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STABILISED FINITE ELEMENT METHODS

FOR THE OSEEN PROBLEM ON ANISOTROPIC QUADRILATERAL MESHES ∗

Gabriel R. Barrenechea1 and Andreas Wachtel2

Abstract. In this work we present and analyse new inf-sup stable, and stabilised, finite element
methods for the Oseen equation in anisotropic quadrilateral meshes. The meshes are formed of closed
parallelograms, and the analysis is restricted to two space dimensions. Starting with the lowest order
Q2

1 × P0 pair, we first identify the pressure components that make this finite element pair to be non-
inf-sup stable, especially with respect to the aspect ratio. We then propose a way to penalise them,
both strongly, by directly removing them from the space, and weakly, by adding a stabilisation term
based on jumps of the pressure across selected edges. Concerning the velocity stabilisation, we propose
an enhanced grad-div term. Stability and optimal a priori error estimates are given, and the results
are confirmed numerically.

Mathematics Subject Classification. 65N30, 65N12, 65N50.

Received August 12, 2016. Revised May 4, 2017. Accepted June 19, 2017.

1. Introduction

In this paper we discuss stabilised finite element methods for the Oseen problem on highly anisotropic meshes.
This equation appears, for example, in the iterative solution of the Navier–Stokes equations. As it is the case
with the Navier−Stokes equation, when solving the Oseen problem numerically three different aspects can affect
the quality of the numerical solution, and then need to be treated. One is a compatibility condition between
velocity and pressure spaces, namely the inf-sup condition, that requires to be satisfied, or circumvented. In
addition, if the mesh is not refined enough, then the local Péclet number is much larger than one (i.e., if
the problem is convection-dominated), then the numerical solution usually presents spurious, non physical,
oscillations. Finally, even if the solution to the continuous equation is divergence-free, usually the discrete
solution is not. This can affect (sometimes dramatically) the quality of the numerical solution, especially when
the Navier−Stokes equations are coupled to, say, temperature equations.

We start by discussing the first restriction mentioned in the previous paragraph. The first approach was to
design pairs of velocity and pressure spaces that satisfy the inf-sup condition. For extensive reviews of such an
approach on shape-regular meshes we refer to [7,23], and the references therein. Now, the simplest finite element
pairs, namely, equal-order interpolation for velocity and pressure, or the Q2

1×P0 element, are not inf-sup stable.
Then, in the mid eighties the idea of stabilisation appeared in order to circumvent this restriction. Examples of
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Article published by EDP Sciences c© EDP Sciences, SMAI 2018

http://dx.doi.org/https://doi.org/10.1051/m2an/2017031
http://www.esaim-m2an.org
http://www.edpsciences.org


100 G.R. BARRENECHEA AND A. WACHTEL

stabilised methods are PSPG methods, introduced for shape-regular meshes in [24], and extended to anisotropic
meshes in [12, 32]. Later on, different approaches have been proposed to stabilise this restriction, including
Residual-Free Bubbles, or enriched finite element methods (see, e.g., [1, 6]), and Local Projection Stabilised
(LPS) methods (see [5]). Alternatively, and as an attempt to analyse some of these methods in a unified
manner, the idea of minimal stabilisation was proposed in [10]. This approach consists of splitting the pressure
space into the sum of a stable part and an unstable part. Then, a stabilising term is added to the formulation
to control the unstable part of the pressure space, hence restoring stability. This approach provided a different
interpretation of some older methods, e.g., [36], the local jumps stabilisation [29], and pressure projection [9]
(see [15] for a unified presentation of this idea). In addition, this approach was recently used to design new inf-
sup stable, and stabilised, finite element methods for the Stokes problem on anisotropic meshes in [2] (modifying
a decomposition given previously in [3]). This last work concerned for the pairs Q2

k+1 × P2
k−1, k ≥ 1, and then

does not cover the lowest order case. For the latter case, and in the context of the Stokes problem, the local
jump method from [29] was recently extended to anisotropic meshes without corner patches in [31], and to
meshes containing corner patches in [17].

Regarding the second source of instability, namely, the presence of a dominating convection, one of the
earliest approaches is the Streamline Upwind Petrov–Galerkin (SUPG) method, introduced in [11] for shape-
regular meshes. The main idea of this method has been later on revisited in, e.g., [20, 25], and extended to a
class of anisotropic meshes in [4]. For the Oseen (and Navier−Stokes) equations, both GLS and SUPG methods
introduce additional (unphysical) coupling terms between velocity and pressure. On the other hand, their
stability is only due to the symmetric, diagonal, terms appearing in their definition. This observation motivated
the extension of LPS methods for convection dominated problems, see for example [28, 33, 34], or [8, 37] for
overviews. For anisotropic meshes, up to our best knowledge, the only work concerning the LPS method on
anisotropic meshes is the work [14], where the method is applied to the Oseen and Navier−Stokes equations
using equal order Q2

1 ×Q1 elements on anisotropic, structured, quadrilateral meshes.

Concerning the satisfaction of the divergence-free character of the velocity field at the discrete level, the
numerical velocities obtained using inf-sup stable elements are discretely divergence-free by definition, although
this might not be enough in some applications. Stabilised finite element methods, on the other hand, do not
satisfy this property, even when discontinuous pressures are used, due to the pressure jumps added to the
formulation. One possibility is to propose a post-processing of the discrete velocity, by means of the lowest
order Raviart−Thomas element, as it has been done, for instance, in [16] in shape-regular triangular meshes.
Another possibility to address this issue is to add a grad-div stabilisation term, this is, a consistent term of
the form γ(divu,div v)Ω , where γ > 0 is a stabilisation parameter. The introduction of this term was first
proposed in [21] and it has been extensively used to improve the control of the discrete divergence for the
Navier−Stokes equation and coupled problems (see, e.g., [22, 30]). An analysis of this method can be found in
[35], and, especially in [27], where a very detailed analysis and discussion on the selection of the stabilisation
parameter is presented.

The objective of this paper is to propose and analyse a stabilised finite element method for the Oseen problem
on anisotropic quadrilateral meshes containing corner patches. The stabilisation terms related to the pressure
are those from the method given in [31], supplied with appropriate (selected) edge terms to make the method
stable independently of the aspect ratio, in the presence of corner patches. Since the method from [31] is based
on the refinement of a macro-element mesh, the present approach also requires some level of structure of the
meshes. Concerning the stabilisation mechanisms for the convection, the stabilising terms are based on the
LPS stabilisation ones, augmented with a grad-div/LPS term (this is, a term penalising the fluctuations of the
divergence, rather than the divergence itself, as it was done, e.g., in [16]). One extra feature of the method is
that the velocity is locally mass-conservative, at least in the macro-elements, and this fact is further imposed
by the grad-div stabilisation term. The analysis of the method follows the very general approach given in [34],
supplied with the new proof of stability for the pressure, which generalises the one presented in [17].

This manuscript is organised as follows. Section 2 first defines the Oseen problem and its weak formulation.
Then, the assumptions associated to the mesh are given. After that, results for the Stokes problem are extended
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to the class of meshes considered in this work. In particular, we prove the existence of a subspace G of the
pressure space such that the pair V P × G (where V P is the discrete velocity space used later on) satisfies a
uniform LBB condition (this is, an inf-sup condition where the inf-sup constant does not depend on the aspect
ratio). This is confirmed numerically. Additionally, the existence of a weakly divergence preserving interpolant
is stated. In Section 3 we then give the general framework for the methods in this text. In Sections 4 and 5
stability and a priori estimates are derived. The definition and analysis of the methods leaves the choice of
stabilisation terms and parameters flexible. Section 6 fixes the latter for the numerical experiments in Section 7.

