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ANALYTICAL TREATMENT FOR THE ASYMPTOTIC ANALYSIS
OF MICROSCOPIC IMPENETRABILITY CONSTRAINTS

FOR ATOMISTIC SYSTEMS

Andrea Braides
1

and Maria Stella Gelli
2

Abstract. In this paper we provide rigorous statements and proofs for the asymptotic analysis of
discrete energies defined on a two-dimensional triangular lattice allowing for fracture in presence of
a microscopic impenetrability constraint. As the lattice parameter goes to 0, we prove that any limit
deformation with finite energy is piecewise rigid and we prove a general lower bound with a suitable
Griffith-fracture energy density which reflects the anisotropies of the underlying triangular lattice. For
such a continuum energy we also provide a class of (piecewise rigid) deformations satisfying “opening-
crack” conditions on which the lower bound is sharp. Relying on these results, some consequences have
been already presented in the companion paper [9] to validate models in Computational Mechanics in
the small-deformation regime.
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1. Introduction

In this paper on one hand we analyze continuum models for fracture energies arising from discrete systems
of particles linked by interatomic interactions, and on the other hand computational problems deriving from
microscopic constraints. The consequences of such an analysis from the standpoint of Computational Mechanics
have been described in depth in the paper [9]. Here we provide a rigorous treatment of the related analytical
results.

In the simplest model of atomistic interactions, the behavior of a collection of N particles is governed by an
energy that can be written as a sum of pair contributions; namely, it can be set in the form

EN ({ui}) =
∑

1≤i�=j≤N

J(‖ui − uj‖), (1.1)

where ui is the position of the ith atom, ‖ui −uj‖ the distance between the corresponding pair of atoms, and J
is an interatomic potential, which is strongly repulsive at short distances and mildly attractive at long distances.
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The most common choice for J is the Lennard−Jones potential

J(r) =
c1
r12

− c2
r6

(1.2)

(c1, c2 > 0). Note that in principle the total energy of the system is bounded from below by N2 min J ; however,
a more refined estimate shows that it scales exactly as the number N of atoms. This is in agreement with the
intuition that ground states for EN arrange approximately in a regular lattice as N increases (crystallization),
so that the energy contribution of each particle is essentially described by the interaction only with its neigh-
bours. At the same time it suggests that models of crystalline solids can be derived directly from such atomic
interactions.

The crystallization for Lennard−Jones interactions in the general context described above is still an open
problem. An important contribution has been recently given by Theil [24], who has studied a slightly weaker
version of crystallization, proving in two dimensions the optimality under compact perturbations of the “min-
imal” triangular lattice; i.e., the one for whose lattice spacing r it is minimal the average energy per particle

e(r) =
∑

k∈T\{0}
J(r‖k‖), (1.3)

which describes the energy of a single particle in the lattice rT due to the interaction with the other particles,
T being the unit triangular lattice. Once crystallization is achieved, another important issue is whether it
is maintained on states other than ground states; i.e., whether to (small) macroscopic deformations there
corresponds uniform displacements at the atomic level (Cauchy−Born rule; see Friesecke and Theil [21]).

In order to examine the behavior of atomistic systems far from ground states, under the hypothesis of
crystallization we may consider the energy related to a density ρ. Noting that ρ is proportional to r−n, where
n is the space dimension (usually, n = 2, 3), this can be expressed as

f(ρ) = ρ(C1ρ
12/n − C2ρ

6/n),

where C1, C2 are determined by computing the energy of a single particle in a uniform lattice (in the case
of a triangular lattice f(ρ) = ρ e(r), where e is defined in (1.3) and r is the lattice spacing corresponding to
the density ρ). This function f is non-convex in an interval (0, ρ0), which highlights a phase transition at low
densities, and suggests that large deformations involve a change in the crystalline structure which is instead
achieved close to ground states.

From the standpoint of Continuum Mechanics, a description with an hyperelastic bulk energy is expected
to hold close to ground states, while the same is expected to fail for a class of large deformations. In the one-
dimensional case this can be achieved by introducing a fracture energy. Following Truskinovsky [26], given N
particle positions ui, these can be parameterized with i = 1, . . .N in such a way that ui > ui−1, and we may
write the energy as

EN ({ui}) =
∑
j>i

J(uj − ui).

As N increases, ground states tend to arrange regularly on a lattice that we may suppose to be Z; i.e., we may
suppose that the one-dimensional energy per particle

e(r) =
∑

k∈N, k>0

J(rk),

has its minimum at r = 1. In order to introduce a macroscopic deformation gradient, we can now scale and
re-parameterize the same particles on εZ, where ε = 1

N ; i.e., ui = 1
εu(iε), so that they all can be seen as

discretizations of functions defined on a single interval [0, 1]. If we scale the energy as

EN ({ui}) =
∑
j>i

J

(
u(jε) − u(iε)

ε

)
·
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then the ground states are discretizations of the identity on [0, 1]. If we let N increase (or ε → 0), we may
highlight two regimes:
(bulk scaling) under the hypothesis of small perturbations u(x) = x+ δv(x) with small δ,we have

u ((i+ k)ε) − u(iε)
ε

≈ k + kδv′(iε),

so that, Taylor expanding e at its minimizer 1,

EN ({ui}) = N min e+
N

2
e′′(1)δ2

∫ 1

0

|v′|2 dx+ o(δ2).

(surface scaling) if the macroscopic u is discontinuous at a point parameterized by i then we have an increase
from the ground state energy of the order J(+∞) − min e, which gives a Griffith fracture energy at each such
point.

This argument can be made rigorous, and it gives:
• elastic behavior close to ground states, with a linearized description given by the linearization of J at

ground states;
• a brittle fracture energy depending on the depth of the well of J with respect to the infinity;
• opening fracture: the possibility of a parameterization with increasing u implies that fracture may only

open up, providing a natural non-interpenetration condition;
• surface relaxation: on external boundaries and on internal fracture sites the asymmetry of the atomic

arrangements gives an additional surface term, highlighting a microscopic rearrangement close to those surfaces.
We note that all the features above can be included in a single analysis by choosing δ = N−1/2 in the notation
above, so that (up to additive constants) bulk and surface terms have the same scaling. This has been done by
Braides, Lew and Ortiz [10]. We also remark that an analysis of local minima and of opening cracks suggests a
cohesive fracture energy density of Barenblatt type, which is not directly given by the analyses above. However
some cohesive theories can be shown to be “equivalent” to the ones obtained by the limit analysis (see Braides
and Truskinovsky [7, 13]).

The same study for the two or three-dimensional case presents greater difficulties, mainly because a natural
parameterization with increasing functions is no longer possible. Hence, some simplifications have been made
for this model with the scope of maintaining the features of the complete system of interactions and at the
same time allow for an analytical study. A first assumption is to consider displacements as a perturbation from
a ground state for which crystallization holds; i.e., in dimension two a perturbation from a state parameterized
on the triangular lattice T, or rather on a bounded portion Λ of T (this corresponds to take N as the numbers
of points in Λ in the previous notation). For such a perturbation it makes sense to assume that only short-range
interactions be taken into account. The range of such interaction can be indexed with a subset S of T \ {0}.
The energies replacing EN can be written as

FΛ(u) =
∑
k∈S

∑
i,j∈Λ,i−j=k

Jk(‖ui − uj‖),

where Jk represents the energy between points whose parameters i, j differ by k in the reference lattice. The
simplest choice is considering only nearest-neighbour interactions on T, with S as the unit vectors of the
triangular lattice, and Jk independent of k ∈ S a Lennard−Jones potential with minimum in r. In this simplified
model interactions are minimized when the corresponding ui − uj are at distance r, thus recovering uniform
deformations. Unfortunately, such a simplified model admits many additional minimizers, as all deformations
which are piecewise homotheties with ratio ±r. In fact, if we compose a uniform deformation (e.g. a homothety)
of ratio r with “folding” along a line of points in T, the resulting nearest neighbours still are at the “minimal”
distance r.
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Figure 1. A reference configuration with fracture site and its macroscopic normals, and its
underlying triangulation.

In order to prevent undesired foldings at a discrete level, Friesecke and Theil [21] proposed to add a three-point
condition on neighbouring nodes, corresponding to the usual local non-interpenetration condition in Continuum
Mechanics. Indeed, in the case of a triangular lattice, this condition simply amounts to requiring that

det ∇u > 0,

where u is the affine interpolation of the function defined on the vertices of each triangle. In this way only
discretizations of homotheties with positive ratio equal to r are minimizers of the energy. In their paper, Friesecke
and Theil treat the seemingly “un-natural” case of energies parameterized on a square lattice. Actually, when
finite-range lattice energies are considered, the choice of the underlying lattice is a matter of convenience, and
the square lattice is the simplest where to consider at the same time nearest neighbours and next-to-nearest
neighbours to highlight the possibility of non-uniform ground states (failure of the Cauchy−Born rule).

In this paper we treat a two-dimensional system of nearest-neighbour Lennard−Jones interactions with the
positive-determinant constraint focusing on the surface scaling. We will use the terminology and techniques
of Γ -convergence applied to a discrete-to-continuum analysis [6]. In this framework we examine the overall
behavior of the energies FΛ as the size of Λ diverges, by considering Λ = 1

ε (Ω ∩ T), with Ω a fixed bounded
domain in R

2, and using Ω ∩ εT as the set of parameters. The scaled energies we are going to examine will be
of the form

Fε(u) =
∑

i,j∈Ω∩εT,|i−j|=ε

ε J
(∥∥∥ui − uj

ε

∥∥∥),
where ui is the value of the discrete function u at the node εi ∈ Ω ∩ εT, and the piecewise-affine interpolation
of u on the triangulation related to εT is supposed to satisfy the positive-determinant constraint. The scaling ε
heuristically can be explained by considering, as in the one-dimensional case, the contribution of a set of indices
I where ‖ui − uj‖ 	 1 and noting that under this scaling the finiteness of the energy asymptotically implies
that they have the dimension of a line, so that they can be regarded as an interface. Under these assumption
we will address the two issues

• determine whether some condition of “opening crack” still hold in the two-dimensional case;
• characterize a limit continuum surface energy defined on functions with domain Ω.
The other two issues present in the one-dimensional analysis; i.e., the characterization of the bulk energy

close to ground states and surface relaxation have been separately addressed in slightly different hypotheses by
Braides, Solci and Vitali [12] (for the bulk analysis) and Theil [25] (for the external surface relaxation).

