(k) =
l(k−1) − l(k−1)

2
+ ε(|Ω(k−1)| − V ) with l

(k−1)
= −

∫
Γ

(k−1)
M

H(Ω)dσ∫
Γ

(k−1)
M

dσ
,

where V is the reference domain volume and ε > 0 a chosen parameter.
For the case at hand, we exploit instead a NURBS Free Form Deformation (FFD) map [31,46,47] to handle

domain deformations by dealing with a small number of design variables, instead than the whole set of nodes
lying on the boundary to be deformed. Then, the deformation is extended to the whole domain through an
interpolation with B-splines functions. The following subsection is devoted to the description of the NURBS-
FFD map; the whole shape optimization procedure is sketched in Algorithm 3, Appendix 6.

4.3. Free form deformation map based on NURBS

Deformation techniques based on FFD maps are often used in shape optimization problems for their low
dimensionality: indeed, a FFD map yields a deformation for the whole domain by interpolating the displacement
of a small set of control points. Such a map is defined on a bounding box (e.g., a rectangle or a parallelepiped
in two or three dimensions, respectively), including the shape being deformed; this also allows to solve shape
optimization problems involving more complex figurations, too. In the last decades, many extensions of the FFD
map originally introduced in [49] have been proposed; we focus on the the FFD map based on NURBS that
combines the low dimensionality given by FFD with a major regularity and flexibility typical of the NURBS
representation. See e.g. [36] for further details about the use of FFD maps in shape optimization.

The FFD map based on NURBS (Non-Uniform Rational B-Splines) is different from the classic one for the
types of polynomials used in the deformation process (B-Splines instead of Bernstein polynomials) and for the
chance to define a set of control points freely within the bounding box, rather than on a tensor lattice as in the
classical FFD map. Besides the small dimension of the design variables set, FFD-based deformations allow to
preserve the regularity of the domain boundary better than the LBV method. Our NURBS-FFD algorithm to
handle shape deformations proceeds as follows:

(1) initialization: we first introduce an initial bounding box parametrized with suitable B-Splines. In particular,
given a grid of control points {Pi,j}i=1,...,n j=1,...,m ∈ R2 and two knot vectors U ∈ Rn and V ∈ Rm, it is
possible to define a NURBS surface S(u, v) as follows:

S(u, v) =
n∑
i=1

m∑
j=1

Ni,p(u)Nj,q(v)Pi,j ,
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where Ni,p(u), Nj,q(v) represent the B-Spline bases3 of degree p (resp. q) related to the knot vector U
(resp. V), see e.g. [44] for further details. Furthermore, given the deformation di,j of the control point Pi,j ,
we define the deformation of a generic point p = (ũ, ṽ) ∈ S as follows:

F(p) = p +
n∑
i=1

m∑
j=1

Ni,p(ũ)Nj,q(ṽ)di,j . (4.10)

The nodes and the control points of the NURBS surface are such that (4.10) results in the identity map
when zero displacement is imposed over the volume; see e.g. [46] for the detailed description of the strategy
adopted to individuate the position of the nodes and the control points;

(2) displacement definition: we introduce a set of design variables {ps}s=1,...,d, with ps = (us, vs), on which we
define a desired deformation, by imposing that {ps}s=1,...,d are moved to {qs}s=1,...,d under the action of
the map F. Thus, we need to find a deformation expressed under the form (4.10), in order the Euclidean
distance between F(ps) and qs to be minimized. To this aim, we apply an iterative procedure in which the
deformation of the point ps at the iteration t reads as

F(t)(ps) = F(t−1)(ps) +
n∑
i=1

m∑
j=1

Ni,p(us)Nj,q(vs) d(t)
i,j .

To define a FFD map it is sufficient to describe its effects over the control points used to parametrize the
NURBS initial volume; therefore, the minimization problem above is equivalent to find the vector d(t) of
control points displacements by solving the following least-squares problem (see [47] for further details about
the computational procedure):

d(t) = argmin
x∈Rn×m

d∑
s=1

∥∥∥∥∥∥
n∑
i=1

m∑
j=1

(Ni,p(us)Nj,q(vs) xi,j)− (qs − F(t−1)(ps))

∥∥∥∥∥∥
2

2

;

(3) deformation: by using the position di,j of the displaced control points Pi,j found at the previous step, we
can finally apply the evaluate the action of the map F(·) defined in (4.10) on each node of the computational
mesh Ω, and therefore obtain the deformed domain F(Ω).