2. Notation and preliminary results

Throughout, constants with a capital C are independent of data, whereas constants with a lower case c
may depend on data. Both the instances of C and c are independent of all geometric properties of the mesh.
We use standard notation for Sobolev spaces; for instance, for ω ⊂ R2, | · |1,ω and ‖ · ‖0,ω denote the H1(ω)-

seminorm and L2(ω)-norm, respectively, and L2
0(ω) denotes the space of functions in L2(ω) with zero mean

in ω. Furthermore, by (v, w)ω we denote the inner product in L2(ω). Vector-valued spaces are bold-faced, e.g.
H1

0(ω) = [H1
0 (ω)]2, but the same notation for norms and inner products is used.

2.1. The problem of interest

Let Ω ⊂ R2 be a polygonal, bounded and connected domain. Then, given f ∈ L2(Ω) we consider the following
Oseen problem

−ν∆u+ (b · ∇)u+ σu+∇ p = f in Ω,

divu = 0 in Ω,

u = 0 on ∂Ω,

(2.1)

subject to 〈p〉Ω = 0, where 〈q〉ω denotes the meanvalue of q over ω ⊂ Ω. For simplicity we suppose ν is a positive
viscosity constant, σ is a non-negative constant and b ∈H(div, Ω)∩L∞(Ω), with div b = 0, is a given velocity
field. The weak formulation of Problem (2.1) is given by:

Find (u, p) ∈ V ×Q := H1
0(Ω)× L2

0(Ω) such that

B ((u, p), (v, q)) = (f ,v)Ω for all (v, q) ∈ V ×Q, (2.2)

where

B ((u, p), (v, q)) := a(u,v)− (div v, p)Ω − (divu, q)Ω , (2.3)

a(u,v) := ν (∇u,∇v)Ω + ((b · ∇)u,v)Ω + σ (u,v)Ω . (2.4)

Using integration by parts and div b = 0 the bilinear form a induces the norm

‖v‖2a := a(v,v) = ν |v|21,Ω + σ ‖v‖20,Ω for all v ∈ V . (2.5)

If σ = 0, then thanks to the Poincaré inequality

∃CΩ > 0 , ∀v ∈ V : ‖v‖0,Ω ≤ CΩ |v|1,Ω , (2.6)

‖·‖a remains a norm. The following continuity estimates will be of use in the stability and convergence analysis.

Lemma 2.1. For all w,v ∈ V the following inequalities hold

‖v‖20,Ω ≤
C2
Ω

ν + σC2
Ω

‖v‖2a , (2.7)



102 G.R. BARRENECHEA AND A. WACHTEL

and

a(w,v) ≤ ca ‖w‖a |v|1,Ω where ca :=
ν + σC2

Ω + b∞,Ω CΩ

(ν + σC2
Ω)

1/2
(2.8)

with CΩ from (2.6) and b∞,ω := ‖b‖∞,ω for ω ⊆ Ω.

Proof. Using the Poincaré inequality (2.6) we get

‖v‖2a ≥
ν

C2
Ω

‖v‖20,Ω + σ ‖v‖20,Ω =
ν + σC2

Ω

C2
Ω

‖v‖20,Ω ,

which proves (2.7). To prove (2.8), we consider (2.4), (2.5) and estimate term by term. First, we obtain

ν (∇w,∇v)Ω + σ (w,v)Ω ≤
(
ν |v|21,Ω + σ ‖v‖20,Ω

)1/2

‖w‖a
≤
(
ν + σC2

Ω

)1/2 |v|1,Ω ‖w‖a .
Now, integrating by parts, using div b = 0, and (2.7) we get

|((b · ∇)w,v)Ω | = |((b · ∇)v,w)Ω | ≤ b∞,Ω |v|1,Ω ‖w‖0,Ω ≤
b∞,Ω CΩ

(ν + σC2
Ω)

1/2
|v|1,Ω ‖w‖a . (2.9)

Adding these last two estimates proves (2.8). �

Finally, the inf-sup (or LBB) condition

inf
q∈Q

sup
v∈V

(q,div v)Ω
|v|1,Ω ‖q‖0,Ω

≥ βΩ > 0, (2.10)

holds, see for instance ([23], pp. 58–61). With these last ingredients, and applying standard arguments in
variational problems with constraints (see, e.g., [23]), we conclude that the Oseen problem (2.2) has a unique
solution.

2.2. Partitions and finite elements

In order to construct partition P we start from an initial macro element partition M that consists of closed
parallelograms and satisfies a maximal angle condition. We suppose that M is conforming, that is, the non-
empty intersection of M,M ′ ∈M is either a single common point or a shared edge. It is worth mentioning that
partition M is allowed to be highly anisotropic and contain corner patches, that is, a drastic change of stretching
in two directions may occur in some parts of the mesh. See for example the areas around the shaded cells in
Figures 1–3.

We define the partition P as a uniform refinement of M, and state the main definitions and properties of P:

• Let EP denote the set of interior edges of P. Throughout we use M to denote an element of M and refer
to it as macro element, and use K to denote elements of P. Additionally, we use |ω| to denote the area of
ω ⊂ R2 and |e| to denote the length of an edge.

• The uniform refinement splits each macro element M ∈ M into K1,K2,K3,K4 ∈ P, such that |Ki| =
|M | /4 (i = 1, . . . , 4), see Figure 1.

• For M ∈M, let EM ⊆ EP denote the set of its interior edges, dashed in Figure 1–3.
• The aspect ratio of a cell K ∈ P is defined by %K := mine⊂∂K |K| / |e|2. The mesh aspect ratio is defined by
% := minK∈P %K .
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Figure 1. Partition M (left) and P (right). We call this M corner patch.

λ λ λ

Figure 2. Corner patches on [0, λ+H]2 whose corners were refined r times (r = 0, 1, 2).

• Let C be the set of corners, that is, nodes c of the mesh M towards which the mesh is refined, denoted
by filled circles in Figures 1–3. For c ∈ C, we denote by ωc the area around c that is partitioned in a
shape-regular way (shaded in Figs. 1–3). Moreover, for every c ∈ C, we select a single edge γc ∈ EP that
separates a small corner macro element (shaded) from a highly stretched neighbouring macro element, e.g.,
the embraced edges in Figures 1–3. The selected edges γc are collected in the set EC.

Even if the above-stated hypotheses allow more general situations, from now on we will restrict our analysis
to meshes of the type depicted in Figures 1–3. In particular, we will not consider the case of graded meshes or
meshes in which the change between ωc and the complement is more subtle than the one from these figures.

It is worth mentioning that the condition “P arises from a uniform refinement of M” still allows local (macro-
element based) refinements, as described in [31]. In particular, instead of M, an initial partition Mr, that
contains corner patches that have been refined uniformly r-times, may be used as a macro-element mesh for P,
cf. Figure 2, where the partitions M0,M1,M2 and P0,P1,P2 have been depicted. To lighten the notation, we
remove the subindex r whenever it is clear from the context, but we keep in mind that the partitions M and P

have been refined, as in Figure 2, r times.
Finally, we define the finite element spaces

V `,P :=
{
v ∈ V : v|K ∈ Q`(K)2 for all K ∈ P

}
, ` = 1, 2, (2.11)

and
QP := {q ∈ Q : q|K ∈ P0(K) for all K ∈ P} , (2.12)
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Figure 3. An anisotropic mesh for flow over step.

where, as usual, Q`(K) denotes the space of polynomials of degree smaller than, or equal to, ` in each variable,
and P0(K) denotes the space of constant functions in K. We seek an approximation of the solution (u, p) of
Problem (2.1) within the discrete space V 1,P ×QP.