In order to make the analysis clearer we will scale the energies by an additive constant as

Fε(u) =
∑

i,j∈Ω∩εT,|i−j|=ε

ε

(
J

(∥∥∥∥ui − uj

ε

∥∥∥∥)− min J
)
,
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Figure 2. A deformed microscopical configuration satisfying the determinant constraint, and
its macroscopic limit with the corresponding rotations.

so that the energy density is always positive. As a first remark we will note that, using a result by Chambolle,
Giacomini and Ponsiglione [14], gradients of limits of sequences (uε) with equi-bounded energy are piecewise
rotations with an underlying partition ofΩ into sets of finite perimeter. This allows us to focus on the boundaries
of such sets, where we have a normal ν on whose two sides we have the values u±(x) of u and two rotations R±

among those labeling the sets of the partition. Note that from the standpoint of the microscopical triangulations
the interfaces are the limits of triangles of side-length ε which are deformed by uε into triangles with one
side (actually two) of diverging length but with the same ordering of the vertices (this corresponds to the
positive-determinant constraint). If only one layer of triangles is deformed that gives a limit interface, then the
determinant constraint gives a relation between ν, u±(x) and R±. In the simplest case when ν is orthogonal to
one of the unit vectors of T (we call those vectors coordinate normals), this relation reads as

〈u+(x) − u−(x), R±ν〉 ≥ 0 .

This can be regarded as an opening-fracture condition. If ν is not a coordinate normal then the opening-
crack condition gets more complicated, due to microscopic anisotropies of the lattice, which disfavor cracks not
orthogonal to lattice directions.

The analytical description contained in Section 4 provides a lower bound, which is sharp for a class of
“opening-crack” configurations (see Sect. 5). This lower bound can be written as a surface energy∫

Su

ϕ(ν)dH1, (1.4)

where Su is the fracture set in the reference configuration, and ϕ is an energy density with hexagonal symmetry
explicitly computed from J . We note that, even if it is not explicit in (1.4), the fracture energy density depends
not only on the crack orientation ν and the crack opening u+ − u−, but also on the image of the crack in the
deformed configuration, described by the tangential derivatives of u± on both sides of the crack. Such types
of energies seem to be of interest in themselves, and the corresponding analytical techniques still relatively
undeveloped (see [3]).

The description in (1.4) is sharp, in the sense that various pathologies may appear when the opening-crack
condition is not satisfied. They are described in detail in [9]. Indeed, in that case one must take into account
that more than one layer of triangles may be “strongly deformed”. This gives a higher energy on the interface,
but relaxes the constraints on ν, u±(x) and R±. Moreover, additional energy contributions may be given by
points where three or more interfaces meet; in this case, even though the opening-fracture condition above
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may be satisfied on each interface, the system of interfaces may be incompatible with the positive-determinant
condition in their common point. It must be observed that introducing a high number of extra interfaces at the
discrete level results in a complex non-local form of the final energy.

We finally note that the description of the surface energies suggests the possibility of studying this
Lennard−Jones system under the scaling introduced in [10]. Indeed, in the “infinitesimal case” when u is a
small variation of a ground state; i.e., u = id+ δv with δ  1, then the opening-crack condition reduces to the
usual infinitesimal opening-crack condition

〈v+(x) − v−(x), ν〉 ≥ 0

since R± = id + o(1). This in particular holds when δ =
√
ε, which is the scaling that allows both bulk and

surface limit energies at the same time, and suggests that in this scaling we obtain a linear elastic energy
with a brittle-fracture surface energy subject to the infinitesimal opening-crack condition. The proof of such
a result seems of great technical difficulty due to the lack of approximation theorems for functions subject to
opening-crack conditions. Related results have been obtained by Friedrich and Schmidt [17–19].

2. Some notation and preliminary results

In the sequel we denote by 〈·, ·〉 the scalar product in R
2 and with | · | the usual euclidean norm, both for

vectors in R
2 and matrices in M(2×2; R), the meaning being clarified by the context. Moreover, in some proofs

we will also use the symbol 〈A, y〉 to denote the duality pair for A ∈ M(2 × 2; R) and y ∈ R
2 (usually simply

denoted by Ay). For every x, y ∈ R
2, [x, y] denotes the line segment joining x and y.

The functional space involved in our discrete-to-continuous analysis will consist of measurable vector-valued
functions whose components are special functions with bounded variation. Such functions are commonly used
in the variational theories of Fracture (see e.g. the seminal paper by Francfort and Marigo [16], the book by
Bourdin, Francfort and Marigo [5] and the review paper [2]).

Definition 2.1. Given Ω ⊂ R
2 a fixed bounded open set, a function u ∈ L1(Ω,R2) is a function with bounded

variation in Ω, denoted by u ∈ BV (Ω,R2), if its distributional derivative Du is a vector-valued Radon measure
on Ω.

We say that u is a special function with bounded variation in Ω, and we write u ∈ SBV (Ω,R2), if u ∈
BV (Ω,R2) and its distributional derivative Du can be represented on any Borel set A ⊂ Ω as

Du(A) =
∫

A

∇u(x) dx +
∫

A∩Su

(u+(x) − u−(x)) ⊗ νu(x) dH1(x),

for a countably H1-rectifiable set Su in Ω that coincides H1-almost everywhere with the complement in Ω of
the Lebesgue points of u. Moreover, ∇u(x) is the approximate gradient of u at x, νu(x) is a unit normal to Su,
defined for H1-almost every x, and u+(x), u−(x) are the traces of u on both sides of Su (according to the choice
of νu(x)). Here the symbol ⊗ stands for the tensorial product of vectors; i.e., for any a, b ∈ R

2 (a⊗ b)ij := aibj.

For fine properties of BV and SBV functions and a rigorous definition of all the quantities introduced above
we refer to [4], Chapter 4. SBV functions enjoy a good compactness property that here is stated in its simplest
form, suited for our functionals.

Theorem 2.2. Let Ω ⊂ R
2 be a bounded open set and let (un) ⊂ SBV (Ω,R2) be satisfying

sup
n

{∫
Ω

|∇un|p dx+ ‖un‖L∞(Ω,R2) + H1(Sun)
}
< +∞, (2.1)

for some p > 1. Then there exist a subsequence un(k) and a function u ∈ SBV (Ω,R2) such that un(k) → u in
measure. Moreover, ∇un(k) ⇀ ∇u weakly in Lp(Ω,R2) and the restrictions of Dun(k) to Sun(k) weakly∗ converge
to the restriction of Du to Su.
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As a consequence we easily get that the limit function u in the previous theorem has the further property
that

∫
Ω |∇u|p dx+‖u‖L∞(Ω,R2) +H1(Su) < +∞. Moreover estimate (2.1) allows to discuss separately the lower

semicontinuity of suitable bulk and surface integral involving, respectively, the absolutely continuous and jump
part of the generalized distributional derivative.

In order to treat lower-semicontinuous bulk integrals in the vectorial setting it is necessary to recall the notion
of quasiconvexity and quasiconvex envelopes.

Definition 2.3. We say that a lower-semicontinuous integrand ψ : R
2×2 → R ∪ {±∞} is quasiconvex if for

every open set E with positive measure it holds

ψ (A) ≤ −
∫

E

ψ (A+ ∇ϕ(x)) dx

for every A ∈ R
2×2 and ϕ ∈W 1,∞

0

(
E,R2

)
. In addition, for any f : R

2×2 → R∪{±∞}, the quasiconvex envelope
f qc of f is defined as

f qc(A) := sup {g(A) : g quasiconvex, g ≤ f} .

If f is real valued and continuous one can give a precise description of its quasiconvex envelope.

Proposition 2.4. Let f : R
2×2 → R be continuous. Then

f qc(A) = inf
{
−
∫

E

f (A+ ∇ϕ(x)) dx : ϕ ∈ W 1,∞
0

(
E,R2

)}
(2.2)

for A ∈ M(2 × 2; R) and the quantity above is independent of the choice of the bounded open set E.

The following theorem deals with lower semicontinuity along sequences of SBV functions weakly converg-
ing [4].

Theorem 2.5. Let Ω ⊂ R
2 be a bounded open set and let (un) ⊂ SBV (Ω,R2) be satisfying

sup
n

{∫
Ω

|∇un|p dx+ H1(Sun)
}
< +∞ (2.3)

for p > 1. If un → u in measure, then u ∈ SBV (Ω,R2). Moreover, for every quasiconvex integrand ψ : R
2×2 →

[0,+∞) such that
|ψ (X)| ≤ C (1 + |X |p)

for every X ∈ R
2×2 and C a positive constant, and for any norm ϕ in R

2, there holds∫
Ω

ψ (∇u) dx ≤ lim inf
n

∫
Ω

ψ (∇un) dx, (2.4)

∫
Su

ϕ(νu) dH1 ≤ lim inf
n

∫
Sun

ϕ(νun) dH1.

The final tool we present is a ‘slicing result’ that allows to treat 2-dimensional energies by reducing to
1-dimensional ones [4].