5. Numerical results

We now show some numerical results obtained on simplified two-dimensional geometries. The goal of the
proposed test cases is threefold, since we want (i) to verify the feasibility of the proposed algorithm; (ii) to
compare the optimal shape of a simple structure in presence of FSI with the results obtained for a rigid geometry,
showing that we recover the results of the rigid case as the stiffness of the structure increases; (iii) to show the
effectiveness of the adjoint-based procedure in the optimization framework.

Let us consider the two-dimensional reference domain Ω0 shown in Figure 1, discretized with a computational
mesh made by 2313 nodes, as fluid domain, and the one-dimensional domain Γ0 = (0, L) approximated with 240

3The basis N of grade 0 is defined as follows:

Ni,0(u) =

{
1 if ui ≤ u ≤ ui+1

0 otherwise,

where ui are the knots in the vector U. The basis Ni,p are defined recursively through the Cox-de Boor formula as

Ni,p(u) =
u− ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u).
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Table 1. Physical and geometrical parameters in the FSI problem.

Geometrical parameters
Domain radius R 0.5 cm
Domain length L 6 cm

Fluid parameters

Density ρF 1 g cm−3

Viscosity µF 0.63 P

Structural parameters

Density ρS 1.1 g cm−3

Thickness hS 0.1 cm
Viscosity µS 2.5× 104 P
Coefficient β 4× 105 dyn cm−3

Young modulus E 0.75× 106 dyn cm−2

Poisson coefficient ν 0.5 −

nodes. The portion ΓM ⊂ Γ0 is the portion of the boundary on which we can act for the sake of optimization.
Concerning the time discretization, we subdivide the time interval (0, 0.03s) with a time step ∆t = 0.001 s.
To deform the fluid reference domain we use a NURBS-FFD map with an initial FFD volume described with
40 × 10 control points and B-splines with order 2 in each dimension x1, x2. Regarding the finite element dis-
cretization, we approximate the velocity and the pressure of the fluid sub-problem by means of quadratic and
linear (Lagrangian) basis functions, respectively, in order to ensure the discrete inf-sup stability of the Stokes
problem; the displacement of the solid structure is approximated through quadratic (Lagrangian) basis func-
tions. To define the deformation, we introduce 100 design variables lying on the boundary ΓM of the reference
domain, which can be displaced along the vertical direction. Finally, the relaxation parameters γ in (4.3) and ω
in (4.6) are set equal to 0.75, according to an heuristic trial-and-error procedure inspired from the results
presented in [9]. Although in a much more simplified framework dealing with inviscid fluids interacting with a
Koiter model like the one at hand, in [9] it is shown that the Dirichlet−Neumann coupling on an FSI problem
close to our state problem indeed converges for values of γ < γ̄ = 0.85. To reach convergence, the FSI solver
requires about 3÷ 5 iterations (see Algorithm (1)), also because the structure is undergoing small deformations
in the considered test cases.

Geometrical and physical parameters (for both the fluid and the structure) are chosen according to typical
values of fluid and structural properties in haemodynamical applications – such has blood density and viscosity,
arterial wall Young modulus, etc. – according to the motivation that has inspired this work; their values are
listed in Table 1. Regarding the inflow boundary condition of the fluid problem, given a maximum velocity
umax = 75 cm/s the inlet velocity profile uin takes the form

uin = (uin, 0)T with uin =

{ 4umax

R
y
(

1− y

R

)
for t ≤ 0.01 s

0 for t > 0.01 s,
(5.1)

being R = 0.5 cm the length of the inlet Γin.

5.1. Test case 1

As first test case, we compare the optimal shapes obtained with (i) the proposed procedure based on the
NURBS-FFD map and (ii) the LBV method. Although the value of the cost functional at the optimum is indeed
very similar – J(Ω̂FFD) = 44.953 in the NURBS-FFD case vs. J(Ω̂LBV ) = 44.956 in LBV case, starting from
an initial shape for which J(Ω0) = 46.364 – the optimal domain obtained with the two methods are quite
different. As shown in Figure 3, the boundary of the shape deformed by the NURBS-FFD map results more
regular than the one obtained with the LBV method, although the number of design variables in this latter case
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(a) NURBS-FFD map
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(b) LBV method

Figure 3. Inferior boundary of the optimal shape, varying the domain updating method.