2.3. Preliminary results

It is a well known fact that V 1,P×QP is not inf-sup stable, even on shape-regular meshes. On the other hand,
since V 1,P and V 2,M share the same degrees of freedom, V 1,P ×QM is inf-sup stable. Now, since M contains
corner patches, then the inf-sup constant of the latter pair is affected by the aspect ratio of M. More precisely,
applying the results from [3] (see also [2]) we conclude that

inf
q∈QM

sup
v∈V 1,P

(q,div v)Ω
|v|1,Ω ‖q‖0,Ω

= βM ≥ C
√
%, (2.13)

and this bound is sharp. This issue is then solved in the next result where we impose a minimal set of additional
constraints to obtain a uniformly inf-sup stable subspace G of QM. In this lemma, and thereafter, for a function
q, JqKγ will denote its jump across the edge γ.

Lemma 2.2. Let G ⊂ QM ⊂ QP be the space defined by

G :=
{
q ∈ QM : JqKγc = 0 for every γc ∈ EC

}
. (2.14)

Then, the following inf-sup condition holds

sup
v∈V 1,P

(div v, q)Ω
|v|1,Ω

≥ βG ‖q‖0,Ω for all q ∈ G, (2.15)

with a constant βG ≥ max {βM, C/2r}, where C is independent of the mesh, data of the problem, and r (the
number of times the initial macro-element mesh has been refined, see Fig. 2). Equivalently, the following inf-sup
deficiency holds

sup
v∈V 1,P

(div v, q)Ω
|v|1,Ω

≥ βG ‖ΠGq‖0,Ω − ‖q −ΠGq‖0,Ω for all q ∈ QP, (2.16)

where ΠG : QP → G stands for the L2(Ω)-projection onto G.
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Proof. The proof follows a similar path as in [2] allowing the extension to refined corner patches. For complete-
ness we include an abridged version here. We first prove (2.15). Since G ⊂ QM, we have βG ≥ βM. For the
alternative βG ≥ C/2r, let us define

Q∗M :=
{
q ∈ QM : 〈q〉ωc

= 0 for c ∈ C
}
.

Let now q∗ ∈ Q∗M. As in ([2], Cor. 3.1) there exists v∗ ∈ V 1,P such that v∗|ωc
∈H1

0(ωc) for every c ∈ C, and

(div v∗, q∗)Ω = ‖q∗‖20,Ω and |v∗|1,Ω ≤ Ĉ ‖q∗‖0,Ω , (2.17)

where Ĉ > 0 depends only on Ω. In particular, this constant Ĉ is independent of r. Next, we decompose q ∈ G
into q = ΠCq + q∗ where ΠCq|ωc

(for c ∈ C) and ΠCq|Ω\(∪c∈Cωc) are constants, and q∗ ∈ Q∗M. Then, since

(div v∗, ΠCq)Ω = 0 we get (div v∗, q) = ‖q∗‖20,Ω . Therefore, (2.17) implies (2.15), once the following is proved

‖q‖0,Ω ≤ C2r ‖q∗‖0,Ω . (2.18)

As in ([2], Lem. 3.2) we conclude that ‖ΠCq‖20,Ω ≤ C
∑

c∈C |ωc| 〈Jq∗K〉2γc . Noting that γc ⊂ Mc ∩M ′c, with

Mc,M
′
c ∈M, |Mc| ≤ |M ′c|, and using that |ωc| |Mc|−1

= 22r, each of these jumps is bounded as

|ωc| 〈Jq∗K〉2γc ≤ C |ωc| |Mc|−1 ‖q∗‖20,Mc∪M ′
c
≤ C22r ‖q∗‖20,Ω ,

and then (2.18) follows.
Finally, given (2.15), the proof of ([2], Lem. 4.1) implies (2.16). The reverse follows using only ΠGq = q for

q ∈ G. This finishes the proof. �

Remark 2.3. We stress the fact that βG only depends on how refined the partition M is. This is reflected by
the factor 2r in βG. This unfortunate behaviour can be solved easily by limiting the number of refinements and
instead moving λ closer to the nodes c, since βG is bounded below by a constant independent of λ.

The next result appears as a natural consequence of the previous Lemma, and standard finite element ap-
proximation results for variational problems with constraints. In particular, it states that an approximation,
denoted uI , of u can be built in such a way that it is weakly divergence-free (in the macro-elements) and has
optimal approximation properties. This approximation somehow generalises the divergence-preserving interpo-
lation operator from [13] to a different class of meshes, at the cost of providing only a global approximation
result.

Lemma 2.4. Let G ⊂ QP be defined as in Lemma 2.2. Then, there exists uI ∈ V 1,P such that

(div(u− uI), q)Ω = 0 for all q ∈ G, (2.19)

and
|u− uI |1,Ω ≤ 2(1 + β−1

G ) inf
vP∈V 1,P

|u− vP|1,Ω . (2.20)

Proof. Let (φP, χP) ∈ V 1,P ×G be the solution of the following auxiliary problem:

(∇φP,∇v)Ω − (div v, χP)Ω = (∇u,∇v)Ω for all v ∈ V 1,P,

(divφP, q)Ω = (divu, q)Ω for all q ∈ G . (2.21)

The well-posedness of this problem is a consequence of (2.15). Then, defining uI := φP, (2.19) follows immedi-
ately from (2.21). Moreover, since (uI , χP) is a finite element approximation of (u, 0), (2.20) follows by standard
arguments, see e.g. ([23], p. 115, or [26], Lem. 3.60 and Thm. 4.21). �
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Table 1. A numerical confirmation of Remark 2.5.

λ βM0 βM1 βM2 βM3

10−3 4.947 × 10−2 5.157 × 10−2 5.207 × 10−2 5.220 × 10−2

10−4 1.567 × 10−2 1.634 × 10−2 1.650 × 10−2 1.654 × 10−2

10−5 4.957 × 10−3 5.169 × 10−3 5.220 × 10−3 5.233 × 10−3

Remark 2.5. We finish this section by providing some more insight in the behavior of the inf-sup constant
βM as the corner patches get refined. Our aim is to show that this constant, not only doesn’t degenerate, but
it actually increases with r. We remind that we have dropped the subscript r whenever it is clear from the
context, but we keep in mind that the macro-element patch M has been refined r times.

First, from (2.13) and (2.17) we conclude that the spurious mode on the (refined) corner patch in Figure 2
is given by the function connecting the (uniformly stable) average free spaces on ωc := [0, λ]×[0, λ] and Ω \ ωc,
i.e.

qB := χωc −
|ωc|
|Ω \ ωc|

χΩ\ωc
.

Let us first define the quantity

β̃r := ‖qB‖−1
0,Ω sup

v∈V 1,P

(qB ,div v)Ω
|v|1,Ω

·

Next, using (2.17) and the definition of the space Q∗M we can easily see that

sup
v∈V 1,P

(div v, q)Ω
|v|1,Ω

≥ 1

Ĉ

∥∥∥∥∥q − (q, qB)Ω
‖qB‖20,Ω

qB

∥∥∥∥∥
0,Ω

, (2.22)

for all q ∈ QP. Then, using ([26], Thm. 3.89), we conclude that

βM =
Ĉ−1

1 + Ĉ−1 + β̃r
β̃r . (2.23)

Thus, βM is an increasing function of β̃r. Moreover, since the space V 1,P becomes richer as r increases, then
β̃r increases with r. Thus, we have βM0 ≤ βM1 ≤ . . . ≤ βMr ≤ C

√
ρ0, where ρ0 is the aspect ratio of the initial

macro-element partition M0. In Table 1 we confirm this claim numerically.

2.4. Numerical confirmation (Part 1)

In this section we show the improvement of βG over βM. For simplicity we restrict the presentation of βG to
partitions on the unit square Ω = (0, 1)×(0, 1). To this end, we define a parametrized (by λ > 0), refined corner
patch Mr as the tensor-product of the following one-dimensional interval subdivision of [0, 1]. The parameter
λ < 1/2 separates a coarse and a fine region in [0, 1]. The interval [0, λ] is split into 2r intervals of length λ/2r

and [λ, 1] remains unsplit. Figure 2 shows these macro-element meshes Mr for r = 0, 1, 2 as continuous lines.
The subspace G ⊂ QM additionally imposes the continuity across the edges in EC for each case.