Before entering into details we introduce some notation. For ξ ∈ S1 let Πξ := {y ∈ R
2 : 〈y, ξ〉 = 0} be the

line through the origin orthogonal to ξ. If y ∈ Πξ and E ⊂ R
2 we set

Eξ,y := {t ∈ R : y + tξ ∈ E}. (2.5)

Moreover, if u : E → R
2 we define the function uξ,y : Eξ,y → R

2 by

uξ,y(t) := u(y + tξ). (2.6)
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Theorem 2.6. Let Ω ⊂ R
2 be a bounded open set and let u ∈ SBV (Ω,R2). Then, for all ξ ∈ S1 the function

uξ,y belongs to SBV (Ωξ,y ,R2) for H1-almost every y ∈ Πξ. Moreover for such y we have

u̇ξ,y(t) = 〈∇u(y + tξ), ξ〉 for almost every t ∈ Ωξ,y,

S(uξ,y) = {t ∈ R : y + tξ ∈ Su},
uξ,y(t±) = u±(y + tξ) or uξ,y(t±) = u∓(y + tξ),

according to the cases 〈νu, ξ〉 > 0 or 〈νu, ξ〉 < 0 (the case 〈νu, ξ〉 = 0 being negligible) and∫
Πξ

∑
t∈S(uξ,y)

g(t) dH1(y) =
∫

Su

g(x)|〈νu, ξ〉| dH1

for all Borel functions g. Conversely, if u ∈ L∞(Ω,R2) and, for all ξ ∈ {e1, e2} and for H1-almost every y ∈ Πξ,
uξ,y ∈ SBV (Ωξ,y,R2) with ∫

Πξ

(∫
Ωξ,y

|u̇ξ,y|p + #(S(uξ,y))
)

dH1(y) < +∞,

then u ∈ SBV (Ω,R2).

We introduce now a generalization of a rigidity type result in the SBV setting due to Chambolle et al.
(see [14]). Before going through the statement we need some preliminary definitions. First we recall the notion
of Caccioppoli partition of a domain (see e.g. [15]).

Definition 2.7. We say that a collection of pairwise disjoint measurable sets {Eh}h∈N is a Caccioppoli partition
of a bounded open set Ω if ∪h∈NEh = Ω and∑

h∈N

Per(Eh, Ω) < +∞.

Moreover, given any rectifiable set K ⊂ Ω we say that a Caccioppoli partition of Ω is subordinated to K if
H1(∪h∈N∂

∗Eh \K) = 0.

The following result is the 2-dimensional version of the one contained in [14].

Theorem 2.8. Let Ω ⊂ R
2 be a bounded open set and let u ∈ SBV (Ω,R2) with H1(Su) < +∞ and ∇u(x) ∈

SO(2) for almost every x ∈ Ω. Then there exists a Caccioppoli partition {Eh}h∈N of Ω subordinated to Su such
that for almost every x ∈ Ω

u(x) = Rhx+ qh on Eh

where Rh ∈ SO(2) and qh ∈ R
2.

3. Formulation of the problem

In the sequel Ω will be a bounded open set in R
2 with Lipschitz boundary. This regularity assumption is useful

to simplify some of the proofs of Section 5 and it can be dropped for the other sections. With fixed discretization
step ε > 0 the reference lattice is given by Lε := ε Span(η1, η2; Z2) where η1 = (1, 0), η2 = (1/2,

√
3/2) and

Span(η1, η2; Z2) denotes the set of all linear combinations of η1, η2 with coefficients in Z
2. We introduce also

the following notation
η3 = η1 − η2, S =

{
±η1,±η2,±η3

}
.

Note that S is the set of unitary vectors in the lattice L1 and for each i ∈ L1 i + S is the set of its nearest
neighbours.
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We define also the set D of coordinate directions as

D =
{
η⊥ : η ∈ S

}
.

Dropping the dependence on ε whenever no confusion may arise, we will use the symbol T to denote any
triangle with vertices in Lε and sides of length ε and Tε will denote the sets of all such triangles. As already
pointed out in the Introduction the choice of the lattice relies on the fact that L1 is the simplest Bravais lattice
in dimension 2 compatible with a Cauchy−Born hypothesis. Before introducing the precise definition of the
functionals object of our analysis we list here some notation used in the following sections for the set of pairs
of “nearest-neighbouring” indices Nε and for the set of triangles well contained in Ω:

Nε(Ω) = {(i, j) ∈ Lε × Lε : [i, j] ⊂ Ω, |i− j| = ε, i ≺ j},

T c
ε (Ω) = {T ∈ Tε : T ⊂ Ω},

where the symbol i ≺ j stands for the standard lexicographic order in R
2. Thanks to this choice any pair of

nearest-neighbouring indices is counted only once in the energy contribution.
With this notation given a discrete vector-valued displacement u : Lε ∩ Ω → R

2 we consider its associated
energy ∑

(i,j)∈Nε(Ω)

εJ

(∣∣∣∣u(i) − u(j)
ε

∣∣∣∣)
where J : [0,+∞) → [0,+∞) is a continuous function satisfying the following structure properties:

(i) minJ = J(z0) = 0;
(ii) lim

z→+∞
J(z) = J∞ > 0;

(iii) lim
z→0+

J(z) = +∞;

(iv) for any δ > 0 there exits cδ > 0 such that J(z) ≥ cδ(z − z0)2 for |z − z0| ≤ δ.

In what follows, for the sake of computational simplicity we assume z0 = 1. Clearly, up to a scaling argument,
the analysis remains valid for the general case.

As customary, in order to pass from discrete systems to a continuum formulation, it is convenient to identify
a function {u(i)}i∈Lε∩Ω ⊂ R

2 with an element of L1(Ω,R2).

Definition 3.1 (Interpolation). Given a discrete vector-valued function u : Lε ∩Ω → R
2 we define its interpo-

lation in the whole Ω as a function coinciding on each triangle T ∈ T c
ε (Ω) with the linear interpolation of the

values in its vertices.

Note that an interpolation is not uniquely defined on triangles close to ∂Ω. This will not affect our arguments
since convergences are always considered in the interior of Ω. We will identify a discrete function with its
interpolation and maintain the same notation for both the discrete and continuous version, the notation being
clarified by the context.

Remark 3.2. In this setting another common procedure is to identify a discrete function with a piecewise-
constant element in L1(Ω,R2) by assigning constant value u(i) on the cell {i + ε(λη1 + μη2) : λ, μ ∈ [0, 1]},
i ∈ Lε∩Ω. In fact, none of the results stated in the following would be affected by this choice (see the discussion
contained in [1]). Considering discrete functions as continuous piecewise-affine ones allows us to formulate the
orientation-preserving constraint in terms of the standard determinant of ∇u.

We are now able to introduce the class of admissible functions; i.e., a proper class of vector-valued functions
on the lattice Lε that are orientation preserving:

Adε(Ω) =
{
u : Lε ∩Ω → R

2 : det(∇u) > 0 a.e. in T c
ε (Ω)

}
.



1912 A. BRAIDES AND M.S. GELLI

Finally, we define the functional Eε on L1(Ω,R2) as

Eε(u) =

⎧⎪⎨⎪⎩
∑

(i,j)∈Nε(Ω)

εJ
(∣∣∣u(i) − u(j)

ε

∣∣∣) if u ∈ Adε(Ω)

+∞ if u ∈ L1(Ω,R2) \ Adε(Ω).
(3.1)

Remark 3.3. Note that energies defined in (3.1) account only for interactions well contained in Ω and the
orientation-preserving constraint is not imposed a priori on an affine extension of u on the triangles intersect-
ing ∂Ω. Actually, if one is interested in minimum problems endowed with boundary conditions (together with
some perturbation or fidelity terms), a standard procedure in the framework of Γ -convergence is to focus on the
‘principal’ part of the total energy, neglecting at first boundary data. Once this task is accomplished one can
further deal with the initial problems up to modifying the limit energy according to the contribution arising
from recovery sequences with correct boundary datum.

To proceed further with our analysis we need to fix a convergence on L1(Ω,R2).

Definition 3.4 (Discrete-to-continuum convergence). According to our identification of discrete functions with
interpolations, given uε, u ∈ L1(Ω,R2) we say that uε → u, and we simply write uε → u, if we have
supε ‖uε‖L∞(Ω,R2) < +∞ and limε→0+ ‖uε − u‖L1(Ω,R2) = 0.

4. Compactness and a lower bound

In this section we first provide a description of the domain of any Γ -limit functional of the discrete energies
defined in (3.1). As already mentioned in the Introduction, this space consists of piecewise rigid deformations u
with finite crack energy in the sense of Griffith’s theory; i.e., H1(Su) < +∞.

As a second result we exploit geometric measure theory techniques to establish a lower-bound estimate for the
Γ -lim infεEε(u) without imposing any a priori hypothesis on the deformation u. Note that in the next section
this bound will be proved to be optimal for the class of piecewise rigid deformations “with opening fracture”
in the sense of the anisotropies of the reference lattice. For such deformations the limit fracture energy is
simply governed by an anisotropic Griffith-type energy density which reflects the anisotropies of the underlying
triangular lattice.

Proposition 4.1. Let {uε} ⊂ Adε(Ω) be such that lim inf Eε(uε) < +∞ and

sup
ε

‖uε‖L∞(Ω,R2) < +∞. (4.1)

Then there exists a Borel function u such that, up to subsequences, uε → u in L1(Ω,R2). Moreover,

(i) (finite Griffith fracture energy) u ∈ SBV (Ω,R2) with H1(Su) < +∞;
(ii) (piecewise rigidity) there exists a Caccioppoli partition {Eh}h∈N subordinated to Su such that for almost

every x ∈ Eh we have u(x) = Rhx+ qh for suitable Rh ∈ SO(2) and qh ∈ R
2.