Figure 4. Fluid velocity at different time-steps (from top to bottom: t = 0.005, 0.01, 0.015, 0.02)
in the reference (left) and the optimal (right) domain.

is twice as large as the one in the former. Moreover, the algorithm based on the NURBS-FFD map converges
in 16 iterations, whereas the one based on the LBV method takes 30 iterations to reach the optimum. For these
reasons, in the following test case we rely on the NURBS-FFD map in order to handle domain deformations
during the optimization process. In Figures 4 and 5 the fluid velocity and pressure at different time-steps, in
the reference domain Ω0 and in the optimal configuration, are shown.

5.2. Test case 2

In the second test case, starting from the initial configuration already considered in test case 1, we compare
the optimal shape Ω̂FSI obtained in the case of a deformable structure – whose wall indeed moves under the
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Figure 5. Fluid pressure at different time-steps (from top to bottom: t = 0.005, 0.01, 0.015, 0.02)
in the reference (left) and the optimal (right) domain.

effect of the fluid flow – with the one, Ω̂S , obtained by considering a rigid structure; in this latter case, we set the
Dirichlet condition u = 0 on the interface Γ (t) in the fluid equations. In Figure 6, the optimal shapes obtained
in these two scenarios are shown; even if we are dealing with a linear Stokes flow, the difference between the
optimal shapes obtained in these two cases is not negligible. By evaluating the solution to the FSI problem in
the two optimal configurations, we obtain that 44.956 = J(Ω̂FSI) ≤ J(Ω̂S) = 44.988. From a computational
point of view, dealing with a deformable structure entails a CPU cost which is more than 50% higher with
respect to the case of a rigid structure: each iteration of the optimization procedure takes about 120 s in the
rigid case and about 210 s in the FSI case with a Intel Premium P6100 processor with 2.00 GHz of clock speed
and 4GB RAM. Furthermore, we can show (see Fig. 7) that the optimal shape obtained in the rigid case can
be obtained as the limit of the optimal shapes in presence of FSI, when increasing the stiffness of the wall. In
fact, the higher the value of the Young modulus E, the closer the optimal shape to the one obtained in the case
of a rigid wall.

5.3. Test case 3

As seen in Section 3.2, dealing with the adjoint problem for the structure (3.16) is a difficult matter, for
the sake of both its derivation and its numerical approximation. Note also that the gradient of the the cost
functional reported in equation (3.21) does not involve the solid adjoint variable – but also the fluid adjoint
variable, which is nevertheless coupled to the former. For this reason, we consider an adjoint-free method, in
which the solid adjoint problem is not considered, and the FSI adjoint solution is approximated by the fluid
adjoint solution. Hence, we compare the optimal shape obtained by relying on the solution to an adjoint problem
for both the fluid and the structure, with the one obtained by considering only the fluid adjoint problem. In
particular, also in this case we rely on the procedure of Sect. 4.2, but evaluating at step (c) only the solution
of the fluid adjoint problem, that is, z(k)

h = (v(k)
h , q

(k)
h ). We report in Figure 8 the results obtained with an

adjoint-free method, in which the full FSI state problem (2.2), (2.7), (2.8) is solved, whereas the only fluid
adjoint problem (3.5) is considered: the optimal configurations in these two cases are clearly different, thus
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Figure 6. Optimal shapes obtained in the FSI case (in blue) and the case of a rigid structure
(in red).
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Figure 7. Optimal shape obtained for different values of the Young Modulus E.

indicating that each optimality condition is indeed important; the adjoint-based procedure thus cannot avoid
to include the structural adjoint problem.

5.4. Test case 4

In this last test case, we show the results obtained by considering as initial configuration in the optimization
process the one described in Figure 9, that is, by assuming (unlike the previous tests) that the whole bottom
boundary domain is subject to design. In Figure 10 we report the optimal shapes obtained by admitting that
the whole inferior boundary can be optimized, either in the FSI case or by considering a rigid wall. Note that
for x ∈ (1.5, 4.5) the optimal profile resembles the one shown in Figure (6), where only the portion of the lower
boundary with x ∈ (1.5, 4.5) was optimized. Close to those points where the reference domain is not C1, also the
optimal shape shows less regularity; such a behavior is a well-known problem (see e.g. [44]) in the application of
the NURBS-FFD map e.g. for the sake of optimal shape design. Nevertheless, the enlargement of the sections
of the optimal domain close to the inlet boundary can be found in similar results obtained when dealing with
shape optimization problems of Stokes flows with rigid domains, see e.g. [21]. Regarding the decrease of the cost



1524 A. MANZONI AND L. PONTI

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  1  2  3  4  5  6

FSI
Only Fluid Adjoint

Stokes

Figure 8. Optimal shape obtained with the adjoint-free method (in red), the adjoint-based
method involving the solution to the structural adjoint problem (in blue) and assuming that
the structure is rigid (in black).