We have computed βG and βM for different levels of refinements while letting λ→ 0. The results are depicted
in Figure 4. The constants βG remain bounded below by a constant independent of λ, as predicted by Lemma 2.2.
Moreover, to confirm the claim made in Remark 2.5 we have computed the constant βM for different values of
r and different values of λ. We report the obtained values in Table 1 where it can be seen that the value of the
inf-sup constant βM grows with r.
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10−6 10−5 10−4 10−3 10−2 10−1

λ (r = 0)

10−2

10−1

100

βM0

βG0

10−6 10−5 10−4 10−3 10−2 10−1

λ (r = 1)

10−2

10−1

100

βM1

βG1

10−6 10−5 10−4 10−3 10−2 10−1

λ (r = 2)

10−2

10−1

100

βM2

βG2

Figure 4. Constants βG and βM, for r = 0, 1, 2.

3. The stabilised method for the Oseen equation

The stabilised method proposed in this work reads: Find (uP, pP) ∈ V 1,P×QP such that

Bs ((uP, pP), (vP, qP)) = (f ,vP)Ω for all (vP, qP) ∈ V 1,P×QP, (3.1)

where

Bs ((u, p), (v, q)) := B ((u, p), (v, q)) + sv(u,v)− sp(p, q), (3.2)

and sv and sp are symmetric, positive semi-definite bilinear forms aimed at stabilising velocity and pressure,
respectively. In order to prove stability and a priori estimates we need to make assumptions on sv and sp. For
this purpose, we define

|v|2sv := sv(v,v) and ‖v‖2a+s := ‖v‖2a + |v|2sv , (3.3)

and the bilinear form

sdivv (u,v) :=
∑
K∈P

γK (κK(divu), κK(div v))K , γK ≥ 0, (3.4)

where κω := id− 〈·〉ω denotes the fluctuation operator. We now state the main assumptions on sv and sp.

Assumption 3.1. Let v,w ∈ V . There exists a positive constant cs, which may depend on the data, but is
independent of the mesh, such that

sv(w,v) ≤ cs |w|sv |v|1,Ω . (3.5)

Furthermore, sv is assumed to satisfy

sdivv (v,v) ≤ sv(v,v), (3.6)

where sdivv is given by the LPS-like term (3.4).

We remark that, thanks to the above hypotheses, sv(·, ·) satisfies the following Cauchy−Schwarz inequality

sv(w,v) ≤ sv(w,w)1/2sv(v,v)1/2 . (3.7)

With the above constants we define

α :=
1

c2a + c2s
, (3.8)

with ca and cs from (2.8) and (3.5), respectively. Then, the pressure stabilisation term is given by

sp(p, q) :=
αp
4

∑
M∈M

SM (p, q) +
αp
4

∑
γc∈EC

Sγc(p, q), (3.9a)
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with αp ≥ α, and

SM (p, q) :=
∑
e∈EM

|M |
4 |e| (JpK, JqK)e , (3.9b)

Sγc(p, q) :=
min {|K| , |K ′|}

|γc|
(JpK, JqK)γc , (3.9c)

where K,K ′ ∈ P are such that γc = K ∩K ′.
Remark 3.2. For q ∈ G we realise that sp(q, q) = 0. Consequently, sp only acts in the complement of G. Then,
this scheme falls in the category of “minimally” stabilised methods, as described in the introduction. Moreover,
if the (macro-element) mesh M does not contain corner patches, then Sγc := 0 and the present term sp appears
as an extension of the one from [31] to the Oseen equation.

4. Stability of the method

This section is devoted to proving that Method (3.1) is stable with a stability constant depending only on βG.
The norm that will be used is given by

|||(v, q)|||2 := ‖v‖2a+s + α ‖q‖20,Ω + sp(q, q) . (4.1)

The next result is the first step towards stability.

Lemma 4.1. Let qP ∈ QP, p ∈ H1(Ω) and ΠG be the projection from Lemma 2.2. Then, the following holds

1

34
αp ‖qP −ΠGqP‖20,Ω ≤ sp(qP, qP), (4.2)

sp(qP, qP) ≤ Cαp
∑
K∈P

(
‖p− qP‖20,K + |e1,K |2 ‖∂t1p‖20,K + |e2,K |2 ‖∂t2p‖20,K

)
, (4.3)

where e1,K and e2,K are two non-parallel edges of K, ∂ti(i = 1, 2) are partial derivatives in their directions, and
C is a constant independent of mesh, angles, and data.

Proof. We start with (4.2). This proof uses notation and conventions from Figure 5. Our assumptions on the
partitions P and M imply that every selected edge γc ∈ EC (the embraced edge in Fig. 5, right) satisfies
γc ⊂M ∩M ′ where M,M ′ ∈ M and |M | ≤ |M ′|. For readability we define ωγc := M ∪M ′. Now, from its
definition ΠGq is given by

ΠGq
∣∣
M

=

{
〈q〉ωγc if M ⊂ ωγc ,
〈q〉M otherwise.

(4.4)

Therefore, bound (4.2) follows once we prove the local bounds

2αp ‖qP − 〈qP〉M‖
2
0,M
≤ αp SM (qP, qP), (4.5a)

2

17
αp
∥∥qP − 〈qP〉ωγc ∥∥2

ωγc
≤ αp

(
SM + SM ′ + Sγc

)
(qP, qP) . (4.5b)

The first estimate has been proven as part of ([31], Lem. 3.2). We include here a different proof which supplies
us with notation and arguments for (4.5b). Let M ∈M be a macro element such that M 6⊂ ωγc , γc ∈ EC. Since
all cells K ⊂M have the same area, an orthogonal basis of QP ∩ L2

0(M) is given by (cf. Fig. 5, left)

φ1,M := χK1
− χK2

,

φ2,M := χK1∪K2
− χK3∪K4

,

φ3,M := χK3
− χK4

,

(4.6)
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K1,M K2,M

K3,MK4,M

K1,M K2,M

K3,MK4,M

K1,M K2,M

K3,MK4,M

Figure 5. A macro element M ∈M (left) and set ωγc (right) with cells Ki,M ∈ P.

where χω is the characteristic function of ω. Below, we omit the subscript M when it is clear from the context.
Let ra := (qP − 〈qP〉M )|

M
∈ QP ∩ L2

0(M). Then, ra =
∑3
i=1 αiφi with appropriate coefficients αi, and using

|Ki| = |M | /4, (i = 1, . . . , 4), the definition of SM , JraKe ∈ P0(e), and orthogonalities of the basis we get

SM (qP, qP) = SM (ra, ra) =
|M |

4

∑
e∈EM

1

|e| ‖JraK‖
2
0,e =

|M |
4

∑
e∈EM

JraK
2
e

=
|M |

4

[
(2α1)2 + (2α2 − α1 − α3)2 + (2α3)2 + (−2α2 − α3 − α1)2

]
=
|M |

4

[
4α2

1 + 4α2
3 + 8α2

2 + 2(α1 + α3)2
]

= 2 ‖α1φ1‖20,M + 2 ‖α3φ3‖20,M + 2 ‖α2φ2‖20,M +
|M |

2
(α1 + α3)2

= 2 ‖ra‖20,M +
|M |

2
(α1 + α3)2, (4.7)

which proves (4.5a).
To prove (4.5b), we fix an edge γc ∈ EC and let rb :=

(
qP − 〈qP〉ωγc

)∣∣
ωγc

. Then

rb = α0φ0 + ra + r′a,

where φ0 = |M |−1
χM − |M ′|

−1
χM ′ , ra =

∑3
i=1 αiφi,M and r′a =

∑3
i=1 α

′
iφi,M ′ . Using (4.7), the definition of

φ0 and |K| ≤ |K ′| (since |M | ≤ |M ′|) we get(
SM + SM ′ + Sγc

)
(qP, qP) ≥ 2 ‖ra‖20,M + 2 ‖r′a‖

2
0,M ′ +

|K|
|γc|
‖JrbK‖20,γc . (4.8)