Proof. As a first step we observe that any pair (i, j) ∈ Nε(Ω) belongs to two different triangles having the line
segment [i, j] as a side. Hence if we take into account a factor 1/2 we may estimate the energies Eε(u) from
below with the integral functionals obtained as a superposition of gradient energies indexed by the triangles T
varying in T c

ε (Ω). Actually, for any B open set compactly supported in Ω and for any v ∈ Adε(Ω), for ε small
enough we have

Eε(v) ≥
ε

2|T |
∑

T∈T c
ε (Ω)

3∑
k=1

∫
T

J(|〈∇v, ηk〉|) dx

≥ 2√
3ε

∫
B

3∑
k=1

J(|〈∇v, ηk〉|) dx. (4.2)
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According to this standpoint, we are led to considering integral functionals with energy density Ĵ(A) :=∑3
k=1 J(|〈A, ηk〉|). Hence, with fixed any s ∈ (0, 1), we distinguish “good” or “bad” triangles T depending

whether the triangle energy overcomes the threshold sJ∞ or not. Using a standard separation of scales (see [8])
we set

Iε =

{
T ∈ T c

ε (Ω) :
3∑

k=1

J(|〈∇uε, η
k〉|) > sJ∞

}
,

and define vε ∈ SBV (Ω,R2) on any T ∈ Tε such that T ∩Ω �= ∅ as

vε =

{
uε if T ∈ Tε \ Iε

I if T ∈ Iε,
(4.3)

with I denoting the identity deformation. By construction the sequence (vε) lies in SBV (Ω,R2) and for any
ε > 0 its jump set Svε is contained in the boundary of the union of the triangles in Iε.

Moreover, for any open set B compactly supported in Ω inequality (4.2) can be rewritten in terms of vε as

Eε(uε) ≥
2√
3ε

∫
B

Ĵ(∇vε) dx+ csJ∞ε#(Iε) (4.4)

for a positive constant c. This implies at once that the functions uε and vε differ in a set of vanishing Lebesgue
measure so that it is enough to prove that vε is compact in SBV (Ω,R2).

Thanks to hypothesis (iii) on J , the set

K = {A ∈ M(2 × 2; R) : Ĵ(A) ≤ s J∞}

is a compact set in M(2 × 2; R), and this easily provides the estimate

sup
ε

‖∇vε‖L2(B,R2) < +∞.

On the other hand, hypothesis (iv) ensures that there exists a constant c = c(s) such that (4.4) can be further
sharpened as

Eε(uε) ≥
1
ε

∫
B

3∑
k=1

c(s)(|〈∇vε, η
k〉| − 1)2 dx+ csJ∞H1(Svε ∩B). (4.5)

By Lemma 4.3 we can find a positive c such that for any A ∈ K there exists R = R(A) ∈ SO(2) with∑3
k=1(|〈A, ηk〉| − 1)2 ≥ c|A−R|2 = c dist2(A,SO(2)), thus

Eε(uε) ≥
c(s)
ε

∫
B

dist2(∇vε,SO(2)) dx+ csJ∞H1(Svε ∩B). (4.6)

Taking into account hypothesis (4.1) a straightforward application of Theorem 2.2, and the L1 convergence to
0 of vε − uε, yields that there exists u ∈ SBV (Ω,R2) with H1(Su) < +∞ such that uε → u in L1(Ω,R2).

To prove (ii) we take advantage of a relaxation argument together with some rigidity estimates. Indeed, as a
first step we prove that ∇u(x) ∈ SO(2) for almost every x ∈ Ω. To this end denote ψ(A) := dist2(A,SO(2))
and estimate the right-hand side of (4.6) as

εEε(uε) ≥ c(s)
∫

B

ψqc(∇vε) dx + cεsJ∞H1(Svε ∩B). (4.7)

Passing to the liminf and using (2.4) we get at once that∫
B

ψqc(∇u) dx = 0.
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Hence ψqc(∇u(x)) = 0 almost everywhere in Ω and by applying Lemma 4.4 with A = ∇u(x) we also get that
the approximate gradient ∇u is a rotation for almost every x ∈ B. Once this fact is established, (ii) follows by
applying Theorem 2.8 recursively to u with Ω replaced by any open set B compactly supported in Ω and then
letting B invading Ω. �

Remark 4.2. Hypothesis (4.1) is essential to deduce a compactness result for sequences equibounded in energy
and avoids the un-physical situation of particles escaping to infinity (modelled by arbitrarily large translations).

The following lemmas complete the proof of Proposition 4.1. The first one provides an estimate from above
on the function ψ(A) := dist2(A,SO(2)), A ∈ M(2 × 2,R) (to be used in (4.6)), the second one computes the
zero set of its quasiconvex envelope. Note that the this kind of results are widely used in variational problems
involving crystal microstructures.

Lemma 4.3. There exists a positive constant c such that for any A ∈ M(2× 2; R) with detA > 0 we have that

3∑
k=1

(|〈A, ηk〉| − 1)2 ≥ c dist2(A,SO(2)), (4.8)

where η1 = (1, 0), η2 = (1/2,
√

3/2) and η3 = η1 − η2.

Proof. Let A ∈ M(2 × 2; R) with detA > 0 be fixed; then A admits a polar decomposition as A = RU with
R ∈ SO(2) and U a positive-definite matrix that coincides with the square root of the symmetric matrix AtA
(see for instance [23]). Since (4.8) is invariant under left composition with rotations, it is enough to prove that

3∑
k=1

(|〈U, ηk〉| − 1)2 ≥ c|U − I|2 (4.9)

for U ∈ M(2 × 2; R) strictly positive-definite matrix.
First for the sake of clarity we treat the case in which U is diagonal and we denote its eigenvalues as 1+x, 1+y

with x, y ∈ (−1,+∞). Let g be defined as

g(x, y) = x2 + 2

(√
(1 + x)2

4
+

3(1 + y)2

4
− 1

)2

then (4.9) rewrites as
g(x, y) ≥ c(x2 + y2)

for some positive c independent of x, y with (x, y) ∈ (−1,+∞)×(−1,+∞). Arguing by continuity, the inequality
above holds true if and only if it holds for x, y with (x, y) ∈ [−1,+∞) × [−1,+∞). Taking into account that
g(x, y) and x2 +y2 have the same order for |(x, y)| → +∞ and that g(x, y), x2 +y2 vanish only at (0, 0), we may
confine to prove the inequality above in a neighbourhood of the origin (0, 0). To this end consider the following
Taylor expansion of g:

g(x, y) = x2 + 2

(√
1 +

x+ 3y
2

+
x2 + 3y2

4
− 1

)2

= x2 + 2
(
x+ 3y

4
+
x2 + 3y2

8
+ o(x+ 3y)

)2

= x2 +
x2 + 6yx+ 9y2

8
+ o(x2 + y2)

=
9
8
(x2 + y2) +

3
4
xy + o(x2 + y2)
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and use the inequality 2xy ≥ −x2 − y2 to get

g(x, y) = (x2 + y2)
(

3
4

+ o(1)
)
·

We finally deduce that for |(x, y)| small enough one has g(x, y) ≥ 1
3
(x2 +y2) and conclude the proof for diagonal

matrices.
For a general positive-definite matrix u, taking into account the classical diagonalization results in the Jordan

decomposition theory (see [23]), there exists R ∈ SO(2) such that RtUR is diagonal. Hence we are left to prove
the inequality above, that is,

3∑
k=1

(|〈D, η̃k〉| − 1)2 ≥ c dist2(D,SO(2))

for a diagonal matrix D and η̃k = Rηk. Note that if θ is the angle associated to the rotation R than η̃1 =
(cos(θ), sin(θ)), η̃2 = (cos(θ + π

3 ), sin(θ + π
3 )) and η̃3 = (cos(θ + 2π

3 ), sin(θ + 2π
3 )).

We argue as above and introduce the function gθ defined as

gθ(x, y) =
3∑

k=1

(√
(1 + x)2 cos2(θk) + (1 + y)2 sin2(θk) − 1

)2

with θ1 = θ, θ2 = θ + π
3 and θ3 = θ + 2π

3 . We carry on the same computation and Taylor expansion as above
and find

gθ(x, y) =
3∑

k=1

(x cos2(θk) + y sin2(θk))2 + o(x2 + y2)

=
3∑

k=1

(x2 cos4(θk) + y2 sin4(θk) + 2xy sin2(θk) cos2(θk)) + o(x2 + y2).

We rely on the identities

3∑
k=1

cos4(θk) =
9
8

=
3∑

k=1

sin4(θk),
3∑

k=1

sin2(θk) cos2(θk) =
3
8

and get

gθ(x, y) =
9
8
(x2 + y2) +

3
4
xy + o(x2 + y2).

As the estimate is independent of the choice of θ (and so also of R) the conclusion follows. �

Lemma 4.4. Let ψ(A) := dist2(A,SO(2)) and let A ∈ M(2×2,R) be such that ψqc(A) = 0. Then A ∈ SO(2).

Proof. For A ∈ M(2 × 2,R) fixed, taking Proposition 2.4 into account, let (ϕk)k be contained in W 1,∞
0 (Q,R2)

with Q a unitary cube and such that

lim
k

−
∫

Q

dist2
(
A+ ∇ϕk(x),SO(2)

)
dx = ψqc(A).

For almost every x ∈ Q we select Bk(x) ∈ argmindist(A+ ∇ϕk(x),SO(2)); that is,

|A+ ∇ϕk(x) −Bk(x)| = dist(A+ ∇ϕk(x),SO(2)).



1916 A. BRAIDES AND M.S. GELLI

For any k ∈ N, x→ Bk(x) is bounded in L2(Q,SO(2)) uniformly on k and we have∫
Q

|∇ϕk|2 dx ≤ 2
∫

Q

|A−Bk(x)|2 dx+ 2
∫

Q

dist2
(
A+ ∇ϕk(x),SO(2)

)
dx ≤ c.