Figure 9. Test case 4. Reference configuration used as starting point of the optimization process.
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Figure 10. Optimal shapes (FSI case in blue, rigid case in red) obtained by considering as
initial configuration the one in Figure 1, with the whole bottom boundary Γ0 ∪ ΓM subject to
design.
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Figure 11. Optimal shape (FSI case) obtained by considering as initial configuration a refer-
ence domain with bottom boundary (dashed) globally C1 and entirely subject to design.

functional, a better result is obtained (as expected) when allowing the whole lower boundary to be deformed.
In the FSI case, the cost functional evaluated in the optimal shape is equal to J(Ω̂) = 42.228, a much smaller
value than the one (44.956) obtained when only the central portion of ΓM could be deformed.

Finally, in order to show that the lack of regularity was induced by the local C0 regularity of the reference
configuration, we investigate the regularity of an optimal configuration obtained by considering a reference
domain with a C1 lower boundary. By solving the shape optimization problem in the FSI case and imposing
that the whole lower boundary can be deformed, we obtain the optimal shape reported in Figure 11, which
preserves the regularity of the initial one; the cost functional in this case decreases from the initial value
J(Ω0) = 42.45 to the optimal value J(Ω̂) = 40.92.

6. Conclusions

In this paper we have developed an adjoint-based method for the numerical approximation of shape opti-
mization problems in presence of fluid-structure interaction. In particular, we have characterized the optimal
solution as the saddle point of a suitable Lagrangian functional, showing how to derive a system of first-order
necessary optimality conditions, where the most difficult task is the recovery of a suitable solid adjoint problem
for the structural subproblem. The procedure described to address the difficulties arising from the FSI coupling
is fairly general, although we have focused on unsteady Stokes flows for the sake of simplicity.

Based on this optimality system, we have implemented a numerical solver for the shape optimization problem,
involving a Dirichlet−Neumann approach for solving the state FSI problem. An additional difficulty tackled in
this work is given by the numerical solution to the adjoint FSI problem, for which only few results are indeed
available in literature. We have implemented an efficient solver of the adjoint FSI problem taking advantage of the
numerical scheme used for the state FSI problem. Finally, we have exploited a steepest descent-like method for
the sake of numerical optimization, where the optimal structural configuration is obtained by taking advantage,
at each step, of the shape gradient of the cost functional. To deal with domain deformations efficiently, we have
implemented an algorithm based on the NURBS Free Form Deformation map, which ensures higher boundary
regularity of each deformed domain, as well as a faster convergence to the optimum than the local boundary
variation method.

We have assessed the feasibility of the proposed procedure by performing different test cases varying the
elastic parameter of the structure, showing that the stiffer the material, the closer the optimal shape to the one
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obtained by considering a rigid structure. Finally, we showed the importance of the solution to the structural
adjoint problem, by comparing our results obtained with those obtained through an adjoint-free method.

Appendix A. Proof of Lemma 3.4

In this Appendix we prove Lemma 3.4, yielding the expression of the derivative

d
dρ

(∫ T

0

∫
Γρ(t)

φ(ρ)dσ dt

)∣∣∣∣∣
ρ=0

(A.1)

being

φ(ρ) = −ρF (uρ · vρ)
(
∂(η + ρδη)

∂t
◦ (η + ρδη)−1e2

)
· nρ. (A.2)

We recall some results (see, e.g., [38] for their proof) useful to evaluate the expression above:

Lemma A.1. Let Ω0 ⊂ Rd be a fixed domain and Γ0 a subset of its boundary ∂Ω0. Let us denote

Γρ = {x ∈ Rd : x = (I + ργ)x0, x0 ∈ Γ0},

where γ ∈ W 1,∞(Rn; Rn) and let E(ρ) be a field vector defined on D with D ⊃ (Γ0 ∪ Γρ), then the following
identity holds:

d
dρ

(∫
Γρ

E(ρ) · nρ dσ

)∣∣∣∣∣
ρ=0

=
∫
Γ

(
∂E
∂ρ

∣∣∣∣
ρ=0

· n + divE (γ · n)

)
dt.

being nρ the unit outward normal on Γρ.