It only remains to bound the last term. Using JrbKγc , Jφ0Kγc ∈ P0(γc) and the linearity of the jump, followed by

2ab ≤ 1
2a

2 + 2b2 we obtain

‖JrbK‖20,γc
|γc|

=
(
Jα0φ0Kγc + α2 − α′2 − α1 − α′1

)2

= Jα0φ0K
2
γc

+ 2 Jα0φ0Kγc (α2 − α′2 − α1 − α′1) + (α2 − α′2 − α1 − α′1)
2

≥ 1

2
Jα0φ0K

2
γc
− (α2 − α′2 − α1 − α′1)

2

≥ 1

2
Jα0φ0K

2
γc
− 4

(
α2

2 + α′22 + α2
1 + α′21

)
,

and conclude with ε < 1 and |K| = |M | /4
|K|
|γc|
‖JrbK‖20,γc ≥ ε

|K|
|γc|
‖JrbK‖20,γc ≥

ε

8
|M | Jα0φ0K

2
γc
− ε |M |

(
α2

2 + α′22 + α2
1 + α′21

)
. (4.9)
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Now, using the definition of φ0 and |M | ≤ |M ′| we get

|M | Jα0φ0K
2
γc

= α2
0 |M |

(
1

|M | +
1

|M ′|

)2

≥ α2
0

(
1

|M | +
1

|M ′|

)
= ‖α0φ0‖20,ωγc , (4.10)

and
|M |

(
α2

1 + α′21 + α2
2 + α′22

)
≤ |M | (α2

1 + α2
2) + |M ′| (α′21 + α′22 )

≤ 2
(
‖ra‖20,M + ‖r′a‖

2
0,M ′

)
.

(4.11)

Choosing ε := 16
17 , inserting (4.9)–(4.11) into (4.8) and using that φ0 is orthogonal to φi,M , φi,M ′ , i = 1, 2, 3

leads to (
SM + SM ′ + Sγc

)
(qP, qP) ≥ 2

17

(
‖ra‖20,M + ‖r′a‖

2
0,M ′ + ‖α0φ0‖20,ωγc

)
=

2

17
‖rb‖20,ωγc , (4.12)

which proves (4.5b).
Finally, using p ∈ H1(Ω), JpKe = 0 a.e. on e ∈ EP, the trace estimate (A.1) (see the appendix for a proof),

and the fact that qP is a piecewise constant function, we bound each jump as follows:

|K|
|ej |
‖Jp− qPK‖20,ej ≤ 2

∑
K : ej⊂K

‖p− qP‖0,K
(
‖p− qP‖0,K + 2 |ei| ‖ti · ∇p‖0,K

)
≤ 4

∑
K : ej⊂K

(
‖p− qP‖20,K + |ei|2 ‖ti · ∇p‖20,K

)
,

where ei ⊂ K is an incident edge to ej (i.e. i = 1, j = 2 or i = 2, j = 1). Then, we sum over the edges across
which sp contains jumps and note for each K ∈ P, that sp contains jumps across at least two and at most three
different edges which proves (4.3). �

We now present the main stability result.

Theorem 4.2. Let sv satisfy (3.5), let |||·||| be defined by (4.1), and sp by (3.9) with αp ≥ α. Then,

sup
(v,q)∈V 1,P×QP

Bs ((w, r), (v, q))

|||(v, q)||| ≥ µs |||(w, r)||| for all (w, r) ∈ V 1,P×QP, (4.13)

where µs = β2
G/ [2(1 + βG)(35 + 34βG)] where βG is the constant from (2.15). Hence, Problem (3.1) is well-

posed.

Proof. Let (w, r) ∈ V 1,P×QP be given. First, from the definition of Bs it follows that

Bs ((w, r), (w,−r)) = ‖w‖2a+s + sp(r, r) . (4.14)

Additionally, given wδ ∈ V 1,P, using (2.8), (3.5) and α := 1/(c2a + c2s) we get

Bs ((w, r), (−wδ, 0)) = (a+ sv)(w,−wδ) + (divwδ, r)Ω

≥ −
√
c2a + c2s ‖w‖a+s |wδ|1,Ω + (divwδ, r)Ω

≥ −1

2
‖w‖2a+s −

1

2α
|wδ|21,Ω + (divwδ, r)Ω . (4.15)

Next, we choose wδ. By (2.16) there exists z ∈ V 1,P such that |z|1,Ω = 1 and

(div z, r)Ω ≥ βG ‖r‖0,Ω − (1 + βG) ‖r −ΠGr‖0,Ω .
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Defining wδ := δα ‖r‖0,Ω z with δ > 0 to be chosen, this last estimate, (4.2) and α ≤ αp give

(divwδ, r)Ω ≥ βGδα ‖r‖
2
0,Ω − (1 + βG)δα ‖r‖0,Ω α−1/2

p C
−1/2
1 sp(r, r)

1/2

≥ βGδα ‖r‖20,Ω −
α

2C1
δ2(1 + βG)2 ‖r‖20,Ω −

1

2
sp(r, r), (4.16)

and |wδ|1,Ω = δα ‖r‖0,Ω where C1 = 1/34. We then define (v, q) := (w−wδ,−r), and (4.14), (4.15) and (4.16)
yield

Bs ((w, r), (v, q)) ≥ 1

2

[
‖w‖2a+s + sp(r, r)

]
+

[
βG −

δ(1 + βG)2

2C1

]
δα ‖r‖20,Ω −

1

2α
|wδ|21,Ω

=
1

2

[
‖w‖2a+s + sp(r, r)

]
+ βG

[
1− δ(1 + βG)2

2C1βG
− δ

2βG

]
δα ‖r‖20,Ω

≥ δβG
2

(
‖w‖2a+s + sp(r, r) + α ‖r‖20,Ω

)
,

where the choice δ := βGC1/(C1 + (1 + βG)2) = βG/(1 + 34(1 + βG)2) and δβG ≤ 1 imply the last estimate. On
the other hand, using (2.8) and (3.5) shows ‖z‖a+s ≤ α−1/2 |z|1,Ω for all z ∈ V 1,P. Therefore, the definition of
wδ and |||·||| give

|||(v, q)||| ≤ |||(w, r)|||+ ‖wδ‖a+s ≤ |||(w, r)|||+ δα1/2 ‖r‖0,Ω ≤ (1 + δ) |||(w, r)||| ,

which proves the stated stability condition and the result with µs = δβG/(2 + 2δ). �

Remark 4.3. It is important to remark that the stability constant µs only depends on βG, which is bounded
below by a constant independent of the mesh aspect ratio. Therefore, µs is independent of the physical coefficients
of the problem, and the aspect ratio of the triangulation. Furthermore, the stability estimate (4.13) is valid
independently of the relation of ca and cs. In [34] velocity stabilisation terms that satisfy (3.5) with cs ≤ Cca
are used. We have chosen to avoid that assumption, since, as it has been shown in [27], a large stabilisation
parameter in the grad-div term may be beneficial in some cases.