Hence, it is not restrictive to assume that ϕk ⇀ ϕ∞ and Bk ⇀ B∞ weakly in W 1,2
0 (Q,R2) and L2(Q,R2),

respectively. By lower semicontinuity, using that ψqc(A) = 0, we also get

0 = ψqc(A) = lim
k

−
∫

Q

|A+ ∇ϕk(x) −Bk(x)|2 dx ≥ −
∫

Q

|A+ ∇ϕ∞(x) −B∞(x)|2 dx.

Thus, ψ (A+ ∇ϕ∞(x)) = 0 for almost every x ∈ Q; that is, 〈A, x〉 + ϕ∞(x) = 〈R(x), x〉 for some measurable
choice of R(x) ∈ SO(2). The classical Liouville rigidity theorem, extended to W 1,2(Q,R2) by Reshetnyak [22],
yields in turn that 〈A, x〉+ϕ∞(x) = 〈R, x〉 for a fixed rotation R. As ϕ ∈W 1,2

0 (Q,R2) and ∇ϕ is constant in Q,
we infer by the boundary conditions that ϕ∞ = 0 and A = R. �

We note that in the proof of Proposition 4.1 any choice of the parameter s ∈ (0, 1) ensures the validity of
estimate (4.7). Moreover, assuming that uε converges to a given u in L1(Ω; R2), any sequence vε = vε(s), defined
in (4.3), still converges to u weakly in SBV (Ω,R2) and the energy contribution is proportional to H1(Svε).
Since Svε is a sequence of rectifiable sets with normal coordinates, this suggests that in the passage to the liminf
on ε on the surface part of the right-hand side of (4.7) we may obtain a lower bound with a surface-type energy
maintaining the symmetries of the hexagonal lattice. In the sequel we build the correct surface energy arguing
by pairwise interactions along lattice directions and exploiting more refined techniques in geometric measure
theory.

Before entering into details we need to introduce some more tools. Let ψ : R
2 → [0,+∞) be the 1-homogeneous

map such that {ψ ≤ 1} coincides with the convex hull of the set S of the unitary vectors of the lattice L1.
By construction ψ is a norm on R

2 and we may consider its dual norm ψ∗ : R
2 → [0,+∞) given by the polar

function of ψ defined as

ψ∗(ν) = sup
|ξ|=1

〈ν, ξ〉
ψ(ξ)

= sup{〈ν, ξ〉 : ψ(ξ) = 1}.

An easy computation shows also that
ψ∗(ν) = sup

k=1,2,3

∣∣〈ν, ηk
〉∣∣

and ψ∗ is the 1-homogeneous functions whose unitary ball is the convex hull of the coordinate directions D

scaled by a factor 2/
√

3. In addition the following lemma holds true.

Lemma 4.5. If ψ∗ is as above then 2ψ∗(ν) =
3∑

k=1

|〈ν, ηk〉| for all ν ∈ R
2.

Proof. A direct computation shows that the inequality holds true as an equality for ν ∈ D. Hence one can argue
locally in each sector of amplitude π/3 by using the linearity of ψ∗ on such portions of R

2 and the result for
the coordinate directions. �

By means of Lemma 4.5 in the next proposition we will provide a lower bound on Γ -lim inf of Eε by an
anisotropic surface energy. Since by Proposition 4.1 the Γ -lim inf of Eε is finite only on SBV (Ω,R2) we prove
the estimate in that functional space.

Proposition 4.6. Let ϕ = J∞(4/
√

3)ψ∗, then for any u ∈ SBV (Ω,R2) it holds

Γ - lim inf
ε→0+

Eε(u) ≥
∫

Su

ϕ(νu) dH1. (4.10)
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Proof. Let {uε}ε ⊂ L1(Ω; R2) be fixed with uε → u in L1(Ω,R2) and ‖uε‖L∞(Ω,R2) + Eε(uε) ≤ c. It is not
restrictive to assume that lim infε→0+ Eε(uε) = limε→0+ Eε(uε) and uε → u almost everywhere in Ω as well.
Note that by Proposition 4.1 u is a piecewise rigid deformation with H1(Su) < +∞.

We will proceed by a slicing technique, performed only in the lattice directions η1, η2, η3, in order to obtain
the estimate

lim
ε→0+

Eε(uε) ≥
3∑

k=1

2√
3

∫
Su

|〈νu(x), ηk〉| dH1(x). (4.11)

To this end we observe that we can split the energies Eε by accounting separately for the contribution of
pairs (i, j) with j − i = ±ηkε and letting k vary in {1, 2, 3}. More precisely, for k = 1, 2, 3 let

Lk
ε = {i ∈ Lε : [i, i + εηk] ⊂ Ω}

and define for v ∈ Adε(Ω)

Ek
ε (v) =

∑
i∈Lk

ε

εJ

(∣∣∣∣v(i) − v(i + εηk)
ε

∣∣∣∣);

An easy computation shows that

Eε(uε) = E1
ε (uε) + E2

ε (uε) + E3
ε (uε);

thus it is enough to prove that for any k

lim
ε→0+

E1
ε (uε) ≥

2√
3

∫
Su

|〈νu(x), ηk〉| dH1(x). (4.12)

Since the lattices Lε, and hence the energies appearing in both sides of (4.12), are invariant under rotations of
π/3 we confine our attention to prove (4.12) for k = 1 and η1 = e1.

Note that the functionals E1
ε consist of a superposition of 1-dimensional discrete energies related to the

sublattices εZ × {mε
√

3/2} for m even varying in Z and to the lattices ε(Z + (1/2)) × {mε
√

3/2} for m
odd. Hence, as a first step we will use a usual separation of scale argument on these 1-dimensional discrete
energies in order to rewrite them in a 1-dimensional integral form and then we glue the information back to the
2-dimensional setting by a slicing procedure. More precisely, for any m ∈ Z set

Sm = R × [mε
√

3/2, (m+ 1)ε
√

3/2).

Note that the stripes Sm ∩ Ω give a partition of Ω. For any s ∈ (0, 1) we will construct a sequence {ws
ε} ⊂

SBV (Ω,R2) with 1-dimensional profile along the direction e1 and depending only in the first variable in each
stripe. To that end, let s ∈ (0, 1) be fixed and set

Iε = {i ∈ L1
ε : J(|u(i) − u(i + εe1)|/ε) ≥ sJ∞}

(for the sake of notation we drop the dependence on s in what follows). By definition of Iε it holds

E1
ε (uε) ≥ sJ∞ε#(Iε). (4.13)

For any m ∈ Z define wε on R × {mε
√

3/2} to be equal to the value uε(i) on (i1, i1 + ε) × {mε
√

3/2} if
i = (i1, i2) ∈ Iε and to be the affine interpolation of the values uε(i), uε(i + εe1) on any other interval
(i1, i1 + ε) × {mε

√
3/2}. Eventually, extend wε on Sm ∩Ω as wε(x1, x2) = wε(x1,mε

√
3/2).

We claim that wε → u in L1(Ω,R2) and, up to subsequences, also almost everywhere in Ω. Indeed, as a
consequence of Lemma 2.11 in [1], the convergence of uε → u in L1(Ω,R2) implies the convergence to u in
L1(Ω,R2) also of the piecewise-constant interpolations of the values of the nodes {uε(i)}, and, in turn, also the
convergence of wε → u in L1(Ω,R2) (see also Rem. 3.2).
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Estimate (4.13) and the fact that ∇wε belongs pointwise to the compact set {ξ ∈ R
2 : J(ξ) < sJ∞}, yield

that ∫
Ω

|∇wε|2 dx+ ε#(Iε) ≤ c. (4.14)

Taking into account that
#(Iε) =

∑
m∈Z

#(Iε ∩ Sm),

and also that
#(Iε ∩ Sm) = #(S(we1,y

ε ))

for all y ∈ Sm ∩Πe1 , (4.13) can be rewritten as

E1
ε (uε) ≥ sJ∞

2√
3

∫
Πe1

#(S(we1,y
ε )) dH1(y). (4.15)

By passing to the liminf in both sides of (4.15) and by applying Fatou’s Lemma we get

lim
ε→0+

E1
ε (uε) ≥ sJ∞

2√
3

∫
Πe1

lim inf
ε→0+

#(S(we1,y
ε )) dH1(y). (4.16)

On the other hand, estimate (4.14) ensures that for H1-almost every y ∈ Πe1 the sequence we1,y
ε is precompact

in SBV (Ωe1,y,R2) and converges in measure to ue1,y. Hence, by the 1-dimensional analogue of the lower-
semicontinuity Theorem 2.5 we infer that

lim
ε→0+

E1
ε (uε) ≥ sJ∞

2√
3

∫
Πe1

#(S(ue1,y)) dH1(y). (4.17)

Moreover, thanks to Theorem 2.6(a) with g = 1, we have∫
Πe1

#(S(ue1,y)) dH1(y) =
∫

Su

|〈νu(x), e1〉| dH1(x). (4.18)

Letting s→ 1 concludes the proof of claim (4.11). Eventually, Lemma 4.5 yields (4.10). �

5. Upper estimates for a class of “opening cracks”

In this section we show the optimality of the bound (4.10) provided in Proposition 4.6 for a class of functions
with ‘opening cracks’ with respect to the anisotropies inherited by the lattice.

In order to clarify the parameters playing a role in the asymptotic behaviour of Eε, we prefer to deal with the
case where only two rotations R+, R− are involved in the target deformation u first. In this setting the crack Su

splits Ω into two regions Ω+, Ω−, in general not connected, each one underlying a rigid motion. We will show
that in this case the Γ -limsup of Eε is finite even if the request of orientation-preserving recovery sequences
affects substantially the form of the limit energy.