Lemma A.2. Let η ∈ H2(0, T ;H2(Γ (t))), then:

W0 :=
d
dρ

(
∂(η + ρδη)

∂t
◦ (η + ρδη)−1

)∣∣∣∣
ρ=0

e2 =
∂(δη ◦ η−1)

∂t
e2 −∇

((
∂η

∂t
◦ η−1

)
e2

)
γ. (A.3)

Lemma A.3. Let F be a vector field defined on the domain D such as Ω(t) ⊂ D ∀t ≥ 0; then the following
idenitity holds:

∫ T

0

∫
Γ (t)

∂(δη ◦ η−1)
∂t

F · e2dσdt =
∫ T

0

∫
Γ (t)

[
−∂F
∂t
− (divΓ (t)us) F−∇F uS

]
· γdσdt+

[∫
Γ (t)

Fγdσ

]T
0

. (A.4)

We are now ready to prove Lemma 3.4.
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Proof. We first point out that the term φ(ρ) can be written in the form φ(ρ) = E(ρ) ·nρ, where E(ρ) is defined
as follows:

E(ρ) = −ρF (uρ · vρ)
(
∂(η + ρδη)

∂t
◦ (η + ρδη)−1

)
e2.

Thus, by using the Lemma A.1 and the Lemma A.2, the derivative (A.1) reads:

d
dρ

(∫ T

0

∫
Γρ(t)

φ(ρ)dσdt

)∣∣∣∣∣
ρ=0

= −ρF
∫ T

0

∫
Γ (t)

(u · v)(W0 · n)dσ dt

+ ρF

∫ T

0

∫
Γ (t)

[(∇uγ) · v + (∇v γ) · u] (uS · n)dσ dt

− ρF
∫ T

0

∫
Γ (t)

[∇(u · v) · uS + (u · v) div uS ](γ · n)dσ dt.

The expression above can be simplified again by recalling the definition of the term W0 and by suitably erasing
the time derivative of the variation δη. Thus, by setting F = ρf (u · v)n in Lemma A.3, we have:

d
dρ

(∫ T

0

∫
Γρ(t)

φ(ρ)dσdt

)∣∣∣∣∣
ρ=0

= ρF

∫ T

0

∫
Γ (t)

(
∂u
∂t
· v +

∂v
∂t
· u
)

(γ · n)dσ dt

+ ρF

∫ T

0

∫
Γ (t)

[(∇((u · v)n) uS) · γ −∇(u · v)(γ · n)]dσ dt

− ρF
∫
Γ (T )

(u · v)(T )(γ · n)dσ + ρF

∫
Γ0

(u0 · v(0))(γ · n)dσ

+ ρF

∫ T

0

∫
Γ (t)

[(∇uγ) · v + (∇v γ) · u] (uS · n)dσ dt.

We now seek to semplify the term (∇((u · v)n) uS) · γ − ∇(u · v)(γ · n). For the ease of the reader, let us
denote f = (u · v), uS = (0, uS)T and n = (n1, n2)T ; then, the following identities hold:

ρF (∇f · uS)(γ · n) = ρF
∂f

∂y
δη uS n2,

ρF (∇(f n) uS) · γ = ρF
∂(f n2)
∂y

uS δη = ρF

(
∂f

∂y
n2 +

∂n2

∂y
f

)
uS δη,

We now subtract the two equations above and we recall that the tangential gradient of the unit normal n is
given by

∇Γ (t)n = ∇n−N,

being N the matrix defined as Ni j = niδi j . Thus, we have:

(∇((u · v)n) uS) · γ −∇(u · v)(γ · n) = ρF (u · v)((∇Γ (t)n + N) uS) · γ,

which concludes the proof of the lemma. �
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Appendix B. Proof of Lemma 3.5

The proof of Lemma 3.5 is based on the so-called shape derivative kernel identity (see, e.g.., Lem. 8.14, [38]),
which for the case at hand reads as follows:

Lemma B.1. Let (u, p,v, q,λF ) ∈ VF (Ω)×QF (Ω)× V0(Ω)×QF (Ω)× L2(0, T ;H1(R2)) be a saddle point of
the Lagrangian functional L defined in (3.3). Then the following identity holds:

α

∫ T

0

∫
Ω(t)

∇u : ∇(∇uγ) dx dt+ ρF

∫ T

0

∫
Ω(t)

(
(∇uγ) · ∂v

∂t
+ u · ∂(∇v γ)

∂t

)
dx dt

+
∫ T

0

∫
Ω(t)

(p div(∇v γ) + q div(∇uγ)) dx dt− µF
∫ T

0

∫
Ω(t)

(∇u : ∇(∇v γ) +∇(∇uγ) : ∇v) dx dt

−ρF
∫
Ω(T )

((∇uγ) · v + u · (∇v γ)) (T ) dx + ρF

∫
Ω0

u0 · (∇v(0)γ) dx

+ρF
∫ T

0

∫
Γ (t)

(uS · n) (u · (∇v γ) + (∇uγ) · v) dσ dt

+
∫ T

0

∫
ΓD

λF · (∇uγ) +
∫ T

0

∫
Γ (t)

(σF (u, p) n) · (∇v γ)dσ dt

+
∫ T

0

∫
Ω(t)

((∇p · γ) div v + (∇q · γ) div u) dx dt+
∫ T

0

∫
ΓD

(∇λF γ) · (u− uD)dσ dt = 0.

(B.1)

Proof of Lemma B.1. Let us define a Lagrangian functional Ld as we did for the Lagrangian functional L in (3.3),
except for the fact that in Ld we consider test functions (v, ψ) ∈ V0(Ω) × VS and therefore discontinuous on
Γ (t), note that in L test functions (v, ψ) ∈ S(Ω) are chosen to be continuous on the interface Γ (t). Hence, the
Lagrangian functional Ld assumes the following form:

Ld(u, η, p; v, ψ, q;Ω) = L(u, η, p; v, ψ, q;Ω) +
∫ T

0

∫
Γ (t)

(σF (u, p) n) · (v − ψ ◦ η−1e2) dσdt,

where L is the Lagrangian functional defined in (3.3). Since by assumption (u, p,v, q) is a saddle point of the
Lagrangian functional L, the following identity yields:〈

∂Ld

∂(u, p,v, q, λF )
, (δu, δp, δv, δq, δλF )

〉
= 0. (B.2)

Since (B.2) is fulfilled for any (δu, δp, δv, δq δλF ) ∈ VF (Ω) ×QF (Ω) × V0(Ω) ×QF (Ω) × L2(0, T ;H1(R2)),
we can select the following perturbations:

δu = ∇uγ, δv = ∇v γ,

δp = ∇p · γ, δq = ∇q · γ,
δλF = ∇λF γ . (B.3)

Hence, computing the derivative (B.2) of the Lagrangian functional Ld in the direction (B.3), and exploiting
the continuity of the test functions enforced through the choice of the functional space S(Ω), we obtain the
shape derivative kernel identity (B.1). This concludes the proof of Lemma B.1. �

Lemma B.1 allows to prove Lemma 3.5. As a matter of fact, by summing up the expression of the functional
AΩ given in (3.14) and the shape derivative kernel identity stated in (B.1), we obtain the following identity:

AΩ =
∫ T

0

∫
Γ (t)

(ρF (uS · n)(u · (∇v γ) + (∇uγ) · v) dσ dt+
∫ T

0

∫
Γ (t)

(σF (u, p) n) · (∇v γ) dσ dt,

which indeed proves Lemma 3.5.
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Appendix C. Algebraic formulation of the Galerkin problem

The algebraic formulation of the Galerkin approximation of the fluid sub-problem (4.7) and the solid sub-
problem (4.8) in the state equation of the FSI process is briefly sketched in this Appendix. Firstly, let us denote
by {ϕFj }

NF
j=1, {φj}

NQ
j=1, {ϕSj }

NS
j=1 the Lagrangian bases of the spaces V F,nh , Qnh and V Sh , respectively, and express

the spatial approximation of uh, ph, ηh as

uh(x) =
NF∑
i=1

Uiϕ
F
i (x), ph(x) =

NQ∑
i=1

Piφi(x), ηh(x) =
NS∑
i=1

Λiϕ
S
i (x),

respectively. By introducing the following matrices:

(AF )ij = µF

∫
Ωn
∇ϕFi : ∇ϕFj dx, (MF )ij = ρF

∫
Ωn
ϕFi ·ϕFj dx,

(B)ij = −
∫
Ωn

φj divϕi dx, (T)ij = ρF

∫
Ωn

[(wn
h · ∇)ϕFi ] ·ϕFj dx,

(AS)ij = µS

∫
Γ0

∂ϕSi
∂z

∂ϕSj
∂z

dx1, (MS)ij =
∫
Γ0

ϕSi ϕ
S
j dx1,

we can rewrite the Galerkin approximation of the fluid sub-problem (4.1)as the following linear system[
1
∆tM

F −T + AF BT

B 0

] [
U
P

]
=
[

1
∆tM

F Un

0

]
.

Similarly, the Galerkin solid sub-problem (4.2) can be equivalently rewritten as[(
ρShS
∆t2

+ β

)
MS + AS

]
Λ = FS + 2

ρShS
∆t2

MSΛn − ρShS
∆t2

MSΛn−1,

where
(FS)j =

∫
Γ0

fh ϕ
S
j dx1.

Similar results yield for the Galerkin approximation of the fluid sub-problem (4.4) and the solid sub-problem (4.5)
in the numerical scheme for the iterative solution of the adjoint FSI problem.

Appendix D. Numerical algorithms

Algorithm 1: State FSI problem solver.

Input: a tolerance τ and η0
1: for n = 1, . . . , N do
2: j −→ 1
3: η0 ←− ηn−1

4: while ‖ηj − ηj−1‖ < τ do
5: (uj , pj)←− fluid sub-problem (4.1)
6: ηj ←− structural sub-problem (4.2)
7: ηj ←− γηj + (1− γ)ηj−1; j ←− j + 1
8: end while
9: (un, pn, ηn)←− (uj , pj , ηj)

10: Ωn+1 ←− A(Ωn)
11: end for
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Algorithm 2: Adjoint FSI problem solver.

Input: a tolerance τ and (un, pn, ηn)∀n = 0, . . . , N
1: for n = N − 1, . . . , 0 do
2: j −→ 1
3: ψ0 ←− ψn+1

4: while ‖ψj − ψj−1‖ < τ do
5: (vj , qj)←− fluid adjoint sub-problem (4.4)
6: ψj ←− structural adjoint sub-problem (4.5)
7: ψj = ωψj + (1− ω)ψj−1; j ←− j + 1
8: end while
9: (vn, qn, ψn)←− (vj , qj , ψj)

10: end for

Algorithm 3: Steepest descent method for shape optimization.

Input: reference domain Ω(0), Jnew = J(0), tolerance τ > 0
1: k ←− 0
2: while |Jnew − Jold| ≤ τ do
3: Jold ←− Jnew

4: solve the FSI state problem; evaluate the cost functional Jnew = J(Ω(k))
5: solve the FSI adjoint problem
6: evaluate the gradient of the cost functional ∇J(Ω(k)) according to (3.20) on each design variables
7: Ω(k+1) ←− F(Ω(k)) according to the NURBS-FFD map (see Sect. 4.3); k ←− k + 1
8: end while
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[48] S. Schäfer, D.C. Sternel, G. Becker and P. Pironkov, Efficient numerical simulation and optimization of fluid-structure inter-
action. Fluid Structure Interaction II. In Vol. 73 of Lect. Notes Comput. Sci. Eng. (2010) 131–158.

[49] T.W. Sederberg and S.R. Parry, Free-form deformation of solid geometric models. Comput. Graph. 20 (1986) 151–160.

[50] J. Sokolowski and J.P. Zolésio, Introduction to Shape Optimization: Shape Sensitivity Analysis. Springer Verlag Berlin
Heidelberg (1992).


	Introduction
	Definition of the problem
	Optimality conditions
	Fluid adjoint problem
	Solid adjoint problem
	Shape derivative of the cost functional

	Numerical approximation
	Numerical approximation of the FSI state problem
	Numerical approximation of the optimization problem
	Free form deformation map based on NURBS

	Numerical results
	Test case 1
	Test case 2
	Test case 3
	Test case 4

	Conclusions
	Appendix A. Proof of Lemma 3.4
	Appendix B. Proof of Lemma 3.5
	Appendix C. Algebraic formulation of the Galerkin problem
	Appendix D. Numerical algorithms
	Bibliography
	References