5. A priori estimates

This section is devoted to the a priori analysis of (3.1). We use ΠQP
: L2(Ω)→ QP to denote the L2-projection

into QP satisfying

(p−ΠQP
p, 1)K = 0 for all K ∈ P . (5.1)

Theorem 5.1. Let us suppose the solution (u, p) of (2.2) satisfies p ∈ H1(Ω). Let sv satisfy Assumption 3.1
and let sp be defined by (3.9) with αp ≥ α. Then, if uI ∈ V 1,P is the interpolant defined in Lemma 2.4, then

|||(u− uP, p− pP)||| ≤ C(1 + µ−1
s )

{
sv(u,u) + sv(u− uI ,u− uI) + σ ‖u− uI‖20,Ω

+
∑
K∈P

((
1

α+ αp
+ ν +

b2∞,KC
2
Ω

ν + σC2
Ω

)
|u− uI |21,K

+

(
α+ αp +

1

ν + γK

)
‖p−ΠQP

p‖20,K + αp
∑
i=1,2

|ei,K |2 ‖∂tip‖20,K

)}1/2

, (5.2)

where ei,K , ∂ti (i = 1, 2) are defined as in Lemma 4.1, and the constant C is independent of mesh and data.
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Proof. As usual, we split the error as follows

(u− uP, p− pP) = (u− uI , p−ΠQP
p)− (uP − uI , pP −ΠQP

p) =: (ηv, ηp)− (ξv, ξp).

Using (3.3) and (4.1) the interpolation error satisfies

|||(ηv, ηp)|||2 = ν |ηv|21,Ω + σ ‖ηv‖20,Ω + sv(ηv,ηv) + α ‖ηp‖20,Ω + sp(ηp, ηp) .

The only term in the above expression that is not included in (5.2) is the last one. But, similar to (4.3), this
term can be bounded by the last two in (5.2).

To bound the discrete error (ξv, ξp), using Theorem 4.2 there exists (wP, rP) ∈ V 1,P×QP with |||(wP, rP)||| =
1 satisfying

µs |||(ξv, ξp)||| ≤ Bs ((ξv, ξp), (wP, rP))

= B ((ηv, ηp), (wP, rP))− sv(uI ,wP) + sp(ΠQP
p, rP),

(5.3)

where we used (2.2) and (3.1). We estimate the right-hand side term by term. Using (3.7), a Cauchy−Schwarz
estimate for sp(·, ·), and |||(wP, rP)||| = 1 shows

−sv(uI ,wP) = sv(ηv,wP)− sv(u,wP) ≤ sv(ηv,ηv)1/2 + sv(u,u)1/2,

sp(ΠQP
p, rP) ≤ sp(ΠQP

p,ΠQP
p)1/2,

(5.4)

and applying p ∈ H1(Ω) and (4.3) the right-hand sides of the last two inequalities are bounded by the first two
and last two terms of (5.2). Next, using the Cauchy−Schwarz inequality and (2.7) we get

ν (∇ηv,∇wP)Ω + σ (ηv,wP)Ω ≤
(
ν |ηv|21,Ω + σ ‖ηv‖20,Ω

)1/2

‖wP‖a ,

((b · ∇)ηv,wP)Ω ≤
(∑
K∈P

b2∞,K |ηv|21,K

)1/2
CΩ

(ν + σC2
Ω)1/2

‖wP‖a .
(5.5)

Moreover, for every K ∈ P we have

(divwP, ηp)K ≤
√

2 |wP|1,K ‖ηp‖0,K . (5.6)

Alternatively, since (ηp, 〈divwP〉K)
K

= 0, we get

(divwP, ηp)K = (κK(divwP), ηp)K ≤ ‖κK(divwP)‖0,K ‖ηp‖0,K . (5.7)

Then, using the inequality ab ≤
√
t |ab|+

√
1− t |ab| with t = ν/(ν + γK) to combine (5.6) and (5.7) leads to

(divwP, ηp)K ≤
(√

2ν |wP|1,K +
√
γK ‖κK(divwP)‖0,K

)
(ν + γK)−1/2 ‖ηp‖0,K .

Summing over all K ∈ P and employing (3.3), (3.4) and assumption (3.6) we arrive at

(divwP, ηp)Ω ≤ C
(∑
K∈P

1

ν + γK
‖ηp‖20,K

)1/2

‖wP‖a+s . (5.8)

Finally, since ΠGrP ∈ G, we can apply (2.19) and (4.2) to conclude

(div ηv, rP)ω = (div ηv, rP −ΠGrP)ω

≤
√

2 |ηv|1,ω ‖rP −ΠGrP‖0,ω ≤ Cα−1/2
p |ηv|1,ω sp(rP, rP)|1/2ω , (5.9)
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where ω = M ∈M, or ω = M ∪M ′ if γc ⊂M ∩M ′ for one γc ∈ EC. On the other hand, for any subset ω ⊂ Ω
we have

(div ηv, rP)ω ≤ ‖div ηv‖0,ω ‖rP‖0,ω ≤ α−1/2 |ηv|1,ω α1/2 ‖rP‖0,ω . (5.10)

Following the same steps as for (5.8), with t = α/(α+ αp) we combine (5.9) and (5.10) to arrive at

(div ηv, rP)Ω ≤ C
(∑
K∈P

1

α+ αp
‖ηv‖20,K

)1/2 (
α ‖rP‖20,Ω + sp(rP, rP)

)1/2

. (5.11)

The result follows on collecting the estimates (5.3)–(5.5), (5.8), and (5.11). �

We close this section with a few remarks on Theorem 5.1:

(1) A different proof of (5.2) also implies a best approximation result. More precisely, if the property (2.19) of
uI (and hence (5.9)) is not used, then the terms involving u− uI become

inf
vP∈V 1,P

|u− vP|2sv +
∑
K∈P

(
1

α
+ ν +

b2∞,KC
2
Ω

ν + σC2
Ω

)
|u− vP|21,K + σ ‖u− vP‖20,K .

This result extends, for instance, ([34], Thm. 4.4) to the non-inf-sup stable pair V 1,P×QP on anisotropic
meshes. This bound, as well as the one in Theorem 5.1, does show a dependency on ν that could be
harmful if σ vanishes. It is important to remark though that this dependence is common to many different
discretisations of the Oseen equations, even for isotropic meshes. In particular, the present error estimate is
qualitatively similar to the ones presented in the review paper [8] for different discretisations of the Oseen
problem, and to some of the estimates presented in [18]. One way to avoid this could be to use the technique
developed in [14] for the Q2

1 ×Q1 pair. In there, the method is defined by penalising the fluctuations of the
whole gradient (instead of the convective gradient, as in this work). The downside of that approach is the
fact that the corresponding norm does not control ‖p‖0,Ω (see also the appendix in [32] for a similar issue)

and the a priori estimates require p ∈ H2(Ω).
(2) The choice αp ≥ α is motivated by the fact that it leads to stability constants which are independent of the

data of the problem. Moreover, the inclusion of the pressure stabilisation term in the energy norm allows an
error estimate containing the factor (α+ αp)

−1. This is a better bound than 1/α, which for σ = 0 behaves
like ν−1.

(3) The error estimate contains sv(ηv,ηv)
1/2 and sv(u,u)1/2, which are, generally, significantly smaller than

their crude bound cs |ηv|1,Ω (especially for the pure grad-div term). This, as well, provides more flexibility
for the choice of γK (see [27] for a detailed discussion of this issue in the case of the Stokes problem).

(4) Alternatively, a mixed method could be proposed using V 1,P×G as an approximation space. In such a
case, the proof of a priori estimate (5.2) changes, since ΠQP

is replaced by ΠG. Hence, (5.7) requires
Assumption (3.6) to be modified accordingly. More precisely, we observe that G has a locally constant basis

{φj}dimG
j=1 and define ωj := suppφj , where either ωj = M or ωj = M ∪M ′ with M,M ′ ∈M. Now, defining

sGv (u,v) :=

dimG∑
j=1

γωj
(
κωj (divu), κωj (div v)

)
ωj
,

we can replace assumption (3.6) by sGv (v,v) ≤ sv(v,v). The latter definitions directly imply (5.7) with κωj
instead of κK . Then, (5.8) changes to

(divwP, ηp)Ω ≤ C

dimG∑
j=1

1

ν + γωj
‖p−ΠGp‖20,ωj

1/2

‖wP‖a+s .