In this process a relevant condition that translates the positive-determinant constraint through the crack is
the following:

〈u+(x) − u−(x), R±ν〉 ≥ 0. (5.1)

In fact, the inequality above ensures that any small triangle crossing the fracture site maintains positive (non
negative) area in the codomain. Actually, due to the discrete environment, condition (5.1) has to be assumed
for ν ∈ D, since the only triangles entering in the construction have sides parallel to the directions lying in S.

We start by proving the following characterization of the Γ -limsup whenever Su is contained in a straight
line and (5.1) holds.
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Proposition 5.1. For R± ∈ SO(2) and x̄, ν, q± ∈ R
2 with ν ∈ D, let u be defined as

u(x) =

{
R+x+ q+ if 〈x− x̄, ν〉 > 0, x ∈ Ω

R−x+ q− if 〈x− x̄, ν〉 ≤ 0, x ∈ Ω,
(5.2)

so that νu = ν H1-almost everywhere. Assume that R+ �= −R− and for H1-almost every x ∈ Su R±, q±, ν
satisfy

〈u+(x) − u−(x), R±ν〉 ≥ 0, (5.3)

where u+(x) = R+x+ q+, u−(x) = R−x+ q−, then

Γ - lim sup
ε→0+

Eε(u) ≤
∫

Su

ϕ(ν) dH1 = 2J∞H1(Su). (5.4)

Proof. We claim that, thanks to the hypothesis R+ �= −R−, we may assume the stronger separation hypothesis

〈u+(x) − u−(x), R±ν〉 ≥ δ > 0 (5.5)

for some fixed δ > 0 and for H1-almost every x ∈ Su. Indeed, if (5.5) does not hold, it is enough to choose
a vector v such that 〈v,R±ν〉 > 0 (set for instance v = R+ν + R−ν) and consider the sequence uδ defined
replacing q+ with q+ + δv in (5.2). Then Suδ

= Su, uδ → u in L2(Ω,R2) and the left-hand side term of (5.4) is
continuous along such a sequence, while the right-hand side is independent of δ.

Condition (5.5) plays a key role in showing that the sequence (uε) defined as the pointwise interpolation of
u in the nodes of the lattice Lε ∩ Ω is admissible and accounts for the desired Γ -limsup estimate. We then
simply define uε(i) = u(i) for any i ∈ Lε ∩ Ω. Since uε → u in L1(Ω,R2), it remains to check that the
positive-determinant constraint is satisfied in any triangle contained in Ω.

Before proceeding with the computation we label the triangles ‘crossing the fracture site’. By rotational
and translational invariance we may assume ν = (0, 1) so that Su = {x = (x1, x2) ∈ Ω : x2 = x̄2}. Let
Nε := [2x̄2/

√
3ε] and set

Dε = {m ∈ Z : (mε,
√

3Nεε/2) ∈ Lε ∩Ω}
and

im = (mε,
√

3Nεε/2) for m ∈ Dε.

Note that u coincides with a ‘positive’ rotation on the vertices of those triangles not contained in the strip

S =
{
x :

√
3Nεε/2 ≤ x2 ≤

√
3(Nε + 1)ε/2

}
.

Hence, in order to ensure that uε ∈ Adε(Ω), it suffices to check condition (5.3) for triangles T with vertices
respectively im, im + εη1, im + εη2 and im, im + εη2, im + ε(η2 − η1) (see Fig. 3). This leads to proving the
following inequalities:

〈(u−(im + εη1) − u−(im))⊥, u+(im + εη2) − u−(im)〉 ≥ 0,

〈(u+(im + εη2) − u+(im + ε(η2 − η1))⊥, u+(im + εη2) − u−(im)〉 ≥ 0

for m ∈ Dε. These can be compactly rewritten as

ε〈R±ν, u+(im + εη2) − u−(im)〉 ≥ 0. (5.6)

After recalling that we are choosing the counter-clockwise orthogonal vector, that u± are affine and that x̂ ∈ Su,
we claim that these conditions are fulfilled for ε small enough. Indeed, for any infinite collection of indices
{mε} ⊂ Z with mε ∈ Dε, up to subsequences, we may assume that imε → x̂ as ε → 0+. As a consequence
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Figure 3. Triangles deformed by the pointwise interpolation.

u±(imε + εη1) → u±(x̂) and u±(imε) → u±(x̂), with x̂2 = x̄2. Thus, assuming that (5.6) are violated for such
a sequence of indices mε will lead to a contradiction to (5.5) when passing to the limit as ε→ 0+.

Eventually, we compute the asymptotic value of Eε(uε) to show that (uε) is a recovery sequence for the
surface energy

∫
Su
ϕ(νu) dH1. The energy contribution in Eε(uε) reduces to those pairs of indices one of which

of type im with m ∈ Dε; i.e.,

Eε(uε) =
∑

m∈Dε

εJ

(
|u+(im + εη2) − u−(im)|

ε

)

+
∑

m∈Dε

εJ

(
|u+(im + ε(η2 − η1)) − u−(im)|

ε

)
·

If R+ = R− and q+ = q− then

Eε(uε) =
∑

m∈Dε

εJ
(
|R+η2|

)
+
∑

m∈Dε

εJ
(
|R+(η2 − η1)|

)
= 0

and the thesis is proved as Su = ∅. If R+ �= R− and q+ �= q− then

Eε(uε) =
∑

m∈Dε

εJ

(∣∣∣∣ (R+ −R−)(im)
ε

+
q+ − q−

ε
+ (R+ −R−)η2

∣∣∣∣)

+
∑

m∈Dε

εJ

(∣∣∣∣ (R+ −R−)(im)
ε

+
q+ − q−

ε
+ (R+ −R−)(η2 − η1)

∣∣∣∣)

and, taking into account that im/ε = (m,
√

3Nε/2), the argument of J in all the terms in the summation above
tends to +∞. Hence,

Eε(uε) = 2ε#Dε(J∞ + o(1)) (5.7)

Passing to the limit as ε→ 0 and plugging the equality

lim
ε→0+

ε#Dε = H1(Su)

in (5.7) the conclusion is achieved. �

The next proposition generalizes the result of Proposition 5.1 in the case when only two rotations are involved
in the deformation and Su consists of finite line segments having normals in D and the stronger open crack
condition (5.5) is satisfied along the jump set Su.
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Proposition 5.2. Let R± ∈ SO(2) and q± ∈ R
2 be given and let

u(x) = (R+x+ q+)χΩ+(x) + (R−x+ q−)χΩ−(x) (5.8)

where Ω+, Ω− is a partition of Ω with ∂∗Ω+ = ∂∗Ω− = S, with S ⊂ Ω a finite connected union of line segments
with normal belonging to D. Assume that for H1-almost every x ∈ S

〈u+(x) − u−(x), R±ν(x)〉 ≥ δ (5.9)

for some δ > 0[; then

Γ - lim sup
ε→0+

Eε(u) ≤
∫

S

ϕ(ν(x)) dH1 = 2J∞H1(S). (5.10)

Proof. Let S =
⋃

k∈I Sk with Sk = [zk, wk] for zk, wk ∈ R
2, having constant normal νk lying in D and satisfying

wk = zk+1 for any k. Thanks to the strong opening hypothesis (5.9), we may replace S with Sε = ∪k∈IS
ε
k

with Sε
k = [ik

ε , j
k
ε ] for ik

ε , j
k
ε ∈ Lε ∩ Ω, having constant normal νk lying in D and satisfying jk

ε = ik+1
ε for any

k. More in detail, Sε
k can be selected inductively by applying a finite number of small translations to the line

segments Sk of S, together with replacing their endpoints with points on the lattice Lε so that the normal to
Sε

k coincides with the normal to Sk. Note that, thanks to the boundary regularity of ω for any k ∈ I we have
|H1(Sε

k) −H1(Sk)| ≤ ε. We claim that a recovery sequence is provided defining uε(i) = v+
ε (i) for i ∈ Lε ∩ Ω,

where vε is defined as in (5.8) replacing Ω+, Ω− with Ω+
ε , Ω

−
ε such that ∂∗Ω+

ε = ∂∗Ω−
ε = Sε. Indeed, for

any triangle T ∈ T c
ε intersecting Sε there exists a unique k ∈ I such that either T ∩ Sε is a single point

in Sε
k or T ∩ Sε = [i, i ± εν⊥k ] for some i ∈ Lε ∩ Ω. In both cases one may perform the same computation

as in Proposition 5.1, and deduce that uε satisfies the positive-determinant constraint. Eventually a direct
computation shows that Eε(uε) = (J∞ + o(1))

∑
k∈I ϕ(νk)H1(Sε

k) and this tends to J∞
∑

k∈I ϕ(νk)H1(Sk)
as ε→ 0. �

The previous approach can be pushed further to obtain the optimality of the bound (4.10) also for Su

consisting of a line with normal ν �∈ D. In this case we need to impose the opening crack condition (5.3) in a
stronger sense; i.e., (5.3) must be satisfied also along the two directions ν1, ν2 ∈ D generating ν in one of the
simplexes of the Wulff shape {ϕ ≤ 1}.

Proposition 5.3. For R± ∈ SO(2) and x̄, ν, q± ∈ R
2, let u be defined as

u(x) =

{
R+x+ q+ if 〈x− x̄, ν〉 > 0, x ∈ Ω

R−x+ q− if 〈x− x̄, ν〉 ≤ 0, x ∈ Ω.
(5.11)

Let ν1, ν2 ∈ D be such that ν/ϕ(ν) = λν1 + (1 − λ)ν2 for λ ∈ (0, 1). Assume that Su is a line segment and that
for H1-almost every x ∈ Su R±, q±, ν satisfy the conditions

〈u+(x) − u−(x), R±νi〉 ≥ δ (5.12)

for i = 1, 2 and for some δ > 0. Then

Γ - lim sup
ε→0+

Eε(u) ≤
∫

Su

ϕ(ν) dH1. (5.13)

Proof. The claim will be proved by an approximation argument, exploiting Proposition 5.2 and the lower
semicontinuity of the Γ -limsup. Note that hypothesis (5.12) ensures that R+ �= −R−.