On the other hand, estimate (5.9) is not needed as (div ηv, rG)ω = 0 by definition.
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6. Examples of stabilisation terms for the velocity

The previous sections, in particular Section 3, leave the choice of velocity stabilisation terms flexible. Below
we define the stabilisation terms used in the numerical experiments.

Option one. Let bK := 〈b〉K , and define

sv(u,v) :=
∑
M∈M

γM (κM (divu), κM (div v))M +
∑
K∈P

L

|bK |
(κK((bK · ∇)u), κK((bK · ∇)v))K . (6.1)

Here, γM is chosen as one of the following options

γM := max
{

1,Pemin
M

}
, (6.2a)

γM := 1 + ind(M)Pemin
M and ind(M) := 1− ρM |M |

maxω∈M |ω|
, (6.2b)

with local and global (minimal) Péclet numbers defined by Pemin
M := minM∈M Pemin

M and Pemin
M :=

ν−1b∞,M min {|M |/|e| : e is an edge of M}. In addition, for dimensional consistency, we have included the length
scale L. We choose a characteristic length scale which is related to the domain Ω, i.e., it is global. This choice
is motivated by two main reasons: the stability and convergence analyses do not require a local length scale,
and our numerical experiments show that a better behavior arises when the value of L does not tend to zero
with any mesh properties.

The choice (6.2b) is motivated by the fact that the minimal global Péclet number does not contain information
about local phenomena. Then the introduction of the ind(·) function ensures that γM varies significantly with
local geometric properties of M . In fact γM ≈ 1 in large shape-regular elements and γM ≈ 1 + Pemin

M in highly
stretched elements and small corner elements, which is the desirable behaviour.

Remark 6.1. The stabilisation term (6.1) satisfies Assumption 3.1; moreover, estimate (3.5) follows with with
cs = (b∞,Ω + maxM∈M 2γM )1/2. In addition, the definition (6.1) of sv guarantees that sv(u,u) and sv(ηu,ηu),
appearing in the a priori estimate (5.2), can be bounded in an optimal way.

Option two. We also consider the following stabilisation

sv(u,v) :=
∑
M∈M

(κM (∂xu), δxκM (∂xv))M + (κM (∂yu), δyκM (∂yv))M , (6.3)

where (δx, δy) are given by

δK,x := ν−1b2∞,Kh
2
K,x min

{
1,
(
Pemin

K

)−1
}
,

δK,y := ν−1b2∞,Kh
2
K,y min

{
1,
(
Pemin

K

)−1
}
,

Pemin
K := ν−1 min {hK,x, hK,y} b∞,K .

This term has been introduced and analysed in [14] in the context of the Q2
1×Q1 pair. It satisfies Assumption 3.1

with cs = max {δx, δy}1/2 and γK = γM := 1
2 min {δx, δy}.

7. Numerical verification

In this section we report numerical results confirming our theoretical findings. In all numerical experiments
presented below the domain is chosen to be Ω = (0, 1)2. This is why we have chosen as characteristic length
scale the value L = 1.
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Figure 6. Constants µs and µs,without (3.9c), for r = 0, 1, 2.

7.1. Numerical stability

This experiment’s aim is to show the impact of the addition of the stabilising term (3.9c) in the formulation.
For this, we have used Lemma A.2 below to compute the inf-sup constant of the bilinear form Bs ((·, ·), (·, ·))
using αp = 1. The physical coefficients of the problem are b = (−1,−1)>, ν = 1, σ = 1, and we impose
homogeneous Dirichlet boundary conditions. The stabilising term sp(·, ·) has been implemented either in its
complete form, i.e., including (3.9c), or dropping that term. Since we aim to asses the impact of (3.9c) on the
stability of the method, we have set sv := 0 for this experiment. The results for the corner patches P0,P1,P2,
shown in Figure 2, are depicted in Figure 6 where we observe that the presence of (3.9c) helps obtaining a
stability constant µs which is bounded below independently of λ, while the inf-sup constant of the method
without the term (3.9c) degenerates as the aspect ratio tends to zero.

7.2. Quality of approximations

We present the results of two different experiments approximating a solution of (2.1) with non-homogeneous
boundary conditions.

Example 7.1. We define b = (−1,−1)>, ν = 10−6, σ = 0 and choose the right-hand-side f and boundary
conditions such that the exact solution is given by

u :=


1− exp(−y/ν)

1− exp(−1/ν)
− y

1− exp(−x/ν)

1− exp(−1/ν)
− x

 and p := sin(x− 1/2) sin(y − 1/2) . (7.1)

Example 7.2. We define b = (−1,−1)>, ν = 10−6, σ = 1 and choose the right-hand-side f and boundary
conditions such that the exact solution is given by

u :=

1− exp

(
−y 1 +

√
1 + 4ν

2ν

)
1− exp

(
−x1 +

√
1 + 4ν

2ν

)
 and p := sin(x− 1/2) sin(y − 1/2) . (7.2)

In both cases the right-hand-side f is independent of ν, which makes the results independent of the quadrature
rules employed.

For the experiments we define parametrised partitions containing a corner patch. Let PN,λ (N divisible by
4, and λ ∈ (0, 1/2]) be the tensor-product of the one-dimensional interval subdivision that splits each of the
intervals [0, λ] and [λ, 1] into N/2 intervals of equal length, cf. Figure 1 (right) where P4,λ is shown. The mesh
PN,λ is a Shishkin mesh, but we choose λ to be larger than the Shishkin parameter 2ν lnN ≤ 10−5.
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Table 2. Approximation errors for Solution (7.2), on meshes with λ = 10−4. Errors using the
inf-sup stable pair V 1,P×G (top table). Errors using V 1,P×QP, αp = 1, with sv given by (6.3)
(bottom left) and (6.1) (bottom right).

V 1,P ×G,

N Erel
nat,2a Erel

nat,2b IEnat

8 1.000 1.000 806.56

16 1.000 1.000 770.70

32 1.000 1.000 694.05

64 1.000 1.000 540.97

128 1.000 1.000 340.14

256 1.000 1.000 184.11

V 1,P ×QP, αp = 1

N Erel
nat,3 IEnat

8 1.0049 3.52

16 1.0092 2.47

32 1.0177 1.68

64 1.0426 1.03

128 1.0564 0.51

256 1.0170 0.24

V 1,P ×QP, αp = 1

N Erel
nat,2a Erel

nat,2b IEnat

8 1.000 1.000 806.56

16 1.000 1.000 770.70

32 1.000 1.000 694.05

64 1.000 1.000 540.97

128 1.000 1.000 340.14

256 1.000 1.000 184.11

Our aim is to explore how robust the methods with the previously defined stabilisation terms and parameters
are with respect to the choice of λ. This is why we chose a wide range for λ from λ = 1/2 (a shape-regular
mesh) to λ = 10−4 (a highly anisotropic corner patch with minimal aspect ratio % ≈ 10−4).

The first study concerns the error behaviour of the discretisation error when compared to a reference value.
To this end, we compute the relative errors given by

Erel
nat :=

|||(u− uP, p− pP)|||
IEnat

, with IEnat := |||(u− IPu, p−Πp)||| ,

where |||·||| is defined in (4.1). Here IPu ∈ V 1,P stands for the nodal interpolant of u, and Π ∈ {ΠQP
, ΠG} are

the projections defined earlier, chosen depending on whether we use the stabilised method based on V 1,P×QP,
or the inf-sup stable pair V 1,P ×G, respectively.