For all positive integers h let Sh be a finite connected union of line segments with normal equal to ν1 or to
ν2 such that

lim
h→+∞

∫
Sh

ϕ(νh(x)) dH1 =
∫

Su

ϕ(ν) dH1 (5.14)
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and such the Hausdorff distance betwenn Sh and Su tends to 0. The existence of such polygonals follows from
the equality ν⊥ = λϕ(ν)ν⊥1 + (1 − λ)/ϕ(ν)ν⊥2 , which implies that any vector orthogonal to ν of length L is the
sum of vectors orthogonal to ν1 and ν2 of length λϕ(ν)L and (1 − λ)ϕ(ν)L, respectively. Hence, for any h ∈ N

fixed we subdivide the line segment Su into line segments of lenghts H1(Su)/h and we perform the construction
above with L = H1(Su)/h. Since ϕ(ν1) = ϕ(ν2) = 1, then summing the integral of ϕ(ν1) on the first segment
and that of ϕ(ν2) on the second one gives ϕ(ν)L. Note that by the geometric construction above we infer that
dH(Sh, Su) ≤ c/h.

We may also assume that each Sh has endpoints on ∂Ω and splits Ω in two components Ω+
h , Ω

−
h such that

lim
h→+∞

|Ω+
h �{x ∈ Ω : 〈x− x̄, ν〉 > 0}| = 0.

For h ∈ N let uh be the piecewise-rigid function defined as

uh(x) = (R+x+ q+)χΩ+
h

+ (R−x+ q−)χΩ−
h
.

Then uh → u in L1(Ω; R2) and, by continuity, uh satisfies hypothesis (5.12) with a smaller positive δ and Su

replaced by Suh
= Sh. Applying Proposition 5.2 to each uh we get

Γ - lim sup
ε→0+

Eε(uh) ≤
∫

Suh

ϕ(νh) dH1.

The conclusion follows taking property (5.14) into account. �

In the following we consider the case in which the jump set Su is a triple point with coordinate normals.

Proposition 5.4. Let x0 ∈ Ω be fixed and set

Ω1 :=
{
x ∈ Ω :

〈
x− x0, η

1⊥
〉
≥ 0,

〈
x− x0, η

2⊥
〉
≥ 0
}
,

Ω2 :=
{
x ∈ Ω :

〈
x− x0, η

2⊥
〉
≤ 0,

〈
x− x0, η

3⊥
〉
≤ 0
}
,

Ω3 :=
{
x ∈ Ω :

〈
x− x0, η

1⊥
〉
≤ 0,

〈
x− x0, η

3⊥
〉
≥ 0
}
.

Let u be defined as u(x) =
∑3

k=1 u
k(x)χΩk

(x) with uk(x) = Rkx + qk for suitable R1, R2, R3 ∈ SO(2) and
q1, q2, q3 ∈ R

2. Assume that u satisfies the ‘opening crack’ conditions along Su =
⋃

k(∂Ωk ∩Ω):〈
u1(x) − u3(x), R1η1⊥

〉
≥ δ,

〈
u1(x) − u3(x), R3η1⊥

〉
≥ δ, on ∂Ω1 ∩ ∂Ω3〈

u1(x) − u2(x), R2η2⊥
〉
≥ δ,

〈
u1(x) − u2(x), R1η2⊥

〉
≥ δ, on ∂Ω1 ∩ ∂Ω2〈

u3(x) − u2(x), R3η3⊥
〉
≥ δ,

〈
u3(x) − u2(x), R2η3⊥

〉
≥ δ, on ∂Ω3 ∩ ∂Ω2 (5.15)

for some δ > 0, and that u satisfies the further compatibility condition

〈u1(x0) − u3(x0), (u2(x0) − u3(x0))⊥〉 > 0 (5.16)

on the triple point x0. Then

Γ - lim sup
ε→0+

Eε(u) ≤
∫

Su

ϕ(ν) dH1. (5.17)

Note that if the uniform strict-positivity conditions in (5.15) is relaxed to strict positivity the perturbation
argument in the proof of Proposition 5.1 may fail on points of Su close ∂Ω. The claim of Proposition 5.4 could
be then restated as holding for u for which such an approximation argument works.
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Proof. Up to composing u with infinitesimal translations and rotations we may assume that, for any ε > 0
small enough, the points x0 − ε

3 (η1 + η2), x0 + ε
3 (η3 + η1), x0 + ε

3 (η2 − η3) lie on the lattice Lε ∩ Ω and that
Lε ∩ Su = ∅. Set uε(i) = u(i) for any i ∈ Lε ∩ Ω. Clearly uε → u in L1(Ω,R2); it remains to check that
the positive-determinant constraint is satisfied in any triangle intersecting Su. Thanks to hypothesis (5.16) we
have that there exists δ > 0 such that all the scalar products in (5.15) are greater than δ. By performing the
same computation as in the proof of Proposition 5.1 we may deduce the positive-determinant constraint to
be satisfied on any triangle intersecting Su and not containing x0. The only triangle left aside is then the one
having vertices x0 + ε

√
3

2 (η2 − η1), x0 + ε
√

3
2 (η3 − η1), x0 + ε

√
3

2 (η2 + η3). A direct computation shows that〈
u1
(
x0 +

ε

3
(η2 − η3)

)
− u3

(
x0 −

ε

3
(η1 + η2)

)
,(

u2
(
x0 +

ε

3
(η1 + η3)

)
− u3

(
x0 −

ε

3
(η1 + η2))

)⊥〉
= 〈u1(x0) − u3(x0), (u2(x0) − u3(x0))⊥〉 + o(1).

Hence the conclusion follows by hypothesis (5.16). �

As a conclusion of this section we note that we have proved that the Γ -limit of Eε is described by the
anisotropic fracture energy

F(u) =
∫

Su

ϕ(ν)dH1 (5.18)

on all u which are piecewise rigid deformations such that Su consists of a finite number of lines meeting at
triple points and the opening-crack conditions in Proposition 5.4 are satisfied. This description extends by
continuity to all piecewise-rigid deformations u that can be approximated in energy by sequences of piecewise-
rigid deformations uh satisfying such conditions.

We underline that when more complex geometries are taken into account (see Sect. 3 in [9]) the occurrence of
different phenomena is highlighted. Actually, the representation of the limit energy seems to take into account
several factors, not all of local nature.

6. Necessary conditions for opening cracks

In Section 4 we have shown a lower bound with an anisotropic Griffith fracture energy, which is optimal on a
family of displacements with an opening-crack condition on the fracture site (Sect. 5). We now show conversely
that if the limit energy at a point x0 ∈ Su is not greater than the lower bound then necessarily the function u
satisfies a opening-crack condition.

We now consider discontinuity points where the fracture energy density is minimal; i.e., the inequality in (4.10)
is sharp, and derive necessary conditions on the crack opening. To this end we introduce the measures

με =
∑

(i,j)∈Nε(Ω)

ε J
(∣∣∣uε(i) − uε(j)

ε

∣∣∣) δ i+j
2
. (6.1)

These measures are a way to measure locally the energy Fε(uε). If με is a bounded sequence of measures and
supε ‖uε‖L∞(Ω,R2) < +∞, then, arguing as in the proof of Proposition 4.1, we infer that uε is precompact in
SBV (Ω,R2) and that uε → u in L1. We also suppose that the weak∗ limit μ of με exists.

Proposition 6.1 (Necessity of an opening-crack condition). Let uε → u, and let x0 ∈ Su be such that

dμ
dH1 Su

(x0) ≤ ϕ(νu(x0)). (6.2)
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Figure 4. An illustration of the arguments of the proof.

Then we have

〈u+(x0) − u−(x0), R±νu(x0)〉 ≥ 0, (6.3)

where R± ∈ SO(2) are the two constant matrices coinciding with ∇u on both sides of Su at x0.

Note that, thanks to the lower estimates in the previous section, (6.2) can be equivalently stated as an
equality.

Proof. Since the proof is a little involved, we first give a short outline.
• We use a blow-up argument, examining the behaviour of energies on small squares of side-length ρ centered

at a point x0 and one side oriented as νu(x0). For simplicity of illustration in Figure 4 we picture such a square
and the related triangulation at a fixed ε when νu(x0) = e1;

• taking ρ and ε small enough the values on opposite side are close to u+(x0) and u−(x0). This implies that
there exists a path of triangles which are deformed in triangles with (two or more) large sides and that joins the
two opposite sides parallel to e1, up to adding a small percentage of triangles. Otherwise a use of the Poincarè
inequality on paths joining the two sides parallel to e2 would give a contradiction. The highly deformed triangles
are pictured in dark grey in Figure 4, the additional triangles in light gray. We note that by (6.2) there is only
a small percentage of highly deformed triangles that do not belong to the path described above;

• we now reason at ρ small but fixed. We note that the functions defined on a unit cube by wρ
ε(y) =

1
ρuε(x0 +ρy) except on highly-deformed triangles, where they are set to 0, have gradients, determinants, lengths
of discontinuity sets and BV norms of the tangential derivatives that satisfy uniform bounds. By the results
in [3] this implies that their tangential traces weakly converge to those of wρ(y) = 1

ρu(x0 + ρy);
• using this tangential convergence and, finally, the positive-determinant constraint we describe the behaviour

on the boundary of the path of highly-deformed triangles. This set is pictured in Figure 4 by two solid lines,
denoted by P ε

± in the proof, which converge to the jump set of 1
ρu(x0 + ρy), up to sets of very small perimeter

negligible as ρ → 0. Using again a Poincaré-inequality argument, we note that wρ
ε(y) is very close to 1

ρu
±(x0)

on P ε
±, respectively. Integrating the positive-determinant constraint on P ε

± and passing to the limit in ε and
then in ρ we then obtain (6.3).

For the sake of brevity we will denote ν0 = νu(x0). Let Qν0 be a square centered in 0, with side length 1 and
an edge orthogonal to ν0. With fixed ρ > 0 and y ∈ Qν0 , let

vε,ρ(y) = uε(x0 + ρy),
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which, by definition of Su converges as ε → 0 and subsequently ρ → 0 (unless otherwise specified we will refer
to convergence in this order of quantities depending on ε and ρ) to the function

ũ(y) =

{
u+(x0) if 〈y, ν0〉 ≥ 0
u−(x0) if 〈y, ν0〉 < 0.

By the weak∗ convergence of με and (6.2) we deduce that

Eε(uε, Q
ν0
ρ (x0)) ≤ ρ(ϕ(ν) + oρ(1)) + oε(1)

where Qν0
ρ (x0) = x0 + ρQν0 , and oρ(1) and oε(1) are infinitesimal as ρ→ 0 and ε→ 0, respectively.

We fix s > 0 and set

Ss
ε =

{
T ∈ T c

ε (Ω) :
∣∣∣∣uε(i) − uε(j)

ε

∣∣∣∣ > s for at least two sides (i, j) of T
}
.

We claim that we may connect the two opposite sides of Qν0
ρ (x0) parallel to ν0 with a path {Ti : i = 1, . . . ,M}

(depending on ρ and ε, but we omit such a dependence for the sake of notational simplicity) consisting of
triangles such that Ti and Ti+1 have a common side and Ti ∈ Ss

ε up to a number of indices that is o(ρ/ε).
Indeed, note that for any T �∈ Ss

ε we have∣∣∣∣uε(i) − uε(j)
ε

∣∣∣∣ ≤ 2s for every side (i, j) of T. (6.4)

If no path as above exists then we may construct cρ/ε disjoint paths in Lε ∩ Qν0
ρ (x0); i.e., sets of indices

{ij
n : n = 0, . . . ,Mj} with ij

n ∈ Lε and ij
n − ij

n−1 ∈ εS, such that

〈ij
0 − x0, ν0〉 ≤ −1

2
ρ+ ε, 〈ij

Mj
− x0, ν0〉 ≥

1
2
ρ− ε

and ∣∣∣∣∣uε(ij
n) − uε(i

j
n−1)

ε

∣∣∣∣∣ ≤ 2s for every n (6.5)

(for a construction of such paths we refer to the proof of Thm. 4(ii) in [11]). Since vε,ρ − u±(x0) converge to 0
close two opposite sides of Qν0 it is not restrictive to suppose that∑

j

ε|uε(ij
0) − u−(x0)| +

∑
j

ε|uε(ij
Mj

) − u+(x0)| = ρ oε(1).

By (6.5) we have

cρ|u+(x0) − u−(x0)| ≤
∑

j

ε
(
|u+(x0) − uε(ij

Mj
)|

+ |uε(ij
Mj

) − uε(ij
0)| + |uε(ij

0) − u−(x0)|
)

≤ρ oε(1) +
∑

j

Mj∑
n=1

ε|uε(ij
n) − uε(ij

n−1)|

≤ρ oε(1) +
∑

j

Mj∑
n=1

ε22s ≤ ρ oε(1) + ρ22s. (6.6)

Dividing by ρ and letting ε and ρ tend to 0 we then obtain |u+(x0)− u−(x0)| = 0, which gives a contradiction.
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We consider the connected set

Tε =
M⋃
i=1

Ti.

Note that by the convergence vε,ρ → ũ, for all δ > 0 the set Tε ∩ Qν0
ρ (x0) will be contained in the strip

{x : |〈x− x0, ν0〉| ≤ δρ} for ε sufficiently small. It is not restrictive to suppose that Qν0
ρ (x0) ∩ ∂Tε is composed

exactly of two polygonal chains P ε
− and P ε

+. Note that the set

{Ti : ∂Ti ∩ P ε
− �= ∅}

still gives a path with the same properties of {Ti}. We can therefore suppose that this is our original path.
The contribution of the energy restricted to interactions in Tε gives

Eε(uε, Q
ν0
ρ (x0) ∩ Tε) ≥ J(s)ϕ(ν0)ρ(1 − δ) (6.7)

(see Prop. 4.6). We then deduce that

#{T ∈ Ss
ε : T �⊂ Tε} ≤ c

ρ

ε
δ (6.8)

and, in addition, there exist cρ
ε disjoint polygonal chains joining P ε

− and the side of Qν0
ρ (x0) lying on {y :

〈y − x0, ν〉 = −ρ/2} such that they do not intersect Ss
ε . Since vε,ρ → ũ, arguing as in (6.6), we deduce that∫

P ε
±

|uε − u±(x0)|dH1 = ρ oε(1) + o(ρ) (6.9)

as ε→ 0.
For fixed ρ > 0 we may now consider the scaled functions

wρ
ε(y) =

1
ρ
uε(x0 + ρy) =

1
ρ
vε,ρ(y).

We may still argue as in Proposition 4.1 and deduce that wρ
ε converge to uρ(y) = 1

ρu(x0 + ρy) as ε → 0. Note
that ∇uρ(y) = ∇u(x0 + ρy).

For fixed ρ, we may now consider the functions

w̃ρ
ε = wρ

εχQν0\ 1
ρSs

ε
,

which are now discontinuous at ∂Ss
ε . They satisfy

(i) the determinant of ∇wρ
ε is equibounded, by the definition of Ss

ε ;
(ii) ∇wρ

ε are equibounded;
(iii) H1(∂Ss

ε ) is bounded;
(iv) the measures ∂wρ

ε

∂ν⊥H1 ∂Ss
ε are equibounded, by (ii) and since | ∂wρ

ε

∂ν⊥ | ≤ 2s by definition. Here and below we
simply denote by ν the normal to a discontinuity set without specifying of which function, which is clear
from the context.

By Theorem 5.8 in [3] from (i)–(iv) above and the convergence w̃ρ
ε → uρ we deduce that the measures

∂wρ
ε

∂ν⊥H1 ∂Ss
ε converge to ∂uρ,δ

∂ν⊥ H1 Suρ . We choose the orientation of ν⊥ so that the determinant constraint
on uε can be rewritten on each line segment of P ε

± as〈
∂uε

∂ν⊥
, (u+

ε − u−ε )⊥
〉
> 0,
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Figure 5. Zero-determinant fracture with a planar interface and a 180-degree rotation – ref-
erence and deformed microscopic configurations.

where u−ε and u+
ε are the values on two vertices of the corresponding triangle, with u−ε ∈ P ε

− and u+
ε ∈ P ε

+. We
then have, by (6.9)

0 ≤
∫

Q
ν0
ρ (x0)∩P ε

−

〈
∂uε

∂ν⊥
, (u+

ε − u−ε )⊥
〉

dH1

=
∫

Q
ν0
ρ (x0)∩P ε

−

〈
∂uε

∂ν⊥
, (u+(x0) − u−(x0))⊥

〉
dH1 + ρ oε(1) + o(ρ)

= ρ

∫
Qν0∩ 1

ρ (P ε
−−x0)

〈
∂wρ

ε

∂ν⊥
, (u+(x0) − u−(x0))⊥

〉
dH1 + ρ oε(1) + o(ρ)

= ρ

∫
Qν0∩Suρ

〈
∂uρ

∂ν⊥
, (u+(x0) − u−(x0))⊥

〉
dH1 + ρ oε(1) + o(ρ)

= ρ 〈R−ν⊥0 , (u
+(x0) − u−(x0))⊥〉 + ρ oε(1) + o(ρ)

= ρ 〈R−ν0, u
+(x0) − u−(x0)〉 + ρ oε(1) + o(ρ).

Dividing by ρ and letting ε, ρ → 0 we obtain the first claim in (6.3). The analogous inequality with R+ν0 is
obtained in the same way. �

Remark 6.2 (Conjecture). We have obtained a weaker necessary condition than the sufficient ones in (5.12).
This comes from the fact that in the last argument of the proof we have integrated the positive-determinant
constraint on P ε

±. We conjecture that this is only a technical issue and indeed those conditions are also necessary
in order that the energy density be minimal on Su.

Appendix: Positive VS. non-negative determinant constraint

We have considered a strictly positive microscopic determinant constraint. Strictly positive inequalities are
weakened in the limit; however, our choice of not directly considering weak inequalities allows to rule out some
additional “unphysical” deformations which would have to be taken into account by directly considering a non-
negative microscopic determinant constraint. This would correspond to allowing microscopic interpolations to
“collapse” triangles to line segments on the jump set even though such collapsed triangles cannot be viewed as
a limit for the strictly positive determinant case. This may happen in the case of rotations R± ∈ SO(2) on both
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Figure 6. Zero-determinant fracture with an angular interface and a 180-degree rotation –
reference and deformed microscopic configurations.

sides of the interface with R+ = −R−. In Figure 5 we depict such a microscopic deformation along a single
coordinate line, where all points of two rows are aligned. Note that allowing zero-determinant deformations
would include such a macroscopic deformation in the set of “minimal interfacial energy”, while in our setting
the same must be achieved by the introduction of at least one extra layer of atoms, thus doubling the energy.

Another possibility for having R+ = −R− is with the partition composed of a pair of supplementary angles
as in Figure 6. In this case it is possible to “rotate” one of the two angles by π with positive or zero determinant
on the deformed triangles along the discontinuity set. In both cases, however, we have a macroscopical failure
of impenetrability, so we have regarded these cases as degenerate by considering only the strictly-positive-
determinant constraint.

Acknowledgements. We thank the anonymous referees for the valuable comments which greatly improved the presentation
of the paper.
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