Furthermore, since we compare different stabilisation terms for velocity, we define Erel
nat,2a when

sv = (6.1) & (6.2a), Erel
nat,2b when sv = (6.1) & (6.2b) and Erel

nat,3 when sv = (6.3). For the test cases per-
formed, we notice that the nodal interpolation of the exact velocity is divergence-free. Then, the error IEnat is
independent of the stabilisation parameter in the case we use the stabilisation term given by (6.1).

Qualitatively similar results have been observed for both Examples 7.1 and 7.2. Then, we only show results
for Example 7.2. In Table 2 we report the results using λ = 10−4. The results reported in Table 2 show that
the discretisation error, for all the cases tested, follows the same pattern as the interpolation error. In addition,
we observe that both errors tend to zero as N grows, which is linked to the fact that λ is small enough so the
boundary layer becomes resolved as N grows. It is interesting to remark that the natural norm is much stronger
for the case in which sv is given by (6.1) (for both definitions of the stabilisation parameter) than for the case
of sv given by (6.3).

We next try to assess the importance of the last point made in the last paragraph. For this, we plot the
velocity profiles obtained by the different methods in Figures 7–8. We note that the stabilisation term sv given
by (6.1) produces a profile which is smoother, especially when (6.2a) is used, producing a discrete velocity which
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Figure 7. Velocity profiles using N = 16, and the mixed method V 1,P×G. At the top we
depict the results for Example 7.1, while at the bottom the results correspond to Example 7.2.

is almost free of oscillations, whereas the profile obtained from the method using sv given by (6.3) presents large
oscillations. This is in accordance with our earlier claim that the norm induced by (6.1) is stronger than the
one induced by (6.3). Furthermore, from Figures 7–8 we see that the different definitions of the stabilisation
parameters give different results on shape regular meshes (see the results for λ = 1/2). However, on anisotropic
meshes the behaviour is similar and oscillations and overshoots are significantly reduced.

We finally show that both terms in (6.1) are necessary for the good behavior of the method. For this, we
remove the second term from (6.1), i.e., the fluctuations of the convective gradient, and solve the discrete
problem with this ”reduced” stabilised method. The results are depicted in Figure 9 where we can observe that
the “reduced” method (depicted on the left) presents oscillations in the discrete solution, which are corrected
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Figure 8. Velocity profiles using N = 16 and the stabilised method with V 1,P×QP, sp, and
αp = 1. At the top we depict the results for Example 7.1, while at the bottom the results
correspond to Example 7.2.

once the full stabilising term sv given by (6.1) is used. This result indicate that both terms in the stabilising
term are necessary, although the fluctuation term in the convective derivative seems to only be active in the
region close to the boundary layers. Then, the main responsible for the stable velocity profiles seems to be the
fluctuations of the divergence term.

8. Conclusion

In this work we have generalised the results from [2, 31] to the lowest order pair Q2
1 × P0 in partitions that

contain refined corner patches, and extended this generalisation to the Oseen equation. To analyse the resulting
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Figure 9. Discrete velocities for Example 7.1 on a mesh with N = 8, λ = 10−3. The method
uses V 1,P×QP, sp, and αp = 1, and the “reduced” stabilised method (i.e., (6.1) where the
fluctuation of the convective derivative has been removed, depicted on the left), and the full
stabilising term (6.1), depicted on the right.

e

ne

α
¯̄e

ti

Figure 10. Parallelogram K with notation and level-sets of φe.

methods we have used, and adapted when necessary, the abstract approach given in [34]. This allowed us to
present stability and convergence results that are valid both in the inf-sup stable and stabilised cases. A precise
definition, by means of a weighted grad-div term enhanced by a penalisation of fluctuations of the convective
derivative, of the stabilisation term for the velocity has been proposed, justified, and tested numerically. This
new definition seems to outperform some previously known alternatives, at least numerically. This study leaves,
nevertheless, some open questions such as the extension of this idea to graded meshes, more general quadrilat-
erals, and the three-dimensional case. For the latter, the detailed stability analysis of the underlining V 1,P×QP

space needs to be done. These will be the topics of future research.

Appendix A.

In this appendix we detail a local trace inequality. Its proof does not seem to be available, and that is why
we present it here.

Lemma A.1. Let K be a parallelogram, let e be one of its edges, and let ti be a unit tangential vector of an
edge ei that is incident to e. Then, for all v ∈ H1(K) the following holds

‖v‖20,e ≤
|e|
|K| ‖v‖0,K

(
‖v‖0,K + 2 |ei| ‖ti · ∇v‖0,K

)
. (A.1)

Proof. Let v ∈ H1(K). Using the notation given by Figure 10, we define

φe(x) :=
(
ne · (x− p¯̄e)

)
ti,
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where ne is the outer unit normal to edge e and p¯̄e is any point on the opposite edge ¯̄e (parallel to e). Since
φe ∈ C∞(K), the following Green’s formula holds∫

∂K

(φe · n)v2 ds =

∫
K

v2 divφe dx+ 2

∫
K

v(φe · ∇v) dx . (A.2)

We now evaluate the terms involving φe. We start by observing that

divφe = ne1ti1 + ne2ti2 = ne · ti = cos(π − (π/2 + α)) = sin(α) . (A.3)

Furthermore, the unit tangential and normal vector of edge e form a basis of R2, that is, each x ∈ K is
representable as x = p¯̄e + r1(x) |e|−1 |K|ne + r2(x)te with r1 ∈ [0, 1] and r2 ∈ R. Therefore, the definition of
φe simplifies to

φe = r1(x) |e|−1 |K| ti for r1 ∈ [0, 1], (A.4)

with r1 ≡ 0 on ¯̄e and r1 ≡ 1 on e (since K is a parallelogram). Therefore, φe · n = 0 on ∂K \ e and∫
∂K

(φe · n)v2 ds =

∫
e

(φe · ne)v2 ds =
|K|
|e| (ne · ti)

∫
e

v2 ds =
|K|
|e| sin(α)

∫
e

v2 ds . (A.5)

Then, inserting (A.3), (A.4) and (A.5) into (A.2) we arrive at

sin(α)
|K|
|e|

∫
e

v2 ds = sin(α)

∫
K

v2 dx+
|K|
|e|

∫
K

r1(x)2v(ti · ∇v) dx .

After recalling maxx∈K r1(x) = 1 and applying Cauchy–Schwarz’s inequality the last identity gives

‖v‖20,e ≤ ‖v‖0,K
( |e|
|K| ‖v‖0,K +

2

sin (α)
‖ti · ∇v‖0,K

)
=
|e|
|K| ‖v‖0,K

(
‖v‖0,K + 2 |ei| ‖ti · ∇v‖0,K

)
,

which finishes the proof. �

We now prove a result that allows us to compute the inf-sup constant of the Oseen problem. We have not
been able to locate this exact result in the literature, and that is why we detail its proof here.

Lemma A.2. Let A,B ∈ Rn×n and let B be symmetric positive definite. Then, the inf-sup constant σ defined
by

σ = min
z∈Rn

max
ξ∈Rn

ξTAz

‖ξ‖B ‖z‖B
is given by the smallest singular value of Ã := L−TAL−1 where L is defined by the Cholesky decomposition
B = LTL.

Proof. First, a direct application of Theorem 2 in [19] implies

σ ‖y‖2 ≤ max
x∈Rn

xT Ãy

‖x‖2
for all y ∈ Rn,

where σ is the smallest singular value of Ã. Then, changing variables (x = Lξ, y = Lz) we get

σ ‖Lz‖2 ≤ max
ξ∈Rn

(Lξ)TL−TAL−1(Lz)

‖Lξ‖2
= max
ξ∈Rn

ξTAz

‖Lξ‖2
for all z ∈ Rn .

Finally, realising ‖z‖2B = 〈Bz, z〉 =
〈
LTLz, z

〉
= 〈Lz, Lz〉 = ‖Lz‖22 finishes the proof. �
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